Source Code
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| 0x60806040 | 21664695 | 366 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Name:
L1StandardBridge
Compiler Version
v0.8.15+commit.e14f2714
Optimization Enabled:
Yes with 999999 runs
Other Settings:
london EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Predeploys } from "src/libraries/Predeploys.sol";
import { StandardBridge } from "src/universal/StandardBridge.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
import { OptimismPortal } from "src/L1/OptimismPortal.sol";
import { SystemConfig } from "src/L1/SystemConfig.sol";
/// @custom:proxied
/// @title L1StandardBridge
/// @notice The L1StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and
/// L2. In the case that an ERC20 token is native to L1, it will be escrowed within this
/// contract. If the ERC20 token is native to L2, it will be burnt. Before Bedrock, ETH was
/// stored within this contract. After Bedrock, ETH is instead stored inside the
/// OptimismPortal contract.
/// NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples
/// of some token types that may not be properly supported by this contract include, but are
/// not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists.
contract L1StandardBridge is StandardBridge, ISemver {
/// @custom:legacy
/// @notice Emitted whenever a deposit of ETH from L1 into L2 is initiated.
/// @param from Address of the depositor.
/// @param to Address of the recipient on L2.
/// @param amount Amount of ETH deposited.
/// @param extraData Extra data attached to the deposit.
event ETHDepositInitiated(address indexed from, bytes32 indexed to, uint256 amount, bytes extraData);
/// @custom:legacy
/// @notice Emitted whenever a withdrawal of ETH from L2 to L1 is finalized.
/// @param from Address of the withdrawer.
/// @param to Address of the recipient on L1.
/// @param amount Amount of ETH withdrawn.
/// @param extraData Extra data attached to the withdrawal.
event ETHWithdrawalFinalized(bytes32 indexed from, address indexed to, uint256 amount, bytes extraData);
/// @custom:legacy
/// @notice Emitted whenever an ERC20 deposit is initiated.
/// @param l1Token Address of the token on L1.
/// @param l2Token Address of the corresponding token on L2.
/// @param from Address of the depositor.
/// @param to Address of the recipient on L2.
/// @param amount Amount of the ERC20 deposited.
/// @param extraData Extra data attached to the deposit.
event ERC20DepositInitiated(
address indexed l1Token,
bytes32 indexed l2Token,
address indexed from,
bytes32 to,
uint256 amount,
bytes extraData
);
/// @custom:legacy
/// @notice Emitted whenever an ERC20 withdrawal is finalized.
/// @param l1Token Address of the token on L1.
/// @param l2Token Address of the corresponding token on L2.
/// @param from Address of the withdrawer.
/// @param to Address of the recipient on L1.
/// @param amount Amount of the ERC20 withdrawn.
/// @param extraData Extra data attached to the withdrawal.
event ERC20WithdrawalFinalized(
address indexed l1Token,
bytes32 indexed l2Token,
bytes32 indexed from,
address to,
uint256 amount,
bytes extraData
);
/// @notice Semantic version.
/// @custom:semver 2.2.0
string public constant version = "2.2.0";
/// @notice Address of the SuperchainConfig contract.
SuperchainConfig public superchainConfig;
/// @notice Address of the SystemConfig contract.
SystemConfig public systemConfig;
/// @notice Constructs the L1StandardBridge contract.
constructor() StandardBridge() {
initialize({
_messenger: CrossDomainMessenger(address(0)),
_superchainConfig: SuperchainConfig(address(0)),
_systemConfig: SystemConfig(address(0))
});
}
/// @notice Initializer.
/// @param _messenger Contract for the CrossDomainMessenger on this network.
/// @param _superchainConfig Contract for the SuperchainConfig on this network.
function initialize(
CrossDomainMessenger _messenger,
SuperchainConfig _superchainConfig,
SystemConfig _systemConfig
)
public
initializer
{
superchainConfig = _superchainConfig;
systemConfig = _systemConfig;
__StandardBridge_init({ _messenger: _messenger, _otherBridge: Predeploys.L2_STANDARD_BRIDGE });
}
/// @inheritdoc StandardBridge
function paused() public view override returns (bool) {
return superchainConfig.paused();
}
/// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
receive() external payable override onlyEOA {
//Can't accept deposit without a specified svm address
revert("disallow");
//_initiateETHDeposit(msg.sender, msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes(""));
}
/// @inheritdoc StandardBridge
function gasPayingToken() internal view override returns (address addr_, uint8 decimals_) {
(addr_, decimals_) = systemConfig.gasPayingToken();
}
/// @custom:legacy
/// @notice Deposits some amount of ETH into the sender's account on L2.
function depositETH(uint32, bytes calldata) external payable onlyEOA {
//Can't accept deposit without a specified svm address
revert("disallow");
//_initiateETHDeposit(msg.sender, msg.sender, _minGasLimit, _extraData);
}
/// @custom:legacy
/// @notice Deposits some amount of ETH into a target account on L2.
/// Note that if ETH is sent to a contract on L2 and the call fails, then that ETH will
/// be locked in the L2StandardBridge. ETH may be recoverable if the call can be
/// successfully replayed by increasing the amount of gas supplied to the call. If the
/// call will fail for any amount of gas, then the ETH will be locked permanently.
/// @param _to Address of the recipient on L2.
/// @param _minGasLimit Minimum gas limit for the deposit message on L2.
/// @param _extraData Optional data to forward to L2.
/// Data supplied here will not be used to execute any code on L2 and is
/// only emitted as extra data for the convenience of off-chain tooling.
function depositETHTo(bytes32 _to, uint32 _minGasLimit, bytes calldata _extraData) external payable {
_initiateETHDeposit(msg.sender, _to, _minGasLimit, _extraData);
}
/// @custom:legacy
/// @notice Deposits some amount of ERC20 tokens into the sender's account on L2.
function depositERC20(address, bytes32, uint256, uint32, bytes calldata) external virtual onlyEOA {
//Can't accept erc20 deposit without a specified svm address
revert("disallow");
//_initiateERC20Deposit(_l1Token, _l2Token, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
}
/// @custom:legacy
/// @notice Deposits some amount of ERC20 tokens into a target account on L2.
/// @param _l1Token Address of the L1 token being deposited.
/// @param _l2Token Address of the corresponding token on L2.
/// @param _to Address of the recipient on L2.
/// @param _amount Amount of the ERC20 to deposit.
/// @param _minGasLimit Minimum gas limit for the deposit message on L2.
/// @param _extraData Optional data to forward to L2.
/// Data supplied here will not be used to execute any code on L2 and is
/// only emitted as extra data for the convenience of off-chain tooling.
function depositERC20To(
address _l1Token,
bytes32 _l2Token,
bytes32 _to,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
)
external
virtual
{
_initiateERC20Deposit(_l1Token, _l2Token, msg.sender, _to, _amount, _minGasLimit, _extraData);
}
/// @custom:legacy
/// @notice Finalizes a withdrawal of ETH from L2.
/// @param _from Address of the withdrawer on L2.
/// @param _to Address of the recipient on L1.
/// @param _amount Amount of ETH to withdraw.
/// @param _extraData Optional data forwarded from L2.
function finalizeETHWithdrawal(
bytes32 _from,
address _to,
uint256 _amount,
bytes calldata _extraData
)
external
payable
{
finalizeBridgeETH(_from, _to, _amount, _extraData);
}
/// @custom:legacy
/// @notice Finalizes a withdrawal of ERC20 tokens from L2.
/// @param _l1Token Address of the token on L1.
/// @param _l2Token Address of the corresponding token on L2.
/// @param _from Address of the withdrawer on L2.
/// @param _to Address of the recipient on L1.
/// @param _amount Amount of the ERC20 to withdraw.
/// @param _extraData Optional data forwarded from L2.
function finalizeERC20Withdrawal(
address _l1Token,
bytes32 _l2Token,
bytes32 _from,
address _to,
uint256 _amount,
bytes calldata _extraData
)
external
{
finalizeBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _extraData);
}
/// @custom:legacy
/// @notice Retrieves the access of the corresponding L2 bridge contract.
/// @return Address of the corresponding L2 bridge contract.
function l2TokenBridge() external view returns (bytes32) {
return otherBridge;
}
/// @notice Internal function for initiating an ETH deposit.
/// @param _from Address of the sender on L1.
/// @param _to Address of the recipient on L2.
/// @param _minGasLimit Minimum gas limit for the deposit message on L2.
/// @param _extraData Optional data to forward to L2.
function _initiateETHDeposit(address _from, bytes32 _to, uint32 _minGasLimit, bytes memory _extraData) internal {
_initiateBridgeETH(_from, _to, msg.value, _minGasLimit, _extraData);
}
/// @notice Internal function for initiating an ERC20 deposit.
/// @param _l1Token Address of the L1 token being deposited.
/// @param _l2Token Address of the corresponding token on L2.
/// @param _from Address of the sender on L1.
/// @param _to Address of the recipient on L2.
/// @param _amount Amount of the ERC20 to deposit.
/// @param _minGasLimit Minimum gas limit for the deposit message on L2.
/// @param _extraData Optional data to forward to L2.
function _initiateERC20Deposit(
address _l1Token,
bytes32 _l2Token,
address _from,
bytes32 _to,
uint256 _amount,
uint32 _minGasLimit,
bytes memory _extraData
)
internal
{
_initiateBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _minGasLimit, _extraData);
}
/// @inheritdoc StandardBridge
/// @notice Emits the legacy ETHDepositInitiated event followed by the ETHBridgeInitiated event.
/// This is necessary for backwards compatibility with the legacy bridge.
function _emitETHBridgeInitiated(
address _from,
bytes32 _to,
uint256 _amount,
bytes memory _extraData
)
internal
override
{
emit ETHDepositInitiated(_from, _to, _amount, _extraData);
super._emitETHBridgeInitiated(_from, _to, _amount, _extraData);
}
/// @inheritdoc StandardBridge
/// @notice Emits the legacy ERC20DepositInitiated event followed by the ERC20BridgeInitiated
/// event. This is necessary for backwards compatibility with the legacy bridge.
function _emitETHBridgeFinalized(
bytes32 _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
override
{
emit ETHWithdrawalFinalized(_from, _to, _amount, _extraData);
super._emitETHBridgeFinalized(_from, _to, _amount, _extraData);
}
/// @inheritdoc StandardBridge
/// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
/// event. This is necessary for backwards compatibility with the legacy bridge.
function _emitERC20BridgeInitiated(
address _localToken,
bytes32 _remoteToken,
address _from,
bytes32 _to,
uint256 _amount,
bytes memory _extraData
)
internal
override
{
emit ERC20DepositInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
super._emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
}
/// @inheritdoc StandardBridge
/// @notice Emits the legacy ERC20WithdrawalFinalized event followed by the ERC20BridgeFinalized
/// event. This is necessary for backwards compatibility with the legacy bridge.
function _emitERC20BridgeFinalized(
address _localToken,
bytes32 _remoteToken,
bytes32 _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
override
{
emit ERC20WithdrawalFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
super._emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Predeploys
/// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
// This excludes the preinstalls (non-protocol contracts).
library Predeploys {
/// @notice Number of predeploy-namespace addresses reserved for protocol usage.
uint256 internal constant PREDEPLOY_COUNT = 2048;
/// @custom:legacy
/// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
/// or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
/// Not embedded into new OP-Stack chains.
address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
/// @custom:legacy
/// @notice Address of the DeployerWhitelist predeploy. No longer active.
address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
/// @notice Address of the canonical WETH contract.
address internal constant WETH = 0x4200000000000000000000000000000000000006;
/// @notice Address of the L2CrossDomainMessenger predeploy.
bytes32 internal constant L2_CROSS_DOMAIN_MESSENGER =
0x02c806312cb859f1bc25448e39f87aa09857d83ccb4a837df55648e000000000;
/// @notice Address of the GasPriceOracle predeploy. Includes fee information
/// and helpers for computing the L1 portion of the transaction fee.
address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
/// @notice Address of the L2StandardBridge predeploy.
bytes32 internal constant L2_STANDARD_BRIDGE = 0x02c806312cb859f1bc25448e39f87aa09857d83ccb4a837df55648e000000000;
//// @notice Address of the SequencerFeeWallet predeploy.
address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
/// @notice Address of the OptimismMintableERC20Factory predeploy.
address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
/// @custom:legacy
/// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
/// instead, which exposes more information about the L1 state.
address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
/// @notice Address of the L2ERC721Bridge predeploy.
bytes32 internal constant L2_ERC721_BRIDGE = 0x02c806312cb859f1bc25448e39f87aa09857d83ccb4a837df55648e000000000;
/// @notice Address of the L1Block predeploy.
address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
/// @notice Address of the L2ToL1MessagePasser predeploy.
bytes32 internal constant L2_TO_L1_MESSAGE_PASSER =
0x4200000000000000000000000000000000000000000000000000000000000016;
/// @notice Address of the OptimismMintableERC721Factory predeploy.
address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
/// @notice Address of the ProxyAdmin predeploy.
address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
/// @notice Address of the BaseFeeVault predeploy.
address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
/// @notice Address of the L1FeeVault predeploy.
address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
/// @notice Address of the SchemaRegistry predeploy.
address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
/// @notice Address of the EAS predeploy.
address internal constant EAS = 0x4200000000000000000000000000000000000021;
/// @notice Address of the GovernanceToken predeploy.
address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
/// @custom:legacy
/// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
/// state trie as of the Bedrock upgrade. Contract has been locked and write functions
/// can no longer be accessed.
address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
/// @notice Address of the CrossL2Inbox predeploy.
address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;
/// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;
/// @notice Address of the SuperchainWETH predeploy.
address internal constant SUPERCHAIN_WETH = 0x4200000000000000000000000000000000000024;
/// @notice Address of the ETHLiquidity predeploy.
address internal constant ETH_LIQUIDITY = 0x4200000000000000000000000000000000000025;
/// TODO: Add correct predeploy address for OptimismSuperchainERC20Factory
/// @notice Address of the OptimismSuperchainERC20Factory predeploy.
address internal constant OPTIMISM_SUPERCHAIN_ERC20_FACTORY = 0x4200000000000000000000000000000000000026;
/// @notice Returns the name of the predeploy at the given address.
function getName(address _addr) internal pure returns (string memory out_) {
require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
if (_addr == WETH) return "WETH";
if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
if (_addr == PROXY_ADMIN) return "ProxyAdmin";
if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
if (_addr == L1_FEE_VAULT) return "L1FeeVault";
if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
if (_addr == EAS) return "EAS";
if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
if (_addr == SUPERCHAIN_WETH) return "SuperchainWETH";
if (_addr == ETH_LIQUIDITY) return "ETHLiquidity";
if (_addr == OPTIMISM_SUPERCHAIN_ERC20_FACTORY) return "OptimismSuperchainERC20Factory";
revert("Predeploys: unnamed predeploy");
}
/// @notice Returns true if the predeploy is not proxied.
function notProxied(address _addr) internal pure returns (bool) {
return _addr == GOVERNANCE_TOKEN || _addr == WETH;
}
/// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
return _addr == DEPLOYER_WHITELIST || _addr == WETH
|| _addr == GAS_PRICE_ORACLE || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY
|| _addr == L1_BLOCK_NUMBER || _addr == L1_BLOCK_ATTRIBUTES || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY
|| _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT || _addr == L1_FEE_VAULT || _addr == SCHEMA_REGISTRY
|| _addr == EAS || _addr == GOVERNANCE_TOKEN || (_useInterop && _addr == CROSS_L2_INBOX)
|| (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) || (_useInterop && _addr == SUPERCHAIN_WETH)
|| (_useInterop && _addr == ETH_LIQUIDITY);
}
function isPredeployNamespace(address _addr) internal pure returns (bool) {
return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
}
/// @notice Function to compute the expected address of the predeploy implementation
/// in the genesis state.
function predeployToCodeNamespace(address _addr) internal pure returns (address) {
require(
isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
);
return address(
uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { IOptimismMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
import { OptimismMintableERC20 } from "src/universal/OptimismMintableERC20.sol";
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { Constants } from "src/libraries/Constants.sol";
import { DecimalConversion } from "src/libraries/DecimalConversion.sol";
/// @custom:upgradeable
/// @title StandardBridge
/// @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles
/// the core bridging logic, including escrowing tokens that are native to the local chain
/// and minting/burning tokens that are native to the remote chain.
abstract contract StandardBridge is Initializable {
using SafeERC20 for IERC20;
using DecimalConversion for uint256;
/// @notice The L2 gas limit set when eth is depoisited using the receive() function.
uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000;
/// @custom:legacy
/// @custom:spacer messenger
/// @notice Spacer for backwards compatibility.
bytes30 private spacer_0_2_30;
/// @custom:legacy
/// @custom:spacer l2TokenBridge
/// @notice Spacer for backwards compatibility.
address private spacer_1_0_20;
/// @notice Mapping that stores deposits for a given pair of local and remote tokens.
mapping(address => mapping(bytes32 => uint256)) public deposits;
/// @notice Messenger contract on this domain.
/// @custom:network-specific
CrossDomainMessenger public messenger;
/// @notice Corresponding bridge on the other domain.
/// @custom:network-specific
bytes32 public otherBridge;
/// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
/// A gap size of 45 was chosen here, so that the first slot used in a child contract
/// would be a multiple of 50.
uint256[45] private __gap;
/// @notice Emitted when an ETH bridge is initiated to the other chain.
/// @param from Address of the sender.
/// @param to Address of the receiver.
/// @param amount Amount of ETH sent.
/// @param extraData Extra data sent with the transaction.
event ETHBridgeInitiated(address indexed from, bytes32 indexed to, uint256 amount, bytes extraData);
/// @notice Emitted when an ETH bridge is finalized on this chain.
/// @param from Address of the sender.
/// @param to Address of the receiver.
/// @param amount Amount of ETH sent.
/// @param extraData Extra data sent with the transaction.
event ETHBridgeFinalized(bytes32 indexed from, address indexed to, uint256 amount, bytes extraData);
/// @notice Emitted when an ERC20 bridge is initiated to the other chain.
/// @param localToken Address of the ERC20 on this chain.
/// @param remoteToken Address of the ERC20 on the remote chain.
/// @param from Address of the sender.
/// @param to Address of the receiver.
/// @param amount Amount of the ERC20 sent.
/// @param extraData Extra data sent with the transaction.
event ERC20BridgeInitiated(
address indexed localToken,
bytes32 indexed remoteToken,
address indexed from,
bytes32 to,
uint256 amount,
bytes extraData
);
/// @notice Emitted when an ERC20 bridge is finalized on this chain.
/// @param localToken Address of the ERC20 on this chain.
/// @param remoteToken Address of the ERC20 on the remote chain.
/// @param from Address of the sender.
/// @param to Address of the receiver.
/// @param amount Amount of the ERC20 sent.
/// @param extraData Extra data sent with the transaction.
event ERC20BridgeFinalized(
address indexed localToken,
bytes32 indexed remoteToken,
bytes32 indexed from,
address to,
uint256 amount,
bytes extraData
);
/// @notice Only allow EOAs to call the functions. Note that this is not safe against contracts
/// calling code within their constructors, but also doesn't really matter since we're
/// just trying to prevent users accidentally depositing with smart contract wallets.
modifier onlyEOA() {
require(!Address.isContract(msg.sender), "StandardBridge: function can only be called from an EOA");
_;
}
/// @notice Ensures that the caller is a cross-chain message from the other bridge.
modifier onlyOtherBridge() {
require(
msg.sender == address(messenger) && messenger.xDomainMessageSender() == otherBridge,
"StandardBridge: function can only be called from the other bridge"
);
_;
}
/// @notice Initializer.
/// @param _messenger Contract for CrossDomainMessenger on this network.
/// @param _otherBridge Contract for the other StandardBridge contract.
function __StandardBridge_init(CrossDomainMessenger _messenger, bytes32 _otherBridge) internal onlyInitializing {
messenger = _messenger;
otherBridge = _otherBridge;
}
/// @notice Allows EOAs to bridge ETH by sending directly to the bridge.
/// Must be implemented by contracts that inherit.
receive() external payable virtual;
/// @notice Returns the address of the custom gas token and the token's decimals.
function gasPayingToken() internal view virtual returns (address, uint8);
/// @notice Returns whether the chain uses a custom gas token or not.
function isCustomGasToken() internal view returns (bool) {
(address token,) = gasPayingToken();
return token != Constants.ETHER;
}
/// @notice Getter for messenger contract.
/// Public getter is legacy and will be removed in the future. Use `messenger` instead.
/// @return Contract of the messenger on this domain.
/// @custom:legacy
function MESSENGER() external view returns (CrossDomainMessenger) {
return messenger;
}
/// @notice Getter for the other bridge contract.
/// Public getter is legacy and will be removed in the future. Use `otherBridge` instead.
/// @return Contract of the bridge on the other network.
/// @custom:legacy
function OTHER_BRIDGE() external view returns (bytes32) {
return otherBridge;
}
/// @notice This function should return true if the contract is paused.
/// On L1 this function will check the SuperchainConfig for its paused status.
/// On L2 this function should be a no-op.
/// @return Whether or not the contract is paused.
function paused() public view virtual returns (bool) {
return false;
}
/// @notice Getter for the shared decimals when bridge ERC20
/// @return Shared decimals for ERC20.
function ERC20SharedDecimals() public pure virtual returns (uint8) {
return 9;
}
/// @notice Sends ETH to the sender's address on the other chain.
function bridgeETH(uint32, bytes calldata) public payable onlyEOA {
//Can't accept bridge without a specified svm address
revert("disallow");
//_initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData);
}
/// @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a
/// smart contract and the call fails, the ETH will be temporarily locked in the
/// StandardBridge on the other chain until the call is replayed. If the call cannot be
/// replayed with any amount of gas (call always reverts), then the ETH will be
/// permanently locked in the StandardBridge on the other chain. ETH will also
/// be locked if the receiver is the other bridge, because finalizeBridgeETH will revert
/// in that case.
/// @param _to Address of the receiver.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function bridgeETHTo(bytes32 _to, uint32 _minGasLimit, bytes calldata _extraData) public payable {
_initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData);
}
/// @notice Sends ERC20 tokens to the sender's address on the other chain.
function bridgeERC20(address, address, uint256, uint32, bytes calldata) public virtual onlyEOA {
//Can't accept bridge without a specified svm address
revert("disallow");
//_initiateBridgeERC20(_localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
}
/// @notice Sends ERC20 tokens to a receiver's address on the other chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the corresponding token on the remote chain.
/// @param _to Address of the receiver.
/// @param _amount Amount of local tokens to deposit.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function bridgeERC20To(
address _localToken,
bytes32 _remoteToken,
bytes32 _to,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
)
public
virtual
{
_initiateBridgeERC20(_localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData);
}
/// @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other
/// StandardBridge contract on the remote chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of ETH being bridged.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function finalizeBridgeETH(
bytes32 _from,
address _to,
uint256 _amount,
bytes calldata _extraData
)
public
payable
onlyOtherBridge
{
uint256 amountLD = _amount.ETHToLD();
require(paused() == false, "StandardBridge: paused");
require(isCustomGasToken() == false, "StandardBridge: cannot bridge ETH with custom gas token");
require(msg.value == amountLD, "StandardBridge: amount sent does not match amount required");
require(_to != address(this), "StandardBridge: cannot send to self");
require(_to != address(messenger), "StandardBridge: cannot send to messenger");
// Emit the correct events. By default this will be _amount, but child
// contracts may override this function in order to emit legacy events as well.
_emitETHBridgeFinalized(_from, _to, amountLD, _extraData);
bool success = SafeCall.call(_to, gasleft(), amountLD, hex"");
require(success, "StandardBridge: ETH transfer failed");
}
/// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other
/// StandardBridge contract on the remote chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the corresponding token on the remote chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of the ERC20 being bridged.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function finalizeBridgeERC20(
address _localToken,
bytes32 _remoteToken,
bytes32 _from,
address _to,
uint256 _amount,
bytes calldata _extraData
)
public
onlyOtherBridge
{
require(paused() == false, "StandardBridge: paused");
uint8 localDecimals = IERC20Metadata(_localToken).decimals();
uint8 shareDecimals = ERC20SharedDecimals();
uint256 amountLD = _amount.convertDecimals(shareDecimals, localDecimals);
if (_isOptimismMintableERC20(_localToken)) {
require(
_isCorrectTokenPair(_localToken, _remoteToken),
"StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
);
OptimismMintableERC20(_localToken).mint(_to, amountLD);
} else {
deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - amountLD;
IERC20(_localToken).safeTransfer(_to, amountLD);
}
// Emit the correct events. By default this will be ERC20BridgeFinalized, but child
// contracts may override this function in order to emit legacy events as well.
_emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, amountLD, _extraData);
}
/// @notice Initiates a bridge of ETH through the CrossDomainMessenger.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of ETH being bridged.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function _initiateBridgeETH(
address _from,
bytes32 _to,
uint256 _amount,
uint32 _minGasLimit,
bytes memory _extraData
)
internal
{
require(isCustomGasToken() == false, "StandardBridge: cannot bridge ETH with custom gas token");
require(msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value");
// Emit the correct events. By default this will be _amount, but child
// contracts may override this function in order to emit legacy events as well.
_emitETHBridgeInitiated(_from, _to, _amount, _extraData);
messenger.sendMessage{ value: _amount }({
_target: otherBridge,
_message: abi.encodeWithSelector(this.finalizeBridgeETH.selector, _from, _to, _amount.ETHToRD(), _extraData),
_minGasLimit: _minGasLimit
});
}
/// @notice Sends ERC20 tokens to a receiver's address on the other chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the corresponding token on the remote chain.
/// @param _to Address of the receiver.
/// @param _amount Amount of local tokens to deposit.
/// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with.
/// @param _extraData Extra data to be sent with the transaction. Note that the recipient will
/// not be triggered with this data, but it will be emitted and can be used
/// to identify the transaction.
function _initiateBridgeERC20(
address _localToken,
bytes32 _remoteToken,
address _from,
bytes32 _to,
uint256 _amount,
uint32 _minGasLimit,
bytes memory _extraData
)
internal
{
require(msg.value == 0, "StandardBridge: cannot send value");
uint256 dustRemovedAmount;
uint256 amountRD;
{
uint8 localDecimals = IERC20Metadata(_localToken).decimals();
uint8 shareDecimals = ERC20SharedDecimals();
dustRemovedAmount = _amount.removeDust(localDecimals, shareDecimals);
amountRD = _amount.convertDecimals(localDecimals, shareDecimals);
}
require(dustRemovedAmount != 0, "StandardBridge: invalid token amount");
if (_isOptimismMintableERC20(_localToken)) {
require(
_isCorrectTokenPair(_localToken, _remoteToken),
"StandardBridge: wrong remote token for Optimism Mintable ERC20 local token"
);
OptimismMintableERC20(_localToken).burn(_from, dustRemovedAmount);
} else {
IERC20(_localToken).safeTransferFrom(_from, address(this), dustRemovedAmount);
deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + dustRemovedAmount;
}
// Emit the correct events. By default this will be ERC20BridgeInitiated, but child
// contracts may override this function in order to emit legacy events as well.
_emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, dustRemovedAmount, _extraData);
messenger.sendMessage({
_target: otherBridge,
_message: abi.encodeWithSelector(
this.finalizeBridgeERC20.selector,
// Because this call will be executed on the remote chain, we reverse the order of
// the remote and local token addresses relative to their order in the
// finalizeBridgeERC20 function.
_remoteToken,
_localToken,
_from,
_to,
amountRD,
_extraData
),
_minGasLimit: _minGasLimit
});
}
/// @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough.
/// Just the way we like it.
/// @param _token Address of the token to check.
/// @return True if the token is an OptimismMintableERC20.
function _isOptimismMintableERC20(address _token) internal view returns (bool) {
return ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId);
}
/// @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20.
/// Calls can be saved in the future by combining this logic with
/// `_isOptimismMintableERC20`.
/// @param _mintableToken OptimismMintableERC20 to check against.
/// @param _otherToken Pair token to check.
/// @return True if the other token is the correct pair token for the OptimismMintableERC20.
function _isCorrectTokenPair(address _mintableToken, bytes32 _otherToken) internal view returns (bool) {
return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken();
}
/// @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event
/// when an ETH bridge is finalized on this chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of ETH sent.
/// @param _extraData Extra data sent with the transaction.
function _emitETHBridgeInitiated(
address _from,
bytes32 _to,
uint256 _amount,
bytes memory _extraData
)
internal
virtual
{
emit ETHBridgeInitiated(_from, _to, _amount, _extraData);
}
/// @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an
/// ETH bridge is finalized on this chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of ETH sent.
/// @param _extraData Extra data sent with the transaction.
function _emitETHBridgeFinalized(
bytes32 _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
virtual
{
emit ETHBridgeFinalized(_from, _to, _amount, _extraData);
}
/// @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy
/// event when an ERC20 bridge is initiated to the other chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the ERC20 on the remote chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of the ERC20 sent.
/// @param _extraData Extra data sent with the transaction.
function _emitERC20BridgeInitiated(
address _localToken,
bytes32 _remoteToken,
address _from,
bytes32 _to,
uint256 _amount,
bytes memory _extraData
)
internal
virtual
{
emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData);
}
/// @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy
/// event when an ERC20 bridge is initiated to the other chain.
/// @param _localToken Address of the ERC20 on this chain.
/// @param _remoteToken Address of the ERC20 on the remote chain.
/// @param _from Address of the sender.
/// @param _to Address of the receiver.
/// @param _amount Amount of the ERC20 sent.
/// @param _extraData Extra data sent with the transaction.
function _emitERC20BridgeFinalized(
address _localToken,
bytes32 _remoteToken,
bytes32 _from,
address _to,
uint256 _amount,
bytes memory _extraData
)
internal
virtual
{
emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title ISemver
/// @notice ISemver is a simple contract for ensuring that contracts are
/// versioned using semantic versioning.
interface ISemver {
/// @notice Getter for the semantic version of the contract. This is not
/// meant to be used onchain but instead meant to be used by offchain
/// tooling.
/// @return Semver contract version as a string.
function version() external view returns (string memory);
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { Encoding } from "src/libraries/Encoding.sol";
import { Constants } from "src/libraries/Constants.sol";
import { DecimalConversion } from "src/libraries/DecimalConversion.sol";
/// @custom:legacy
/// @title CrossDomainMessengerLegacySpacer0
/// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
/// libAddressManager variable used to exist. Must be the first contract in the inheritance
/// tree of the CrossDomainMessenger.
contract CrossDomainMessengerLegacySpacer0 {
/// @custom:legacy
/// @custom:spacer libAddressManager
/// @notice Spacer for backwards compatibility.
address private spacer_0_0_20;
}
/// @custom:legacy
/// @title CrossDomainMessengerLegacySpacer1
/// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
/// PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
/// the third contract in the inheritance tree of the CrossDomainMessenger.
contract CrossDomainMessengerLegacySpacer1 {
/// @custom:legacy
/// @custom:spacer ContextUpgradable's __gap
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// ContextUpgradable.
uint256[50] private spacer_1_0_1600;
/// @custom:legacy
/// @custom:spacer OwnableUpgradeable's _owner
/// @notice Spacer for backwards compatibility.
/// Come from OpenZeppelin OwnableUpgradeable.
address private spacer_51_0_20;
/// @custom:legacy
/// @custom:spacer OwnableUpgradeable's __gap
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// OwnableUpgradeable.
uint256[49] private spacer_52_0_1568;
/// @custom:legacy
/// @custom:spacer PausableUpgradable's _paused
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// PausableUpgradable.
bool private spacer_101_0_1;
/// @custom:legacy
/// @custom:spacer PausableUpgradable's __gap
/// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
/// PausableUpgradable.
uint256[49] private spacer_102_0_1568;
/// @custom:legacy
/// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
/// @notice Spacer for backwards compatibility.
uint256 private spacer_151_0_32;
/// @custom:legacy
/// @custom:spacer ReentrancyGuardUpgradeable's __gap
/// @notice Spacer for backwards compatibility.
uint256[49] private spacer_152_0_1568;
/// @custom:legacy
/// @custom:spacer blockedMessages
/// @notice Spacer for backwards compatibility.
mapping(bytes32 => bool) private spacer_201_0_32;
/// @custom:legacy
/// @custom:spacer relayedMessages
/// @notice Spacer for backwards compatibility.
mapping(bytes32 => bool) private spacer_202_0_32;
}
/// @custom:upgradeable
/// @title CrossDomainMessenger
/// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
/// cross-chain messenger contracts. It's designed to be a universal interface that only
/// needs to be extended slightly to provide low-level message passing functionality on each
/// chain it's deployed on. Currently only designed for message passing between two paired
/// chains and does not support one-to-many interactions.
/// Any changes to this contract MUST result in a semver bump for contracts that inherit it.
abstract contract CrossDomainMessenger is
CrossDomainMessengerLegacySpacer0,
Initializable,
CrossDomainMessengerLegacySpacer1
{
using DecimalConversion for uint256;
/// @notice Current message version identifier.
uint16 public constant MESSAGE_VERSION = 1;
/// @notice Constant overhead added to the base gas for a message.
uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
/// @notice Numerator for dynamic overhead added to the base gas for a message.
uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
/// @notice Denominator for dynamic overhead added to the base gas for a message.
uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
/// @notice Extra gas added to base gas for each byte of calldata in a message.
uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
/// @notice Gas reserved for performing the external call in `relayMessage`.
uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
/// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
uint64 public constant RELAY_RESERVED_GAS = 40_000;
/// @notice Gas reserved for the execution between the `hasMinGas` check and the external
/// call in `relayMessage`.
uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
/// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
/// be present in this mapping if it has successfully been relayed on this chain, and
/// can therefore not be relayed again.
mapping(bytes32 => bool) public successfulMessages;
/// @notice Address of the sender of the currently executing message on the other chain. If the
/// value of this variable is the default value (0x00000000...0000) then no message is
/// currently being executed. Use the xDomainMessageSender getter which will throw an
/// error if this is the case.
bytes32 internal xDomainMsgSender;
/// @notice Nonce for the next message to be sent, without the message version applied. Use the
/// messageNonce getter which will insert the message version into the nonce to give you
/// the actual nonce to be used for the message.
uint240 internal msgNonce;
/// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
/// executed at least once. A message will not be present in this mapping if it
/// successfully executed on the first attempt.
mapping(bytes32 => bool) public failedMessages;
/// @notice CrossDomainMessenger contract on the other chain.
/// @custom:network-specific
bytes32 public otherMessenger;
/// @notice Reserve extra slots in the storage layout for future upgrades.
/// A gap size of 43 was chosen here, so that the first slot used in a child contract
/// would be 1 plus a multiple of 50.
uint256[43] private __gap;
/// @notice Emitted whenever a message is sent to the other chain.
/// @param target Address of the recipient of the message.
/// @param sender Address of the sender of the message.
/// @param message Message to trigger the recipient address with.
/// @param messageNonce Unique nonce attached to the message.
/// @param gasLimit Minimum gas limit that the message can be executed with.
event SentMessage(bytes32 indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
/// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
/// SentMessage event without breaking the ABI of this contract, this is good enough.
/// @param sender Address of the sender of the message.
/// @param value ETH value sent along with the message to the recipient.
event SentMessageExtension1(address indexed sender, uint256 value);
/// @notice Emitted whenever a message is successfully relayed on this chain.
/// @param msgHash Hash of the message that was relayed.
event RelayedMessage(bytes32 indexed msgHash);
/// @notice Emitted whenever a message fails to be relayed on this chain.
/// @param msgHash Hash of the message that failed to be relayed.
event FailedRelayedMessage(bytes32 indexed msgHash);
/// @notice Sends a message to some target address on the other chain. Note that if the call
/// always reverts, then the message will be unrelayable, and any ETH sent will be
/// permanently locked. The same will occur if the target on the other chain is
/// considered unsafe (see the _isUnsafeTarget() function).
/// @param _target Target contract or wallet address.
/// @param _message Message to trigger the target address with.
/// @param _minGasLimit Minimum gas limit that the message can be executed with.
function sendMessage(bytes32 _target, bytes calldata _message, uint32 _minGasLimit) external payable {
if (isCustomGasToken()) {
require(msg.value == 0, "CrossDomainMessenger: cannot send value with custom gas token");
}
// Triggers a message to the other messenger. Note that the amount of gas provided to the
// message is the amount of gas requested by the user PLUS the base gas value. We want to
// guarantee the property that the call to the target contract will always have at least
// the minimum gas limit specified by the user.
_sendMessage({
_to: otherMessenger,
_gasLimit: baseGas(_message, _minGasLimit),
_value: msg.value,
_data: encodeRelayL2Message(messageNonce(), msg.sender, _target, msg.value.ETHToRD(), _minGasLimit, _message)
});
emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
emit SentMessageExtension1(msg.sender, msg.value);
unchecked {
++msgNonce;
}
}
/// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
/// be executed via cross-chain call from the other messenger OR if the message was
/// already received once and is currently being replayed.
/// @param _nonce Nonce of the message being relayed.
/// @param _sender Address of the user who sent the message.
/// @param _target Address that the message is targeted at.
/// @param _value ETH value to send with the message.
/// @param _minGasLimit Minimum amount of gas that the message can be executed with.
/// @param _message Message to send to the target.
function relayMessage(
uint256 _nonce,
bytes32 _sender,
address _target,
uint256 _value,
uint256 _minGasLimit,
bytes calldata _message
)
external
payable
{
uint256 valueLD = _value.ETHToLD();
// On L1 this function will check the Portal for its paused status.
// On L2 this function should be a no-op, because paused will always return false.
require(paused() == false, "CrossDomainMessenger: paused");
(, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
require(version == 1, "CrossDomainMessenger: only version 1 messages are supported at this time");
// We use the v1 message hash as the unique identifier for the message because it commits
// to the value and minimum gas limit of the message.
bytes32 versionedHash =
Hashing.hashL2ToL1CrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
if (_isOtherMessenger()) {
// These properties should always hold when the message is first submitted (as
// opposed to being replayed).
assert(msg.value == valueLD);
assert(!failedMessages[versionedHash]);
} else {
require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
}
require(
_isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
);
require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
// If there is not enough gas left to perform the external call and finish the execution,
// return early and assign the message to the failedMessages mapping.
// We are asserting that we have enough gas to:
// 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
// 1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
// 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
//
// If `xDomainMsgSender` is not the default L2 sender, this function
// is being re-entered. This marks the message as failed to allow it to be replayed.
if (
!SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
|| xDomainMsgSender != Constants.DEFAULT_L2_SENDER
) {
failedMessages[versionedHash] = true;
emit FailedRelayedMessage(versionedHash);
// Revert in this case if the transaction was triggered by the estimation address. This
// should only be possible during gas estimation or we have bigger problems. Reverting
// here will make the behavior of gas estimation change such that the gas limit
// computed will be the amount required to relay the message, even if that amount is
// greater than the minimum gas limit specified by the user.
if (tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("CrossDomainMessenger: failed to relay message");
}
return;
}
xDomainMsgSender = _sender;
bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, valueLD, _message);
xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
if (success) {
// This check is identical to one above, but it ensures that the same message cannot be relayed
// twice, and adds a layer of protection against rentrancy.
assert(successfulMessages[versionedHash] == false);
successfulMessages[versionedHash] = true;
emit RelayedMessage(versionedHash);
} else {
failedMessages[versionedHash] = true;
emit FailedRelayedMessage(versionedHash);
// Revert in this case if the transaction was triggered by the estimation address. This
// should only be possible during gas estimation or we have bigger problems. Reverting
// here will make the behavior of gas estimation change such that the gas limit
// computed will be the amount required to relay the message, even if that amount is
// greater than the minimum gas limit specified by the user.
if (tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("CrossDomainMessenger: failed to relay message");
}
}
}
/// @notice Retrieves the address of the contract or wallet that initiated the currently
/// executing message on the other chain. Will throw an error if there is no message
/// currently being executed. Allows the recipient of a call to see who triggered it.
/// @return Address of the sender of the currently executing message on the other chain.
function xDomainMessageSender() external view returns (bytes32) {
require(
xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
);
return xDomainMsgSender;
}
/// @notice Retrieves the address of the paired CrossDomainMessenger contract on the other chain
/// Public getter is legacy and will be removed in the future. Use `otherMessenger()` instead.
/// @return CrossDomainMessenger contract on the other chain.
/// @custom:legacy
function OTHER_MESSENGER() public view returns (bytes32) {
return otherMessenger;
}
/// @notice Retrieves the next message nonce. Message version will be added to the upper two
/// bytes of the message nonce. Message version allows us to treat messages as having
/// different structures.
/// @return Nonce of the next message to be sent, with added message version.
function messageNonce() public view returns (uint256) {
return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
}
/// @notice Computes the amount of gas required to guarantee that a given message will be
/// received on the other chain without running out of gas. Guaranteeing that a message
/// will not run out of gas is important because this ensures that a message can always
/// be replayed on the other chain if it fails to execute completely.
/// @param _message Message to compute the amount of required gas for.
/// @param _minGasLimit Minimum desired gas limit when message goes to target.
/// @return Amount of gas required to guarantee message receipt.
function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
return
// Constant overhead
RELAY_CONSTANT_OVERHEAD
// Calldata overhead
+ (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD)
// Dynamic overhead (EIP-150)
+ ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
// Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas
// factors. (Conservative)
+ RELAY_CALL_OVERHEAD
// Relay reserved gas (to ensure execution of `relayMessage` completes after the
// subcontext finishes executing) (Conservative)
+ RELAY_RESERVED_GAS
// Gas reserved for the execution between the `hasMinGas` check and the `CALL`
// opcode. (Conservative)
+ RELAY_GAS_CHECK_BUFFER;
}
/// @notice Returns the address of the gas token and the token's decimals.
function gasPayingToken() internal view virtual returns (address, uint8);
/// @notice Returns whether the chain uses a custom gas token or not.
function isCustomGasToken() internal view returns (bool) {
(address token,) = gasPayingToken();
return token != Constants.ETHER;
}
/// @notice Initializer.
/// @param _otherMessenger CrossDomainMessenger contract on the other chain.
function __CrossDomainMessenger_init(bytes32 _otherMessenger) internal onlyInitializing {
// We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
// meaning that this is a fresh contract deployment.
// This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
// a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice.
if (xDomainMsgSender == bytes32(0)) {
xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
}
otherMessenger = _otherMessenger;
}
/// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
/// contracts because the logic for this depends on the network where the messenger is
/// being deployed.
/// @param _to Recipient of the message on the other chain.
/// @param _gasLimit Minimum gas limit the message can be executed with.
/// @param _value Amount of ETH to send with the message.
/// @param _data Message data.
function _sendMessage(bytes32 _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
/// @notice Checks whether the message is coming from the other messenger. Implemented by child
/// contracts because the logic for this depends on the network where the messenger is
/// being deployed.
/// @return Whether the message is coming from the other messenger.
function _isOtherMessenger() internal view virtual returns (bool);
/// @notice Checks whether a given call target is a system address that could cause the
/// messenger to peform an unsafe action. This is NOT a mechanism for blocking user
/// addresses. This is ONLY used to prevent the execution of messages to specific
/// system addresses that could cause security issues, e.g., having the
/// CrossDomainMessenger send messages to itself.
/// @param _target Address of the contract to check.
/// @return Whether or not the address is an unsafe system address.
function _isUnsafeTarget(address _target) internal view virtual returns (bool);
/// @notice This function should return true if the contract is paused.
/// On L1 this function will check the SuperchainConfig for its paused status.
/// On L2 this function should be a no-op.
/// @return Whether or not the contract is paused.
function paused() public view virtual returns (bool) {
return false;
}
/// @notice Encode L2 message to relay on L2.
/// @param _target Target contract or wallet address.
/// @param _message Message to trigger the target address with.
/// @param _minGasLimit Minimum gas limit that the message can be executed with.
function encodeRelayL2Message(
uint256 _nonce,
address _sender,
bytes32 _target,
uint256 _value,
uint256 _minGasLimit,
bytes calldata _message
)
public
pure
returns (bytes memory)
{
return Encoding.encodeL1ToL2CrossDomainMessage(_nonce, _sender, _target, _value, _minGasLimit, _message);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { Storage } from "src/libraries/Storage.sol";
/// @custom:audit none This contracts is not yet audited.
/// @title SuperchainConfig
/// @notice The SuperchainConfig contract is used to manage configuration of global superchain values.
contract SuperchainConfig is Initializable, ISemver {
/// @notice Enum representing different types of updates.
/// @custom:value GUARDIAN Represents an update to the guardian.
enum UpdateType {
GUARDIAN
}
/// @notice Whether or not the Superchain is paused.
bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1);
/// @notice The address of the guardian, which can pause withdrawals from the System.
/// It can only be modified by an upgrade.
bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1);
/// @notice Emitted when the pause is triggered.
/// @param identifier A string helping to identify provenance of the pause transaction.
event Paused(string identifier);
/// @notice Emitted when the pause is lifted.
event Unpaused();
/// @notice Emitted when configuration is updated.
/// @param updateType Type of update.
/// @param data Encoded update data.
event ConfigUpdate(UpdateType indexed updateType, bytes data);
/// @notice Semantic version.
/// @custom:semver 1.1.0
string public constant version = "1.1.0";
/// @notice Constructs the SuperchainConfig contract.
constructor() {
initialize({ _guardian: address(0), _paused: false });
}
/// @notice Initializer.
/// @param _guardian Address of the guardian, can pause the OptimismPortal.
/// @param _paused Initial paused status.
function initialize(address _guardian, bool _paused) public initializer {
_setGuardian(_guardian);
if (_paused) {
_pause("Initializer paused");
}
}
/// @notice Getter for the guardian address.
function guardian() public view returns (address guardian_) {
guardian_ = Storage.getAddress(GUARDIAN_SLOT);
}
/// @notice Getter for the current paused status.
function paused() public view returns (bool paused_) {
paused_ = Storage.getBool(PAUSED_SLOT);
}
/// @notice Pauses withdrawals.
/// @param _identifier (Optional) A string to identify provenance of the pause transaction.
function pause(string memory _identifier) external {
require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause");
_pause(_identifier);
}
/// @notice Pauses withdrawals.
/// @param _identifier (Optional) A string to identify provenance of the pause transaction.
function _pause(string memory _identifier) internal {
Storage.setBool(PAUSED_SLOT, true);
emit Paused(_identifier);
}
/// @notice Unpauses withdrawals.
function unpause() external {
require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause");
Storage.setBool(PAUSED_SLOT, false);
emit Unpaused();
}
/// @notice Sets the guardian address. This is only callable during initialization, so an upgrade
/// will be required to change the guardian.
/// @param _guardian The new guardian address.
function _setGuardian(address _guardian) internal {
Storage.setAddress(GUARDIAN_SLOT, _guardian);
emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian));
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { SafeCall } from "src/libraries/SafeCall.sol";
import { DecimalConversion } from "src/libraries/DecimalConversion.sol";
import { L2OutputOracle } from "src/L1/L2OutputOracle.sol";
import { SystemConfig } from "src/L1/SystemConfig.sol";
import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
import { Constants } from "src/libraries/Constants.sol";
import { Types } from "src/libraries/Types.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
import { ResourceMetering } from "src/L1/ResourceMetering.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { Predeploys } from "src/libraries/Predeploys.sol";
import "src/libraries/PortalErrors.sol";
/// @custom:proxied
/// @title OptimismPortal
/// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
/// and L2. Messages sent directly to the OptimismPortal have no form of replayability.
/// Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
contract OptimismPortal is Initializable, ResourceMetering, ISemver {
/// @notice Allows for interactions with non standard ERC20 tokens.
using SafeERC20 for IERC20;
using DecimalConversion for uint256;
/// @notice Represents a proven withdrawal.
/// @custom:field outputRoot Root of the L2 output this was proven against.
/// @custom:field timestamp Timestamp at whcih the withdrawal was proven.
/// @custom:field l2OutputIndex Index of the output this was proven against.
struct ProvenWithdrawal {
bytes32 outputRoot;
uint128 timestamp;
uint128 l2OutputIndex;
}
/// @notice Version of the deposit event.
uint256 internal constant DEPOSIT_VERSION = 0;
/// @notice Minimal deposit value
uint256 public constant MIN_BRIDGE_VALUE = 1_000_000 gwei;
/// @notice The L2 gas limit set when eth is deposited using the receive() function.
uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
/// @notice The L2 gas limit for system deposit transactions that are initiated from L1.
uint32 internal constant SYSTEM_DEPOSIT_GAS_LIMIT = 200_000;
/// @notice Address of the L2 account which initiated a withdrawal in this transaction.
/// If the of this variable is the default L2 sender address, then we are NOT inside of
/// a call to finalizeWithdrawalTransaction.
bytes32 public l2Sender;
/// @notice A list of withdrawal hashes which have been successfully finalized.
mapping(bytes32 => bool) public finalizedWithdrawals;
/// @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data.
mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;
/// @custom:legacy
/// @custom:spacer paused
/// @notice Spacer for backwards compatibility.
bool private spacer_53_0_1;
/// @notice Contract of the Superchain Config.
SuperchainConfig public superchainConfig;
/// @notice Contract of the L2OutputOracle.
/// @custom:network-specific
L2OutputOracle public l2Oracle;
/// @notice Contract of the SystemConfig.
/// @custom:network-specific
SystemConfig public systemConfig;
/// @custom:spacer disputeGameFactory
/// @notice Spacer for backwards compatibility.
address private spacer_56_0_20;
/// @custom:spacer provenWithdrawals
/// @notice Spacer for backwards compatibility.
bytes32 private spacer_57_0_32;
/// @custom:spacer disputeGameBlacklist
/// @notice Spacer for backwards compatibility.
bytes32 private spacer_58_0_32;
/// @custom:spacer respectedGameType + respectedGameTypeUpdatedAt
/// @notice Spacer for backwards compatibility.
bytes32 private spacer_59_0_32;
/// @custom:spacer proofSubmitters
/// @notice Spacer for backwards compatibility.
bytes32 private spacer_60_0_32;
/// @notice Represents the amount of native asset minted in L2. This may not
/// be 100% accurate due to the ability to send ether to the contract
/// without triggering a deposit transaction. It also is used to prevent
/// overflows for L2 account balances when custom gas tokens are used.
/// It is not safe to trust `ERC20.balanceOf` as it may lie.
uint256 internal _balance;
/// @notice Emitted when a transaction is deposited from L1 to L2.
/// The parameters of this event are read by the rollup node and used to derive deposit
/// transactions on L2.
/// @param from Address that triggered the deposit transaction.
/// @param to Address that the deposit transaction is directed to.
/// @param version Version of this deposit transaction event.
/// @param opaqueData ABI encoded deposit data to be parsed off-chain.
event TransactionDeposited(address indexed from, bytes32 indexed to, uint256 indexed version, bytes opaqueData);
/// @notice Emitted when a withdrawal transaction is proven.
/// @param withdrawalHash Hash of the withdrawal transaction.
/// @param from Address that triggered the withdrawal transaction.
/// @param to Address that the withdrawal transaction is directed to.
event WithdrawalProven(bytes32 indexed withdrawalHash, bytes32 indexed from, address indexed to);
/// @notice Emitted when a withdrawal transaction is finalized.
/// @param withdrawalHash Hash of the withdrawal transaction.
/// @param success Whether the withdrawal transaction was successful.
event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
/// @notice Reverts when paused.
modifier whenNotPaused() {
if (paused()) revert CallPaused();
_;
}
/// @notice Semantic version.
/// @custom:semver 2.8.1-beta.1
function version() public pure virtual returns (string memory) {
return "2.8.1-beta.1";
}
/// @notice Constructs the OptimismPortal contract.
constructor() {
initialize({
_l2Oracle: L2OutputOracle(address(0)),
_systemConfig: SystemConfig(address(0)),
_superchainConfig: SuperchainConfig(address(0))
});
}
/// @notice Initializer.
/// @param _l2Oracle Contract of the L2OutputOracle.
/// @param _systemConfig Contract of the SystemConfig.
/// @param _superchainConfig Contract of the SuperchainConfig.
function initialize(
L2OutputOracle _l2Oracle,
SystemConfig _systemConfig,
SuperchainConfig _superchainConfig
)
public
initializer
{
l2Oracle = _l2Oracle;
systemConfig = _systemConfig;
superchainConfig = _superchainConfig;
if (l2Sender == bytes32(0)) {
l2Sender = Constants.DEFAULT_L2_SENDER;
}
__ResourceMetering_init();
}
/// @notice Getter for the balance of the contract.
function balance() public view returns (uint256) {
(address token,) = gasPayingToken();
if (token == Constants.ETHER) {
return address(this).balance;
} else {
return _balance;
}
}
/// @notice Getter function for the address of the guardian.
/// Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead.
/// @return Address of the guardian.
/// @custom:legacy
function guardian() public view returns (address) {
return superchainConfig.guardian();
}
/// @notice Getter for the current paused status.
/// @return paused_ Whether or not the contract is paused.
function paused() public view returns (bool paused_) {
paused_ = superchainConfig.paused();
}
/// @notice Computes the minimum gas limit for a deposit.
/// The minimum gas limit linearly increases based on the size of the calldata.
/// This is to prevent users from creating L2 resource usage without paying for it.
/// This function can be used when interacting with the portal to ensure forwards
/// compatibility.
/// @param _byteCount Number of bytes in the calldata.
/// @return The minimum gas limit for a deposit.
function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
return _byteCount * 16 + 21000;
}
/// @notice Accepts value so that users can send ETH directly to this contract and have the
/// funds be deposited to their address on L2. This is intended as a convenience
/// function for EOAs. Contracts should call the depositTransaction() function directly
/// otherwise any deposited funds will be lost due to address aliasing.
receive() external payable {
//Can't accept deposit without a specified svm address
revert NotAllow();
//depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
}
/// @notice Accepts ETH value without triggering a deposit to L2.
/// This function mainly exists for the sake of the migration between the legacy
/// Optimism system and Bedrock.
function donateETH() external payable {
// Intentionally empty.
}
/// @notice Returns the gas paying token and its decimals.
function gasPayingToken() internal view returns (address addr_, uint8 decimals_) {
(addr_, decimals_) = systemConfig.gasPayingToken();
}
/// @notice Getter for the resource config.
/// Used internally by the ResourceMetering contract.
/// The SystemConfig is the source of truth for the resource config.
/// @return ResourceMetering ResourceConfig
function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) {
return systemConfig.resourceConfig();
}
/// @notice Proves a withdrawal transaction.
/// @param _tx Withdrawal transaction to finalize.
/// @param _l2OutputIndex L2 output index to prove against.
/// @param _pdaPubkey L2 withdraw pda pubkey
/// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
/// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
function proveWithdrawalTransaction(
Types.WithdrawalTransaction memory _tx,
uint256 _l2OutputIndex,
bytes32 _pdaPubkey,
Types.OutputRootProof calldata _outputRootProof,
bytes[] calldata _withdrawalProof
)
external
whenNotPaused
{
// Prevent users from creating a deposit transaction where this address is the message
// sender on L2. Because this is checked here, we do not need to check again in
// `finalizeWithdrawalTransaction`.
if (_tx.target == address(this)) revert BadTarget();
// Get the output root and load onto the stack to prevent multiple mloads. This will
// revert if there is no output root for the given block number.
bytes32 outputRoot = l2Oracle.getL2Output(_l2OutputIndex).outputRoot;
// Verify that the output root can be generated with the elements in the proof.
require(
outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof"
);
// Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
// We generally want to prevent users from proving the same withdrawal multiple times
// because each successive proof will update the timestamp. A malicious user can take
// advantage of this to prevent other users from finalizing their withdrawal. However,
// since withdrawals are proven before an output root is finalized, we need to allow users
// to re-prove their withdrawal only in the case that the output root for their specified
// output index has been updated.
require(
provenWithdrawal.timestamp == 0
|| l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot,
"OptimismPortal: withdrawal hash has already been proven"
);
bytes memory withdrawalBytes =
abi.encodePacked(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data);
// Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
// on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
// bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
// be relayed on L1.
require(
SecureMerkleTrie.verifyInclusionProof({
_key: abi.encode(_pdaPubkey),
_value: abi.encode(keccak256(withdrawalBytes)),
_proof: _withdrawalProof,
_root: _outputRootProof.messagePasserStorageRoot
}),
"OptimismPortal: invalid withdrawal inclusion proof"
);
// Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and
// `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be
// proven once unless it is submitted again with a different outputRoot.
provenWithdrawals[withdrawalHash] = ProvenWithdrawal({
outputRoot: outputRoot,
timestamp: uint128(block.timestamp),
l2OutputIndex: uint128(_l2OutputIndex)
});
// Emit a `WithdrawalProven` event.
emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target);
}
/// @notice Finalizes a withdrawal transaction.
/// @param _tx Withdrawal transaction to finalize.
function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused {
// Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
// than the default value when a withdrawal transaction is being finalized. This check is
// a defacto reentrancy guard.
if (l2Sender != Constants.DEFAULT_L2_SENDER) revert NonReentrant();
// Grab the proven withdrawal from the `provenWithdrawals` map.
bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
// A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
// been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
// a timestamp of zero.
require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet");
// As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
// starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
// safety against weird bugs in the proving step.
require(
provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(),
"OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
);
// A proven withdrawal must wait at least the finalization period before it can be
// finalized. This waiting period can elapse in parallel with the waiting period for the
// output the withdrawal was proven against. In effect, this means that the minimum
// withdrawal time is proposal submission time + finalization period.
require(
_isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
"OptimismPortal: proven withdrawal finalization period has not elapsed"
);
// Grab the OutputProposal from the L2OutputOracle, will revert if the output that
// corresponds to the given index has not been proposed yet.
Types.OutputProposal memory proposal = l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex);
// Check that the output root that was used to prove the withdrawal is the same as the
// current output root for the given output index. An output root may change if it is
// deleted by the challenger address and then re-proposed.
require(
proposal.outputRoot == provenWithdrawal.outputRoot,
"OptimismPortal: output root proven is not the same as current output root"
);
// Check that the output proposal has also been finalized.
require(
_isFinalizationPeriodElapsed(proposal.timestamp),
"OptimismPortal: output proposal finalization period has not elapsed"
);
// Check that this withdrawal has not already been finalized, this is replay protection.
require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized");
// Mark the withdrawal as finalized so it can't be replayed.
finalizedWithdrawals[withdrawalHash] = true;
// Set the l2Sender so contracts know who triggered this withdrawal on L2.
// This acts as a reentrancy guard.
l2Sender = _tx.sender;
bool success;
(address token,) = gasPayingToken();
if (token == Constants.ETHER) {
// Trigger the call to the target contract. We use a custom low level method
// SafeCall.callWithMinGas to ensure two key properties
// 1. Target contracts cannot force this call to run out of gas by returning a very large
// amount of data (and this is OK because we don't care about the returndata here).
// 2. The amount of gas provided to the execution context of the target is at least the
// gas limit specified by the user. If there is not enough gas in the current context
// to accomplish this, `callWithMinGas` will revert.
success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value.ETHToLD(), _tx.data);
} else {
// Cannot call the token contract directly from the portal. This would allow an attacker
// to call approve from a withdrawal and drain the balance of the portal.
if (_tx.target == token) revert BadTarget();
// Only transfer value when a non zero value is specified. This saves gas in the case of
// using the standard bridge or arbitrary message passing.
if (_tx.value != 0) {
// Update the contracts internal accounting of the amount of native asset in L2.
_balance -= _tx.value;
// Read the balance of the target contract before the transfer so the consistency
// of the transfer can be checked afterwards.
uint256 startBalance = IERC20(token).balanceOf(address(this));
// Transfer the ERC20 balance to the target, accounting for non standard ERC20
// implementations that may not return a boolean. This reverts if the low level
// call is not successful.
IERC20(token).safeTransfer({ to: _tx.target, value: _tx.value });
// The balance must be transferred exactly.
if (IERC20(token).balanceOf(address(this)) != startBalance - _tx.value) {
revert TransferFailed();
}
}
// Make a call to the target contract only if there is calldata.
if (_tx.data.length != 0) {
success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, 0, _tx.data);
} else {
success = true;
}
}
// Reset the l2Sender back to the default value.
l2Sender = Constants.DEFAULT_L2_SENDER;
// All withdrawals are immediately finalized. Replayability can
// be achieved through contracts built on top of this contract
emit WithdrawalFinalized(withdrawalHash, success);
// Reverting here is useful for determining the exact gas cost to successfully execute the
// sub call to the target contract if the minimum gas limit specified by the user would not
// be sufficient to execute the sub call.
if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
revert GasEstimation();
}
}
/// @notice Entrypoint to depositing an ERC20 token as a custom gas token.
/// This function depends on a well formed ERC20 token. There are only
/// so many checks that can be done on chain for this so it is assumed
/// that chain operators will deploy chains with well formed ERC20 tokens.
function depositERC20Transaction(bytes32, uint256, uint256, uint64, bool, bytes memory) public pure {
revert NotAllow();
}
/// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
/// deriving deposit transactions. Note that if a deposit is made by a contract, its
/// address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
/// using the CrossDomainMessenger contracts for a simpler developer experience.
/// @param _to Target address on L2.
/// @param _value ETH value to send to the recipient.
/// @param _gasLimit Amount of L2 gas to purchase by burning gas on L1.
/// @param _isCreation Whether or not the transaction is a contract creation.
/// @param _data Data to trigger the recipient with.
function depositTransaction(
bytes32 _to,
uint256 _value,
uint64 _gasLimit,
bool _isCreation,
bytes memory _data
)
public
payable
{
(address token,) = gasPayingToken();
if (token != Constants.ETHER && msg.value != 0) revert NoValue();
_depositTransaction({
_to: _to,
_mint: msg.value,
_value: _value,
_gasLimit: _gasLimit,
_isCreation: _isCreation,
_data: _data
});
}
/// @notice Common logic for creating deposit transactions.
/// @param _to Target address on L2.
/// @param _mint Units of asset to deposit into L2.
/// @param _value Units of asset to send on L2 to the recipient.
/// @param _gasLimit Amount of L2 gas to purchase by burning gas on L1.
/// @param _isCreation Whether or not the transaction is a contract creation.
/// @param _data Data to trigger the recipient with.
function _depositTransaction(
bytes32 _to,
uint256 _mint,
uint256 _value,
uint64 _gasLimit,
bool _isCreation,
bytes memory _data
)
internal
{
// prevent bridge value is lower than account rent. current l2 account rent is 0.00089088.
if ((_mint != 0 && _mint < MIN_BRIDGE_VALUE) || (_value != 0 && _value < MIN_BRIDGE_VALUE)) {
revert ValueTooLow();
}
// Prevents the loss of dust when moving gas token from L1 to L2
if (_value % DecimalConversion.ETH_CONVERSION_RATE != 0 || msg.value % DecimalConversion.ETH_CONVERSION_RATE != 0) {
revert ValueHaveDust();
}
// currently deploy contract on L2 by L1 deposit transaction is not allow
if (_isCreation) revert NotAllow();
// Prevents funds lock
if (_to == bytes32(0)) revert BadTarget();
// Prevent depositing transactions that have too small of a gas limit. Users should pay
// more for more resource usage.
if (_gasLimit < minimumGasLimit(uint64(_data.length))) revert SmallGasLimit();
// Prevent the creation of deposit transactions that have too much calldata. This gives an
// upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
// that the transaction can fit into the p2p network policy of 128kb even though deposit
// transactions are not gossipped over the p2p network.
if (_data.length > 120_000) revert LargeCalldata();
// Transform the from-address to its alias if the caller is a contract.
address from = msg.sender;
if (msg.sender != tx.origin) {
from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
}
// Compute the opaque data that will be emitted as part of the TransactionDeposited event.
// We use opaque data so that we can update the TransactionDeposited event in the future
// without breaking the current interface.
bytes memory opaqueData = abi.encodePacked(_mint.ETHToRD(), _value.ETHToRD(), _gasLimit, _isCreation, _data);
// Emit a TransactionDeposited event so that the rollup node can derive a deposit
// transaction for this deposit.
emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
}
/// @notice Determine if a given output is finalized.
/// Reverts if the call to l2Oracle.getL2Output reverts.
/// Returns a boolean otherwise.
/// @param _l2OutputIndex Index of the L2 output to check.
/// @return Whether or not the output is finalized.
function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
return _isFinalizationPeriodElapsed(l2Oracle.getL2Output(_l2OutputIndex).timestamp);
}
/// @notice Determines whether the finalization period has elapsed with respect to
/// the provided block timestamp.
/// @param _timestamp Timestamp to check.
/// @return Whether or not the finalization period has elapsed.
function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) {
return block.timestamp > _timestamp + l2Oracle.FINALIZATION_PERIOD_SECONDS();
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { ResourceMetering } from "src/L1/ResourceMetering.sol";
import { Storage } from "src/libraries/Storage.sol";
import { Constants } from "src/libraries/Constants.sol";
import { OptimismPortal } from "src/L1/OptimismPortal.sol";
import { GasPayingToken, IGasToken } from "src/libraries/GasPayingToken.sol";
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
/// @title SystemConfig
/// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
/// All configuration is stored on L1 and picked up by L2 as part of the derviation of
/// the L2 chain.
contract SystemConfig is OwnableUpgradeable, ISemver, IGasToken {
/// @notice Enum representing different types of updates.
/// @custom:value BATCHER Represents an update to the batcher hash.
/// @custom:value GAS_CONFIG Represents an update to txn fee config on L2.
/// @custom:value GAS_LIMIT Represents an update to gas limit on L2.
/// @custom:value UNSAFE_BLOCK_SIGNER Represents an update to the signer key for unsafe
/// block distrubution.
/// @custom:value SHRED_VERSION Represents an update to shred version on L2.
enum UpdateType {
BATCHER,
GAS_CONFIG,
GAS_LIMIT,
UNSAFE_BLOCK_SIGNER
}
/// @notice Struct representing the addresses of L1 system contracts. These should be the
/// contracts that users interact with (not implementations for proxied contracts)
/// and are network specific.
struct Addresses {
address l1CrossDomainMessenger;
address l1ERC721Bridge;
address l1StandardBridge;
address disputeGameFactory;
address optimismPortal;
address optimismMintableERC20Factory;
address gasPayingToken;
}
/// @notice Version identifier, used for upgrades.
uint256 public constant VERSION = 0;
/// @notice Storage slot that the unsafe block signer is stored at.
/// Storing it at this deterministic storage slot allows for decoupling the storage
/// layout from the way that `solc` lays out storage. The `op-node` uses a storage
/// proof to fetch this value.
/// @dev NOTE: this value will be migrated to another storage slot in a future version.
/// User input should not be placed in storage in this contract until this migration
/// happens. It is unlikely that keccak second preimage resistance will be broken,
/// but it is better to be safe than sorry.
bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
/// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);
/// @notice Storage slot that the L1ERC721Bridge address is stored at.
bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);
/// @notice Storage slot that the L1StandardBridge address is stored at.
bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);
/// @notice Storage slot that the OptimismPortal address is stored at.
bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);
/// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);
/// @notice Storage slot that the batch inbox address is stored at.
bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);
/// @notice Storage slot for block at which the op-node can start searching for logs from.
bytes32 public constant START_BLOCK_SLOT = bytes32(uint256(keccak256("systemconfig.startBlock")) - 1);
/// @notice Storage slot for the DisputeGameFactory address.
bytes32 public constant DISPUTE_GAME_FACTORY_SLOT =
bytes32(uint256(keccak256("systemconfig.disputegamefactory")) - 1);
/// @notice The number of decimals that the gas paying token has.
uint8 internal constant GAS_PAYING_TOKEN_DECIMALS = 18;
/// @notice The maximum gas limit that can be set for L2 blocks. This limit is used to enforce that the blocks
/// on L2 are not too large to process and prove. Over time, this value can be increased as various
/// optimizations and improvements are made to the system at large.
uint64 internal constant MAX_GAS_LIMIT = 200_000_000;
/// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
/// Deprecated since the Ecotone network upgrade
uint256 public overhead;
/// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
/// The most significant byte is used to determine the version since the
/// Ecotone network upgrade.
uint256 public scalar;
/// @notice Identifier for the batcher.
/// For version 1 of this configuration, this is represented as an address left-padded
/// with zeros to 32 bytes.
bytes32 public batcherHash;
/// @notice L2 block gas limit.
uint64 public gasLimit;
/// @notice Basefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade.
uint32 public basefeeScalar;
/// @notice Blobbasefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade.
uint32 public blobbasefeeScalar;
/// @notice The configuration for the deposit fee market.
/// Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
/// Set as internal with a getter so that the struct is returned instead of a tuple.
ResourceMetering.ResourceConfig internal _resourceConfig;
/// @notice Emitted when configuration is updated.
/// @param version SystemConfig version.
/// @param updateType Type of update.
/// @param data Encoded update data.
event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
/// @notice Semantic version.
/// @custom:semver 2.3.0-beta.2
function version() public pure virtual returns (string memory) {
return "2.3.0-beta.2";
}
/// @notice Constructs the SystemConfig contract. Cannot set
/// the owner to `address(0)` due to the Ownable contract's
/// implementation, so set it to `address(0xdEaD)`
/// @dev START_BLOCK_SLOT is set to type(uint256).max here so that it will be a dead value
/// in the singleton and is skipped by initialize when setting the start block.
constructor() {
Storage.setUint(START_BLOCK_SLOT, type(uint256).max);
initialize({
_owner: address(0xdEaD),
_basefeeScalar: 0,
_blobbasefeeScalar: 0,
_batcherHash: bytes32(0),
_gasLimit: 1,
_unsafeBlockSigner: bytes32(0),
_config: ResourceMetering.ResourceConfig({
maxResourceLimit: 1,
elasticityMultiplier: 1,
baseFeeMaxChangeDenominator: 2,
minimumBaseFee: 0,
systemTxMaxGas: 0,
maximumBaseFee: 0
}),
_batchInbox: address(0),
_addresses: SystemConfig.Addresses({
l1CrossDomainMessenger: address(0),
l1ERC721Bridge: address(0),
l1StandardBridge: address(0),
disputeGameFactory: address(0),
optimismPortal: address(0),
optimismMintableERC20Factory: address(0),
gasPayingToken: address(0)
})
});
}
/// @notice Initializer.
/// The resource config must be set before the require check.
/// @param _owner Initial owner of the contract.
/// @param _basefeeScalar Initial basefee scalar value.
/// @param _blobbasefeeScalar Initial blobbasefee scalar value.
/// @param _batcherHash Initial batcher hash.
/// @param _gasLimit Initial gas limit.
/// @param _unsafeBlockSigner Initial unsafe block signer address.
/// @param _config Initial ResourceConfig.
/// @param _batchInbox Batch inbox address. An identifier for the op-node to find
/// canonical data.
/// @param _addresses Set of L1 contract addresses. These should be the proxies.
function initialize(
address _owner,
uint32 _basefeeScalar,
uint32 _blobbasefeeScalar,
bytes32 _batcherHash,
uint64 _gasLimit,
bytes32 _unsafeBlockSigner,
ResourceMetering.ResourceConfig memory _config,
address _batchInbox,
SystemConfig.Addresses memory _addresses
)
public
initializer
{
__Ownable_init();
transferOwnership(_owner);
// These are set in ascending order of their UpdateTypes.
_setBatcherHash(_batcherHash);
_setGasConfigEcotone({ _basefeeScalar: _basefeeScalar, _blobbasefeeScalar: _blobbasefeeScalar });
_setGasLimit(_gasLimit);
Storage.setBytes32(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
Storage.setAddress(DISPUTE_GAME_FACTORY_SLOT, _addresses.disputeGameFactory);
Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);
_setStartBlock();
_setGasPayingToken(_addresses.gasPayingToken);
_setResourceConfig(_config);
require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
}
/// @notice Returns the minimum L2 gas limit that can be safely set for the system to
/// operate. The L2 gas limit must be larger than or equal to the amount of
/// gas that is allocated for deposits per block plus the amount of gas that
/// is allocated for the system transaction.
/// This function is used to determine if changes to parameters are safe.
/// @return uint64 Minimum gas limit.
function minimumGasLimit() public view returns (uint64) {
return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
}
/// @notice Returns the maximum L2 gas limit that can be safely set for the system to
/// operate. This bound is used to prevent the gas limit from being set too high
/// and causing the system to be unable to process and/or prove L2 blocks.
/// @return uint64 Maximum gas limit.
function maximumGasLimit() public pure returns (uint64) {
return MAX_GAS_LIMIT;
}
/// @notice High level getter for the unsafe block signer address.
/// Unsafe blocks can be propagated across the p2p network if they are signed by the
/// key corresponding to this address.
/// @return addr_ Address of the unsafe block signer.
function unsafeBlockSigner() public view returns (bytes32 addr_) {
addr_ = Storage.getBytes32(UNSAFE_BLOCK_SIGNER_SLOT);
}
/// @notice Getter for the L1CrossDomainMessenger address.
function l1CrossDomainMessenger() external view returns (address addr_) {
addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
}
/// @notice Getter for the L1ERC721Bridge address.
function l1ERC721Bridge() external view returns (address addr_) {
addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
}
/// @notice Getter for the L1StandardBridge address.
function l1StandardBridge() external view returns (address addr_) {
addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
}
/// @notice Getter for the DisputeGameFactory address.
function disputeGameFactory() external view returns (address addr_) {
addr_ = Storage.getAddress(DISPUTE_GAME_FACTORY_SLOT);
}
/// @notice Getter for the OptimismPortal address.
function optimismPortal() public view returns (address addr_) {
addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
}
/// @notice Getter for the OptimismMintableERC20Factory address.
function optimismMintableERC20Factory() external view returns (address addr_) {
addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
}
/// @notice Getter for the BatchInbox address.
function batchInbox() external view returns (address addr_) {
addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
}
/// @notice Getter for the StartBlock number.
function startBlock() external view returns (uint256 startBlock_) {
startBlock_ = Storage.getUint(START_BLOCK_SLOT);
}
/// @notice Getter for the gas paying asset address.
function gasPayingToken() public pure returns (address addr_, uint8 decimals_) {
(addr_, decimals_) = GasPayingToken.getToken();
}
/// @notice Getter for custom gas token paying networks. Returns true if the
/// network uses a custom gas token.
function isCustomGasToken() public pure returns (bool) {
(address token,) = gasPayingToken();
return token != Constants.ETHER;
}
/// @notice Getter for the gas paying token name.
function gasPayingTokenName() external pure returns (string memory name_) {
name_ = GasPayingToken.getName();
}
/// @notice Getter for the gas paying token symbol.
function gasPayingTokenSymbol() external pure returns (string memory symbol_) {
symbol_ = GasPayingToken.getSymbol();
}
/// @notice Internal setter for the gas paying token address, includes validation.
/// The token must not already be set and must be non zero and not the ether address
/// to set the token address. This prevents the token address from being changed
/// and makes it explicitly opt-in to use custom gas token.
/// @param _token Address of the gas paying token.
function _setGasPayingToken(address _token) internal pure virtual {
require(_token == address(0) || _token == Constants.ETHER, "not allow");
}
/// @notice Updates the unsafe block signer address. Can only be called by the owner.
/// @param _unsafeBlockSigner New unsafe block signer address.
function setUnsafeBlockSigner(bytes32 _unsafeBlockSigner) external onlyOwner {
_setUnsafeBlockSigner(_unsafeBlockSigner);
}
/// @notice Updates the unsafe block signer address.
/// @param _unsafeBlockSigner New unsafe block signer address.
function _setUnsafeBlockSigner(bytes32 _unsafeBlockSigner) internal {
Storage.setBytes32(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
bytes memory data = abi.encode(_unsafeBlockSigner);
emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
}
/// @notice Updates the batcher hash. Can only be called by the owner.
/// @param _batcherHash New batcher hash.
function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
_setBatcherHash(_batcherHash);
}
/// @notice Internal function for updating the batcher hash.
/// @param _batcherHash New batcher hash.
function _setBatcherHash(bytes32 _batcherHash) internal {
batcherHash = _batcherHash;
bytes memory data = abi.encode(_batcherHash);
emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
}
/// @notice Updates gas config. Can only be called by the owner.
/// Deprecated in favor of setGasConfigEcotone since the Ecotone upgrade.
/// @param _overhead New overhead value.
/// @param _scalar New scalar value.
function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
_setGasConfig(_overhead, _scalar);
}
/// @notice Internal function for updating the gas config.
/// @param _overhead New overhead value.
/// @param _scalar New scalar value.
function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
require((uint256(0xff) << 248) & _scalar == 0, "SystemConfig: scalar exceeds max.");
overhead = _overhead;
scalar = _scalar;
bytes memory data = abi.encode(_overhead, _scalar);
emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
}
/// @notice Updates gas config as of the Ecotone upgrade. Can only be called by the owner.
/// @param _basefeeScalar New basefeeScalar value.
/// @param _blobbasefeeScalar New blobbasefeeScalar value.
function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external onlyOwner {
_setGasConfigEcotone(_basefeeScalar, _blobbasefeeScalar);
}
/// @notice Internal function for updating the fee scalars as of the Ecotone upgrade.
/// @param _basefeeScalar New basefeeScalar value.
/// @param _blobbasefeeScalar New blobbasefeeScalar value.
function _setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) internal {
basefeeScalar = _basefeeScalar;
blobbasefeeScalar = _blobbasefeeScalar;
scalar = (uint256(0x01) << 248) | (uint256(_blobbasefeeScalar) << 32) | _basefeeScalar;
bytes memory data = abi.encode(overhead, scalar);
emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
}
/// @notice Updates the L2 gas limit. Can only be called by the owner.
/// @param _gasLimit New gas limit.
function setGasLimit(uint64 _gasLimit) external onlyOwner {
_setGasLimit(_gasLimit);
}
/// @notice Internal function for updating the L2 gas limit.
/// @param _gasLimit New gas limit.
function _setGasLimit(uint64 _gasLimit) internal {
require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
require(_gasLimit <= maximumGasLimit(), "SystemConfig: gas limit too high");
gasLimit = _gasLimit;
bytes memory data = abi.encode(_gasLimit);
emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
}
/// @notice Sets the start block in a backwards compatible way. Proxies
/// that were initialized before the startBlock existed in storage
/// can have their start block set by a user provided override.
/// A start block of 0 indicates that there is no override and the
/// start block will be set by `block.number`.
/// @dev This logic is used to patch legacy deployments with new storage values.
/// Use the override if it is provided as a non zero value and the value
/// has not already been set in storage. Use `block.number` if the value
/// has already been set in storage
function _setStartBlock() internal {
if (Storage.getUint(START_BLOCK_SLOT) == 0) {
Storage.setUint(START_BLOCK_SLOT, block.number);
}
}
/// @notice A getter for the resource config.
/// Ensures that the struct is returned instead of a tuple.
/// @return ResourceConfig
function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
return _resourceConfig;
}
/// @notice An internal setter for the resource config.
/// Ensures that the config is sane before storing it by checking for invariants.
/// In the future, this method may emit an event that the `op-node` picks up
/// for when the resource config is changed.
/// @param _config The new resource config.
function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
// Min base fee must be less than or equal to max base fee.
require(
_config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
);
// Base fee change denominator must be greater than 1.
require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
// Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
// The gas limit must be increased before these values can be increased.
require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
// Elasticity multiplier must be greater than 0.
require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
// No precision loss when computing target resource limit.
require(
((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
== _config.maxResourceLimit,
"SystemConfig: precision loss with target resource limit"
);
_resourceConfig = _config;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Library used to query support of an interface declared via {IERC165}.
*
* Note that these functions return the actual result of the query: they do not
* `revert` if an interface is not supported. It is up to the caller to decide
* what to do in these cases.
*/
library ERC165Checker {
// As per the EIP-165 spec, no interface should ever match 0xffffffff
bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
/**
* @dev Returns true if `account` supports the {IERC165} interface,
*/
function supportsERC165(address account) internal view returns (bool) {
// Any contract that implements ERC165 must explicitly indicate support of
// InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
return
_supportsERC165Interface(account, type(IERC165).interfaceId) &&
!_supportsERC165Interface(account, _INTERFACE_ID_INVALID);
}
/**
* @dev Returns true if `account` supports the interface defined by
* `interfaceId`. Support for {IERC165} itself is queried automatically.
*
* See {IERC165-supportsInterface}.
*/
function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
// query support of both ERC165 as per the spec and support of _interfaceId
return supportsERC165(account) && _supportsERC165Interface(account, interfaceId);
}
/**
* @dev Returns a boolean array where each value corresponds to the
* interfaces passed in and whether they're supported or not. This allows
* you to batch check interfaces for a contract where your expectation
* is that some interfaces may not be supported.
*
* See {IERC165-supportsInterface}.
*
* _Available since v3.4._
*/
function getSupportedInterfaces(address account, bytes4[] memory interfaceIds)
internal
view
returns (bool[] memory)
{
// an array of booleans corresponding to interfaceIds and whether they're supported or not
bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
// query support of ERC165 itself
if (supportsERC165(account)) {
// query support of each interface in interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]);
}
}
return interfaceIdsSupported;
}
/**
* @dev Returns true if `account` supports all the interfaces defined in
* `interfaceIds`. Support for {IERC165} itself is queried automatically.
*
* Batch-querying can lead to gas savings by skipping repeated checks for
* {IERC165} support.
*
* See {IERC165-supportsInterface}.
*/
function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
// query support of ERC165 itself
if (!supportsERC165(account)) {
return false;
}
// query support of each interface in _interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
if (!_supportsERC165Interface(account, interfaceIds[i])) {
return false;
}
}
// all interfaces supported
return true;
}
/**
* @notice Query if a contract implements an interface, does not check ERC165 support
* @param account The address of the contract to query for support of an interface
* @param interfaceId The interface identifier, as specified in ERC-165
* @return true if the contract at account indicates support of the interface with
* identifier interfaceId, false otherwise
* @dev Assumes that account contains a contract that supports ERC165, otherwise
* the behavior of this method is undefined. This precondition can be checked
* with {supportsERC165}.
* Interface identification is specified in ERC-165.
*/
function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) {
// prepare call
bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
// perform static call
bool success;
uint256 returnSize;
uint256 returnValue;
assembly {
success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
returnSize := returndatasize()
returnValue := mload(0x00)
}
return success && returnSize >= 0x20 && returnValue > 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title SafeCall
/// @notice Perform low level safe calls
library SafeCall {
/// @notice Performs a low level call without copying any returndata.
/// @dev Passes no calldata to the call context.
/// @param _target Address to call
/// @param _gas Amount of gas to pass to the call
/// @param _value Amount of value to pass to the call
function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
assembly {
success_ :=
call(
_gas, // gas
_target, // recipient
_value, // ether value
0, // inloc
0, // inlen
0, // outloc
0 // outlen
)
}
}
/// @notice Perform a low level call with all gas without copying any returndata
/// @param _target Address to call
/// @param _value Amount of value to pass to the call
function send(address _target, uint256 _value) internal returns (bool success_) {
success_ = send(_target, gasleft(), _value);
}
/// @notice Perform a low level call without copying any returndata
/// @param _target Address to call
/// @param _gas Amount of gas to pass to the call
/// @param _value Amount of value to pass to the call
/// @param _calldata Calldata to pass to the call
function call(
address _target,
uint256 _gas,
uint256 _value,
bytes memory _calldata
)
internal
returns (bool success_)
{
assembly {
success_ :=
call(
_gas, // gas
_target, // recipient
_value, // ether value
add(_calldata, 32), // inloc
mload(_calldata), // inlen
0, // outloc
0 // outlen
)
}
}
/// @notice Perform a low level call without copying any returndata
/// @param _target Address to call
/// @param _value Amount of value to pass to the call
/// @param _calldata Calldata to pass to the call
function call(address _target, uint256 _value, bytes memory _calldata) internal returns (bool success_) {
success_ = call({ _target: _target, _gas: gasleft(), _value: _value, _calldata: _calldata });
}
/// @notice Helper function to determine if there is sufficient gas remaining within the context
/// to guarantee that the minimum gas requirement for a call will be met as well as
/// optionally reserving a specified amount of gas for after the call has concluded.
/// @param _minGas The minimum amount of gas that may be passed to the target context.
/// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
/// of the target context.
/// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
/// context as well as reserve `_reservedGas` for the caller after the execution of
/// the target context.
/// @dev !!!!! FOOTGUN ALERT !!!!!
/// 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
/// `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
/// `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
/// still possible to self-rekt by initiating a withdrawal with a minimum gas limit
/// that does not account for the `memory_expansion_cost` & `code_execution_cost`
/// factors of the dynamic cost of the `CALL` opcode.
/// 2.) This function should *directly* precede the external call if possible. There is an
/// added buffer to account for gas consumed between this check and the call, but it
/// is only 5,700 gas.
/// 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
/// frame may be passed to a subcontext, we need to ensure that the gas will not be
/// truncated.
/// 4.) Use wisely. This function is not a silver bullet.
function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
bool _hasMinGas;
assembly {
// Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
_hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
}
return _hasMinGas;
}
/// @notice Perform a low level call without copying any returndata. This function
/// will revert if the call cannot be performed with the specified minimum
/// gas.
/// @param _target Address to call
/// @param _minGas The minimum amount of gas that may be passed to the call
/// @param _value Amount of value to pass to the call
/// @param _calldata Calldata to pass to the call
function callWithMinGas(
address _target,
uint256 _minGas,
uint256 _value,
bytes memory _calldata
)
internal
returns (bool)
{
bool _success;
bool _hasMinGas = hasMinGas(_minGas, 0);
assembly {
// Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
if iszero(_hasMinGas) {
// Store the "Error(string)" selector in scratch space.
mstore(0, 0x08c379a0)
// Store the pointer to the string length in scratch space.
mstore(32, 32)
// Store the string.
//
// SAFETY:
// - We pad the beginning of the string with two zero bytes as well as the
// length (24) to ensure that we override the free memory pointer at offset
// 0x40. This is necessary because the free memory pointer is likely to
// be greater than 1 byte when this function is called, but it is incredibly
// unlikely that it will be greater than 3 bytes. As for the data within
// 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
// - It's fine to clobber the free memory pointer, we're reverting.
mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
// Revert with 'Error("SafeCall: Not enough gas")'
revert(28, 100)
}
// The call will be supplied at least ((_minGas * 64) / 63) gas due to the
// above assertion. This ensures that, in all circumstances (except for when the
// `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
// factors of the dynamic cost of the `CALL` opcode), the call will receive at least
// the minimum amount of gas specified.
_success :=
call(
gas(), // gas
_target, // recipient
_value, // ether value
add(_calldata, 32), // inloc
mload(_calldata), // inlen
0x00, // outloc
0x00 // outlen
)
}
return _success;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
/// @title IOptimismMintableERC20
/// @notice This interface is available on the OptimismMintableERC20 contract.
/// We declare it as a separate interface so that it can be used in
/// custom implementations of OptimismMintableERC20.
interface IOptimismMintableERC20 is IERC165 {
function remoteToken() external view returns (bytes32);
function bridge() external returns (address);
function mint(address _to, uint256 _amount) external;
function burn(address _from, uint256 _amount) external;
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import { IOptimismMintableERC20 } from "src/universal/IOptimismMintableERC20.sol";
import { ISemver } from "src/universal/ISemver.sol";
/// @title OptimismMintableERC20
/// @notice OptimismMintableERC20 is a standard extension of the base ERC20 token contract designed
/// to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to
/// use an OptimismMintablERC20 as the L2 representation of an L1 token, or vice-versa.
/// Designed to be backwards compatible with the older StandardL2ERC20 token which was only
/// meant for use on L2.
contract OptimismMintableERC20 is IOptimismMintableERC20, ERC20, ISemver {
/// @notice Address of the corresponding version of this token on the remote chain.
bytes32 public immutable REMOTE_TOKEN;
/// @notice Address of the StandardBridge on this network.
address public immutable BRIDGE;
/// @notice Decimals of the token
uint8 private immutable DECIMALS;
/// @notice Emitted whenever tokens are minted for an account.
/// @param account Address of the account tokens are being minted for.
/// @param amount Amount of tokens minted.
event Mint(address indexed account, uint256 amount);
/// @notice Emitted whenever tokens are burned from an account.
/// @param account Address of the account tokens are being burned from.
/// @param amount Amount of tokens burned.
event Burn(address indexed account, uint256 amount);
/// @notice A modifier that only allows the bridge to call
modifier onlyBridge() {
require(msg.sender == BRIDGE, "OptimismMintableERC20: only bridge can mint and burn");
_;
}
/// @notice Semantic version.
/// @custom:semver 1.3.0
string public constant version = "1.3.0";
/// @param _bridge Address of the L2 standard bridge.
/// @param _remoteToken Address of the corresponding L1 token.
/// @param _name ERC20 name.
/// @param _symbol ERC20 symbol.
constructor(
address _bridge,
bytes32 _remoteToken,
string memory _name,
string memory _symbol,
uint8 _decimals
)
ERC20(_name, _symbol)
{
REMOTE_TOKEN = _remoteToken;
BRIDGE = _bridge;
DECIMALS = _decimals;
}
/// @notice Allows the StandardBridge on this network to mint tokens.
/// @param _to Address to mint tokens to.
/// @param _amount Amount of tokens to mint.
function mint(address _to, uint256 _amount) external virtual override(IOptimismMintableERC20) onlyBridge {
_mint(_to, _amount);
emit Mint(_to, _amount);
}
/// @notice Allows the StandardBridge on this network to burn tokens.
/// @param _from Address to burn tokens from.
/// @param _amount Amount of tokens to burn.
function burn(address _from, uint256 _amount) external virtual override(IOptimismMintableERC20) onlyBridge {
_burn(_from, _amount);
emit Burn(_from, _amount);
}
/// @notice ERC165 interface check function.
/// @param _interfaceId Interface ID to check.
/// @return Whether or not the interface is supported by this contract.
function supportsInterface(bytes4 _interfaceId) external pure virtual returns (bool) {
bytes4 iface1 = type(IERC165).interfaceId;
// Interface corresponding to the updated OptimismMintableERC20 (this contract).
bytes4 iface2 = type(IOptimismMintableERC20).interfaceId;
return _interfaceId == iface1 || _interfaceId == iface2;
}
/// @custom:legacy
/// @notice Legacy getter for the bridge. Use BRIDGE going forward.
function l2Bridge() public view returns (address) {
return BRIDGE;
}
/// @custom:legacy
/// @notice Legacy getter for REMOTE_TOKEN.
function remoteToken() public view returns (bytes32) {
return REMOTE_TOKEN;
}
/// @custom:legacy
/// @notice Legacy getter for BRIDGE.
function bridge() public view returns (address) {
return BRIDGE;
}
/// @dev Returns the number of decimals used to get its user representation.
/// For example, if `decimals` equals `2`, a balance of `505` tokens should
/// be displayed to a user as `5.05` (`505 / 10 ** 2`).
/// NOTE: This information is only used for _display_ purposes: it in
/// no way affects any of the arithmetic of the contract, including
/// {IERC20-balanceOf} and {IERC20-transfer}.
function decimals() public view override returns (uint8) {
return DECIMALS;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/Address.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
* initialization step. This is essential to configure modules that are added through upgrades and that require
* initialization.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized < type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { ResourceMetering } from "src/L1/ResourceMetering.sol";
/// @title Constants
/// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
/// the stuff used in multiple contracts. Constants that only apply to a single contract
/// should be defined in that contract instead.
library Constants {
/// @notice Special address to be used as the tx origin for gas estimation calls in the
/// OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
/// the minimum gas limit specified by the user is not actually enough to execute the
/// given message and you're attempting to estimate the actual necessary gas limit. We
/// use address(1) because it's the ecrecover precompile and therefore guaranteed to
/// never have any code on any EVM chain.
address internal constant ESTIMATION_ADDRESS = address(1);
/// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
/// CrossDomainMessenger contracts before an actual sender is set. This value is
/// non-zero to reduce the gas cost of message passing transactions.
bytes32 internal constant DEFAULT_L2_SENDER = 0x0000000000000000000000000000000000000000000000000000000000000001;
/// @notice The storage slot that holds the address of a proxy implementation.
/// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/// @notice The storage slot that holds the address of the owner.
/// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/// @notice The address that represents ether when dealing with ERC20 token addresses.
address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
/// @notice The address that represents the system caller responsible for L1 attributes
/// transactions.
address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
/// @notice Returns the default values for the ResourceConfig. These are the recommended values
/// for a production network.
function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
maxResourceLimit: 20_000_000,
elasticityMultiplier: 10,
baseFeeMaxChangeDenominator: 8,
minimumBaseFee: 1 gwei,
systemTxMaxGas: 1_000_000,
maximumBaseFee: type(uint128).max
});
return config;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title DecimalConversion
/// @notice DecimalConversion handles conversion between local chain decimal and share decimal
library DecimalConversion {
/// @notice Provides a ETH conversion rate when swapping between denominations of remote decimal and local decimal
uint256 public constant ETH_CONVERSION_RATE = 1_000_000_000;
/// @notice Remove ETH dust from the given local decimal amount.
/// @param amountLD The amount in local decimals.
/// @return amountLD The amount after removing dust.
function removeETHDust(uint256 amountLD) internal pure returns (uint256) {
return (amountLD / ETH_CONVERSION_RATE) * ETH_CONVERSION_RATE;
}
/// @notice Convert an amount of ETH from remote decimals into local decimals.
/// @param amountRD The amount in remote decimals.
/// @return The amount in local decimals.
function ETHToLD(uint256 amountRD) internal pure returns (uint256) {
return amountRD * ETH_CONVERSION_RATE;
}
/// @notice Convert an amount of ETH from local decimals into remote decimals.
/// @param amountLD The amount in local decimals.
/// @return The amount in remote decimals.
function ETHToRD(uint256 amountLD) internal pure returns (uint256) {
return amountLD / ETH_CONVERSION_RATE;
}
/// @notice Remove dust from the giving source decimals into the giving target decimals.
/// @param amount The amount in source decimals.
/// @param fromDecimals Source decimal
/// @param toDecimals Target decimal
/// @return The amount after removing dust.
function removeDust(uint256 amount, uint8 fromDecimals, uint8 toDecimals) internal pure returns (uint256) {
if (fromDecimals <= toDecimals) {
return amount;
}
uint256 conversionRate = 10 ** (fromDecimals - toDecimals);
return (amount / conversionRate) * conversionRate;
}
/// @notice Convert an amount from the giving source decimals into the giving target decimals.
/// @param amount The amount in source decimals.
/// @param fromDecimals Source decimal
/// @param toDecimals Target decimal
/// @return amountTD The amount in target decimals.
function convertDecimals(
uint256 amount,
uint8 fromDecimals,
uint8 toDecimals
)
internal
pure
returns (uint256 amountTD)
{
if (fromDecimals > toDecimals) {
uint256 conversionRate = 10 ** (fromDecimals - toDecimals);
amountTD = amount / conversionRate;
} else {
uint256 conversionRate = 10 ** (toDecimals - fromDecimals);
amountTD = amount * conversionRate;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
* initialization step. This is essential to configure modules that are added through upgrades and that require
* initialization.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized < type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Types } from "src/libraries/Types.sol";
import { Encoding } from "src/libraries/Encoding.sol";
/// @title Hashing
/// @notice Hashing handles Optimism's various different hashing schemes.
library Hashing {
/// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
/// given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
/// system.
/// @param _tx User deposit transaction to hash.
/// @return Hash of the RLP encoded L2 deposit transaction.
function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
return keccak256(Encoding.encodeDepositTransaction(_tx));
}
/// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
/// of the L2 transaction that corresponds to a deposit is unique and is
/// deterministically generated from L1 transaction data.
/// @param _l1BlockHash Hash of the L1 block where the deposit was included.
/// @param _logIndex The index of the log that created the deposit transaction.
/// @return Hash of the deposit transaction's "source hash".
function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
return keccak256(abi.encode(bytes32(0), depositId));
}
/// @notice Hashes the cross domain message based on the version that is encoded into the
/// message nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Hashed cross domain message.
function hashL2ToL1CrossDomainMessage(
uint256 _nonce,
bytes32 _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes32)
{
(, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
if (version == 1) {
return hashL2ToL1CrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
} else {
revert("Hashing: unknown cross domain message version");
}
}
/// @notice Hashes a cross domain message based on the V1 (current) encoding.
/// @param _nonce Message nonce.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Hashed cross domain message.
function hashL2ToL1CrossDomainMessageV1(
uint256 _nonce,
bytes32 _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes32)
{
return keccak256(Encoding.encodeL2ToL1CrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
}
/// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
/// @param _tx Withdrawal transaction to hash.
/// @return Hashed withdrawal transaction.
function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
}
/// @notice Hashes the various elements of an output root proof into an output root hash which
/// can be used to check if the proof is valid.
/// @param _outputRootProof Output root proof which should hash to an output root.
/// @return Hashed output root proof.
function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
return keccak256(
abi.encode(
_outputRootProof.version,
_outputRootProof.stateRoot,
_outputRootProof.messagePasserStorageRoot,
_outputRootProof.latestBlockhash
)
);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Types } from "src/libraries/Types.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
/// @title Encoding
/// @notice Encoding handles Optimism's various different encoding schemes.
library Encoding {
/// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
/// to the L2 system. Useful for searching for a deposit in the L2 system. The
/// transaction is prefixed with 0x7e to identify its EIP-2718 type.
/// @param _tx User deposit transaction to encode.
/// @return RLP encoded L2 deposit transaction.
function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
bytes[] memory raw = new bytes[](8);
raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
raw[1] = RLPWriter.writeAddress(_tx.from);
raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeUint(uint256(_tx.to));
raw[3] = RLPWriter.writeUint(_tx.mint);
raw[4] = RLPWriter.writeUint(_tx.value);
raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
raw[6] = RLPWriter.writeBool(false);
raw[7] = RLPWriter.writeBytes(_tx.data);
return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
}
/// @notice Encodes the cross domain message based on the version that is encoded into the
/// message nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Encoded cross domain message.
function encodeL1ToL2CrossDomainMessage(
uint256 _nonce,
address _sender,
bytes32 _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes memory)
{
(, uint16 version) = decodeVersionedNonce(_nonce);
if (version == 1) {
return encodeL1ToL2CrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
} else {
revert("Encoding: unknown cross domain message version");
}
}
/// @notice Encodes a cross domain message based on the V1 (current) encoding.
/// @param _nonce Message nonce.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Encoded cross domain message.
function encodeL1ToL2CrossDomainMessageV1(
uint256 _nonce,
address _sender,
bytes32 _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes memory)
{
return abi.encodeWithSignature(
"relayMessage(uint256,address,bytes32,uint256,uint256,bytes)",
_nonce,
_sender,
_target,
_value,
_gasLimit,
_data
);
}
/// @notice Encodes the cross domain message based on the version that is encoded into the
/// message nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Encoded cross domain message.
function encodeL2ToL1CrossDomainMessage(
uint256 _nonce,
bytes32 _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes memory)
{
(, uint16 version) = decodeVersionedNonce(_nonce);
if (version == 1) {
return encodeL2ToL1CrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
} else {
revert("Encoding: unknown cross domain message version");
}
}
/// @notice Encodes a cross domain message based on the V1 (current) encoding.
/// @param _nonce Message nonce.
/// @param _sender Address of the sender of the message.
/// @param _target Address of the target of the message.
/// @param _value ETH value to send to the target.
/// @param _gasLimit Gas limit to use for the message.
/// @param _data Data to send with the message.
/// @return Encoded cross domain message.
function encodeL2ToL1CrossDomainMessageV1(
uint256 _nonce,
bytes32 _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
)
internal
pure
returns (bytes memory)
{
return abi.encodeWithSignature(
"relayMessage(uint256,bytes32,address,uint256,uint256,bytes)",
_nonce,
_sender,
_target,
_value,
_gasLimit,
_data
);
}
/// @notice Adds a version number into the first two bytes of a message nonce.
/// @param _nonce Message nonce to encode into.
/// @param _version Version number to encode into the message nonce.
/// @return Message nonce with version encoded into the first two bytes.
function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
uint256 nonce;
assembly {
nonce := or(shl(240, _version), _nonce)
}
return nonce;
}
/// @notice Pulls the version out of a version-encoded nonce.
/// @param _nonce Message nonce with version encoded into the first two bytes.
/// @return Nonce without encoded version.
/// @return Version of the message.
function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
uint240 nonce;
uint16 version;
assembly {
nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
version := shr(240, _nonce)
}
return (nonce, version);
}
/// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
/// @param baseFeeScalar L1 base fee Scalar
/// @param blobBaseFeeScalar L1 blob base fee Scalar
/// @param sequenceNumber Number of L2 blocks since epoch start.
/// @param timestamp L1 timestamp.
/// @param number L1 blocknumber.
/// @param baseFee L1 base fee.
/// @param blobBaseFee L1 blob base fee.
/// @param hash L1 blockhash.
/// @param batcherHash Versioned hash to authenticate batcher by.
function encodeSetL1BlockValuesEcotone(
uint32 baseFeeScalar,
uint32 blobBaseFeeScalar,
uint64 sequenceNumber,
uint64 timestamp,
uint64 number,
uint256 baseFee,
uint256 blobBaseFee,
bytes32 hash,
bytes32 batcherHash
)
internal
pure
returns (bytes memory)
{
bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
return abi.encodePacked(
functionSignature,
baseFeeScalar,
blobBaseFeeScalar,
sequenceNumber,
timestamp,
number,
baseFee,
blobBaseFee,
hash,
batcherHash
);
}
/// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop
/// @param _baseFeeScalar L1 base fee Scalar
/// @param _blobBaseFeeScalar L1 blob base fee Scalar
/// @param _sequenceNumber Number of L2 blocks since epoch start.
/// @param _timestamp L1 timestamp.
/// @param _number L1 blocknumber.
/// @param _baseFee L1 base fee.
/// @param _blobBaseFee L1 blob base fee.
/// @param _hash L1 blockhash.
/// @param _batcherHash Versioned hash to authenticate batcher by.
/// @param _dependencySet Array of the chain IDs in the interop dependency set.
function encodeSetL1BlockValuesInterop(
uint32 _baseFeeScalar,
uint32 _blobBaseFeeScalar,
uint64 _sequenceNumber,
uint64 _timestamp,
uint64 _number,
uint256 _baseFee,
uint256 _blobBaseFee,
bytes32 _hash,
bytes32 _batcherHash,
uint256[] memory _dependencySet
)
internal
pure
returns (bytes memory)
{
require(_dependencySet.length <= type(uint8).max, "Encoding: dependency set length is too large");
// Check that the batcher hash is just the address with 0 padding to the left for version 0.
require(uint160(uint256(_batcherHash)) == uint256(_batcherHash), "Encoding: invalid batcher hash");
bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()"));
return abi.encodePacked(
functionSignature,
_baseFeeScalar,
_blobBaseFeeScalar,
_sequenceNumber,
_timestamp,
_number,
_baseFee,
_blobBaseFee,
_hash,
_batcherHash,
uint8(_dependencySet.length),
_dependencySet
);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Storage
/// @notice Storage handles reading and writing to arbitary storage locations
library Storage {
/// @notice Returns an address stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getAddress(bytes32 _slot) internal view returns (address addr_) {
assembly {
addr_ := sload(_slot)
}
}
/// @notice Stores an address in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _address The protocol version to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
/// in arbitrary storage slots.
function setAddress(bytes32 _slot, address _address) internal {
assembly {
sstore(_slot, _address)
}
}
/// @notice Returns a uint256 stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getUint(bytes32 _slot) internal view returns (uint256 value_) {
assembly {
value_ := sload(_slot)
}
}
/// @notice Stores a value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _value The protocol version to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setUint(bytes32 _slot, uint256 _value) internal {
assembly {
sstore(_slot, _value)
}
}
/// @notice Returns a bytes32 stored in an arbitrary storage slot.
/// These storage slots decouple the storage layout from
/// solc's automation.
/// @param _slot The storage slot to retrieve the address from.
function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
assembly {
value_ := sload(_slot)
}
}
/// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the address in.
/// @param _value The bytes32 value to store.
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setBytes32(bytes32 _slot, bytes32 _value) internal {
assembly {
sstore(_slot, _value)
}
}
/// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
/// @param _slot The storage slot to store the bool in.
/// @param _value The bool value to store
/// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
/// in arbitrary storage slots.
function setBool(bytes32 _slot, bool _value) internal {
assembly {
sstore(_slot, _value)
}
}
/// @notice Returns a bool stored in an arbitrary storage slot.
/// @param _slot The storage slot to retrieve the bool from.
function getBool(bytes32 _slot) internal view returns (bool value_) {
assembly {
value_ := sload(_slot)
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { ISemver } from "src/universal/ISemver.sol";
import { Types } from "src/libraries/Types.sol";
import { Constants } from "src/libraries/Constants.sol";
/// @custom:proxied
/// @title L2OutputOracle
/// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
/// commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
/// these outputs to verify information about the state of L2.
contract L2OutputOracle is Initializable, ISemver {
/// @notice The number of the first L2 block recorded in this contract.
uint256 public startingBlockNumber;
/// @notice The timestamp of the first L2 block recorded in this contract.
uint256 public startingTimestamp;
/// @notice An array of L2 output proposals.
Types.OutputProposal[] internal l2Outputs;
/// @notice The interval in L2 blocks at which checkpoints must be submitted.
/// @custom:network-specific
uint256 public submissionInterval;
/// @notice The time between L2 blocks in milli-seconds. Once set, this value MUST NOT be modified.
/// @custom:network-specific
uint256 public l2BlockTime;
/// @notice The address of the challenger. Can be updated via upgrade.
/// @custom:network-specific
address public challenger;
/// @notice The address of the proposer. Can be updated via upgrade.
/// @custom:network-specific
address public proposer;
/// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
/// @custom:network-specific
uint256 public finalizationPeriodSeconds;
/// @notice Emitted when an output is proposed.
/// @param outputRoot The output root.
/// @param l2OutputIndex The index of the output in the l2Outputs array.
/// @param l2BlockNumber The L2 block number of the output root.
/// @param l1Timestamp The L1 timestamp when proposed.
event OutputProposed(
bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
);
/// @notice Emitted when outputs are deleted.
/// @param prevNextOutputIndex Next L2 output index before the deletion.
/// @param newNextOutputIndex Next L2 output index after the deletion.
event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
/// @notice Semantic version.
/// @custom:semver 1.8.0
string public constant version = "1.8.0";
/// @notice Constructs the L2OutputOracle contract. Initializes variables to the same values as
/// in the getting-started config.
constructor() {
initialize({
_submissionInterval: 1,
_l2BlockTime: 1,
_startingBlockNumber: 0,
_startingTimestamp: 0,
_proposer: address(0),
_challenger: address(0),
_finalizationPeriodSeconds: 0
});
}
/// @notice Initializer.
/// @param _submissionInterval Interval in blocks at which checkpoints must be submitted.
/// @param _l2BlockTime The time per L2 block, in milli-seconds.
/// @param _startingBlockNumber The number of the first L2 block.
/// @param _startingTimestamp The timestamp of the first L2 block.
/// @param _proposer The address of the proposer.
/// @param _challenger The address of the challenger.
/// @param _finalizationPeriodSeconds The minimum time (in seconds) that must elapse before a withdrawal
/// can be finalized.
function initialize(
uint256 _submissionInterval,
uint256 _l2BlockTime,
uint256 _startingBlockNumber,
uint256 _startingTimestamp,
address _proposer,
address _challenger,
uint256 _finalizationPeriodSeconds
)
public
initializer
{
require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0");
require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
require(
_startingTimestamp <= block.timestamp,
"L2OutputOracle: starting L2 timestamp must be less than current time"
);
submissionInterval = _submissionInterval;
l2BlockTime = _l2BlockTime;
startingBlockNumber = _startingBlockNumber;
startingTimestamp = _startingTimestamp;
proposer = _proposer;
challenger = _challenger;
finalizationPeriodSeconds = _finalizationPeriodSeconds;
}
/// @notice Getter for the submissionInterval.
/// Public getter is legacy and will be removed in the future. Use `submissionInterval` instead.
/// @return Submission interval.
/// @custom:legacy
function SUBMISSION_INTERVAL() external view returns (uint256) {
return submissionInterval;
}
/// @notice Getter for the l2BlockTime.
/// Public getter is legacy and will be removed in the future. Use `l2BlockTime` instead.
/// @return L2 block time.
/// @custom:legacy
function L2_BLOCK_TIME() external view returns (uint256) {
return l2BlockTime;
}
/// @notice Getter for the challenger address.
/// Public getter is legacy and will be removed in the future. Use `challenger` instead.
/// @return Address of the challenger.
/// @custom:legacy
function CHALLENGER() external view returns (address) {
return challenger;
}
/// @notice Getter for the proposer address.
/// Public getter is legacy and will be removed in the future. Use `proposer` instead.
/// @return Address of the proposer.
/// @custom:legacy
function PROPOSER() external view returns (address) {
return proposer;
}
/// @notice Getter for the finalizationPeriodSeconds.
/// Public getter is legacy and will be removed in the future. Use `finalizationPeriodSeconds` instead.
/// @return Finalization period in seconds.
/// @custom:legacy
function FINALIZATION_PERIOD_SECONDS() external view returns (uint256) {
return finalizationPeriodSeconds;
}
/// @notice Deletes all output proposals after and including the proposal that corresponds to
/// the given output index. Only the challenger address can delete outputs.
/// @param _l2OutputIndex Index of the first L2 output to be deleted.
/// All outputs after this output will also be deleted.
function deleteL2Outputs(uint256 _l2OutputIndex) external {
require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");
// Make sure we're not *increasing* the length of the array.
require(
_l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
);
// Do not allow deleting any outputs that have already been finalized.
require(
block.timestamp - l2Outputs[_l2OutputIndex].timestamp < finalizationPeriodSeconds,
"L2OutputOracle: cannot delete outputs that have already been finalized"
);
uint256 prevNextL2OutputIndex = nextOutputIndex();
// Use assembly to delete the array elements because Solidity doesn't allow it.
assembly {
sstore(l2Outputs.slot, _l2OutputIndex)
}
emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
}
/// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
/// The timestamp must be equal to the current value returned by `nextTimestamp()` in
/// order to be accepted. This function may only be called by the Proposer.
/// @param _outputRoot The L2 output of the checkpoint block.
/// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
/// @param _l1BlockHash A block hash which must be included in the current chain.
/// @param _l1BlockNumber The block number with the specified block hash.
function proposeL2Output(
bytes32 _outputRoot,
uint256 _l2BlockNumber,
bytes32 _l1BlockHash,
uint256 _l1BlockNumber
)
external
payable
{
require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
require(
_l2BlockNumber == nextBlockNumber(),
"L2OutputOracle: block number must be equal to next expected block number"
);
//We don't need to check L2 timestamp since L2 has a variant block time
// require(
// computeL2Timestamp(_l2BlockNumber) < block.timestamp,
// "L2OutputOracle: cannot propose L2 output in the future"
// );
require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
if (_l1BlockHash != bytes32(0)) {
// This check allows the proposer to propose an output based on a given L1 block,
// without fear that it will be reorged out.
// It will also revert if the blockheight provided is more than 256 blocks behind the
// chain tip (as the hash will return as zero). This does open the door to a griefing
// attack in which the proposer's submission is censored until the block is no longer
// retrievable, if the proposer is experiencing this attack it can simply leave out the
// blockhash value, and delay submission until it is confident that the L1 block is
// finalized.
require(
blockhash(_l1BlockNumber) == _l1BlockHash,
"L2OutputOracle: block hash does not match the hash at the expected height"
);
}
emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
l2Outputs.push(
Types.OutputProposal({
outputRoot: _outputRoot,
timestamp: uint128(block.timestamp),
l2BlockNumber: uint128(_l2BlockNumber)
})
);
}
/// @notice Returns an output by index. Needed to return a struct instead of a tuple.
/// @param _l2OutputIndex Index of the output to return.
/// @return The output at the given index.
function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
return l2Outputs[_l2OutputIndex];
}
/// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
/// Uses a binary search to find the first output greater than or equal to the given
/// block.
/// @param _l2BlockNumber L2 block number to find a checkpoint for.
/// @return Index of the first checkpoint that commits to the given L2 block number.
function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
// Make sure an output for this block number has actually been proposed.
require(
_l2BlockNumber <= latestBlockNumber(),
"L2OutputOracle: cannot get output for a block that has not been proposed"
);
// Make sure there's at least one output proposed.
require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet");
// Find the output via binary search, guaranteed to exist.
uint256 lo = 0;
uint256 hi = l2Outputs.length;
while (lo < hi) {
uint256 mid = (lo + hi) / 2;
if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
lo = mid + 1;
} else {
hi = mid;
}
}
return lo;
}
/// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
/// Uses a binary search to find the first output greater than or equal to the given
/// block.
/// @param _l2BlockNumber L2 block number to find a checkpoint for.
/// @return First checkpoint that commits to the given L2 block number.
function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
}
/// @notice Returns the number of outputs that have been proposed.
/// Will revert if no outputs have been proposed yet.
/// @return The number of outputs that have been proposed.
function latestOutputIndex() external view returns (uint256) {
return l2Outputs.length - 1;
}
/// @notice Returns the index of the next output to be proposed.
/// @return The index of the next output to be proposed.
function nextOutputIndex() public view returns (uint256) {
return l2Outputs.length;
}
/// @notice Returns the block number of the latest submitted L2 output proposal.
/// If no proposals been submitted yet then this function will return the starting
/// block number.
/// @return Latest submitted L2 block number.
function latestBlockNumber() public view returns (uint256) {
return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
}
/// @notice Computes the block number of the next L2 block that needs to be checkpointed.
/// @return Next L2 block number.
function nextBlockNumber() public view returns (uint256) {
return latestBlockNumber() + submissionInterval;
}
/// @notice Returns the L2 timestamp corresponding to a given L2 block number.
/// @param _l2BlockNumber The L2 block number of the target block.
/// @return L2 timestamp of the given block.
function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * l2BlockTime / 1000);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Types
/// @notice Contains various types used throughout the Optimism contract system.
library Types {
/// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
/// timestamp that the output root is posted. This timestamp is used to verify that the
/// finalization period has passed since the output root was submitted.
/// @custom:field outputRoot Hash of the L2 output.
/// @custom:field timestamp Timestamp of the L1 block that the output root was submitted in.
/// @custom:field l2BlockNumber L2 block number that the output corresponds to.
struct OutputProposal {
bytes32 outputRoot;
uint128 timestamp;
uint128 l2BlockNumber;
}
/// @notice Struct representing the elements that are hashed together to generate an output root
/// which itself represents a snapshot of the L2 state.
/// @custom:field version Version of the output root.
/// @custom:field stateRoot Root of the state trie at the block of this output.
/// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
/// @custom:field latestBlockhash Hash of the block this output was generated from.
struct OutputRootProof {
bytes32 version;
bytes32 stateRoot;
bytes32 messagePasserStorageRoot;
bytes32 latestBlockhash;
}
/// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
/// user (as opposed to a system deposit transaction generated by the system).
/// @custom:field from Address of the sender of the transaction.
/// @custom:field to Address of the recipient of the transaction.
/// @custom:field isCreation True if the transaction is a contract creation.
/// @custom:field value Value to send to the recipient.
/// @custom:field mint Amount of ETH to mint.
/// @custom:field gasLimit Gas limit of the transaction.
/// @custom:field data Data of the transaction.
/// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
/// @custom:field logIndex Index of the log in the block the transaction was submitted in.
struct UserDepositTransaction {
address from;
bytes32 to;
bool isCreation;
uint256 value;
uint256 mint;
uint64 gasLimit;
bytes data;
bytes32 l1BlockHash;
uint256 logIndex;
}
/// @notice Struct representing a withdrawal transaction.
/// @custom:field nonce Nonce of the withdrawal transaction
/// @custom:field sender Address of the sender of the transaction.
/// @custom:field target Address of the recipient of the transaction.
/// @custom:field value Value to send to the recipient.
/// @custom:field gasLimit Gas limit of the transaction.
/// @custom:field data Data of the transaction.
struct WithdrawalTransaction {
uint256 nonce;
bytes32 sender;
address target;
uint256 value;
uint256 gasLimit;
bytes data;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { MerkleTrie } from "./MerkleTrie.sol";
/// @title SecureMerkleTrie
/// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
/// keys. Ethereum's state trie hashes input keys before storing them.
library SecureMerkleTrie {
/// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
/// @param _key Key of the node to search for, as a hex string.
/// @param _value Value of the node to search for, as a hex string.
/// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
/// trees, this proof is executed top-down and consists of a list of RLP-encoded
/// nodes that make a path down to the target node.
/// @param _root Known root of the Merkle trie. Used to verify that the included proof is
/// correctly constructed.
/// @return valid_ Whether or not the proof is valid.
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes[] memory _proof,
bytes32 _root
)
internal
pure
returns (bool valid_)
{
bytes memory key = _getSecureKey(_key);
valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
}
/// @notice Retrieves the value associated with a given key.
/// @param _key Key to search for, as hex bytes.
/// @param _proof Merkle trie inclusion proof for the key.
/// @param _root Known root of the Merkle trie.
/// @return value_ Value of the key if it exists.
function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
bytes memory key = _getSecureKey(_key);
value_ = MerkleTrie.get(key, _proof, _root);
}
/// @notice Computes the hashed version of the input key.
/// @param _key Key to hash.
/// @return hash_ Hashed version of the key.
function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
hash_ = abi.encodePacked(keccak256(_key));
}
}// SPDX-License-Identifier: Apache-2.0
/*
* Copyright 2019-2021, Offchain Labs, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity ^0.8.0;
library AddressAliasHelper {
uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
/// @notice Utility function that converts the address in the L1 that submitted a tx to
/// the inbox to the msg.sender viewed in the L2
/// @param l1Address the address in the L1 that triggered the tx to L2
/// @return l2Address L2 address as viewed in msg.sender
function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
unchecked {
l2Address = address(uint160(l1Address) + offset);
}
}
/// @notice Utility function that converts the msg.sender viewed in the L2 to the
/// address in the L1 that submitted a tx to the inbox
/// @param l2Address L2 address as viewed in msg.sender
/// @return l1Address the address in the L1 that triggered the tx to L2
function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
unchecked {
l1Address = address(uint160(l2Address) - offset);
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Burn } from "src/libraries/Burn.sol";
import { Arithmetic } from "src/libraries/Arithmetic.sol";
/// @custom:upgradeable
/// @title ResourceMetering
/// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
/// updates automatically based on current demand.
abstract contract ResourceMetering is Initializable {
/// @notice Error returned when too much gas resource is consumed.
error OutOfGas();
/// @notice Represents the various parameters that control the way in which resources are
/// metered. Corresponds to the EIP-1559 resource metering system.
/// @custom:field prevBaseFee Base fee from the previous block(s).
/// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
/// @custom:field prevBlockNum Last block number that the base fee was updated.
struct ResourceParams {
uint128 prevBaseFee;
uint64 prevBoughtGas;
uint64 prevBlockNum;
}
/// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
/// market. These values should be set with care as it is possible to set them in
/// a way that breaks the deposit gas market. The target resource limit is defined as
/// maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
/// single word. There is additional space for additions in the future.
/// @custom:field maxResourceLimit Represents the maximum amount of deposit gas that
/// can be purchased per block.
/// @custom:field elasticityMultiplier Determines the target resource limit along with
/// the resource limit.
/// @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block.
/// @custom:field minimumBaseFee The min deposit base fee, it is clamped to this
/// value.
/// @custom:field systemTxMaxGas The amount of gas supplied to the system
/// transaction. This should be set to the same
/// number that the op-node sets as the gas limit
/// for the system transaction.
/// @custom:field maximumBaseFee The max deposit base fee, it is clamped to this
/// value.
struct ResourceConfig {
uint32 maxResourceLimit;
uint8 elasticityMultiplier;
uint8 baseFeeMaxChangeDenominator;
uint32 minimumBaseFee;
uint32 systemTxMaxGas;
uint128 maximumBaseFee;
}
/// @notice EIP-1559 style gas parameters.
ResourceParams public params;
/// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
uint256[48] private __gap;
/// @notice Meters access to a function based an amount of a requested resource.
/// @param _amount Amount of the resource requested.
modifier metered(uint64 _amount) {
// Record initial gas amount so we can refund for it later.
uint256 initialGas = gasleft();
// Run the underlying function.
_;
// Run the metering function.
_metered(_amount, initialGas);
}
/// @notice An internal function that holds all of the logic for metering a resource.
/// @param _amount Amount of the resource requested.
/// @param _initialGas The amount of gas before any modifier execution.
function _metered(uint64 _amount, uint256 _initialGas) internal {
// Update block number and base fee if necessary.
uint256 blockDiff = block.number - params.prevBlockNum;
ResourceConfig memory config = _resourceConfig();
int256 targetResourceLimit =
int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
if (blockDiff > 0) {
// Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
// at which deposits can be created and therefore limit the potential for deposits to
// spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
/ (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
// Update base fee by adding the base fee delta and clamp the resulting value between
// min and max.
int256 newBaseFee = Arithmetic.clamp({
_value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
_min: int256(uint256(config.minimumBaseFee)),
_max: int256(uint256(config.maximumBaseFee))
});
// If we skipped more than one block, we also need to account for every empty block.
// Empty block means there was no demand for deposits in that block, so we should
// reflect this lack of demand in the fee.
if (blockDiff > 1) {
// Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
// blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
// between min and max.
newBaseFee = Arithmetic.clamp({
_value: Arithmetic.cdexp({
_coefficient: newBaseFee,
_denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
_exponent: int256(blockDiff - 1)
}),
_min: int256(uint256(config.minimumBaseFee)),
_max: int256(uint256(config.maximumBaseFee))
});
}
// Update new base fee, reset bought gas, and update block number.
params.prevBaseFee = uint128(uint256(newBaseFee));
params.prevBoughtGas = 0;
params.prevBlockNum = uint64(block.number);
}
// Make sure we can actually buy the resource amount requested by the user.
params.prevBoughtGas += _amount;
if (int256(uint256(params.prevBoughtGas)) > int256(uint256(config.maxResourceLimit))) {
revert OutOfGas();
}
// Determine the amount of ETH to be paid.
uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
// We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
// into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
// division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
// periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
// during any 1 day period in the last 5 years, so should be fine.
uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
// Give the user a refund based on the amount of gas they used to do all of the work up to
// this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
// effectively like a dynamic stipend (with a minimum value).
uint256 usedGas = _initialGas - gasleft();
if (gasCost > usedGas) {
Burn.gas(gasCost - usedGas);
}
}
/// @notice Adds an amount of L2 gas consumed to the prev bought gas params. This is meant to be used
/// when L2 system transactions are generated from L1.
/// @param _amount Amount of the L2 gas resource requested.
function useGas(uint32 _amount) internal {
params.prevBoughtGas += uint64(_amount);
}
/// @notice Virtual function that returns the resource config.
/// Contracts that inherit this contract must implement this function.
/// @return ResourceConfig
function _resourceConfig() internal virtual returns (ResourceConfig memory);
/// @notice Sets initial resource parameter values.
/// This function must either be called by the initializer function of an upgradeable
/// child contract.
function __ResourceMetering_init() internal onlyInitializing {
if (params.prevBlockNum == 0) {
params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
}
}
}// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice Error for when a deposit or withdrawal is to a bad target. error BadTarget(); /// @notice Error for when a deposit has too much calldata. error LargeCalldata(); /// @notice Error for when a deposit has too small of a gas limit. error SmallGasLimit(); /// @notice Error for when a withdrawal transfer fails. error TransferFailed(); /// @notice Error for when a method is called that only works when using a custom gas token. error OnlyCustomGasToken(); /// @notice Error for when a method cannot be called with non zero CALLVALUE. error NoValue(); /// @notice Error for an unauthorized CALLER. error Unauthorized(); /// @notice Error for when a method cannot be called when paused. This could be renamed /// to `Paused` in the future, but it collides with the `Paused` event. error CallPaused(); /// @notice Error for special gas estimation. error GasEstimation(); /// @notice Error for when a method is being reentered. error NonReentrant(); /// @notice Error for invalid operation. error NotAllow(); /// @notice Error for Value have dust. error ValueHaveDust(); /// @notice Error for Value below minimal bridge limit. error ValueTooLow(); /// @notice Error for invalid proof. error InvalidProof(); /// @notice Error for invalid game type. error InvalidGameType(); /// @notice Error for an invalid dispute game. error InvalidDisputeGame(); /// @notice Error for an invalid merkle proof. error InvalidMerkleProof(); /// @notice Error for when a dispute game has been blacklisted. error Blacklisted(); /// @notice Error for when trying to withdrawal without first proven. error Unproven(); /// @notice Error for when a proposal is not validated. error ProposalNotValidated(); /// @notice Error for when a withdrawal has already been finalized. error AlreadyFinalized();
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
function __Ownable_init() internal onlyInitializing {
__Ownable_init_unchained();
}
function __Ownable_init_unchained() internal onlyInitializing {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Storage } from "src/libraries/Storage.sol";
import { Constants } from "src/libraries/Constants.sol";
import { LibString } from "@solady/utils/LibString.sol";
/// @title IGasToken
/// @notice Implemented by contracts that are aware of the custom gas token used
/// by the L2 network.
interface IGasToken {
/// @notice Getter for the ERC20 token address that is used to pay for gas and its decimals.
function gasPayingToken() external view returns (address, uint8);
/// @notice Returns the gas token name.
function gasPayingTokenName() external view returns (string memory);
/// @notice Returns the gas token symbol.
function gasPayingTokenSymbol() external view returns (string memory);
/// @notice Returns true if the network uses a custom gas token.
function isCustomGasToken() external view returns (bool);
}
/// @title GasPayingToken
/// @notice Handles reading and writing the custom gas token to storage.
/// To be used in any place where gas token information is read or
/// written to state. If multiple contracts use this library, the
/// values in storage should be kept in sync between them.
library GasPayingToken {
/// @notice The storage slot that contains the address and decimals of the gas paying token
bytes32 internal constant GAS_PAYING_TOKEN_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtoken")) - 1);
/// @notice The storage slot that contains the ERC20 `name()` of the gas paying token
bytes32 internal constant GAS_PAYING_TOKEN_NAME_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtokenname")) - 1);
/// @notice the storage slot that contains the ERC20 `symbol()` of the gas paying token
bytes32 internal constant GAS_PAYING_TOKEN_SYMBOL_SLOT =
bytes32(uint256(keccak256("opstack.gaspayingtokensymbol")) - 1);
/// @notice Reads the gas paying token and its decimals from the magic
/// storage slot. If nothing is set in storage, then the ether
/// address is returned instead.
function getToken() internal pure returns (address addr_, uint8 decimals_) {
addr_ = Constants.ETHER;
decimals_ = 18;
}
/// @notice Reads the gas paying token's name from the magic storage slot.
/// If nothing is set in storage, then the ether name, 'Ether', is returned instead.
function getName() internal pure returns (string memory name_) {
name_ = "Ether";
}
/// @notice Reads the gas paying token's symbol from the magic storage slot.
/// If nothing is set in storage, then the ether symbol, 'ETH', is returned instead.
function getSymbol() internal pure returns (string memory symbol_) {
symbol_ = "ETH";
}
/// @notice Writes the gas paying token, its decimals, name and symbol to the magic storage slot.
function set(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) internal {
// Storage.setBytes32(GAS_PAYING_TOKEN_SLOT, bytes32(uint256(_decimals) << 160 |
// uint256(uint160(_token))));
// Storage.setBytes32(GAS_PAYING_TOKEN_NAME_SLOT, _name);
// Storage.setBytes32(GAS_PAYING_TOKEN_SYMBOL_SLOT, _symbol);
}
/// @notice Maps a string to a normalized null-terminated small string.
function sanitize(string memory _str) internal pure returns (bytes32) {
require(bytes(_str).length <= 32, "GasPayingToken: string cannot be greater than 32 bytes");
return LibString.toSmallString(_str);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(
address from,
address to,
uint256 amount
) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
}
_balances[to] += amount;
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
_balances[account] += amount;
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
}
_totalSupply -= amount;
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
/// @title RLPWriter
/// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
/// RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
/// modifications to improve legibility.
library RLPWriter {
/// @notice RLP encodes a byte string.
/// @param _in The byte string to encode.
/// @return out_ The RLP encoded string in bytes.
function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
if (_in.length == 1 && uint8(_in[0]) < 128) {
out_ = _in;
} else {
out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
}
}
/// @notice RLP encodes a list of RLP encoded byte byte strings.
/// @param _in The list of RLP encoded byte strings.
/// @return list_ The RLP encoded list of items in bytes.
function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
list_ = _flatten(_in);
list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
}
/// @notice RLP encodes a string.
/// @param _in The string to encode.
/// @return out_ The RLP encoded string in bytes.
function writeString(string memory _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(bytes(_in));
}
/// @notice RLP encodes an address.
/// @param _in The address to encode.
/// @return out_ The RLP encoded address in bytes.
function writeAddress(address _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(abi.encodePacked(_in));
}
/// @notice RLP encodes a uint.
/// @param _in The uint256 to encode.
/// @return out_ The RLP encoded uint256 in bytes.
function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
out_ = writeBytes(_toBinary(_in));
}
/// @notice RLP encodes a bool.
/// @param _in The bool to encode.
/// @return out_ The RLP encoded bool in bytes.
function writeBool(bool _in) internal pure returns (bytes memory out_) {
out_ = new bytes(1);
out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
}
/// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
/// @param _len The length of the string or the payload.
/// @param _offset 128 if item is string, 192 if item is list.
/// @return out_ RLP encoded bytes.
function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
if (_len < 56) {
out_ = new bytes(1);
out_[0] = bytes1(uint8(_len) + uint8(_offset));
} else {
uint256 lenLen;
uint256 i = 1;
while (_len / i != 0) {
lenLen++;
i *= 256;
}
out_ = new bytes(lenLen + 1);
out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
for (i = 1; i <= lenLen; i++) {
out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
}
}
}
/// @notice Encode integer in big endian binary form with no leading zeroes.
/// @param _x The integer to encode.
/// @return out_ RLP encoded bytes.
function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
bytes memory b = abi.encodePacked(_x);
uint256 i = 0;
for (; i < 32; i++) {
if (b[i] != 0) {
break;
}
}
out_ = new bytes(32 - i);
for (uint256 j = 0; j < out_.length; j++) {
out_[j] = b[i++];
}
}
/// @custom:attribution https://github.com/Arachnid/solidity-stringutils
/// @notice Copies a piece of memory to another location.
/// @param _dest Destination location.
/// @param _src Source location.
/// @param _len Length of memory to copy.
function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
uint256 dest = _dest;
uint256 src = _src;
uint256 len = _len;
for (; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
uint256 mask;
unchecked {
mask = 256 ** (32 - len) - 1;
}
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
/// @notice Flattens a list of byte strings into one byte string.
/// @param _list List of byte strings to flatten.
/// @return out_ The flattened byte string.
function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
if (_list.length == 0) {
return new bytes(0);
}
uint256 len;
uint256 i = 0;
for (; i < _list.length; i++) {
len += _list[i].length;
}
out_ = new bytes(len);
uint256 flattenedPtr;
assembly {
flattenedPtr := add(out_, 0x20)
}
for (i = 0; i < _list.length; i++) {
bytes memory item = _list[i];
uint256 listPtr;
assembly {
listPtr := add(item, 0x20)
}
_memcpy(flattenedPtr, listPtr, item.length);
flattenedPtr += _list[i].length;
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Bytes } from "../Bytes.sol";
import { RLPReader } from "../rlp/RLPReader.sol";
/// @title MerkleTrie
/// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
/// inclusion proofs. By default, this library assumes a hexary trie. One can change the
/// trie radix constant to support other trie radixes.
library MerkleTrie {
/// @notice Struct representing a node in the trie.
/// @custom:field encoded The RLP-encoded node.
/// @custom:field decoded The RLP-decoded node.
struct TrieNode {
bytes encoded;
RLPReader.RLPItem[] decoded;
}
/// @notice Determines the number of elements per branch node.
uint256 internal constant TREE_RADIX = 16;
/// @notice Branch nodes have TREE_RADIX elements and one value element.
uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
/// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
/// @notice Prefix for even-nibbled extension node paths.
uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
/// @notice Prefix for odd-nibbled extension node paths.
uint8 internal constant PREFIX_EXTENSION_ODD = 1;
/// @notice Prefix for even-nibbled leaf node paths.
uint8 internal constant PREFIX_LEAF_EVEN = 2;
/// @notice Prefix for odd-nibbled leaf node paths.
uint8 internal constant PREFIX_LEAF_ODD = 3;
/// @notice Verifies a proof that a given key/value pair is present in the trie.
/// @param _key Key of the node to search for, as a hex string.
/// @param _value Value of the node to search for, as a hex string.
/// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
/// trees, this proof is executed top-down and consists of a list of RLP-encoded
/// nodes that make a path down to the target node.
/// @param _root Known root of the Merkle trie. Used to verify that the included proof is
/// correctly constructed.
/// @return valid_ Whether or not the proof is valid.
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes[] memory _proof,
bytes32 _root
)
internal
pure
returns (bool valid_)
{
valid_ = Bytes.equal(_value, get(_key, _proof, _root));
}
/// @notice Retrieves the value associated with a given key.
/// @param _key Key to search for, as hex bytes.
/// @param _proof Merkle trie inclusion proof for the key.
/// @param _root Known root of the Merkle trie.
/// @return value_ Value of the key if it exists.
function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
require(_key.length > 0, "MerkleTrie: empty key");
TrieNode[] memory proof = _parseProof(_proof);
bytes memory key = Bytes.toNibbles(_key);
bytes memory currentNodeID = abi.encodePacked(_root);
uint256 currentKeyIndex = 0;
// Proof is top-down, so we start at the first element (root).
for (uint256 i = 0; i < proof.length; i++) {
TrieNode memory currentNode = proof[i];
// Key index should never exceed total key length or we'll be out of bounds.
require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
if (currentKeyIndex == 0) {
// First proof element is always the root node.
require(
Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
"MerkleTrie: invalid root hash"
);
} else if (currentNode.encoded.length >= 32) {
// Nodes 32 bytes or larger are hashed inside branch nodes.
require(
Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
"MerkleTrie: invalid large internal hash"
);
} else {
// Nodes smaller than 32 bytes aren't hashed.
require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
}
if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
if (currentKeyIndex == key.length) {
// Value is the last element of the decoded list (for branch nodes). There's
// some ambiguity in the Merkle trie specification because bytes(0) is a
// valid value to place into the trie, but for branch nodes bytes(0) can exist
// even when the value wasn't explicitly placed there. Geth treats a value of
// bytes(0) as "key does not exist" and so we do the same.
value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
// Extra proof elements are not allowed.
require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
return value_;
} else {
// We're not at the end of the key yet.
// Figure out what the next node ID should be and continue.
uint8 branchKey = uint8(key[currentKeyIndex]);
RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
currentNodeID = _getNodeID(nextNode);
currentKeyIndex += 1;
}
} else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
bytes memory path = _getNodePath(currentNode);
uint8 prefix = uint8(path[0]);
uint8 offset = 2 - (prefix % 2);
bytes memory pathRemainder = Bytes.slice(path, offset);
bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
// Whether this is a leaf node or an extension node, the path remainder MUST be a
// prefix of the key remainder (or be equal to the key remainder) or the proof is
// considered invalid.
require(
pathRemainder.length == sharedNibbleLength,
"MerkleTrie: path remainder must share all nibbles with key"
);
if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
// Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
// the key remainder must be exactly equal to the path remainder. We already
// did the necessary byte comparison, so it's more efficient here to check that
// the key remainder length equals the shared nibble length, which implies
// equality with the path remainder (since we already did the same check with
// the path remainder and the shared nibble length).
require(
keyRemainder.length == sharedNibbleLength,
"MerkleTrie: key remainder must be identical to path remainder"
);
// Our Merkle Trie is designed specifically for the purposes of the Ethereum
// state trie. Empty values are not allowed in the state trie, so we can safely
// say that if the value is empty, the key should not exist and the proof is
// invalid.
value_ = RLPReader.readBytes(currentNode.decoded[1]);
require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
// Extra proof elements are not allowed.
require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
return value_;
} else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
// Prefix of 0 or 1 means this is an extension node. We move onto the next node
// in the proof and increment the key index by the length of the path remainder
// which is equal to the shared nibble length.
currentNodeID = _getNodeID(currentNode.decoded[1]);
currentKeyIndex += sharedNibbleLength;
} else {
revert("MerkleTrie: received a node with an unknown prefix");
}
} else {
revert("MerkleTrie: received an unparseable node");
}
}
revert("MerkleTrie: ran out of proof elements");
}
/// @notice Parses an array of proof elements into a new array that contains both the original
/// encoded element and the RLP-decoded element.
/// @param _proof Array of proof elements to parse.
/// @return proof_ Proof parsed into easily accessible structs.
function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
uint256 length = _proof.length;
proof_ = new TrieNode[](length);
for (uint256 i = 0; i < length;) {
proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
unchecked {
++i;
}
}
}
/// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
/// specification, but nodes < 32 bytes are not actually hashed.
/// @param _node Node to pull an ID for.
/// @return id_ ID for the node, depending on the size of its contents.
function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
}
/// @notice Gets the path for a leaf or extension node.
/// @param _node Node to get a path for.
/// @return nibbles_ Node path, converted to an array of nibbles.
function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
}
/// @notice Utility; determines the number of nibbles shared between two nibble arrays.
/// @param _a First nibble array.
/// @param _b Second nibble array.
/// @return shared_ Number of shared nibbles.
function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
for (; shared_ < max && _a[shared_] == _b[shared_];) {
unchecked {
++shared_;
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`.
// We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
// This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
// Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
// good first aproximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1;
uint256 x = a;
if (x >> 128 > 0) {
x >>= 128;
result <<= 64;
}
if (x >> 64 > 0) {
x >>= 64;
result <<= 32;
}
if (x >> 32 > 0) {
x >>= 32;
result <<= 16;
}
if (x >> 16 > 0) {
x >>= 16;
result <<= 8;
}
if (x >> 8 > 0) {
x >>= 8;
result <<= 4;
}
if (x >> 4 > 0) {
x >>= 4;
result <<= 2;
}
if (x >> 2 > 0) {
result <<= 1;
}
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
uint256 result = sqrt(a);
if (rounding == Rounding.Up && result * result < a) {
result += 1;
}
return result;
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
/// @title Burn
/// @notice Utilities for burning stuff.
library Burn {
/// @notice Burns a given amount of ETH.
/// @param _amount Amount of ETH to burn.
function eth(uint256 _amount) internal {
new Burner{ value: _amount }();
}
/// @notice Burns a given amount of gas.
/// @param _amount Amount of gas to burn.
function gas(uint256 _amount) internal view {
uint256 i = 0;
uint256 initialGas = gasleft();
while (initialGas - gasleft() < _amount) {
++i;
}
}
}
/// @title Burner
/// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
/// the contract from the circulating supply. Self-destructing is the only way to remove ETH
/// from the circulating supply.
contract Burner {
constructor() payable {
selfdestruct(payable(address(this)));
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
/// @title Arithmetic
/// @notice Even more math than before.
library Arithmetic {
/// @notice Clamps a value between a minimum and maximum.
/// @param _value The value to clamp.
/// @param _min The minimum value.
/// @param _max The maximum value.
/// @return The clamped value.
function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
return SignedMath.min(SignedMath.max(_value, _min), _max);
}
/// @notice (c)oefficient (d)enominator (exp)onentiation function.
/// Returns the result of: c * (1 - 1/d)^exp.
/// @param _coefficient Coefficient of the function.
/// @param _denominator Fractional denominator.
/// @param _exponent Power function exponent.
/// @return Result of c * (1 - 1/d)^exp.
function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
///
/// Note:
/// For performance and bytecode compactness, most of the string operations are restricted to
/// byte strings (7-bit ASCII), except where otherwise specified.
/// Usage of byte string operations on charsets with runes spanning two or more bytes
/// can lead to undefined behavior.
library LibString {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The length of the output is too small to contain all the hex digits.
error HexLengthInsufficient();
/// @dev The length of the string is more than 32 bytes.
error TooBigForSmallString();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The constant returned when the `search` is not found in the string.
uint256 internal constant NOT_FOUND = type(uint256).max;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* DECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the base 10 decimal representation of `value`.
function toString(uint256 value) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits.
str := add(mload(0x40), 0x80)
// Update the free memory pointer to allocate.
mstore(0x40, add(str, 0x20))
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end of the memory to calculate the length later.
let end := str
let w := not(0) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
str := add(str, w) // `sub(str, 1)`.
// Write the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
// Keep dividing `temp` until zero.
temp := div(temp, 10)
if iszero(temp) { break }
}
let length := sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str := sub(str, 0x20)
// Store the length.
mstore(str, length)
}
}
/// @dev Returns the base 10 decimal representation of `value`.
function toString(int256 value) internal pure returns (string memory str) {
if (value >= 0) {
return toString(uint256(value));
}
unchecked {
str = toString(uint256(-value));
}
/// @solidity memory-safe-assembly
assembly {
// We still have some spare memory space on the left,
// as we have allocated 3 words (96 bytes) for up to 78 digits.
let length := mload(str) // Load the string length.
mstore(str, 0x2d) // Store the '-' character.
str := sub(str, 1) // Move back the string pointer by a byte.
mstore(str, add(length, 1)) // Update the string length.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HEXADECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `length` bytes.
/// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
/// giving a total length of `length * 2 + 2` bytes.
/// Reverts if `length` is too small for the output to contain all the digits.
function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value, length);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Write the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Write the length.
}
}
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `length` bytes.
/// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
/// giving a total length of `length * 2` bytes.
/// Reverts if `length` is too small for the output to contain all the digits.
function toHexStringNoPrefix(uint256 value, uint256 length)
internal
pure
returns (string memory str)
{
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
// for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
// We add 0x20 to the total and round down to a multiple of 0x20.
// (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
// Allocate the memory.
mstore(0x40, add(str, 0x20))
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end to calculate the length later.
let end := str
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
let start := sub(str, add(length, length))
let w := not(1) // Tsk.
let temp := value
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for {} 1 {} {
str := add(str, w) // `sub(str, 2)`.
mstore8(add(str, 1), mload(and(temp, 15)))
mstore8(str, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(xor(str, start)) { break }
}
if temp {
mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
revert(0x1c, 0x04)
}
// Compute the string's length.
let strLength := sub(end, str)
// Move the pointer and write the length.
str := sub(str, 0x20)
mstore(str, strLength)
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2 + 2` bytes.
function toHexString(uint256 value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Write the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Write the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x".
/// The output excludes leading "0" from the `toHexString` output.
/// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
let strLength := add(mload(str), 2) // Compute the length.
mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero.
str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output excludes leading "0" from the `toHexStringNoPrefix` output.
/// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
let strLength := mload(str) // Get the length.
str := add(str, o) // Move the pointer, accounting for leading zero.
mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2` bytes.
function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x40 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
str := add(mload(0x40), 0x80)
// Allocate the memory.
mstore(0x40, add(str, 0x20))
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end to calculate the length later.
let end := str
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
let w := not(1) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
str := add(str, w) // `sub(str, 2)`.
mstore8(add(str, 1), mload(and(temp, 15)))
mstore8(str, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(temp) { break }
}
// Compute the string's length.
let strLength := sub(end, str)
// Move the pointer and write the length.
str := sub(str, 0x20)
mstore(str, strLength)
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
/// and the alphabets are capitalized conditionally according to
/// https://eips.ethereum.org/EIPS/eip-55
function toHexStringChecksummed(address value) internal pure returns (string memory str) {
str = toHexString(value);
/// @solidity memory-safe-assembly
assembly {
let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
let o := add(str, 0x22)
let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
let t := shl(240, 136) // `0b10001000 << 240`
for { let i := 0 } 1 {} {
mstore(add(i, i), mul(t, byte(i, hashed)))
i := add(i, 1)
if eq(i, 20) { break }
}
mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
o := add(o, 0x20)
mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
function toHexString(address value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Write the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Write the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
str := mload(0x40)
// Allocate the memory.
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x28 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
mstore(0x40, add(str, 0x80))
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
str := add(str, 2)
mstore(str, 40)
let o := add(str, 0x20)
mstore(add(o, 40), 0)
value := shl(96, value)
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let i := 0 } 1 {} {
let p := add(o, add(i, i))
let temp := byte(i, value)
mstore8(add(p, 1), mload(and(temp, 15)))
mstore8(p, mload(shr(4, temp)))
i := add(i, 1)
if eq(i, 20) { break }
}
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexString(bytes memory raw) internal pure returns (string memory str) {
str = toHexStringNoPrefix(raw);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Write the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Write the length.
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
let length := mload(raw)
str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
mstore(str, add(length, length)) // Store the length of the output.
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
let o := add(str, 0x20)
let end := add(raw, length)
for {} iszero(eq(raw, end)) {} {
raw := add(raw, 1)
mstore8(add(o, 1), mload(and(mload(raw), 15)))
mstore8(o, mload(and(shr(4, mload(raw)), 15)))
o := add(o, 2)
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate the memory.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RUNE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the number of UTF characters in the string.
function runeCount(string memory s) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
if mload(s) {
mstore(0x00, div(not(0), 255))
mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
let o := add(s, 0x20)
let end := add(o, mload(s))
for { result := 1 } 1 { result := add(result, 1) } {
o := add(o, byte(0, mload(shr(250, mload(o)))))
if iszero(lt(o, end)) { break }
}
}
}
}
/// @dev Returns if this string is a 7-bit ASCII string.
/// (i.e. all characters codes are in [0..127])
function is7BitASCII(string memory s) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
let mask := shl(7, div(not(0), 255))
result := 1
let n := mload(s)
if n {
let o := add(s, 0x20)
let end := add(o, n)
let last := mload(end)
mstore(end, 0)
for {} 1 {} {
if and(mask, mload(o)) {
result := 0
break
}
o := add(o, 0x20)
if iszero(lt(o, end)) { break }
}
mstore(end, last)
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BYTE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// For performance and bytecode compactness, byte string operations are restricted
// to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
// Usage of byte string operations on charsets with runes spanning two or more bytes
// can lead to undefined behavior.
/// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
function replace(string memory subject, string memory search, string memory replacement)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
let searchLength := mload(search)
let replacementLength := mload(replacement)
subject := add(subject, 0x20)
search := add(search, 0x20)
replacement := add(replacement, 0x20)
result := add(mload(0x40), 0x20)
let subjectEnd := add(subject, subjectLength)
if iszero(gt(searchLength, subjectLength)) {
let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
let h := 0
if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
let s := mload(search)
for {} 1 {} {
let t := mload(subject)
// Whether the first `searchLength % 32` bytes of
// `subject` and `search` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(subject, searchLength), h)) {
mstore(result, t)
result := add(result, 1)
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
// Copy the `replacement` one word at a time.
for { let o := 0 } 1 {} {
mstore(add(result, o), mload(add(replacement, o)))
o := add(o, 0x20)
if iszero(lt(o, replacementLength)) { break }
}
result := add(result, replacementLength)
subject := add(subject, searchLength)
if searchLength {
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
mstore(result, t)
result := add(result, 1)
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
}
}
let resultRemainder := result
result := add(mload(0x40), 0x20)
let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
// Copy the rest of the string one word at a time.
for {} lt(subject, subjectEnd) {} {
mstore(resultRemainder, mload(subject))
resultRemainder := add(resultRemainder, 0x20)
subject := add(subject, 0x20)
}
result := sub(result, 0x20)
let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
mstore(last, 0)
mstore(0x40, add(last, 0x20)) // Allocate the memory.
mstore(result, k) // Store the length.
}
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from left to right, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function indexOf(string memory subject, string memory search, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
for { let subjectLength := mload(subject) } 1 {} {
if iszero(mload(search)) {
if iszero(gt(from, subjectLength)) {
result := from
break
}
result := subjectLength
break
}
let searchLength := mload(search)
let subjectStart := add(subject, 0x20)
result := not(0) // Initialize to `NOT_FOUND`.
subject := add(subjectStart, from)
let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)
let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
let s := mload(add(search, 0x20))
if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }
if iszero(lt(searchLength, 0x20)) {
for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
if eq(keccak256(subject, searchLength), h) {
result := sub(subject, subjectStart)
break
}
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
for {} 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
result := sub(subject, subjectStart)
break
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from left to right.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function indexOf(string memory subject, string memory search)
internal
pure
returns (uint256 result)
{
result = indexOf(subject, search, 0);
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from right to left, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function lastIndexOf(string memory subject, string memory search, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
for {} 1 {} {
result := not(0) // Initialize to `NOT_FOUND`.
let searchLength := mload(search)
if gt(searchLength, mload(subject)) { break }
let w := result
let fromMax := sub(mload(subject), searchLength)
if iszero(gt(fromMax, from)) { from := fromMax }
let end := add(add(subject, 0x20), w)
subject := add(add(subject, 0x20), from)
if iszero(gt(subject, end)) { break }
// As this function is not too often used,
// we shall simply use keccak256 for smaller bytecode size.
for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
if eq(keccak256(subject, searchLength), h) {
result := sub(subject, add(end, 1))
break
}
subject := add(subject, w) // `sub(subject, 1)`.
if iszero(gt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from right to left.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function lastIndexOf(string memory subject, string memory search)
internal
pure
returns (uint256 result)
{
result = lastIndexOf(subject, search, uint256(int256(-1)));
}
/// @dev Returns true if `search` is found in `subject`, false otherwise.
function contains(string memory subject, string memory search) internal pure returns (bool) {
return indexOf(subject, search) != NOT_FOUND;
}
/// @dev Returns whether `subject` starts with `search`.
function startsWith(string memory subject, string memory search)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let searchLength := mload(search)
// Just using keccak256 directly is actually cheaper.
// forgefmt: disable-next-item
result := and(
iszero(gt(searchLength, mload(subject))),
eq(
keccak256(add(subject, 0x20), searchLength),
keccak256(add(search, 0x20), searchLength)
)
)
}
}
/// @dev Returns whether `subject` ends with `search`.
function endsWith(string memory subject, string memory search)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let searchLength := mload(search)
let subjectLength := mload(subject)
// Whether `search` is not longer than `subject`.
let withinRange := iszero(gt(searchLength, subjectLength))
// Just using keccak256 directly is actually cheaper.
// forgefmt: disable-next-item
result := and(
withinRange,
eq(
keccak256(
// `subject + 0x20 + max(subjectLength - searchLength, 0)`.
add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
searchLength
),
keccak256(add(search, 0x20), searchLength)
)
)
}
}
/// @dev Returns `subject` repeated `times`.
function repeat(string memory subject, uint256 times)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
if iszero(or(iszero(times), iszero(subjectLength))) {
subject := add(subject, 0x20)
result := mload(0x40)
let output := add(result, 0x20)
for {} 1 {} {
// Copy the `subject` one word at a time.
for { let o := 0 } 1 {} {
mstore(add(output, o), mload(add(subject, o)))
o := add(o, 0x20)
if iszero(lt(o, subjectLength)) { break }
}
output := add(output, subjectLength)
times := sub(times, 1)
if iszero(times) { break }
}
mstore(output, 0) // Zeroize the slot after the string.
let resultLength := sub(output, add(result, 0x20))
mstore(result, resultLength) // Store the length.
// Allocate the memory.
mstore(0x40, add(result, add(resultLength, 0x20)))
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
/// `start` and `end` are byte offsets.
function slice(string memory subject, uint256 start, uint256 end)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
if iszero(gt(subjectLength, end)) { end := subjectLength }
if iszero(gt(subjectLength, start)) { start := subjectLength }
if lt(start, end) {
result := mload(0x40)
let resultLength := sub(end, start)
mstore(result, resultLength)
subject := add(subject, start)
let w := not(0x1f)
// Copy the `subject` one word at a time, backwards.
for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
mstore(add(result, o), mload(add(subject, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
// Zeroize the slot after the string.
mstore(add(add(result, 0x20), resultLength), 0)
// Allocate memory for the length and the bytes,
// rounded up to a multiple of 32.
mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
/// `start` is a byte offset.
function slice(string memory subject, uint256 start)
internal
pure
returns (string memory result)
{
result = slice(subject, start, uint256(int256(-1)));
}
/// @dev Returns all the indices of `search` in `subject`.
/// The indices are byte offsets.
function indicesOf(string memory subject, string memory search)
internal
pure
returns (uint256[] memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
let searchLength := mload(search)
if iszero(gt(searchLength, subjectLength)) {
subject := add(subject, 0x20)
search := add(search, 0x20)
result := add(mload(0x40), 0x20)
let subjectStart := subject
let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
let h := 0
if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
let s := mload(search)
for {} 1 {} {
let t := mload(subject)
// Whether the first `searchLength % 32` bytes of
// `subject` and `search` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(subject, searchLength), h)) {
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
// Append to `result`.
mstore(result, sub(subject, subjectStart))
result := add(result, 0x20)
// Advance `subject` by `searchLength`.
subject := add(subject, searchLength)
if searchLength {
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
}
let resultEnd := result
// Assign `result` to the free memory pointer.
result := mload(0x40)
// Store the length of `result`.
mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
// Allocate memory for result.
// We allocate one more word, so this array can be recycled for {split}.
mstore(0x40, add(resultEnd, 0x20))
}
}
}
/// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
function split(string memory subject, string memory delimiter)
internal
pure
returns (string[] memory result)
{
uint256[] memory indices = indicesOf(subject, delimiter);
/// @solidity memory-safe-assembly
assembly {
let w := not(0x1f)
let indexPtr := add(indices, 0x20)
let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
mstore(add(indicesEnd, w), mload(subject))
mstore(indices, add(mload(indices), 1))
let prevIndex := 0
for {} 1 {} {
let index := mload(indexPtr)
mstore(indexPtr, 0x60)
if iszero(eq(index, prevIndex)) {
let element := mload(0x40)
let elementLength := sub(index, prevIndex)
mstore(element, elementLength)
// Copy the `subject` one word at a time, backwards.
for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
// Zeroize the slot after the string.
mstore(add(add(element, 0x20), elementLength), 0)
// Allocate memory for the length and the bytes,
// rounded up to a multiple of 32.
mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
// Store the `element` into the array.
mstore(indexPtr, element)
}
prevIndex := add(index, mload(delimiter))
indexPtr := add(indexPtr, 0x20)
if iszero(lt(indexPtr, indicesEnd)) { break }
}
result := indices
if iszero(mload(delimiter)) {
result := add(indices, 0x20)
mstore(result, sub(mload(indices), 2))
}
}
}
/// @dev Returns a concatenated string of `a` and `b`.
/// Cheaper than `string.concat()` and does not de-align the free memory pointer.
function concat(string memory a, string memory b)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let w := not(0x1f)
result := mload(0x40)
let aLength := mload(a)
// Copy `a` one word at a time, backwards.
for { let o := and(add(aLength, 0x20), w) } 1 {} {
mstore(add(result, o), mload(add(a, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let bLength := mload(b)
let output := add(result, aLength)
// Copy `b` one word at a time, backwards.
for { let o := and(add(bLength, 0x20), w) } 1 {} {
mstore(add(output, o), mload(add(b, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let totalLength := add(aLength, bLength)
let last := add(add(result, 0x20), totalLength)
// Zeroize the slot after the string.
mstore(last, 0)
// Stores the length.
mstore(result, totalLength)
// Allocate memory for the length and the bytes,
// rounded up to a multiple of 32.
mstore(0x40, and(add(last, 0x1f), w))
}
}
/// @dev Returns a copy of the string in either lowercase or UPPERCASE.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function toCase(string memory subject, bool toUpper)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let length := mload(subject)
if length {
result := add(mload(0x40), 0x20)
subject := add(subject, 1)
let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
let w := not(0)
for { let o := length } 1 {} {
o := add(o, w)
let b := and(0xff, mload(add(subject, o)))
mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
if iszero(o) { break }
}
result := mload(0x40)
mstore(result, length) // Store the length.
let last := add(add(result, 0x20), length)
mstore(last, 0) // Zeroize the slot after the string.
mstore(0x40, add(last, 0x20)) // Allocate the memory.
}
}
}
/// @dev Returns a string from a small bytes32 string.
/// `s` must be null-terminated, or behavior will be undefined.
function fromSmallString(bytes32 s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let n := 0
for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'.
mstore(result, n)
let o := add(result, 0x20)
mstore(o, s)
mstore(add(o, n), 0)
mstore(0x40, add(result, 0x40))
}
}
/// @dev Returns the small string, with all bytes after the first null byte zeroized.
function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'.
mstore(0x00, s)
mstore(result, 0x00)
result := mload(0x00)
}
}
/// @dev Returns the string as a normalized null-terminated small string.
function toSmallString(string memory s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(s)
if iszero(lt(result, 33)) {
mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
revert(0x1c, 0x04)
}
result := shl(shl(3, sub(32, result)), mload(add(s, result)))
}
}
/// @dev Returns a lowercased copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function lower(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, false);
}
/// @dev Returns an UPPERCASED copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function upper(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, true);
}
/// @dev Escapes the string to be used within HTML tags.
function escapeHTML(string memory s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
let end := add(s, mload(s))
result := add(mload(0x40), 0x20)
// Store the bytes of the packed offsets and strides into the scratch space.
// `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
mstore(0x1f, 0x900094)
mstore(0x08, 0xc0000000a6ab)
// Store ""&'<>" into the scratch space.
mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
for {} iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
// Not in `["\"","'","&","<",">"]`.
if iszero(and(shl(c, 1), 0x500000c400000000)) {
mstore8(result, c)
result := add(result, 1)
continue
}
let t := shr(248, mload(c))
mstore(result, mload(and(t, 0x1f)))
result := add(result, shr(5, t))
}
let last := result
mstore(last, 0) // Zeroize the slot after the string.
result := mload(0x40)
mstore(result, sub(last, add(result, 0x20))) // Store the length.
mstore(0x40, add(last, 0x20)) // Allocate the memory.
}
}
/// @dev Escapes the string to be used within double-quotes in a JSON.
/// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
function escapeJSON(string memory s, bool addDoubleQuotes)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let end := add(s, mload(s))
result := add(mload(0x40), 0x20)
if addDoubleQuotes {
mstore8(result, 34)
result := add(1, result)
}
// Store "\\u0000" in scratch space.
// Store "0123456789abcdef" in scratch space.
// Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
// into the scratch space.
mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
// Bitmask for detecting `["\"","\\"]`.
let e := or(shl(0x22, 1), shl(0x5c, 1))
for {} iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
if iszero(lt(c, 0x20)) {
if iszero(and(shl(c, 1), e)) {
// Not in `["\"","\\"]`.
mstore8(result, c)
result := add(result, 1)
continue
}
mstore8(result, 0x5c) // "\\".
mstore8(add(result, 1), c)
result := add(result, 2)
continue
}
if iszero(and(shl(c, 1), 0x3700)) {
// Not in `["\b","\t","\n","\f","\d"]`.
mstore8(0x1d, mload(shr(4, c))) // Hex value.
mstore8(0x1e, mload(and(c, 15))) // Hex value.
mstore(result, mload(0x19)) // "\\u00XX".
result := add(result, 6)
continue
}
mstore8(result, 0x5c) // "\\".
mstore8(add(result, 1), mload(add(c, 8)))
result := add(result, 2)
}
if addDoubleQuotes {
mstore8(result, 34)
result := add(1, result)
}
let last := result
mstore(last, 0) // Zeroize the slot after the string.
result := mload(0x40)
mstore(result, sub(last, add(result, 0x20))) // Store the length.
mstore(0x40, add(last, 0x20)) // Allocate the memory.
}
}
/// @dev Escapes the string to be used within double-quotes in a JSON.
function escapeJSON(string memory s) internal pure returns (string memory result) {
result = escapeJSON(s, false);
}
/// @dev Returns whether `a` equals `b`.
function eq(string memory a, string memory b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
}
}
/// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
// These should be evaluated on compile time, as far as possible.
let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
let x := not(or(m, or(b, add(m, and(b, m)))))
let r := shl(7, iszero(iszero(shr(128, x))))
r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
}
}
/// @dev Packs a single string with its length into a single word.
/// Returns `bytes32(0)` if the length is zero or greater than 31.
function packOne(string memory a) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
// We don't need to zero right pad the string,
// since this is our own custom non-standard packing scheme.
result :=
mul(
// Load the length and the bytes.
mload(add(a, 0x1f)),
// `length != 0 && length < 32`. Abuses underflow.
// Assumes that the length is valid and within the block gas limit.
lt(sub(mload(a), 1), 0x1f)
)
}
}
/// @dev Unpacks a string packed using {packOne}.
/// Returns the empty string if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packOne}, the output behavior is undefined.
function unpackOne(bytes32 packed) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
// Grab the free memory pointer.
result := mload(0x40)
// Allocate 2 words (1 for the length, 1 for the bytes).
mstore(0x40, add(result, 0x40))
// Zeroize the length slot.
mstore(result, 0)
// Store the length and bytes.
mstore(add(result, 0x1f), packed)
// Right pad with zeroes.
mstore(add(add(result, 0x20), mload(result)), 0)
}
}
/// @dev Packs two strings with their lengths into a single word.
/// Returns `bytes32(0)` if combined length is zero or greater than 30.
function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let aLength := mload(a)
// We don't need to zero right pad the strings,
// since this is our own custom non-standard packing scheme.
result :=
mul(
// Load the length and the bytes of `a` and `b`.
or(
shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
mload(sub(add(b, 0x1e), aLength))
),
// `totalLength != 0 && totalLength < 31`. Abuses underflow.
// Assumes that the lengths are valid and within the block gas limit.
lt(sub(add(aLength, mload(b)), 1), 0x1e)
)
}
}
/// @dev Unpacks strings packed using {packTwo}.
/// Returns the empty strings if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packTwo}, the output behavior is undefined.
function unpackTwo(bytes32 packed)
internal
pure
returns (string memory resultA, string memory resultB)
{
/// @solidity memory-safe-assembly
assembly {
// Grab the free memory pointer.
resultA := mload(0x40)
resultB := add(resultA, 0x40)
// Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
mstore(0x40, add(resultB, 0x40))
// Zeroize the length slots.
mstore(resultA, 0)
mstore(resultB, 0)
// Store the lengths and bytes.
mstore(add(resultA, 0x1f), packed)
mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
// Right pad with zeroes.
mstore(add(add(resultA, 0x20), mload(resultA)), 0)
mstore(add(add(resultB, 0x20), mload(resultB)), 0)
}
}
/// @dev Directly returns `a` without copying.
function directReturn(string memory a) internal pure {
assembly {
// Assumes that the string does not start from the scratch space.
let retStart := sub(a, 0x20)
let retSize := add(mload(a), 0x40)
// Right pad with zeroes. Just in case the string is produced
// by a method that doesn't zero right pad.
mstore(add(retStart, retSize), 0)
// Store the return offset.
mstore(retStart, 0x20)
// End the transaction, returning the string.
return(retStart, retSize)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Bytes
/// @notice Bytes is a library for manipulating byte arrays.
library Bytes {
/// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
/// @notice Slices a byte array with a given starting index and length. Returns a new byte array
/// as opposed to a pointer to the original array. Will throw if trying to slice more
/// bytes than exist in the array.
/// @param _bytes Byte array to slice.
/// @param _start Starting index of the slice.
/// @param _length Length of the slice.
/// @return Slice of the input byte array.
function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
unchecked {
require(_length + 31 >= _length, "slice_overflow");
require(_start + _length >= _start, "slice_overflow");
require(_bytes.length >= _start + _length, "slice_outOfBounds");
}
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} { mstore(mc, mload(cc)) }
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
/// @notice Slices a byte array with a given starting index up to the end of the original byte
/// array. Returns a new array rathern than a pointer to the original.
/// @param _bytes Byte array to slice.
/// @param _start Starting index of the slice.
/// @return Slice of the input byte array.
function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
if (_start >= _bytes.length) {
return bytes("");
}
return slice(_bytes, _start, _bytes.length - _start);
}
/// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
/// Resulting nibble array will be exactly twice as long as the input byte array.
/// @param _bytes Input byte array to convert.
/// @return Resulting nibble array.
function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
bytes memory _nibbles;
assembly {
// Grab a free memory offset for the new array
_nibbles := mload(0x40)
// Load the length of the passed bytes array from memory
let bytesLength := mload(_bytes)
// Calculate the length of the new nibble array
// This is the length of the input array times 2
let nibblesLength := shl(0x01, bytesLength)
// Update the free memory pointer to allocate memory for the new array.
// To do this, we add the length of the new array + 32 bytes for the array length
// rounded up to the nearest 32 byte boundary to the current free memory pointer.
mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
// Store the length of the new array in memory
mstore(_nibbles, nibblesLength)
// Store the memory offset of the _bytes array's contents on the stack
let bytesStart := add(_bytes, 0x20)
// Store the memory offset of the nibbles array's contents on the stack
let nibblesStart := add(_nibbles, 0x20)
// Loop through each byte in the input array
for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
// Get the starting offset of the next 2 bytes in the nibbles array
let offset := add(nibblesStart, shl(0x01, i))
// Load the byte at the current index within the `_bytes` array
let b := byte(0x00, mload(add(bytesStart, i)))
// Pull out the first nibble and store it in the new array
mstore8(offset, shr(0x04, b))
// Pull out the second nibble and store it in the new array
mstore8(add(offset, 0x01), and(b, 0x0F))
}
}
return _nibbles;
}
/// @notice Compares two byte arrays by comparing their keccak256 hashes.
/// @param _bytes First byte array to compare.
/// @param _other Second byte array to compare.
/// @return True if the two byte arrays are equal, false otherwise.
function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
return keccak256(_bytes) == keccak256(_other);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.8;
import "./RLPErrors.sol";
/// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
/// @title RLPReader
/// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
/// from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
/// various tweaks to improve readability.
library RLPReader {
/// @notice Custom pointer type to avoid confusion between pointers and uint256s.
type MemoryPointer is uint256;
/// @notice RLP item types.
/// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
/// @custom:value LIST_ITEM Represents an RLP list item.
enum RLPItemType {
DATA_ITEM,
LIST_ITEM
}
/// @notice Struct representing an RLP item.
/// @custom:field length Length of the RLP item.
/// @custom:field ptr Pointer to the RLP item in memory.
struct RLPItem {
uint256 length;
MemoryPointer ptr;
}
/// @notice Max list length that this library will accept.
uint256 internal constant MAX_LIST_LENGTH = 32;
/// @notice Converts bytes to a reference to memory position and length.
/// @param _in Input bytes to convert.
/// @return out_ Output memory reference.
function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
// Empty arrays are not RLP items.
if (_in.length == 0) revert EmptyItem();
MemoryPointer ptr;
assembly {
ptr := add(_in, 32)
}
out_ = RLPItem({ length: _in.length, ptr: ptr });
}
/// @notice Reads an RLP list value into a list of RLP items.
/// @param _in RLP list value.
/// @return out_ Decoded RLP list items.
function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
(uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
if (itemType != RLPItemType.LIST_ITEM) revert UnexpectedString();
if (listOffset + listLength != _in.length) revert InvalidDataRemainder();
// Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
// writing to the length. Since we can't know the number of RLP items without looping over
// the entire input, we'd have to loop twice to accurately size this array. It's easier to
// simply set a reasonable maximum list length and decrease the size before we finish.
out_ = new RLPItem[](MAX_LIST_LENGTH);
uint256 itemCount = 0;
uint256 offset = listOffset;
while (offset < _in.length) {
(uint256 itemOffset, uint256 itemLength,) = _decodeLength(
RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
);
// We don't need to check itemCount < out.length explicitly because Solidity already
// handles this check on our behalf, we'd just be wasting gas.
out_[itemCount] = RLPItem({
length: itemLength + itemOffset,
ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
});
itemCount += 1;
offset += itemOffset + itemLength;
}
// Decrease the array size to match the actual item count.
assembly {
mstore(out_, itemCount)
}
}
/// @notice Reads an RLP list value into a list of RLP items.
/// @param _in RLP list value.
/// @return out_ Decoded RLP list items.
function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
out_ = readList(toRLPItem(_in));
}
/// @notice Reads an RLP bytes value into bytes.
/// @param _in RLP bytes value.
/// @return out_ Decoded bytes.
function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
(uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
if (itemType != RLPItemType.DATA_ITEM) revert UnexpectedList();
if (_in.length != itemOffset + itemLength) revert InvalidDataRemainder();
out_ = _copy(_in.ptr, itemOffset, itemLength);
}
/// @notice Reads an RLP bytes value into bytes.
/// @param _in RLP bytes value.
/// @return out_ Decoded bytes.
function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
out_ = readBytes(toRLPItem(_in));
}
/// @notice Reads the raw bytes of an RLP item.
/// @param _in RLP item to read.
/// @return out_ Raw RLP bytes.
function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
out_ = _copy(_in.ptr, 0, _in.length);
}
/// @notice Decodes the length of an RLP item.
/// @param _in RLP item to decode.
/// @return offset_ Offset of the encoded data.
/// @return length_ Length of the encoded data.
/// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
function _decodeLength(RLPItem memory _in)
private
pure
returns (uint256 offset_, uint256 length_, RLPItemType type_)
{
// Short-circuit if there's nothing to decode, note that we perform this check when
// the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
// that function and create an RLP item directly. So we need to check this anyway.
if (_in.length == 0) revert EmptyItem();
MemoryPointer ptr = _in.ptr;
uint256 prefix;
assembly {
prefix := byte(0, mload(ptr))
}
if (prefix <= 0x7f) {
// Single byte.
return (0, 1, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xb7) {
// Short string.
// slither-disable-next-line variable-scope
uint256 strLen = prefix - 0x80;
if (_in.length <= strLen) revert ContentLengthMismatch();
bytes1 firstByteOfContent;
assembly {
firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
}
if (strLen == 1 && firstByteOfContent < 0x80) revert InvalidHeader();
return (1, strLen, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xbf) {
// Long string.
uint256 lenOfStrLen = prefix - 0xb7;
if (_in.length <= lenOfStrLen) revert ContentLengthMismatch();
bytes1 firstByteOfContent;
assembly {
firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
}
if (firstByteOfContent == 0x00) revert InvalidHeader();
uint256 strLen;
assembly {
strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
}
if (strLen <= 55) revert InvalidHeader();
if (_in.length <= lenOfStrLen + strLen) revert ContentLengthMismatch();
return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xf7) {
// Short list.
// slither-disable-next-line variable-scope
uint256 listLen = prefix - 0xc0;
if (_in.length <= listLen) revert ContentLengthMismatch();
return (1, listLen, RLPItemType.LIST_ITEM);
} else {
// Long list.
uint256 lenOfListLen = prefix - 0xf7;
if (_in.length <= lenOfListLen) revert ContentLengthMismatch();
bytes1 firstByteOfContent;
assembly {
firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
}
if (firstByteOfContent == 0x00) revert InvalidHeader();
uint256 listLen;
assembly {
listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
}
if (listLen <= 55) revert InvalidHeader();
if (_in.length <= lenOfListLen + listLen) revert ContentLengthMismatch();
return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
}
}
/// @notice Copies the bytes from a memory location.
/// @param _src Pointer to the location to read from.
/// @param _offset Offset to start reading from.
/// @param _length Number of bytes to read.
/// @return out_ Copied bytes.
function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
out_ = new bytes(_length);
if (_length == 0) {
return out_;
}
// Mostly based on Solidity's copy_memory_to_memory:
// https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
uint256 src = MemoryPointer.unwrap(_src) + _offset;
assembly {
let dest := add(out_, 32)
let i := 0
for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
if gt(i, _length) { mstore(add(dest, _length), 0) }
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
/*//////////////////////////////////////////////////////////////
SIMPLIFIED FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
}
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
}
function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
}
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
}
function powWad(int256 x, int256 y) internal pure returns (int256) {
// Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
}
function expWad(int256 x) internal pure returns (int256 r) {
unchecked {
// When the result is < 0.5 we return zero. This happens when
// x <= floor(log(0.5e18) * 1e18) ~ -42e18
if (x <= -42139678854452767551) return 0;
// When the result is > (2**255 - 1) / 1e18 we can not represent it as an
// int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
// x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
// for more intermediate precision and a binary basis. This base conversion
// is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
x = (x << 78) / 5**18;
// Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
// of two such that exp(x) = exp(x') * 2**k, where k is an integer.
// Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
x = x - k * 54916777467707473351141471128;
// k is in the range [-61, 195].
// Evaluate using a (6, 7)-term rational approximation.
// p is made monic, we'll multiply by a scale factor later.
int256 y = x + 1346386616545796478920950773328;
y = ((y * x) >> 96) + 57155421227552351082224309758442;
int256 p = y + x - 94201549194550492254356042504812;
p = ((p * y) >> 96) + 28719021644029726153956944680412240;
p = p * x + (4385272521454847904659076985693276 << 96);
// We leave p in 2**192 basis so we don't need to scale it back up for the division.
int256 q = x - 2855989394907223263936484059900;
q = ((q * x) >> 96) + 50020603652535783019961831881945;
q = ((q * x) >> 96) - 533845033583426703283633433725380;
q = ((q * x) >> 96) + 3604857256930695427073651918091429;
q = ((q * x) >> 96) - 14423608567350463180887372962807573;
q = ((q * x) >> 96) + 26449188498355588339934803723976023;
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial won't have zeros in the domain as all its roots are complex.
// No scaling is necessary because p is already 2**96 too large.
r := sdiv(p, q)
}
// r should be in the range (0.09, 0.25) * 2**96.
// We now need to multiply r by:
// * the scale factor s = ~6.031367120.
// * the 2**k factor from the range reduction.
// * the 1e18 / 2**96 factor for base conversion.
// We do this all at once, with an intermediate result in 2**213
// basis, so the final right shift is always by a positive amount.
r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
}
}
function lnWad(int256 x) internal pure returns (int256 r) {
unchecked {
require(x > 0, "UNDEFINED");
// We want to convert x from 10**18 fixed point to 2**96 fixed point.
// We do this by multiplying by 2**96 / 10**18. But since
// ln(x * C) = ln(x) + ln(C), we can simply do nothing here
// and add ln(2**96 / 10**18) at the end.
// Reduce range of x to (1, 2) * 2**96
// ln(2^k * x) = k * ln(2) + ln(x)
int256 k = int256(log2(uint256(x))) - 96;
x <<= uint256(159 - k);
x = int256(uint256(x) >> 159);
// Evaluate using a (8, 8)-term rational approximation.
// p is made monic, we will multiply by a scale factor later.
int256 p = x + 3273285459638523848632254066296;
p = ((p * x) >> 96) + 24828157081833163892658089445524;
p = ((p * x) >> 96) + 43456485725739037958740375743393;
p = ((p * x) >> 96) - 11111509109440967052023855526967;
p = ((p * x) >> 96) - 45023709667254063763336534515857;
p = ((p * x) >> 96) - 14706773417378608786704636184526;
p = p * x - (795164235651350426258249787498 << 96);
// We leave p in 2**192 basis so we don't need to scale it back up for the division.
// q is monic by convention.
int256 q = x + 5573035233440673466300451813936;
q = ((q * x) >> 96) + 71694874799317883764090561454958;
q = ((q * x) >> 96) + 283447036172924575727196451306956;
q = ((q * x) >> 96) + 401686690394027663651624208769553;
q = ((q * x) >> 96) + 204048457590392012362485061816622;
q = ((q * x) >> 96) + 31853899698501571402653359427138;
q = ((q * x) >> 96) + 909429971244387300277376558375;
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial is known not to have zeros in the domain.
// No scaling required because p is already 2**96 too large.
r := sdiv(p, q)
}
// r is in the range (0, 0.125) * 2**96
// Finalization, we need to:
// * multiply by the scale factor s = 5.549…
// * add ln(2**96 / 10**18)
// * add k * ln(2)
// * multiply by 10**18 / 2**96 = 5**18 >> 78
// mul s * 5e18 * 2**96, base is now 5**18 * 2**192
r *= 1677202110996718588342820967067443963516166;
// add ln(2) * k * 5e18 * 2**192
r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
// add ln(2**96 / 10**18) * 5e18 * 2**192
r += 600920179829731861736702779321621459595472258049074101567377883020018308;
// base conversion: mul 2**18 / 2**192
r >>= 174;
}
}
/*//////////////////////////////////////////////////////////////
LOW LEVEL FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
function mulDivDown(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
assembly {
// Store x * y in z for now.
z := mul(x, y)
// Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
revert(0, 0)
}
// Divide z by the denominator.
z := div(z, denominator)
}
}
function mulDivUp(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
assembly {
// Store x * y in z for now.
z := mul(x, y)
// Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
revert(0, 0)
}
// First, divide z - 1 by the denominator and add 1.
// We allow z - 1 to underflow if z is 0, because we multiply the
// end result by 0 if z is zero, ensuring we return 0 if z is zero.
z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
}
}
function rpow(
uint256 x,
uint256 n,
uint256 scalar
) internal pure returns (uint256 z) {
assembly {
switch x
case 0 {
switch n
case 0 {
// 0 ** 0 = 1
z := scalar
}
default {
// 0 ** n = 0
z := 0
}
}
default {
switch mod(n, 2)
case 0 {
// If n is even, store scalar in z for now.
z := scalar
}
default {
// If n is odd, store x in z for now.
z := x
}
// Shifting right by 1 is like dividing by 2.
let half := shr(1, scalar)
for {
// Shift n right by 1 before looping to halve it.
n := shr(1, n)
} n {
// Shift n right by 1 each iteration to halve it.
n := shr(1, n)
} {
// Revert immediately if x ** 2 would overflow.
// Equivalent to iszero(eq(div(xx, x), x)) here.
if shr(128, x) {
revert(0, 0)
}
// Store x squared.
let xx := mul(x, x)
// Round to the nearest number.
let xxRound := add(xx, half)
// Revert if xx + half overflowed.
if lt(xxRound, xx) {
revert(0, 0)
}
// Set x to scaled xxRound.
x := div(xxRound, scalar)
// If n is even:
if mod(n, 2) {
// Compute z * x.
let zx := mul(z, x)
// If z * x overflowed:
if iszero(eq(div(zx, x), z)) {
// Revert if x is non-zero.
if iszero(iszero(x)) {
revert(0, 0)
}
}
// Round to the nearest number.
let zxRound := add(zx, half)
// Revert if zx + half overflowed.
if lt(zxRound, zx) {
revert(0, 0)
}
// Return properly scaled zxRound.
z := div(zxRound, scalar)
}
}
}
}
}
/*//////////////////////////////////////////////////////////////
GENERAL NUMBER UTILITIES
//////////////////////////////////////////////////////////////*/
function sqrt(uint256 x) internal pure returns (uint256 z) {
assembly {
let y := x // We start y at x, which will help us make our initial estimate.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// We check y >= 2^(k + 8) but shift right by k bits
// each branch to ensure that if x >= 256, then y >= 256.
if iszero(lt(y, 0x10000000000000000000000000000000000)) {
y := shr(128, y)
z := shl(64, z)
}
if iszero(lt(y, 0x1000000000000000000)) {
y := shr(64, y)
z := shl(32, z)
}
if iszero(lt(y, 0x10000000000)) {
y := shr(32, y)
z := shl(16, z)
}
if iszero(lt(y, 0x1000000)) {
y := shr(16, y)
z := shl(8, z)
}
// Goal was to get z*z*y within a small factor of x. More iterations could
// get y in a tighter range. Currently, we will have y in [256, 256*2^16).
// We ensured y >= 256 so that the relative difference between y and y+1 is small.
// That's not possible if x < 256 but we can just verify those cases exhaustively.
// Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
// Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
// Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
// For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
// (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
// Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
// sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
// There is no overflow risk here since y < 2^136 after the first branch above.
z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If x+1 is a perfect square, the Babylonian method cycles between
// floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
// Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
// If you don't care whether the floor or ceil square root is returned, you can remove this statement.
z := sub(z, lt(div(x, z), z))
}
}
function log2(uint256 x) internal pure returns (uint256 r) {
require(x > 0, "UNDEFINED");
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
r := or(r, shl(2, lt(0xf, shr(r, x))))
r := or(r, shl(1, lt(0x3, shr(r, x))))
r := or(r, lt(0x1, shr(r, x)))
}
}
}// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice The length of an RLP item must be greater than zero to be decodable error EmptyItem(); /// @notice The decoded item type for list is not a list item error UnexpectedString(); /// @notice The RLP item has an invalid data remainder error InvalidDataRemainder(); /// @notice Decoded item type for bytes is not a string item error UnexpectedList(); /// @notice The length of the content must be greater than the RLP item length error ContentLengthMismatch(); /// @notice Invalid RLP header for RLP item error InvalidHeader();
{
"remappings": [
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"@openzeppelin/contracts-v5/=lib/openzeppelin-contracts-v5/contracts/",
"@rari-capital/solmate/=lib/solmate/",
"@lib-keccak/=lib/lib-keccak/contracts/lib/",
"@solady/=lib/solady/src/",
"forge-std/=lib/forge-std/src/",
"ds-test/=lib/forge-std/lib/ds-test/src/",
"safe-contracts/=lib/safe-contracts/contracts/",
"kontrol-cheatcodes/=lib/kontrol-cheatcodes/src/",
"gelato/=lib/automate/contracts/",
"@solady-test/=lib/lib-keccak/lib/solady/test/",
"automate/=lib/automate/contracts/",
"hardhat/=lib/automate/node_modules/hardhat/",
"lib-keccak/=lib/lib-keccak/contracts/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts-v5/=lib/openzeppelin-contracts-v5/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"prb/-est/=lib/automate/lib/prb-test/src/",
"solady/=lib/solady/src/",
"solmate/=lib/solmate/src/"
],
"optimizer": {
"enabled": true,
"runs": 999999
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "none"
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "london",
"viaIR": false,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"localToken","type":"address"},{"indexed":true,"internalType":"bytes32","name":"remoteToken","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"from","type":"bytes32"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ERC20BridgeFinalized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"localToken","type":"address"},{"indexed":true,"internalType":"bytes32","name":"remoteToken","type":"bytes32"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"bytes32","name":"to","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ERC20BridgeInitiated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"l1Token","type":"address"},{"indexed":true,"internalType":"bytes32","name":"l2Token","type":"bytes32"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"bytes32","name":"to","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ERC20DepositInitiated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"l1Token","type":"address"},{"indexed":true,"internalType":"bytes32","name":"l2Token","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"from","type":"bytes32"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ERC20WithdrawalFinalized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"from","type":"bytes32"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ETHBridgeFinalized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"bytes32","name":"to","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ETHBridgeInitiated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"bytes32","name":"to","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ETHDepositInitiated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"from","type":"bytes32"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"ETHWithdrawalFinalized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"inputs":[],"name":"ERC20SharedDecimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"MESSENGER","outputs":[{"internalType":"contract CrossDomainMessenger","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OTHER_BRIDGE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint32","name":"","type":"uint32"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"bridgeERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_localToken","type":"address"},{"internalType":"bytes32","name":"_remoteToken","type":"bytes32"},{"internalType":"bytes32","name":"_to","type":"bytes32"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"bridgeERC20To","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"","type":"uint32"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"bridgeETH","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_to","type":"bytes32"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"bridgeETHTo","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint32","name":"","type":"uint32"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"depositERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_l1Token","type":"address"},{"internalType":"bytes32","name":"_l2Token","type":"bytes32"},{"internalType":"bytes32","name":"_to","type":"bytes32"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"depositERC20To","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"","type":"uint32"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"depositETH","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_to","type":"bytes32"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"depositETHTo","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"deposits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_localToken","type":"address"},{"internalType":"bytes32","name":"_remoteToken","type":"bytes32"},{"internalType":"bytes32","name":"_from","type":"bytes32"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"finalizeBridgeERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_from","type":"bytes32"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"finalizeBridgeETH","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_l1Token","type":"address"},{"internalType":"bytes32","name":"_l2Token","type":"bytes32"},{"internalType":"bytes32","name":"_from","type":"bytes32"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"finalizeERC20Withdrawal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_from","type":"bytes32"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes","name":"_extraData","type":"bytes"}],"name":"finalizeETHWithdrawal","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract CrossDomainMessenger","name":"_messenger","type":"address"},{"internalType":"contract SuperchainConfig","name":"_superchainConfig","type":"address"},{"internalType":"contract SystemConfig","name":"_systemConfig","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"l2TokenBridge","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"messenger","outputs":[{"internalType":"contract CrossDomainMessenger","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"otherBridge","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"superchainConfig","outputs":[{"internalType":"contract SuperchainConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"systemConfig","outputs":[{"internalType":"contract SystemConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]Contract Creation Code
60806040523480156200001157600080fd5b50620000206000808062000026565b6200024f565b600054610100900460ff1615808015620000475750600054600160ff909116105b806200007757506200006430620001ad60201b620005ad1760201c565b15801562000077575060005460ff166001145b620000e05760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b60648201526084015b60405180910390fd5b6000805460ff19166001179055801562000104576000805461ff0019166101001790555b603280546001600160a01b038086166001600160a01b031992831617909255603380549285169290911691909117905562000160847f02c806312cb859f1bc25448e39f87aa09857d83ccb4a837df55648e000000000620001bc565b8015620001a7576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50505050565b6001600160a01b03163b151590565b600054610100900460ff16620002295760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b6064820152608401620000d7565b600380546001600160a01b0319166001600160a01b039390931692909217909155600455565b612f0f806200025f6000396000f3fe60806040526004361061018f5760003560e01c80635ed368e9116100d6578063b1a1a8821161007f578063c89701a211610059578063c89701a214610557578063d1a1beb61461056d578063f73fb39c1461058d57600080fd5b8063b1a1a88214610292578063c0c53b8b14610517578063c70cc4a31461053757600080fd5b806387087623116100b057806387087623146104d157806391c49bf8146104bc578063927ede2d146104ec57600080fd5b80635ed368e91461048e5780636e6f77b7146104a15780637f46ddb2146104bc57600080fd5b806335e80ab31161013857806354fd4d501161011257806354fd4d5014610400578063596a37c5146104565780635c975abb1461046957600080fd5b806335e80ab3146103935780633cb747bf146103c057806342c1aa63146103ed57600080fd5b806323f34afa1161016957806323f34afa1461030e5780632c5f766b1461032e57806333d7e2bd1461034157600080fd5b806309fc88431461029257806315a98d3a146102a75780632260a9c2146102c857600080fd5b3661028d57333b15155b1561022b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f5374616e646172644272696467653a2066756e6374696f6e2063616e206f6e6c60448201527f792062652063616c6c65642066726f6d20616e20454f4100000000000000000060648201526084015b60405180910390fd5b6040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600860248201527f646973616c6c6f770000000000000000000000000000000000000000000000006044820152606401610222565b600080fd5b6102a56102a03660046126f7565b6105c9565b005b3480156102b357600080fd5b50604051600981526020015b60405180910390f35b3480156102d457600080fd5b506103006102e336600461276f565b600260209081526000928352604080842090915290825290205481565b6040519081526020016102bf565b34801561031a57600080fd5b506102a561032936600461279b565b6105d2565b6102a561033c36600461281f565b610620565b34801561034d57600080fd5b5060335461036e9073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016102bf565b34801561039f57600080fd5b5060325461036e9073ffffffffffffffffffffffffffffffffffffffff1681565b3480156103cc57600080fd5b5060035461036e9073ffffffffffffffffffffffffffffffffffffffff1681565b6102a56103fb36600461281f565b610669565b34801561040c57600080fd5b506104496040518060400160405280600581526020017f322e322e3000000000000000000000000000000000000000000000000000000081525081565b6040516102bf91906128ef565b6102a5610464366004612902565b6106ab565b34801561047557600080fd5b5061047e610bf3565b60405190151581526020016102bf565b6102a561049c366004612902565b610c8c565b3480156104ad57600080fd5b506102a56102a036600461296c565b3480156104c857600080fd5b50600454610300565b3480156104dd57600080fd5b506102a56102a03660046129e6565b3480156104f857600080fd5b5060035473ffffffffffffffffffffffffffffffffffffffff1661036e565b34801561052357600080fd5b506102a5610532366004612a2f565b610ca0565b34801561054357600080fd5b506102a5610552366004612a7a565b610eab565b34801561056357600080fd5b5061030060045481565b34801561057957600080fd5b506102a561058836600461279b565b610eba565b34801561059957600080fd5b506102a56105a8366004612a7a565b610eff565b73ffffffffffffffffffffffffffffffffffffffff163b151590565b333b1515610199565b61061787873388888888888080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061137e92505050565b50505050505050565b6106633385348686868080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061138d92505050565b50505050565b61066333858585858080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506115e492505050565b60035473ffffffffffffffffffffffffffffffffffffffff16331480156107635750600454600360009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16636e296e456040518163ffffffff1660e01b8152600401602060405180830381865afa15801561073d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107619190612ae1565b145b610815576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604160248201527f5374616e646172644272696467653a2066756e6374696f6e2063616e206f6e6c60448201527f792062652063616c6c65642066726f6d20746865206f7468657220627269646760648201527f6500000000000000000000000000000000000000000000000000000000000000608482015260a401610222565b6000610820846115f1565b905061082a610bf3565b15610891576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601660248201527f5374616e646172644272696467653a20706175736564000000000000000000006044820152606401610222565b610899611607565b15610926576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f5374616e646172644272696467653a2063616e6e6f742062726964676520455460448201527f48207769746820637573746f6d2067617320746f6b656e0000000000000000006064820152608401610222565b8034146109b5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603a60248201527f5374616e646172644272696467653a20616d6f756e742073656e7420646f657360448201527f206e6f74206d6174636820616d6f756e742072657175697265640000000000006064820152608401610222565b3073ffffffffffffffffffffffffffffffffffffffff861603610a5a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602360248201527f5374616e646172644272696467653a2063616e6e6f742073656e6420746f207360448201527f656c6600000000000000000000000000000000000000000000000000000000006064820152608401610222565b60035473ffffffffffffffffffffffffffffffffffffffff90811690861603610b05576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602860248201527f5374616e646172644272696467653a2063616e6e6f742073656e6420746f206d60448201527f657373656e6765720000000000000000000000000000000000000000000000006064820152608401610222565b610b4786868386868080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061164692505050565b6000610b64865a84604051806020016040528060008152506116a3565b905080610617576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602360248201527f5374616e646172644272696467653a20455448207472616e736665722066616960448201527f6c656400000000000000000000000000000000000000000000000000000000006064820152608401610222565b603254604080517f5c975abb000000000000000000000000000000000000000000000000000000008152905160009273ffffffffffffffffffffffffffffffffffffffff1691635c975abb9160048083019260209291908290030181865afa158015610c63573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c879190612afa565b905090565b610c9985858585856106ab565b5050505050565b600054610100900460ff1615808015610cc05750600054600160ff909116105b80610cda5750303b158015610cda575060005460ff166001145b610d66576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a65640000000000000000000000000000000000006064820152608401610222565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790558015610dc457600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff166101001790555b6032805473ffffffffffffffffffffffffffffffffffffffff8086167fffffffffffffffffffffffff0000000000000000000000000000000000000000928316179092556033805492851692909116919091179055610e43847f02c806312cb859f1bc25448e39f87aa09857d83ccb4a837df55648e0000000006116bb565b801561066357600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a150505050565b61061787878787878787610eff565b61061787873388888888888080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061179d92505050565b60035473ffffffffffffffffffffffffffffffffffffffff1633148015610fb75750600454600360009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16636e296e456040518163ffffffff1660e01b8152600401602060405180830381865afa158015610f91573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610fb59190612ae1565b145b611069576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604160248201527f5374616e646172644272696467653a2066756e6374696f6e2063616e206f6e6c60448201527f792062652063616c6c65642066726f6d20746865206f7468657220627269646760648201527f6500000000000000000000000000000000000000000000000000000000000000608482015260a401610222565b611071610bf3565b156110d8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601660248201527f5374616e646172644272696467653a20706175736564000000000000000000006044820152606401610222565b60008773ffffffffffffffffffffffffffffffffffffffff1663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015611125573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111499190612b2d565b90506009600061115a868385611c76565b90506111658a611cdf565b156112b3576111748a8a611d0b565b611226576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604a60248201527f5374616e646172644272696467653a2077726f6e672072656d6f746520746f6b60448201527f656e20666f72204f7074696d69736d204d696e7461626c65204552433230206c60648201527f6f63616c20746f6b656e00000000000000000000000000000000000000000000608482015260a401610222565b6040517f40c10f1900000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8881166004830152602482018390528b16906340c10f1990604401600060405180830381600087803b15801561129657600080fd5b505af11580156112aa573d6000803e3d6000fd5b5050505061132e565b73ffffffffffffffffffffffffffffffffffffffff8a1660009081526002602090815260408083208c84529091529020546112ef908290612b77565b73ffffffffffffffffffffffffffffffffffffffff8b1660008181526002602090815260408083208e845290915290209190915561132e908883611d85565b6113728a8a8a8a858a8a8080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250611e5e92505050565b50505050505050505050565b6106178787878787878761179d565b611395611607565b15611422576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f5374616e646172644272696467653a2063616e6e6f742062726964676520455460448201527f48207769746820637573746f6d2067617320746f6b656e0000000000000000006064820152608401610222565b8234146114b1576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603e60248201527f5374616e646172644272696467653a206272696467696e6720455448206d757360448201527f7420696e636c7564652073756666696369656e74204554482076616c756500006064820152608401610222565b6114bd85858584611ec8565b60035460045473ffffffffffffffffffffffffffffffffffffffff9091169063e223d3db9085907f596a37c500000000000000000000000000000000000000000000000000000000898961151085611f25565b886040516024016115249493929190612b8e565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009485161790525160e086901b90921682526115b792918890600401612bd3565b6000604051808303818588803b1580156115d057600080fd5b505af1158015611372573d6000803e3d6000fd5b610663848434858561138d565b6000611601633b9aca0083612c02565b92915050565b600080611612611f35565b5073ffffffffffffffffffffffffffffffffffffffff1673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee141592915050565b8273ffffffffffffffffffffffffffffffffffffffff16847f74fbf60da53b51e6a47dfbd8d68a0262fdfd918404bed0fd9f8d19563300f2c6848460405161168f929190612c3f565b60405180910390a361066384848484611fd2565b6000806000835160208501868989f195945050505050565b600054610100900460ff16611752576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e670000000000000000000000000000000000000000006064820152608401610222565b600380547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff9390931692909217909155600455565b341561182b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602160248201527f5374616e646172644272696467653a2063616e6e6f742073656e642076616c7560448201527f65000000000000000000000000000000000000000000000000000000000000006064820152608401610222565b60008060008973ffffffffffffffffffffffffffffffffffffffff1663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa15801561187b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061189f9190612b2d565b905060096118ae878383612029565b93506118bb878383611c76565b925050508160000361194e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526024808201527f5374616e646172644272696467653a20696e76616c696420746f6b656e20616d60448201527f6f756e74000000000000000000000000000000000000000000000000000000006064820152608401610222565b61195789611cdf565b15611aa5576119668989611d0b565b611a18576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604a60248201527f5374616e646172644272696467653a2077726f6e672072656d6f746520746f6b60448201527f656e20666f72204f7074696d69736d204d696e7461626c65204552433230206c60648201527f6f63616c20746f6b656e00000000000000000000000000000000000000000000608482015260a401610222565b6040517f9dc29fac00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8881166004830152602482018490528a1690639dc29fac90604401600060405180830381600087803b158015611a8857600080fd5b505af1158015611a9c573d6000803e3d6000fd5b50505050611b35565b611ac773ffffffffffffffffffffffffffffffffffffffff8a1688308561206d565b73ffffffffffffffffffffffffffffffffffffffff891660009081526002602090815260408083208b8452909152902054611b03908390612c58565b73ffffffffffffffffffffffffffffffffffffffff8a1660009081526002602090815260408083208c84529091529020555b611b438989898986886120cb565b60035460045460405173ffffffffffffffffffffffffffffffffffffffff9092169163e223d3db91907ff73fb39c0000000000000000000000000000000000000000000000000000000090611ba6908d908f908e908e908a908d90602401612c70565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009485161790525160e085901b9092168252611c3992918990600401612bd3565b600060405180830381600087803b158015611c5357600080fd5b505af1158015611c67573d6000803e3d6000fd5b50505050505050505050505050565b60008160ff168360ff161115611cb1576000611c928385612cc7565b611c9d90600a612e0a565b9050611ca98186612e19565b915050611cd8565b6000611cbd8484612cc7565b611cc890600a612e0a565b9050611cd48186612c02565b9150505b9392505050565b6000611601827fec4fc8e300000000000000000000000000000000000000000000000000000000612143565b60008273ffffffffffffffffffffffffffffffffffffffff1663d6c0b2c46040518163ffffffff1660e01b8152600401602060405180830381865afa158015611d58573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d7c9190612ae1565b90911492915050565b60405173ffffffffffffffffffffffffffffffffffffffff8316602482015260448101829052611e599084907fa9059cbb00000000000000000000000000000000000000000000000000000000906064015b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009093169290921790915261215f565b505050565b83858773ffffffffffffffffffffffffffffffffffffffff167fd6662b6feb0493cbc31ff04c4841da31b7ae66c03acf8fe5122bb226ac941bbb868686604051611eaa93929190612e54565b60405180910390a4611ec086868686868661226b565b505050505050565b828473ffffffffffffffffffffffffffffffffffffffff167f0e0d8d614a76187c4dbeeb480aacf88c8e13d35ea55cdc853d5b1beb26203c768484604051611f11929190612c3f565b60405180910390a3610663848484846122c7565b6000611601633b9aca0083612e19565b603354604080517f4397dfef0000000000000000000000000000000000000000000000000000000081528151600093849373ffffffffffffffffffffffffffffffffffffffff90911692634397dfef92600480830193928290030181865afa158015611fa5573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611fc99190612e92565b90939092509050565b8273ffffffffffffffffffffffffffffffffffffffff16847fb9d74035c12953c6d54c2ba89238a69e82228f6df0ba6a310b4335ef22164359848460405161201b929190612c3f565b60405180910390a350505050565b60008160ff168360ff161161203f575082611cd8565b600061204b8385612cc7565b61205690600a612e0a565b9050806120638187612e19565b611cd49190612c02565b60405173ffffffffffffffffffffffffffffffffffffffff808516602483015283166044820152606481018290526106639085907f23b872dd0000000000000000000000000000000000000000000000000000000090608401611dd7565b8373ffffffffffffffffffffffffffffffffffffffff16858773ffffffffffffffffffffffffffffffffffffffff167fccedf30deddbcd5555e4cad88ca0d2aad343d6302f5251eddea4c8aecd9460d286868660405161212d93929190612ec7565b60405180910390a4611ec0868686868686612310565b600061214e83612372565b8015611cd85750611cd883836123d6565b60006121c1826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c65648152508573ffffffffffffffffffffffffffffffffffffffff166124a59092919063ffffffff16565b805190915015611e5957808060200190518101906121df9190612afa565b611e59576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152608401610222565b83858773ffffffffffffffffffffffffffffffffffffffff167f32e5449e7fea5fb77946053e43ed8b853f7a34620ed7804d3af7354a54d768528686866040516122b793929190612e54565b60405180910390a4505050505050565b828473ffffffffffffffffffffffffffffffffffffffff167f657f5322d05eb184849ecc761434dbea6aae0ad5dfc848ebb2e5b538817cbb09848460405161201b929190612c3f565b8373ffffffffffffffffffffffffffffffffffffffff16858773ffffffffffffffffffffffffffffffffffffffff167f7d6bfb6966a3d1179e265073861bb549088fe2f5c69b829377bba2db7e756b848686866040516122b793929190612ec7565b600061239e827f01ffc9a7000000000000000000000000000000000000000000000000000000006123d6565b801561160157506123cf827fffffffff000000000000000000000000000000000000000000000000000000006123d6565b1592915050565b604080517fffffffff000000000000000000000000000000000000000000000000000000008316602480830191909152825180830390910181526044909101909152602080820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f01ffc9a700000000000000000000000000000000000000000000000000000000178152825160009392849283928392918391908a617530fa92503d9150600051905082801561248e575060208210155b801561249a5750600081115b979650505050505050565b60606124b484846000856124bc565b949350505050565b60608247101561254e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c00000000000000000000000000000000000000000000000000006064820152608401610222565b73ffffffffffffffffffffffffffffffffffffffff85163b6125cc576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610222565b6000808673ffffffffffffffffffffffffffffffffffffffff1685876040516125f59190612ee6565b60006040518083038185875af1925050503d8060008114612632576040519150601f19603f3d011682016040523d82523d6000602084013e612637565b606091505b509150915061249a82828660608315612651575081611cd8565b8251156126615782518084602001fd5b816040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161022291906128ef565b803563ffffffff811681146126a957600080fd5b919050565b60008083601f8401126126c057600080fd5b50813567ffffffffffffffff8111156126d857600080fd5b6020830191508360208285010111156126f057600080fd5b9250929050565b60008060006040848603121561270c57600080fd5b61271584612695565b9250602084013567ffffffffffffffff81111561273157600080fd5b61273d868287016126ae565b9497909650939450505050565b73ffffffffffffffffffffffffffffffffffffffff8116811461276c57600080fd5b50565b6000806040838503121561278257600080fd5b823561278d8161274a565b946020939093013593505050565b600080600080600080600060c0888a0312156127b657600080fd5b87356127c18161274a565b96506020880135955060408801359450606088013593506127e460808901612695565b925060a088013567ffffffffffffffff81111561280057600080fd5b61280c8a828b016126ae565b989b979a50959850939692959293505050565b6000806000806060858703121561283557600080fd5b8435935061284560208601612695565b9250604085013567ffffffffffffffff81111561286157600080fd5b61286d878288016126ae565b95989497509550505050565b60005b8381101561289457818101518382015260200161287c565b838111156106635750506000910152565b600081518084526128bd816020860160208601612879565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b602081526000611cd860208301846128a5565b60008060008060006080868803121561291a57600080fd5b85359450602086013561292c8161274a565b935060408601359250606086013567ffffffffffffffff81111561294f57600080fd5b61295b888289016126ae565b969995985093965092949392505050565b60008060008060008060a0878903121561298557600080fd5b86356129908161274a565b955060208701359450604087013593506129ac60608801612695565b9250608087013567ffffffffffffffff8111156129c857600080fd5b6129d489828a016126ae565b979a9699509497509295939492505050565b60008060008060008060a087890312156129ff57600080fd5b8635612a0a8161274a565b95506020870135612a1a8161274a565b9450604087013593506129ac60608801612695565b600080600060608486031215612a4457600080fd5b8335612a4f8161274a565b92506020840135612a5f8161274a565b91506040840135612a6f8161274a565b809150509250925092565b600080600080600080600060c0888a031215612a9557600080fd5b8735612aa08161274a565b965060208801359550604088013594506060880135612abe8161274a565b93506080880135925060a088013567ffffffffffffffff81111561280057600080fd5b600060208284031215612af357600080fd5b5051919050565b600060208284031215612b0c57600080fd5b81518015158114611cd857600080fd5b805160ff811681146126a957600080fd5b600060208284031215612b3f57600080fd5b611cd882612b1c565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b600082821015612b8957612b89612b48565b500390565b73ffffffffffffffffffffffffffffffffffffffff85168152836020820152826040820152608060608201526000612bc960808301846128a5565b9695505050505050565b838152606060208201526000612bec60608301856128a5565b905063ffffffff83166040830152949350505050565b6000817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0483118215151615612c3a57612c3a612b48565b500290565b8281526040602082015260006124b460408301846128a5565b60008219821115612c6b57612c6b612b48565b500190565b868152600073ffffffffffffffffffffffffffffffffffffffff808816602084015280871660408401525084606083015283608083015260c060a0830152612cbb60c08301846128a5565b98975050505050505050565b600060ff821660ff841680821015612ce157612ce1612b48565b90039392505050565b600181815b80851115612d4357817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff04821115612d2957612d29612b48565b80851615612d3657918102915b93841c9390800290612cef565b509250929050565b600082612d5a57506001611601565b81612d6757506000611601565b8160018114612d7d5760028114612d8757612da3565b6001915050611601565b60ff841115612d9857612d98612b48565b50506001821b611601565b5060208310610133831016604e8410600b8410161715612dc6575081810a611601565b612dd08383612cea565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff04821115612e0257612e02612b48565b029392505050565b6000611cd860ff841683612d4b565b600082612e4f577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b73ffffffffffffffffffffffffffffffffffffffff84168152826020820152606060408201526000612e8960608301846128a5565b95945050505050565b60008060408385031215612ea557600080fd5b8251612eb08161274a565b9150612ebe60208401612b1c565b90509250929050565b838152826020820152606060408201526000612e8960608301846128a5565b60008251612ef8818460208701612879565b919091019291505056fea164736f6c634300080f000a
Deployed Bytecode
0x60806040526004361061018f5760003560e01c80635ed368e9116100d6578063b1a1a8821161007f578063c89701a211610059578063c89701a214610557578063d1a1beb61461056d578063f73fb39c1461058d57600080fd5b8063b1a1a88214610292578063c0c53b8b14610517578063c70cc4a31461053757600080fd5b806387087623116100b057806387087623146104d157806391c49bf8146104bc578063927ede2d146104ec57600080fd5b80635ed368e91461048e5780636e6f77b7146104a15780637f46ddb2146104bc57600080fd5b806335e80ab31161013857806354fd4d501161011257806354fd4d5014610400578063596a37c5146104565780635c975abb1461046957600080fd5b806335e80ab3146103935780633cb747bf146103c057806342c1aa63146103ed57600080fd5b806323f34afa1161016957806323f34afa1461030e5780632c5f766b1461032e57806333d7e2bd1461034157600080fd5b806309fc88431461029257806315a98d3a146102a75780632260a9c2146102c857600080fd5b3661028d57333b15155b1561022b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f5374616e646172644272696467653a2066756e6374696f6e2063616e206f6e6c60448201527f792062652063616c6c65642066726f6d20616e20454f4100000000000000000060648201526084015b60405180910390fd5b6040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600860248201527f646973616c6c6f770000000000000000000000000000000000000000000000006044820152606401610222565b600080fd5b6102a56102a03660046126f7565b6105c9565b005b3480156102b357600080fd5b50604051600981526020015b60405180910390f35b3480156102d457600080fd5b506103006102e336600461276f565b600260209081526000928352604080842090915290825290205481565b6040519081526020016102bf565b34801561031a57600080fd5b506102a561032936600461279b565b6105d2565b6102a561033c36600461281f565b610620565b34801561034d57600080fd5b5060335461036e9073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016102bf565b34801561039f57600080fd5b5060325461036e9073ffffffffffffffffffffffffffffffffffffffff1681565b3480156103cc57600080fd5b5060035461036e9073ffffffffffffffffffffffffffffffffffffffff1681565b6102a56103fb36600461281f565b610669565b34801561040c57600080fd5b506104496040518060400160405280600581526020017f322e322e3000000000000000000000000000000000000000000000000000000081525081565b6040516102bf91906128ef565b6102a5610464366004612902565b6106ab565b34801561047557600080fd5b5061047e610bf3565b60405190151581526020016102bf565b6102a561049c366004612902565b610c8c565b3480156104ad57600080fd5b506102a56102a036600461296c565b3480156104c857600080fd5b50600454610300565b3480156104dd57600080fd5b506102a56102a03660046129e6565b3480156104f857600080fd5b5060035473ffffffffffffffffffffffffffffffffffffffff1661036e565b34801561052357600080fd5b506102a5610532366004612a2f565b610ca0565b34801561054357600080fd5b506102a5610552366004612a7a565b610eab565b34801561056357600080fd5b5061030060045481565b34801561057957600080fd5b506102a561058836600461279b565b610eba565b34801561059957600080fd5b506102a56105a8366004612a7a565b610eff565b73ffffffffffffffffffffffffffffffffffffffff163b151590565b333b1515610199565b61061787873388888888888080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061137e92505050565b50505050505050565b6106633385348686868080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061138d92505050565b50505050565b61066333858585858080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506115e492505050565b60035473ffffffffffffffffffffffffffffffffffffffff16331480156107635750600454600360009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16636e296e456040518163ffffffff1660e01b8152600401602060405180830381865afa15801561073d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107619190612ae1565b145b610815576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604160248201527f5374616e646172644272696467653a2066756e6374696f6e2063616e206f6e6c60448201527f792062652063616c6c65642066726f6d20746865206f7468657220627269646760648201527f6500000000000000000000000000000000000000000000000000000000000000608482015260a401610222565b6000610820846115f1565b905061082a610bf3565b15610891576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601660248201527f5374616e646172644272696467653a20706175736564000000000000000000006044820152606401610222565b610899611607565b15610926576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f5374616e646172644272696467653a2063616e6e6f742062726964676520455460448201527f48207769746820637573746f6d2067617320746f6b656e0000000000000000006064820152608401610222565b8034146109b5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603a60248201527f5374616e646172644272696467653a20616d6f756e742073656e7420646f657360448201527f206e6f74206d6174636820616d6f756e742072657175697265640000000000006064820152608401610222565b3073ffffffffffffffffffffffffffffffffffffffff861603610a5a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602360248201527f5374616e646172644272696467653a2063616e6e6f742073656e6420746f207360448201527f656c6600000000000000000000000000000000000000000000000000000000006064820152608401610222565b60035473ffffffffffffffffffffffffffffffffffffffff90811690861603610b05576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602860248201527f5374616e646172644272696467653a2063616e6e6f742073656e6420746f206d60448201527f657373656e6765720000000000000000000000000000000000000000000000006064820152608401610222565b610b4786868386868080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061164692505050565b6000610b64865a84604051806020016040528060008152506116a3565b905080610617576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602360248201527f5374616e646172644272696467653a20455448207472616e736665722066616960448201527f6c656400000000000000000000000000000000000000000000000000000000006064820152608401610222565b603254604080517f5c975abb000000000000000000000000000000000000000000000000000000008152905160009273ffffffffffffffffffffffffffffffffffffffff1691635c975abb9160048083019260209291908290030181865afa158015610c63573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c879190612afa565b905090565b610c9985858585856106ab565b5050505050565b600054610100900460ff1615808015610cc05750600054600160ff909116105b80610cda5750303b158015610cda575060005460ff166001145b610d66576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a65640000000000000000000000000000000000006064820152608401610222565b600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790558015610dc457600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff166101001790555b6032805473ffffffffffffffffffffffffffffffffffffffff8086167fffffffffffffffffffffffff0000000000000000000000000000000000000000928316179092556033805492851692909116919091179055610e43847f02c806312cb859f1bc25448e39f87aa09857d83ccb4a837df55648e0000000006116bb565b801561066357600080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a150505050565b61061787878787878787610eff565b61061787873388888888888080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061179d92505050565b60035473ffffffffffffffffffffffffffffffffffffffff1633148015610fb75750600454600360009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16636e296e456040518163ffffffff1660e01b8152600401602060405180830381865afa158015610f91573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610fb59190612ae1565b145b611069576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604160248201527f5374616e646172644272696467653a2066756e6374696f6e2063616e206f6e6c60448201527f792062652063616c6c65642066726f6d20746865206f7468657220627269646760648201527f6500000000000000000000000000000000000000000000000000000000000000608482015260a401610222565b611071610bf3565b156110d8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601660248201527f5374616e646172644272696467653a20706175736564000000000000000000006044820152606401610222565b60008773ffffffffffffffffffffffffffffffffffffffff1663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015611125573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111499190612b2d565b90506009600061115a868385611c76565b90506111658a611cdf565b156112b3576111748a8a611d0b565b611226576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604a60248201527f5374616e646172644272696467653a2077726f6e672072656d6f746520746f6b60448201527f656e20666f72204f7074696d69736d204d696e7461626c65204552433230206c60648201527f6f63616c20746f6b656e00000000000000000000000000000000000000000000608482015260a401610222565b6040517f40c10f1900000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8881166004830152602482018390528b16906340c10f1990604401600060405180830381600087803b15801561129657600080fd5b505af11580156112aa573d6000803e3d6000fd5b5050505061132e565b73ffffffffffffffffffffffffffffffffffffffff8a1660009081526002602090815260408083208c84529091529020546112ef908290612b77565b73ffffffffffffffffffffffffffffffffffffffff8b1660008181526002602090815260408083208e845290915290209190915561132e908883611d85565b6113728a8a8a8a858a8a8080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250611e5e92505050565b50505050505050505050565b6106178787878787878761179d565b611395611607565b15611422576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f5374616e646172644272696467653a2063616e6e6f742062726964676520455460448201527f48207769746820637573746f6d2067617320746f6b656e0000000000000000006064820152608401610222565b8234146114b1576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603e60248201527f5374616e646172644272696467653a206272696467696e6720455448206d757360448201527f7420696e636c7564652073756666696369656e74204554482076616c756500006064820152608401610222565b6114bd85858584611ec8565b60035460045473ffffffffffffffffffffffffffffffffffffffff9091169063e223d3db9085907f596a37c500000000000000000000000000000000000000000000000000000000898961151085611f25565b886040516024016115249493929190612b8e565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009485161790525160e086901b90921682526115b792918890600401612bd3565b6000604051808303818588803b1580156115d057600080fd5b505af1158015611372573d6000803e3d6000fd5b610663848434858561138d565b6000611601633b9aca0083612c02565b92915050565b600080611612611f35565b5073ffffffffffffffffffffffffffffffffffffffff1673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee141592915050565b8273ffffffffffffffffffffffffffffffffffffffff16847f74fbf60da53b51e6a47dfbd8d68a0262fdfd918404bed0fd9f8d19563300f2c6848460405161168f929190612c3f565b60405180910390a361066384848484611fd2565b6000806000835160208501868989f195945050505050565b600054610100900460ff16611752576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e670000000000000000000000000000000000000000006064820152608401610222565b600380547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff9390931692909217909155600455565b341561182b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602160248201527f5374616e646172644272696467653a2063616e6e6f742073656e642076616c7560448201527f65000000000000000000000000000000000000000000000000000000000000006064820152608401610222565b60008060008973ffffffffffffffffffffffffffffffffffffffff1663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa15801561187b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061189f9190612b2d565b905060096118ae878383612029565b93506118bb878383611c76565b925050508160000361194e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526024808201527f5374616e646172644272696467653a20696e76616c696420746f6b656e20616d60448201527f6f756e74000000000000000000000000000000000000000000000000000000006064820152608401610222565b61195789611cdf565b15611aa5576119668989611d0b565b611a18576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604a60248201527f5374616e646172644272696467653a2077726f6e672072656d6f746520746f6b60448201527f656e20666f72204f7074696d69736d204d696e7461626c65204552433230206c60648201527f6f63616c20746f6b656e00000000000000000000000000000000000000000000608482015260a401610222565b6040517f9dc29fac00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8881166004830152602482018490528a1690639dc29fac90604401600060405180830381600087803b158015611a8857600080fd5b505af1158015611a9c573d6000803e3d6000fd5b50505050611b35565b611ac773ffffffffffffffffffffffffffffffffffffffff8a1688308561206d565b73ffffffffffffffffffffffffffffffffffffffff891660009081526002602090815260408083208b8452909152902054611b03908390612c58565b73ffffffffffffffffffffffffffffffffffffffff8a1660009081526002602090815260408083208c84529091529020555b611b438989898986886120cb565b60035460045460405173ffffffffffffffffffffffffffffffffffffffff9092169163e223d3db91907ff73fb39c0000000000000000000000000000000000000000000000000000000090611ba6908d908f908e908e908a908d90602401612c70565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009485161790525160e085901b9092168252611c3992918990600401612bd3565b600060405180830381600087803b158015611c5357600080fd5b505af1158015611c67573d6000803e3d6000fd5b50505050505050505050505050565b60008160ff168360ff161115611cb1576000611c928385612cc7565b611c9d90600a612e0a565b9050611ca98186612e19565b915050611cd8565b6000611cbd8484612cc7565b611cc890600a612e0a565b9050611cd48186612c02565b9150505b9392505050565b6000611601827fec4fc8e300000000000000000000000000000000000000000000000000000000612143565b60008273ffffffffffffffffffffffffffffffffffffffff1663d6c0b2c46040518163ffffffff1660e01b8152600401602060405180830381865afa158015611d58573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d7c9190612ae1565b90911492915050565b60405173ffffffffffffffffffffffffffffffffffffffff8316602482015260448101829052611e599084907fa9059cbb00000000000000000000000000000000000000000000000000000000906064015b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009093169290921790915261215f565b505050565b83858773ffffffffffffffffffffffffffffffffffffffff167fd6662b6feb0493cbc31ff04c4841da31b7ae66c03acf8fe5122bb226ac941bbb868686604051611eaa93929190612e54565b60405180910390a4611ec086868686868661226b565b505050505050565b828473ffffffffffffffffffffffffffffffffffffffff167f0e0d8d614a76187c4dbeeb480aacf88c8e13d35ea55cdc853d5b1beb26203c768484604051611f11929190612c3f565b60405180910390a3610663848484846122c7565b6000611601633b9aca0083612e19565b603354604080517f4397dfef0000000000000000000000000000000000000000000000000000000081528151600093849373ffffffffffffffffffffffffffffffffffffffff90911692634397dfef92600480830193928290030181865afa158015611fa5573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611fc99190612e92565b90939092509050565b8273ffffffffffffffffffffffffffffffffffffffff16847fb9d74035c12953c6d54c2ba89238a69e82228f6df0ba6a310b4335ef22164359848460405161201b929190612c3f565b60405180910390a350505050565b60008160ff168360ff161161203f575082611cd8565b600061204b8385612cc7565b61205690600a612e0a565b9050806120638187612e19565b611cd49190612c02565b60405173ffffffffffffffffffffffffffffffffffffffff808516602483015283166044820152606481018290526106639085907f23b872dd0000000000000000000000000000000000000000000000000000000090608401611dd7565b8373ffffffffffffffffffffffffffffffffffffffff16858773ffffffffffffffffffffffffffffffffffffffff167fccedf30deddbcd5555e4cad88ca0d2aad343d6302f5251eddea4c8aecd9460d286868660405161212d93929190612ec7565b60405180910390a4611ec0868686868686612310565b600061214e83612372565b8015611cd85750611cd883836123d6565b60006121c1826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c65648152508573ffffffffffffffffffffffffffffffffffffffff166124a59092919063ffffffff16565b805190915015611e5957808060200190518101906121df9190612afa565b611e59576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152608401610222565b83858773ffffffffffffffffffffffffffffffffffffffff167f32e5449e7fea5fb77946053e43ed8b853f7a34620ed7804d3af7354a54d768528686866040516122b793929190612e54565b60405180910390a4505050505050565b828473ffffffffffffffffffffffffffffffffffffffff167f657f5322d05eb184849ecc761434dbea6aae0ad5dfc848ebb2e5b538817cbb09848460405161201b929190612c3f565b8373ffffffffffffffffffffffffffffffffffffffff16858773ffffffffffffffffffffffffffffffffffffffff167f7d6bfb6966a3d1179e265073861bb549088fe2f5c69b829377bba2db7e756b848686866040516122b793929190612ec7565b600061239e827f01ffc9a7000000000000000000000000000000000000000000000000000000006123d6565b801561160157506123cf827fffffffff000000000000000000000000000000000000000000000000000000006123d6565b1592915050565b604080517fffffffff000000000000000000000000000000000000000000000000000000008316602480830191909152825180830390910181526044909101909152602080820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f01ffc9a700000000000000000000000000000000000000000000000000000000178152825160009392849283928392918391908a617530fa92503d9150600051905082801561248e575060208210155b801561249a5750600081115b979650505050505050565b60606124b484846000856124bc565b949350505050565b60608247101561254e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c00000000000000000000000000000000000000000000000000006064820152608401610222565b73ffffffffffffffffffffffffffffffffffffffff85163b6125cc576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610222565b6000808673ffffffffffffffffffffffffffffffffffffffff1685876040516125f59190612ee6565b60006040518083038185875af1925050503d8060008114612632576040519150601f19603f3d011682016040523d82523d6000602084013e612637565b606091505b509150915061249a82828660608315612651575081611cd8565b8251156126615782518084602001fd5b816040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161022291906128ef565b803563ffffffff811681146126a957600080fd5b919050565b60008083601f8401126126c057600080fd5b50813567ffffffffffffffff8111156126d857600080fd5b6020830191508360208285010111156126f057600080fd5b9250929050565b60008060006040848603121561270c57600080fd5b61271584612695565b9250602084013567ffffffffffffffff81111561273157600080fd5b61273d868287016126ae565b9497909650939450505050565b73ffffffffffffffffffffffffffffffffffffffff8116811461276c57600080fd5b50565b6000806040838503121561278257600080fd5b823561278d8161274a565b946020939093013593505050565b600080600080600080600060c0888a0312156127b657600080fd5b87356127c18161274a565b96506020880135955060408801359450606088013593506127e460808901612695565b925060a088013567ffffffffffffffff81111561280057600080fd5b61280c8a828b016126ae565b989b979a50959850939692959293505050565b6000806000806060858703121561283557600080fd5b8435935061284560208601612695565b9250604085013567ffffffffffffffff81111561286157600080fd5b61286d878288016126ae565b95989497509550505050565b60005b8381101561289457818101518382015260200161287c565b838111156106635750506000910152565b600081518084526128bd816020860160208601612879565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b602081526000611cd860208301846128a5565b60008060008060006080868803121561291a57600080fd5b85359450602086013561292c8161274a565b935060408601359250606086013567ffffffffffffffff81111561294f57600080fd5b61295b888289016126ae565b969995985093965092949392505050565b60008060008060008060a0878903121561298557600080fd5b86356129908161274a565b955060208701359450604087013593506129ac60608801612695565b9250608087013567ffffffffffffffff8111156129c857600080fd5b6129d489828a016126ae565b979a9699509497509295939492505050565b60008060008060008060a087890312156129ff57600080fd5b8635612a0a8161274a565b95506020870135612a1a8161274a565b9450604087013593506129ac60608801612695565b600080600060608486031215612a4457600080fd5b8335612a4f8161274a565b92506020840135612a5f8161274a565b91506040840135612a6f8161274a565b809150509250925092565b600080600080600080600060c0888a031215612a9557600080fd5b8735612aa08161274a565b965060208801359550604088013594506060880135612abe8161274a565b93506080880135925060a088013567ffffffffffffffff81111561280057600080fd5b600060208284031215612af357600080fd5b5051919050565b600060208284031215612b0c57600080fd5b81518015158114611cd857600080fd5b805160ff811681146126a957600080fd5b600060208284031215612b3f57600080fd5b611cd882612b1c565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b600082821015612b8957612b89612b48565b500390565b73ffffffffffffffffffffffffffffffffffffffff85168152836020820152826040820152608060608201526000612bc960808301846128a5565b9695505050505050565b838152606060208201526000612bec60608301856128a5565b905063ffffffff83166040830152949350505050565b6000817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0483118215151615612c3a57612c3a612b48565b500290565b8281526040602082015260006124b460408301846128a5565b60008219821115612c6b57612c6b612b48565b500190565b868152600073ffffffffffffffffffffffffffffffffffffffff808816602084015280871660408401525084606083015283608083015260c060a0830152612cbb60c08301846128a5565b98975050505050505050565b600060ff821660ff841680821015612ce157612ce1612b48565b90039392505050565b600181815b80851115612d4357817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff04821115612d2957612d29612b48565b80851615612d3657918102915b93841c9390800290612cef565b509250929050565b600082612d5a57506001611601565b81612d6757506000611601565b8160018114612d7d5760028114612d8757612da3565b6001915050611601565b60ff841115612d9857612d98612b48565b50506001821b611601565b5060208310610133831016604e8410600b8410161715612dc6575081810a611601565b612dd08383612cea565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff04821115612e0257612e02612b48565b029392505050565b6000611cd860ff841683612d4b565b600082612e4f577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b73ffffffffffffffffffffffffffffffffffffffff84168152826020820152606060408201526000612e8960608301846128a5565b95945050505050565b60008060408385031215612ea557600080fd5b8251612eb08161274a565b9150612ebe60208401612b1c565b90509250929050565b838152826020820152606060408201526000612e8960608301846128a5565b60008251612ef8818460208701612879565b919091019291505056fea164736f6c634300080f000a
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.