Feature Tip: Add private address tag to any address under My Name Tag !
Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
11739385 | 1456 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0x77666fcfc0bf76c2445b792bc67fa3b215f7b0fd
Contract Name:
CreditLine
Compiler Version
v0.6.12+commit.27d51765
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./GoldfinchConfig.sol"; import "./BaseUpgradeablePausable.sol"; import "../interfaces/IERC20withDec.sol"; /** * @title CreditLine * @notice A "dumb" state container that represents the agreement between an Underwriter and * the borrower. Includes the terms of the loan, as well as the current accounting state, such as interest owed. * This contract purposefully has essentially no business logic. Really just setters and getters. * @author Goldfinch */ // solhint-disable-next-line max-states-count contract CreditLine is BaseUpgradeablePausable { // Credit line terms address public borrower; address public underwriter; uint256 public limit; uint256 public interestApr; uint256 public paymentPeriodInDays; uint256 public termInDays; uint256 public lateFeeApr; // Accounting variables uint256 public balance; uint256 public interestOwed; uint256 public principalOwed; uint256 public termEndBlock; uint256 public nextDueBlock; uint256 public interestAccruedAsOfBlock; uint256 public writedownAmount; uint256 public lastFullPaymentBlock; function initialize( address owner, address _borrower, address _underwriter, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr ) public initializer { require(owner != address(0) && _borrower != address(0) && _underwriter != address(0), "Zero address passed in"); __BaseUpgradeablePausable__init(owner); borrower = _borrower; underwriter = _underwriter; limit = _limit; interestApr = _interestApr; paymentPeriodInDays = _paymentPeriodInDays; termInDays = _termInDays; lateFeeApr = _lateFeeApr; interestAccruedAsOfBlock = block.number; } function setTermEndBlock(uint256 newTermEndBlock) external onlyAdmin { termEndBlock = newTermEndBlock; } function setNextDueBlock(uint256 newNextDueBlock) external onlyAdmin { nextDueBlock = newNextDueBlock; } function setBalance(uint256 newBalance) external onlyAdmin { balance = newBalance; } function setInterestOwed(uint256 newInterestOwed) external onlyAdmin { interestOwed = newInterestOwed; } function setPrincipalOwed(uint256 newPrincipalOwed) external onlyAdmin { principalOwed = newPrincipalOwed; } function setInterestAccruedAsOfBlock(uint256 newInterestAccruedAsOfBlock) external onlyAdmin { interestAccruedAsOfBlock = newInterestAccruedAsOfBlock; } function setWritedownAmount(uint256 newWritedownAmount) external onlyAdmin { writedownAmount = newWritedownAmount; } function setLastFullPaymentBlock(uint256 newLastFullPaymentBlock) external onlyAdmin { lastFullPaymentBlock = newLastFullPaymentBlock; } function setLateFeeApr(uint256 newLateFeeApr) external onlyAdmin { lateFeeApr = newLateFeeApr; } function setLimit(uint256 newAmount) external onlyAdminOrUnderwriter { limit = newAmount; } function authorizePool(address configAddress) external onlyAdmin { GoldfinchConfig config = GoldfinchConfig(configAddress); address poolAddress = config.getAddress(uint256(ConfigOptions.Addresses.Pool)); address usdcAddress = config.getAddress(uint256(ConfigOptions.Addresses.USDC)); // Approve the pool for an infinite amount bool success = IERC20withDec(usdcAddress).approve(poolAddress, uint256(-1)); require(success, "Failed to approve USDC"); } modifier onlyAdminOrUnderwriter() { require(isAdmin() || _msgSender() == underwriter, "Restricted to owner or underwriter"); _; } }
pragma solidity ^0.6.0; import "../Initializable.sol"; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ contract ContextUpgradeSafe is Initializable { // Empty internal constructor, to prevent people from mistakenly deploying // an instance of this contract, which should be used via inheritance. function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } uint256[50] private __gap; }
pragma solidity >=0.4.24 <0.7.0; /** * @title Initializable * * @dev Helper contract to support initializer functions. To use it, replace * the constructor with a function that has the `initializer` modifier. * WARNING: Unlike constructors, initializer functions must be manually * invoked. This applies both to deploying an Initializable contract, as well * as extending an Initializable contract via inheritance. * WARNING: When used with inheritance, manual care must be taken to not invoke * a parent initializer twice, or ensure that all initializers are idempotent, * because this is not dealt with automatically as with constructors. */ contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private initializing; /** * @dev Modifier to use in the initializer function of a contract. */ modifier initializer() { require(initializing || isConstructor() || !initialized, "Contract instance has already been initialized"); bool isTopLevelCall = !initializing; if (isTopLevelCall) { initializing = true; initialized = true; } _; if (isTopLevelCall) { initializing = false; } } /// @dev Returns true if and only if the function is running in the constructor function isConstructor() private view returns (bool) { // extcodesize checks the size of the code stored in an address, and // address returns the current address. Since the code is still not // deployed when running a constructor, any checks on its code size will // yield zero, making it an effective way to detect if a contract is // under construction or not. address self = address(this); uint256 cs; assembly { cs := extcodesize(self) } return cs == 0; } // Reserved storage space to allow for layout changes in the future. uint256[50] private ______gap; }
pragma solidity ^0.6.0; import "../utils/EnumerableSet.sol"; import "../utils/Address.sol"; import "../GSN/Context.sol"; import "../Initializable.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, _msgSender())); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. */ abstract contract AccessControlUpgradeSafe is Initializable, ContextUpgradeSafe { function __AccessControl_init() internal initializer { __Context_init_unchained(); __AccessControl_init_unchained(); } function __AccessControl_init_unchained() internal initializer { } using EnumerableSet for EnumerableSet.AddressSet; using Address for address; struct RoleData { EnumerableSet.AddressSet members; bytes32 adminRole; } mapping (bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view returns (bool) { return _roles[role].members.contains(account); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view returns (uint256) { return _roles[role].members.length(); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view returns (address) { return _roles[role].members.at(index); } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant"); _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke"); _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) public virtual { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { _roles[role].adminRole = adminRole; } function _grantRole(bytes32 role, address account) private { if (_roles[role].members.add(account)) { emit RoleGranted(role, account, _msgSender()); } } function _revokeRole(bytes32 role, address account) private { if (_roles[role].members.remove(account)) { emit RoleRevoked(role, account, _msgSender()); } } uint256[49] private __gap; }
pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } }
pragma solidity ^0.6.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256` * (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(value))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(value))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(value))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint256(_at(set._inner, index))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } }
pragma solidity ^0.6.0; import "../GSN/Context.sol"; import "../Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ contract PausableUpgradeSafe is Initializable, ContextUpgradeSafe { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal initializer { __Context_init_unchained(); __Pausable_init_unchained(); } function __Pausable_init_unchained() internal initializer { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!_paused, "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(_paused, "Pausable: not paused"); _; } /** * @dev Triggers stopped state. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } uint256[49] private __gap; }
pragma solidity ^0.6.0; import "../Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ contract ReentrancyGuardUpgradeSafe is Initializable { bool private _notEntered; function __ReentrancyGuard_init() internal initializer { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal initializer { // Storing an initial non-zero value makes deployment a bit more // expensive, but in exchange the refund on every call to nonReentrant // will be lower in amount. Since refunds are capped to a percetange of // the total transaction's gas, it is best to keep them low in cases // like this one, to increase the likelihood of the full refund coming // into effect. _notEntered = true; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_notEntered, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _notEntered = false; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _notEntered = true; } uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/token/ERC20/IERC20.sol"; /* Only addition is the `decimals` function, which we need, and which both our Fidu and USDC use, along with most ERC20's. */ /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20withDec is IERC20 { /** * @dev Returns the number of decimals used for the token */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts-ethereum-package/contracts/access/AccessControl.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/utils/ReentrancyGuard.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/Initializable.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; import "./PauserPausable.sol"; /** * @title BaseUpgradeablePausable contract * @notice This is our Base contract that most other contracts inherit from. It includes many standard * useful abilities like ugpradeability, pausability, access control, and re-entrancy guards. * @author Goldfinch */ contract BaseUpgradeablePausable is Initializable, AccessControlUpgradeSafe, PauserPausable, ReentrancyGuardUpgradeSafe { bytes32 public constant OWNER_ROLE = keccak256("OWNER_ROLE"); using SafeMath for uint256; // Pre-reserving a few slots in the base contract in case we need to add things in the future. // This does not actually take up gas cost or storage cost, but it does reserve the storage slots. // See OpenZeppelin's use of this pattern here: // https://github.com/OpenZeppelin/openzeppelin-contracts-ethereum-package/blob/master/contracts/GSN/Context.sol#L37 uint256[50] private __gap1; uint256[50] private __gap2; uint256[50] private __gap3; uint256[50] private __gap4; // solhint-disable-next-line func-name-mixedcase function __BaseUpgradeablePausable__init(address owner) public initializer { require(owner != address(0), "Owner cannot be the zero address"); __AccessControl_init_unchained(); __Pausable_init_unchained(); __ReentrancyGuard_init_unchained(); _setupRole(OWNER_ROLE, owner); _setupRole(PAUSER_ROLE, owner); _setRoleAdmin(PAUSER_ROLE, OWNER_ROLE); _setRoleAdmin(OWNER_ROLE, OWNER_ROLE); } function isAdmin() public view returns (bool) { return hasRole(OWNER_ROLE, _msgSender()); } modifier onlyAdmin() { require(isAdmin(), "Must have admin role to perform this action"); _; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; /** * @title ConfigOptions * @notice A central place for enumerating the configurable options of our GoldfinchConfig contract * @author Goldfinch */ library ConfigOptions { // NEVER EVER CHANGE THE ORDER OF THESE! // You can rename or append. But NEVER change the order. enum Numbers { TransactionLimit, TotalFundsLimit, MaxUnderwriterLimit, ReserveDenominator, WithdrawFeeDenominator, LatenessGracePeriodInDays, LatenessMaxDays } enum Addresses { Pool, CreditLineImplementation, CreditLineFactory, CreditDesk, Fidu, USDC, TreasuryReserve, ProtocolAdmin } function getNumberName(uint256 number) public pure returns (string memory) { Numbers numberName = Numbers(number); if (Numbers.TransactionLimit == numberName) { return "TransactionLimit"; } if (Numbers.TotalFundsLimit == numberName) { return "TotalFundsLimit"; } if (Numbers.MaxUnderwriterLimit == numberName) { return "MaxUnderwriterLimit"; } if (Numbers.ReserveDenominator == numberName) { return "ReserveDenominator"; } if (Numbers.WithdrawFeeDenominator == numberName) { return "WithdrawFeeDenominator"; } if (Numbers.LatenessGracePeriodInDays == numberName) { return "LatenessGracePeriodInDays"; } if (Numbers.LatenessMaxDays == numberName) { return "LatenessMaxDays"; } revert("Unknown value passed to getNumberName"); } function getAddressName(uint256 addressKey) public pure returns (string memory) { Addresses addressName = Addresses(addressKey); if (Addresses.Pool == addressName) { return "Pool"; } if (Addresses.CreditLineImplementation == addressName) { return "CreditLineImplementation"; } if (Addresses.CreditLineFactory == addressName) { return "CreditLineFactory"; } if (Addresses.CreditDesk == addressName) { return "CreditDesk"; } if (Addresses.Fidu == addressName) { return "Fidu"; } if (Addresses.USDC == addressName) { return "USDC"; } if (Addresses.TreasuryReserve == addressName) { return "TreasuryReserve"; } if (Addresses.ProtocolAdmin == addressName) { return "ProtocolAdmin"; } revert("Unknown value passed to getAddressName"); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "./BaseUpgradeablePausable.sol"; import "./ConfigOptions.sol"; /** * @title GoldfinchConfig * @notice This contract stores mappings of useful "protocol config state", giving a central place * for all other contracts to access it. For example, the TransactionLimit, or the PoolAddress. These config vars * are enumerated in the `ConfigOptions` library, and can only be changed by admins of the protocol. * @author Goldfinch */ contract GoldfinchConfig is BaseUpgradeablePausable { mapping(uint256 => address) public addresses; mapping(uint256 => uint256) public numbers; event AddressUpdated(address owner, string name, address oldValue, address newValue); event NumberUpdated(address owner, string name, uint256 oldValue, uint256 newValue); function initialize(address owner) public initializer { __BaseUpgradeablePausable__init(owner); } function setAddress(uint256 addressKey, address newAddress) public onlyAdmin { require(addresses[addressKey] == address(0), "Address has already been initialized"); emit AddressUpdated(msg.sender, ConfigOptions.getAddressName(addressKey), addresses[addressKey], newAddress); addresses[addressKey] = newAddress; } function setNumber(uint256 number, uint256 newNumber) public onlyAdmin { emit NumberUpdated(msg.sender, ConfigOptions.getNumberName(number), numbers[number], newNumber); numbers[number] = newNumber; } function setCreditLineImplementation(address newCreditLine) public onlyAdmin { uint256 addressKey = uint256(ConfigOptions.Addresses.CreditLineImplementation); emit AddressUpdated(msg.sender, ConfigOptions.getAddressName(addressKey), addresses[addressKey], newCreditLine); addresses[addressKey] = newCreditLine; } function setTreasuryReserve(address newTreasuryReserve) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.TreasuryReserve); emit AddressUpdated(msg.sender, ConfigOptions.getAddressName(key), addresses[key], newTreasuryReserve); addresses[key] = newTreasuryReserve; } /* Using custom getters incase we want to change underlying implementation later, or add checks or validations later on. */ function getAddress(uint256 addressKey) public view returns (address) { // Cheap way to see if it's an invalid number ConfigOptions.Addresses(addressKey); return addresses[addressKey]; } function getNumber(uint256 number) public view returns (uint256) { // Cheap way to see if it's an invalid number ConfigOptions.Numbers(number); return numbers[number]; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts-ethereum-package/contracts/utils/Pausable.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/access/AccessControl.sol"; /** * @title PauserPausable * @notice Inheriting from OpenZeppelin's Pausable contract, this does small * augmentations to make it work with a PAUSER_ROLE, leveraging the AccessControl contract. * It is meant to be inherited. * @author Goldfinch */ contract PauserPausable is AccessControlUpgradeSafe, PausableUpgradeSafe { bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE"); // solhint-disable-next-line func-name-mixedcase function __PauserPausable__init() public initializer { __Pausable_init_unchained(); } /** * @dev Pauses all functions guarded by Pause * * See {Pausable-_pause}. * * Requirements: * * - the caller must have the PAUSER_ROLE. */ function pause() public onlyPauserRole { _pause(); } /** * @dev Unpauses the contract * * See {Pausable-_unpause}. * * Requirements: * * - the caller must have the Pauser role */ function unpause() public onlyPauserRole { _unpause(); } modifier onlyPauserRole() { require(hasRole(PAUSER_ROLE, _msgSender()), "Must have pauser role to perform this action"); _; } }
{ "evmVersion": "istanbul", "libraries": {}, "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 200 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } } }
[{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OWNER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAUSER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"__BaseUpgradeablePausable__init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"__PauserPausable__init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"configAddress","type":"address"}],"name":"authorizePool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"balance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"borrower","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"_borrower","type":"address"},{"internalType":"address","name":"_underwriter","type":"address"},{"internalType":"uint256","name":"_limit","type":"uint256"},{"internalType":"uint256","name":"_interestApr","type":"uint256"},{"internalType":"uint256","name":"_paymentPeriodInDays","type":"uint256"},{"internalType":"uint256","name":"_termInDays","type":"uint256"},{"internalType":"uint256","name":"_lateFeeApr","type":"uint256"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"interestAccruedAsOfBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"interestApr","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"interestOwed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isAdmin","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastFullPaymentBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lateFeeApr","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"limit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextDueBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paymentPeriodInDays","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"principalOwed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newBalance","type":"uint256"}],"name":"setBalance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newInterestAccruedAsOfBlock","type":"uint256"}],"name":"setInterestAccruedAsOfBlock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newInterestOwed","type":"uint256"}],"name":"setInterestOwed","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newLastFullPaymentBlock","type":"uint256"}],"name":"setLastFullPaymentBlock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newLateFeeApr","type":"uint256"}],"name":"setLateFeeApr","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newAmount","type":"uint256"}],"name":"setLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newNextDueBlock","type":"uint256"}],"name":"setNextDueBlock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newPrincipalOwed","type":"uint256"}],"name":"setPrincipalOwed","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newTermEndBlock","type":"uint256"}],"name":"setTermEndBlock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newWritedownAmount","type":"uint256"}],"name":"setWritedownAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"termEndBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"termInDays","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"underwriter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"writedownAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.