ETH Price: $3,046.12 (+2.43%)
 

Overview

ETH Balance

7.44322433864642757 ETH

Eth Value

$22,672.95 (@ $3,046.12/ETH)

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Claim236255842025-10-21 11:16:2362 days ago1761045383IN
0xC054eF31...c83Ba0B9a
0 ETH0.000007720.10412225
Claim234179362025-09-22 10:21:2391 days ago1758536483IN
0xC054eF31...c83Ba0B9a
0 ETH0.000050691.09747675
Claim234179352025-09-22 10:21:1191 days ago1758536471IN
0xC054eF31...c83Ba0B9a
0 ETH0.000081991.10474584
Claim234037642025-09-20 10:44:3593 days ago1758365075IN
0xC054eF31...c83Ba0B9a
0 ETH0.000048890.65893957
Claim233855992025-09-17 21:50:5995 days ago1758145859IN
0xC054eF31...c83Ba0B9a
0 ETH0.000101391.36584363
Claim232465962025-08-29 11:50:59115 days ago1756468259IN
0xC054eF31...c83Ba0B9a
0 ETH0.000018280.24646381
Claim229604462025-07-20 12:36:35155 days ago1753014995IN
0xC054eF31...c83Ba0B9a
0 ETH0.000281083.65712028
Claim229598522025-07-20 10:36:59155 days ago1753007819IN
0xC054eF31...c83Ba0B9a
0 ETH0.000243023.27499651
Claim229506452025-07-19 3:43:23156 days ago1752896603IN
0xC054eF31...c83Ba0B9a
0 ETH0.000061840.83374384
Claim227281232025-06-18 1:34:59187 days ago1750210499IN
0xC054eF31...c83Ba0B9a
0 ETH0.000113791.53268192
Claim227162032025-06-16 9:31:23189 days ago1750066283IN
0xC054eF31...c83Ba0B9a
0 ETH0.000074441.00295297
Claim226487522025-06-06 23:12:47198 days ago1749251567IN
0xC054eF31...c83Ba0B9a
0 ETH0.000223963.01814487
Claim226225722025-06-03 7:14:11202 days ago1748934851IN
0xC054eF31...c83Ba0B9a
0 ETH0.000107341.44583201
Claim226119312025-06-01 19:28:47203 days ago1748806127IN
0xC054eF31...c83Ba0B9a
0 ETH0.000091831.2373732
Claim225664552025-05-26 10:45:35210 days ago1748256335IN
0xC054eF31...c83Ba0B9a
0 ETH0.000093151.21161092
Claim225664212025-05-26 10:38:47210 days ago1748255927IN
0xC054eF31...c83Ba0B9a
0 ETH0.0000560.75505087
Claim225555542025-05-24 22:03:47211 days ago1748124227IN
0xC054eF31...c83Ba0B9a
0 ETH0.000059320.8
Claim225526742025-05-24 12:22:59212 days ago1748089379IN
0xC054eF31...c83Ba0B9a
0 ETH0.0000781.05123783
Claim223242362025-04-22 11:26:23244 days ago1745321183IN
0xC054eF31...c83Ba0B9a
0 ETH0.000067270.90629999
Claim223226992025-04-22 6:17:59244 days ago1745302679IN
0xC054eF31...c83Ba0B9a
0 ETH0.000062090.83716378
Claim223226742025-04-22 6:12:59244 days ago1745302379IN
0xC054eF31...c83Ba0B9a
0 ETH0.000066270.89290348
Claim223082572025-04-20 5:55:35246 days ago1745128535IN
0xC054eF31...c83Ba0B9a
0 ETH0.000064920.87463078
Claim223081582025-04-20 5:35:47246 days ago1745127347IN
0xC054eF31...c83Ba0B9a
0 ETH0.000061950.83462978
Claim223052272025-04-19 19:45:59246 days ago1745091959IN
0xC054eF31...c83Ba0B9a
0 ETH0.000066780.89983202
Claim222993202025-04-18 23:58:47247 days ago1745020727IN
0xC054eF31...c83Ba0B9a
0 ETH0.000025140.33877403
View all transactions

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Method Block
From
To
Transfer236255842025-10-21 11:16:2362 days ago1761045383
0xC054eF31...c83Ba0B9a
0.00073701 ETH
Transfer234179352025-09-22 10:21:1191 days ago1758536471
0xC054eF31...c83Ba0B9a
0.00064479 ETH
Transfer234037642025-09-20 10:44:3593 days ago1758365075
0xC054eF31...c83Ba0B9a
0.00020115 ETH
Transfer233855992025-09-17 21:50:5995 days ago1758145859
0xC054eF31...c83Ba0B9a
0.00351225 ETH
Transfer232465962025-08-29 11:50:59115 days ago1756468259
0xC054eF31...c83Ba0B9a
0.00193377 ETH
Transfer229604462025-07-20 12:36:35155 days ago1753014995
0xC054eF31...c83Ba0B9a
0.00136446 ETH
Transfer229598522025-07-20 10:36:59155 days ago1753007819
0xC054eF31...c83Ba0B9a
0.0783803 ETH
Transfer229506452025-07-19 3:43:23156 days ago1752896603
0xC054eF31...c83Ba0B9a
0.00056884 ETH
Transfer227281232025-06-18 1:34:59187 days ago1750210499
0xC054eF31...c83Ba0B9a
0.0292603 ETH
Transfer227162032025-06-16 9:31:23189 days ago1750066283
0xC054eF31...c83Ba0B9a
0.00049627 ETH
Transfer226487522025-06-06 23:12:47198 days ago1749251567
0xC054eF31...c83Ba0B9a
0.00102331 ETH
Transfer226225722025-06-03 7:14:11202 days ago1748934851
0xC054eF31...c83Ba0B9a
0.00036827 ETH
Transfer226119312025-06-01 19:28:47203 days ago1748806127
0xC054eF31...c83Ba0B9a
0.00424451 ETH
Transfer225664552025-05-26 10:45:35210 days ago1748256335
0xC054eF31...c83Ba0B9a
0.00076592 ETH
Transfer225664212025-05-26 10:38:47210 days ago1748255927
0xC054eF31...c83Ba0B9a
0.0042404 ETH
Transfer225555542025-05-24 22:03:47211 days ago1748124227
0xC054eF31...c83Ba0B9a
0.00127867 ETH
Transfer225526742025-05-24 12:22:59212 days ago1748089379
0xC054eF31...c83Ba0B9a
0.05706061 ETH
Transfer223242362025-04-22 11:26:23244 days ago1745321183
0xC054eF31...c83Ba0B9a
0.00284802 ETH
Transfer223226992025-04-22 6:17:59244 days ago1745302679
0xC054eF31...c83Ba0B9a
0.00241193 ETH
Transfer223226742025-04-22 6:12:59244 days ago1745302379
0xC054eF31...c83Ba0B9a
0.00569109 ETH
Transfer223082572025-04-20 5:55:35246 days ago1745128535
0xC054eF31...c83Ba0B9a
0.00369315 ETH
Transfer223081582025-04-20 5:35:47246 days ago1745127347
0xC054eF31...c83Ba0B9a
0.00427603 ETH
Transfer223052272025-04-19 19:45:59246 days ago1745091959
0xC054eF31...c83Ba0B9a
0.00029152 ETH
Transfer222993202025-04-18 23:58:47247 days ago1745020727
0xC054eF31...c83Ba0B9a
0.00227342 ETH
Transfer222963422025-04-18 14:00:35248 days ago1744984835
0xC054eF31...c83Ba0B9a
0.05712544 ETH
View All Internal Transactions
Loading...
Loading
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
WhitelistClaimETH

Compiler Version
v0.8.20+commit.a1b79de6

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "./WhitelistClaim.sol";

contract WhitelistClaimETH is WhitelistClaim {
    constructor(
        bytes32 _merkleRoot,
        uint256 _startTime,
        uint256 _deadline
    ) WhitelistClaim(_merkleRoot, _startTime, _deadline) {}

    function _payOut(uint256 amount, address to) internal override {
        (bool success, ) = to.call{value: amount}("");
        require(success, "WhitelistClaimETH: failed to send funds");
    }

    function _withdraw(address to) internal override {
        (bool success, ) = to.call{value: address(this).balance}("");
        require(success, "WhitelistClaimETH: failed to _withdraw");
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 *
 * _Available since v4.1._
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     *
     * _Available since v4.7._
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     *
     * _Available since v4.7._
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * _Available since v4.7._
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            require(proofPos == proofLen, "MerkleProof: invalid multiproof");
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            require(proofPos == proofLen, "MerkleProof: invalid multiproof");
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/interfaces/IERC1271.sol";

abstract contract WhitelistClaim is Ownable, ReentrancyGuard {
    bytes32 public merkleRoot;
    mapping(address => bool) public claimed;
    mapping(address => bool) public invalidated;
    uint256 public startTime;
    uint256 public deadline;

    event XClaim(address indexed account, uint256 amount);
    event XDelegateClaim(
        address indexed delegator,
        address indexed account,
        uint256 amount
    );
    event UpdateMerkleRoot(bytes32 newMerkleRoot);
    event Withdraw(address to);
    event Invalidate(address indexed account, uint256 refund);

    constructor(bytes32 _merkleRoot, uint256 _startTime, uint256 _deadline) {
        merkleRoot = _merkleRoot;
        startTime = _startTime;
        deadline = _deadline;
    }

    receive() external payable {}

    function isWhitelisted(
        address account,
        uint256 amount,
        bytes32[] memory proof
    ) public view returns (bool) {
        bytes32 leaf = keccak256(abi.encodePacked(account, amount));
        return MerkleProof.verify(proof, merkleRoot, leaf);
    }

    modifier validateClaim(
        address account,
        uint256 amount,
        bytes32[] memory proof
    ) {
        require(
            block.timestamp >= startTime,
            "WhitelistClaim: claiming has not started yet"
        );
        require(
            block.timestamp <= deadline,
            "WhitelistClaim: deadline exceeded"
        );
        require(
            isWhitelisted(account, amount, proof),
            "WhitelistClaim: not whitelisted"
        );
        require(!claimed[account], "WhitelistClaim: already claimed");
        require(!invalidated[account], "WhitelistClaim: already invalidated");
        claimed[account] = true;
        _;
    }

    function claim(
        uint256 amount,
        bytes32[] memory proof
    ) external nonReentrant validateClaim(msg.sender, amount, proof) {
        _payOut(amount, msg.sender);
        emit XClaim(msg.sender, amount);
    }

    function delegateClaim(
        address beneficiary,
        uint256 amount,
        bytes32[] memory proof,
        uint256 _deadline,
        bytes calldata sig
    ) external nonReentrant validateClaim(beneficiary, amount, proof) {
        require(block.timestamp <= _deadline, "WhitelistClaim: too late");

        bytes32 hash = keccak256(
            abi.encodePacked(
                beneficiary,
                amount,
                proof,
                _deadline,
                block.chainid,
                msg.sender, // delegator
                address(this)
            )
        );

        // beneficiary must be the signer
        if (isContract(beneficiary)) {
            require(
                IERC1271(beneficiary).isValidSignature(hash, sig) ==
                    bytes4(0x1626ba7e),
                "WhitelistClaim: invalid signature"
            );
        } else {
            require(
                beneficiary ==
                    ECDSA.recover(ECDSA.toEthSignedMessageHash(hash), sig),
                "WhitelistClaim: invalid signature"
            );
        }

        _payOut(amount, msg.sender); // _payout to delegator for part staking
        emit XDelegateClaim(msg.sender, beneficiary, amount);
    }

    /// @dev This virtual function should transfer the specified `amount` of the payment token to the `to` address
    function _payOut(uint256 amount, address to) internal virtual;

    function _withdraw(address to) internal virtual;

    /****************** Admin Functions ******************/
    function withdraw(address to) external onlyOwner nonReentrant {
        _withdraw(to);
        emit Withdraw(to);
    }

    function invalidate(address account, uint256 refund) external onlyOwner nonReentrant {
        require(!claimed[account], "WhitelistClaim: already claimed");
        require(!invalidated[account], "WhitelistClaim: already invalidated");
        invalidated[account] = true;
        if (refund > 0) {
            _payOut(refund, msg.sender);
        }
        emit Invalidate(account, refund);
    }

    function updateMerkleRoot(bytes32 newMerkleRoot) external onlyOwner {
        merkleRoot = newMerkleRoot;
        emit UpdateMerkleRoot(newMerkleRoot);
    }

    function updateDeadline(uint256 _t) external onlyOwner {
        deadline = _t;
    }

    function updateStartTime(uint256 _t) external onlyOwner {
        startTime = _t;
    }

    /****************** View Functions ******************/
    function isTimeValid() external view returns (bool) {
        return block.timestamp >= startTime && block.timestamp <= deadline;
    }

    function isContract(address account) internal view returns (bool) {
        uint256 size;
        assembly {
            size := extcodesize(account)
        }
        return size > 0;
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"_startTime","type":"uint256"},{"internalType":"uint256","name":"_deadline","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"refund","type":"uint256"}],"name":"Invalidate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"newMerkleRoot","type":"bytes32"}],"name":"UpdateMerkleRoot","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"to","type":"address"}],"name":"Withdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"XClaim","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"delegator","type":"address"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"XDelegateClaim","type":"event"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"deadline","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"beneficiary","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"},{"internalType":"uint256","name":"_deadline","type":"uint256"},{"internalType":"bytes","name":"sig","type":"bytes"}],"name":"delegateClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"refund","type":"uint256"}],"name":"invalidate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"invalidated","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isTimeValid","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"isWhitelisted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"merkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_t","type":"uint256"}],"name":"updateDeadline","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"newMerkleRoot","type":"bytes32"}],"name":"updateMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_t","type":"uint256"}],"name":"updateStartTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

608060405234801561000f575f80fd5b5060405161160938038061160983398101604081905261002e916100a2565b82828261003a33610053565b60018055600292909255600555600655506100cd915050565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f805f606084860312156100b4575f80fd5b8351925060208401519150604084015190509250925092565b61152f806100da5f395ff3fe6080604052600436106100fd575f3560e01c80634f74f814116100925780638da5cb5b116100625780638da5cb5b14610287578063c884ef83146102ad578063f2fde38b146102db578063faf7a826146102fa578063fd2723fd14610319575f80fd5b80634f74f8141461020157806351cff8d91461023f578063715018a61461025e57806378e9792514610272575f80fd5b80632f52ebb7116100cd5780632f52ebb714610185578063418a9c82146101a457806342af1884146101c35780634783f0ef146101e2575f80fd5b806306bcf02f1461010857806318cfa4831461012957806329dcb0cf146101485780632eb4a7ab14610170575f80fd5b3661010457005b5f80fd5b348015610113575f80fd5b5061012761012236600461102f565b61032d565b005b348015610134575f80fd5b50610127610143366004611061565b61033a565b348015610153575f80fd5b5061015d60065481565b6040519081526020015b60405180910390f35b34801561017b575f80fd5b5061015d60025481565b348015610190575f80fd5b5061012761019f366004611135565b610445565b3480156101af575f80fd5b506101276101be366004611179565b6105c8565b3480156101ce575f80fd5b506101276101dd36600461102f565b61092e565b3480156101ed575f80fd5b506101276101fc36600461102f565b61093b565b34801561020c575f80fd5b5061022f61021b36600461122a565b60046020525f908152604090205460ff1681565b6040519015158152602001610167565b34801561024a575f80fd5b5061012761025936600461122a565b61097e565b348015610269575f80fd5b506101276109df565b34801561027d575f80fd5b5061015d60055481565b348015610292575f80fd5b505f546040516001600160a01b039091168152602001610167565b3480156102b8575f80fd5b5061022f6102c736600461122a565b60036020525f908152604090205460ff1681565b3480156102e6575f80fd5b506101276102f536600461122a565b6109f2565b348015610305575f80fd5b5061022f610314366004611243565b610a68565b348015610324575f80fd5b5061022f610ac0565b610335610ada565b600555565b610342610ada565b61034a610b33565b6001600160a01b0382165f9081526003602052604090205460ff161561038b5760405162461bcd60e51b815260040161038290611296565b60405180910390fd5b6001600160a01b0382165f9081526004602052604090205460ff16156103c35760405162461bcd60e51b8152600401610382906112cd565b6001600160a01b0382165f908152600460205260409020805460ff1916600117905580156103f5576103f58133610b8c565b816001600160a01b03167f70427ccf35ea723b0e36935b79a842af4ab4b2b28fb9a8410971ac84d25158178260405161043091815260200190565b60405180910390a261044160018055565b5050565b61044d610b33565b3382826005544210156104725760405162461bcd60e51b815260040161038290611310565b6006544211156104945760405162461bcd60e51b81526004016103829061135c565b61049f838383610a68565b6104eb5760405162461bcd60e51b815260206004820152601f60248201527f57686974656c697374436c61696d3a206e6f742077686974656c6973746564006044820152606401610382565b6001600160a01b0383165f9081526003602052604090205460ff16156105235760405162461bcd60e51b815260040161038290611296565b6001600160a01b0383165f9081526004602052604090205460ff161561055b5760405162461bcd60e51b8152600401610382906112cd565b6001600160a01b0383165f908152600360205260409020805460ff191660011790556105878533610b8c565b60405185815233907fc7627c78ddc5b824e2bed4b122ec1c29cd2baba6b22141de00fd53d76d7d95b49060200160405180910390a250505061044160018055565b6105d0610b33565b8585856005544210156105f55760405162461bcd60e51b815260040161038290611310565b6006544211156106175760405162461bcd60e51b81526004016103829061135c565b610622838383610a68565b61066e5760405162461bcd60e51b815260206004820152601f60248201527f57686974656c697374436c61696d3a206e6f742077686974656c6973746564006044820152606401610382565b6001600160a01b0383165f9081526003602052604090205460ff16156106a65760405162461bcd60e51b815260040161038290611296565b6001600160a01b0383165f9081526004602052604090205460ff16156106de5760405162461bcd60e51b8152600401610382906112cd565b6001600160a01b0383165f908152600360205260409020805460ff19166001179055428610156107505760405162461bcd60e51b815260206004820152601860248201527f57686974656c697374436c61696d3a20746f6f206c61746500000000000000006044820152606401610382565b5f8989898946333060405160200161076e979695949392919061139d565b6040516020818303038152906040528051906020012090506107908a3b151590565b1561083257604051630b135d3f60e11b808252906001600160a01b038c1690631626ba7e906107c79085908b908b90600401611410565b602060405180830381865afa1580156107e2573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108069190611445565b6001600160e01b0319161461082d5760405162461bcd60e51b81526004016103829061146c565b6108cf565b7f19457468657265756d205369676e6564204d6573736167653a0a3332000000005f908152601c829052603c902061089f9087878080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250610c4092505050565b6001600160a01b03168a6001600160a01b0316146108cf5760405162461bcd60e51b81526004016103829061146c565b6108d98933610b8c565b6040518981526001600160a01b038b169033907f7b4d8282a37b16c1c683f913e56c76bb3551dc157bd311cc04f660b2a9aaeedd9060200160405180910390a35050505061092660018055565b505050505050565b610936610ada565b600655565b610943610ada565b60028190556040518181527fae8bdbc15b982b030d313524fca26f653a8826332c662cb93c670068172d217e9060200160405180910390a150565b610986610ada565b61098e610b33565b61099781610c62565b6040516001600160a01b03821681527ff67611512e0a2d90c96fd3f08dca4971bc45fba9dc679eabe839a32abbe58a8e9060200160405180910390a16109dc60018055565b50565b6109e7610ada565b6109f05f610d10565b565b6109fa610ada565b6001600160a01b038116610a5f5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152608401610382565b6109dc81610d10565b6040516bffffffffffffffffffffffff19606085901b166020820152603481018390525f908190605401604051602081830303815290604052805190602001209050610ab78360025483610d5f565b95945050505050565b5f6005544210158015610ad557506006544211155b905090565b5f546001600160a01b031633146109f05760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610382565b600260015403610b855760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606401610382565b6002600155565b5f816001600160a01b0316836040515f6040518083038185875af1925050503d805f8114610bd5576040519150601f19603f3d011682016040523d82523d5f602084013e610bda565b606091505b5050905080610c3b5760405162461bcd60e51b815260206004820152602760248201527f57686974656c697374436c61696d4554483a206661696c656420746f2073656e604482015266642066756e647360c81b6064820152608401610382565b505050565b5f805f610c4d8585610d74565b91509150610c5a81610db6565b509392505050565b5f816001600160a01b0316476040515f6040518083038185875af1925050503d805f8114610cab576040519150601f19603f3d011682016040523d82523d5f602084013e610cb0565b606091505b50509050806104415760405162461bcd60e51b815260206004820152602660248201527f57686974656c697374436c61696d4554483a206661696c656420746f205f776960448201526574686472617760d01b6064820152608401610382565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f82610d6b8584610eff565b14949350505050565b5f808251604103610da8576020830151604084015160608501515f1a610d9c87828585610f43565b94509450505050610daf565b505f905060025b9250929050565b5f816004811115610dc957610dc96114ad565b03610dd15750565b6001816004811115610de557610de56114ad565b03610e325760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606401610382565b6002816004811115610e4657610e466114ad565b03610e935760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610382565b6003816004811115610ea757610ea76114ad565b036109dc5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608401610382565b5f81815b8451811015610c5a57610f2f82868381518110610f2257610f226114c1565b6020026020010151611000565b915080610f3b816114d5565b915050610f03565b5f807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831115610f7857505f90506003610ff7565b604080515f8082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610fc9573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116610ff1575f60019250925050610ff7565b91505f90505b94509492505050565b5f81831061101a575f828152602084905260409020611028565b5f8381526020839052604090205b9392505050565b5f6020828403121561103f575f80fd5b5035919050565b80356001600160a01b038116811461105c575f80fd5b919050565b5f8060408385031215611072575f80fd5b61107b83611046565b946020939093013593505050565b634e487b7160e01b5f52604160045260245ffd5b5f82601f8301126110ac575f80fd5b8135602067ffffffffffffffff808311156110c9576110c9611089565b8260051b604051601f19603f830116810181811084821117156110ee576110ee611089565b60405293845285810183019383810192508785111561110b575f80fd5b83870191505b8482101561112a57813583529183019190830190611111565b979650505050505050565b5f8060408385031215611146575f80fd5b82359150602083013567ffffffffffffffff811115611163575f80fd5b61116f8582860161109d565b9150509250929050565b5f805f805f8060a0878903121561118e575f80fd5b61119787611046565b955060208701359450604087013567ffffffffffffffff808211156111ba575f80fd5b6111c68a838b0161109d565b95506060890135945060808901359150808211156111e2575f80fd5b818901915089601f8301126111f5575f80fd5b813581811115611203575f80fd5b8a6020828501011115611214575f80fd5b6020830194508093505050509295509295509295565b5f6020828403121561123a575f80fd5b61102882611046565b5f805f60608486031215611255575f80fd5b61125e84611046565b925060208401359150604084013567ffffffffffffffff811115611280575f80fd5b61128c8682870161109d565b9150509250925092565b6020808252601f908201527f57686974656c697374436c61696d3a20616c726561647920636c61696d656400604082015260600190565b60208082526023908201527f57686974656c697374436c61696d3a20616c726561647920696e76616c6964616040820152621d195960ea1b606082015260800190565b6020808252602c908201527f57686974656c697374436c61696d3a20636c61696d696e6720686173206e6f7460408201526b081cdd185c9d1959081e595d60a21b606082015260800190565b60208082526021908201527f57686974656c697374436c61696d3a20646561646c696e6520657863656564656040820152601960fa1b606082015260800190565b5f6bffffffffffffffffffffffff19808a60601b1683528860148401526034830188516020808b015f5b838110156113e3578151855293820193908201906001016113c7565b505098825250968701959095525050606091821b83166040850152901b1660548201526068019392505050565b83815260406020820152816040820152818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f60208284031215611455575f80fd5b81516001600160e01b031981168114611028575f80fd5b60208082526021908201527f57686974656c697374436c61696d3a20696e76616c6964207369676e617475726040820152606560f81b606082015260800190565b634e487b7160e01b5f52602160045260245ffd5b634e487b7160e01b5f52603260045260245ffd5b5f600182016114f257634e487b7160e01b5f52601160045260245ffd5b506001019056fea2646970667358221220ed34e410d29a630b56928d5ec686d894683b28305f9b340ce0c675c0de10e1fa64736f6c63430008140033d9ff5e43256f17f2c925320c6d3136c190ab4513dbd4b22c0e2906f69d3057eb0000000000000000000000000000000000000000000000000000000067f85b800000000000000000000000000000000000000000000000000000000790016e80

Deployed Bytecode

0x6080604052600436106100fd575f3560e01c80634f74f814116100925780638da5cb5b116100625780638da5cb5b14610287578063c884ef83146102ad578063f2fde38b146102db578063faf7a826146102fa578063fd2723fd14610319575f80fd5b80634f74f8141461020157806351cff8d91461023f578063715018a61461025e57806378e9792514610272575f80fd5b80632f52ebb7116100cd5780632f52ebb714610185578063418a9c82146101a457806342af1884146101c35780634783f0ef146101e2575f80fd5b806306bcf02f1461010857806318cfa4831461012957806329dcb0cf146101485780632eb4a7ab14610170575f80fd5b3661010457005b5f80fd5b348015610113575f80fd5b5061012761012236600461102f565b61032d565b005b348015610134575f80fd5b50610127610143366004611061565b61033a565b348015610153575f80fd5b5061015d60065481565b6040519081526020015b60405180910390f35b34801561017b575f80fd5b5061015d60025481565b348015610190575f80fd5b5061012761019f366004611135565b610445565b3480156101af575f80fd5b506101276101be366004611179565b6105c8565b3480156101ce575f80fd5b506101276101dd36600461102f565b61092e565b3480156101ed575f80fd5b506101276101fc36600461102f565b61093b565b34801561020c575f80fd5b5061022f61021b36600461122a565b60046020525f908152604090205460ff1681565b6040519015158152602001610167565b34801561024a575f80fd5b5061012761025936600461122a565b61097e565b348015610269575f80fd5b506101276109df565b34801561027d575f80fd5b5061015d60055481565b348015610292575f80fd5b505f546040516001600160a01b039091168152602001610167565b3480156102b8575f80fd5b5061022f6102c736600461122a565b60036020525f908152604090205460ff1681565b3480156102e6575f80fd5b506101276102f536600461122a565b6109f2565b348015610305575f80fd5b5061022f610314366004611243565b610a68565b348015610324575f80fd5b5061022f610ac0565b610335610ada565b600555565b610342610ada565b61034a610b33565b6001600160a01b0382165f9081526003602052604090205460ff161561038b5760405162461bcd60e51b815260040161038290611296565b60405180910390fd5b6001600160a01b0382165f9081526004602052604090205460ff16156103c35760405162461bcd60e51b8152600401610382906112cd565b6001600160a01b0382165f908152600460205260409020805460ff1916600117905580156103f5576103f58133610b8c565b816001600160a01b03167f70427ccf35ea723b0e36935b79a842af4ab4b2b28fb9a8410971ac84d25158178260405161043091815260200190565b60405180910390a261044160018055565b5050565b61044d610b33565b3382826005544210156104725760405162461bcd60e51b815260040161038290611310565b6006544211156104945760405162461bcd60e51b81526004016103829061135c565b61049f838383610a68565b6104eb5760405162461bcd60e51b815260206004820152601f60248201527f57686974656c697374436c61696d3a206e6f742077686974656c6973746564006044820152606401610382565b6001600160a01b0383165f9081526003602052604090205460ff16156105235760405162461bcd60e51b815260040161038290611296565b6001600160a01b0383165f9081526004602052604090205460ff161561055b5760405162461bcd60e51b8152600401610382906112cd565b6001600160a01b0383165f908152600360205260409020805460ff191660011790556105878533610b8c565b60405185815233907fc7627c78ddc5b824e2bed4b122ec1c29cd2baba6b22141de00fd53d76d7d95b49060200160405180910390a250505061044160018055565b6105d0610b33565b8585856005544210156105f55760405162461bcd60e51b815260040161038290611310565b6006544211156106175760405162461bcd60e51b81526004016103829061135c565b610622838383610a68565b61066e5760405162461bcd60e51b815260206004820152601f60248201527f57686974656c697374436c61696d3a206e6f742077686974656c6973746564006044820152606401610382565b6001600160a01b0383165f9081526003602052604090205460ff16156106a65760405162461bcd60e51b815260040161038290611296565b6001600160a01b0383165f9081526004602052604090205460ff16156106de5760405162461bcd60e51b8152600401610382906112cd565b6001600160a01b0383165f908152600360205260409020805460ff19166001179055428610156107505760405162461bcd60e51b815260206004820152601860248201527f57686974656c697374436c61696d3a20746f6f206c61746500000000000000006044820152606401610382565b5f8989898946333060405160200161076e979695949392919061139d565b6040516020818303038152906040528051906020012090506107908a3b151590565b1561083257604051630b135d3f60e11b808252906001600160a01b038c1690631626ba7e906107c79085908b908b90600401611410565b602060405180830381865afa1580156107e2573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108069190611445565b6001600160e01b0319161461082d5760405162461bcd60e51b81526004016103829061146c565b6108cf565b7f19457468657265756d205369676e6564204d6573736167653a0a3332000000005f908152601c829052603c902061089f9087878080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250610c4092505050565b6001600160a01b03168a6001600160a01b0316146108cf5760405162461bcd60e51b81526004016103829061146c565b6108d98933610b8c565b6040518981526001600160a01b038b169033907f7b4d8282a37b16c1c683f913e56c76bb3551dc157bd311cc04f660b2a9aaeedd9060200160405180910390a35050505061092660018055565b505050505050565b610936610ada565b600655565b610943610ada565b60028190556040518181527fae8bdbc15b982b030d313524fca26f653a8826332c662cb93c670068172d217e9060200160405180910390a150565b610986610ada565b61098e610b33565b61099781610c62565b6040516001600160a01b03821681527ff67611512e0a2d90c96fd3f08dca4971bc45fba9dc679eabe839a32abbe58a8e9060200160405180910390a16109dc60018055565b50565b6109e7610ada565b6109f05f610d10565b565b6109fa610ada565b6001600160a01b038116610a5f5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152608401610382565b6109dc81610d10565b6040516bffffffffffffffffffffffff19606085901b166020820152603481018390525f908190605401604051602081830303815290604052805190602001209050610ab78360025483610d5f565b95945050505050565b5f6005544210158015610ad557506006544211155b905090565b5f546001600160a01b031633146109f05760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610382565b600260015403610b855760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606401610382565b6002600155565b5f816001600160a01b0316836040515f6040518083038185875af1925050503d805f8114610bd5576040519150601f19603f3d011682016040523d82523d5f602084013e610bda565b606091505b5050905080610c3b5760405162461bcd60e51b815260206004820152602760248201527f57686974656c697374436c61696d4554483a206661696c656420746f2073656e604482015266642066756e647360c81b6064820152608401610382565b505050565b5f805f610c4d8585610d74565b91509150610c5a81610db6565b509392505050565b5f816001600160a01b0316476040515f6040518083038185875af1925050503d805f8114610cab576040519150601f19603f3d011682016040523d82523d5f602084013e610cb0565b606091505b50509050806104415760405162461bcd60e51b815260206004820152602660248201527f57686974656c697374436c61696d4554483a206661696c656420746f205f776960448201526574686472617760d01b6064820152608401610382565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f82610d6b8584610eff565b14949350505050565b5f808251604103610da8576020830151604084015160608501515f1a610d9c87828585610f43565b94509450505050610daf565b505f905060025b9250929050565b5f816004811115610dc957610dc96114ad565b03610dd15750565b6001816004811115610de557610de56114ad565b03610e325760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606401610382565b6002816004811115610e4657610e466114ad565b03610e935760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610382565b6003816004811115610ea757610ea76114ad565b036109dc5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608401610382565b5f81815b8451811015610c5a57610f2f82868381518110610f2257610f226114c1565b6020026020010151611000565b915080610f3b816114d5565b915050610f03565b5f807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831115610f7857505f90506003610ff7565b604080515f8082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610fc9573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116610ff1575f60019250925050610ff7565b91505f90505b94509492505050565b5f81831061101a575f828152602084905260409020611028565b5f8381526020839052604090205b9392505050565b5f6020828403121561103f575f80fd5b5035919050565b80356001600160a01b038116811461105c575f80fd5b919050565b5f8060408385031215611072575f80fd5b61107b83611046565b946020939093013593505050565b634e487b7160e01b5f52604160045260245ffd5b5f82601f8301126110ac575f80fd5b8135602067ffffffffffffffff808311156110c9576110c9611089565b8260051b604051601f19603f830116810181811084821117156110ee576110ee611089565b60405293845285810183019383810192508785111561110b575f80fd5b83870191505b8482101561112a57813583529183019190830190611111565b979650505050505050565b5f8060408385031215611146575f80fd5b82359150602083013567ffffffffffffffff811115611163575f80fd5b61116f8582860161109d565b9150509250929050565b5f805f805f8060a0878903121561118e575f80fd5b61119787611046565b955060208701359450604087013567ffffffffffffffff808211156111ba575f80fd5b6111c68a838b0161109d565b95506060890135945060808901359150808211156111e2575f80fd5b818901915089601f8301126111f5575f80fd5b813581811115611203575f80fd5b8a6020828501011115611214575f80fd5b6020830194508093505050509295509295509295565b5f6020828403121561123a575f80fd5b61102882611046565b5f805f60608486031215611255575f80fd5b61125e84611046565b925060208401359150604084013567ffffffffffffffff811115611280575f80fd5b61128c8682870161109d565b9150509250925092565b6020808252601f908201527f57686974656c697374436c61696d3a20616c726561647920636c61696d656400604082015260600190565b60208082526023908201527f57686974656c697374436c61696d3a20616c726561647920696e76616c6964616040820152621d195960ea1b606082015260800190565b6020808252602c908201527f57686974656c697374436c61696d3a20636c61696d696e6720686173206e6f7460408201526b081cdd185c9d1959081e595d60a21b606082015260800190565b60208082526021908201527f57686974656c697374436c61696d3a20646561646c696e6520657863656564656040820152601960fa1b606082015260800190565b5f6bffffffffffffffffffffffff19808a60601b1683528860148401526034830188516020808b015f5b838110156113e3578151855293820193908201906001016113c7565b505098825250968701959095525050606091821b83166040850152901b1660548201526068019392505050565b83815260406020820152816040820152818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f60208284031215611455575f80fd5b81516001600160e01b031981168114611028575f80fd5b60208082526021908201527f57686974656c697374436c61696d3a20696e76616c6964207369676e617475726040820152606560f81b606082015260800190565b634e487b7160e01b5f52602160045260245ffd5b634e487b7160e01b5f52603260045260245ffd5b5f600182016114f257634e487b7160e01b5f52601160045260245ffd5b506001019056fea2646970667358221220ed34e410d29a630b56928d5ec686d894683b28305f9b340ce0c675c0de10e1fa64736f6c63430008140033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

d9ff5e43256f17f2c925320c6d3136c190ab4513dbd4b22c0e2906f69d3057eb0000000000000000000000000000000000000000000000000000000067f85b800000000000000000000000000000000000000000000000000000000790016e80

-----Decoded View---------------
Arg [0] : _merkleRoot (bytes32): 0xd9ff5e43256f17f2c925320c6d3136c190ab4513dbd4b22c0e2906f69d3057eb
Arg [1] : _startTime (uint256): 1744329600
Arg [2] : _deadline (uint256): 32480784000

-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : d9ff5e43256f17f2c925320c6d3136c190ab4513dbd4b22c0e2906f69d3057eb
Arg [1] : 0000000000000000000000000000000000000000000000000000000067f85b80
Arg [2] : 0000000000000000000000000000000000000000000000000000000790016e80


Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.