Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Advanced mode: Intended for advanced users or developers and will display all Internal Transactions including zero value transfers. Name tag integration is not available in advanced view.
Latest 25 internal transactions (View All)
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
||||
---|---|---|---|---|---|---|---|
21726264 | 9 hrs ago | 0 ETH | |||||
21726264 | 9 hrs ago | 0 ETH | |||||
21726070 | 10 hrs ago | 0 ETH | |||||
21726070 | 10 hrs ago | 0 ETH | |||||
21725639 | 11 hrs ago | 0 ETH | |||||
21725639 | 11 hrs ago | 0 ETH | |||||
21719832 | 30 hrs ago | 0 ETH | |||||
21719832 | 30 hrs ago | 0 ETH | |||||
21719184 | 33 hrs ago | 0 ETH | |||||
21719184 | 33 hrs ago | 0 ETH | |||||
21719170 | 33 hrs ago | 0 ETH | |||||
21719170 | 33 hrs ago | 0 ETH | |||||
21714399 | 2 days ago | 0 ETH | |||||
21714399 | 2 days ago | 0 ETH | |||||
21714399 | 2 days ago | 0 ETH | |||||
21714399 | 2 days ago | 0 ETH | |||||
21713744 | 2 days ago | 0 ETH | |||||
21713744 | 2 days ago | 0 ETH | |||||
21706163 | 3 days ago | 0 ETH | |||||
21706163 | 3 days ago | 0 ETH | |||||
21705351 | 3 days ago | 0 ETH | |||||
21705351 | 3 days ago | 0 ETH | |||||
21705351 | 3 days ago | 0 ETH | |||||
21705351 | 3 days ago | 0 ETH | |||||
21705033 | 3 days ago | 0 ETH |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
PoolCommons
Compiler Version
v0.8.18+commit.87f61d96
Optimization Enabled:
Yes with 0 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.18; import { PRBMathSD59x18 } from "@prb-math/contracts/PRBMathSD59x18.sol"; import { PRBMathUD60x18 } from "@prb-math/contracts/PRBMathUD60x18.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { DepositsState, EmaState, InflatorState, InterestState, PoolBalancesState, PoolState } from '../../interfaces/pool/commons/IPoolState.sol'; import { IERC3156FlashBorrower } from '../../interfaces/pool/IERC3156FlashBorrower.sol'; import { _dwatp, _htp, _indexOf, MAX_FENWICK_INDEX, MIN_PRICE, MAX_PRICE } from '../helpers/PoolHelper.sol'; import { Deposits } from '../internal/Deposits.sol'; import { Buckets } from '../internal/Buckets.sol'; import { Loans } from '../internal/Loans.sol'; import { Maths } from '../internal/Maths.sol'; /** @title PoolCommons library @notice External library containing logic for common pool functionality: - interest rate accrual and interest rate params update - pool utilization */ library PoolCommons { using SafeERC20 for IERC20; /*****************/ /*** Constants ***/ /*****************/ uint256 internal constant CUBIC_ROOT_1000000 = 100 * 1e18; uint256 internal constant ONE_THIRD = 0.333333333333333334 * 1e18; uint256 internal constant INCREASE_COEFFICIENT = 1.1 * 1e18; uint256 internal constant DECREASE_COEFFICIENT = 0.9 * 1e18; int256 internal constant PERCENT_102 = 1.02 * 1e18; int256 internal constant NEG_H_MAU_HOURS = -0.057762265046662105 * 1e18; // -ln(2)/12 int256 internal constant NEG_H_TU_HOURS = -0.008251752149523158 * 1e18; // -ln(2)/84 /**************/ /*** Events ***/ /**************/ // See `IPoolEvents` for descriptions event Flashloan(address indexed receiver, address indexed token, uint256 amount); event ResetInterestRate(uint256 oldRate, uint256 newRate); event UpdateInterestRate(uint256 oldRate, uint256 newRate); /**************/ /*** Errors ***/ /**************/ // See `IPoolErrors` for descriptions error FlashloanCallbackFailed(); error FlashloanIncorrectBalance(); /*************************/ /*** Local Var Structs ***/ /*************************/ /// @dev Struct used for `updateInterestState` function local vars. struct UpdateInterestLocalVars { uint256 debtEma; uint256 depositEma; uint256 debtColEma; uint256 lupt0DebtEma; uint256 t0Debt2ToCollateral; uint256 newMeaningfulDeposit; uint256 newDebt; uint256 newDebtCol; uint256 newLupt0Debt; uint256 lastEmaUpdate; int256 elapsed; int256 weightMau; int256 weightTu; uint256 newInterestRate; uint256 nonAuctionedT0Debt; } /**************************/ /*** External Functions ***/ /**************************/ /** * @notice Calculates EMAs, caches values required for calculating interest rate, and saves new values in storage. * @notice Calculates new pool interest rate (Never called more than once every 12 hours) and saves new values in storage. * @dev === Write state === * @dev `EMA`s state * @dev interest rate accumulator and `interestRateUpdate` state * @dev === Emit events === * @dev - `UpdateInterestRate` / `ResetInterestRate` */ function updateInterestState( InterestState storage interestParams_, EmaState storage emaParams_, DepositsState storage deposits_, PoolState memory poolState_, uint256 lup_ ) external { UpdateInterestLocalVars memory vars; // load existing EMA values vars.debtEma = emaParams_.debtEma; vars.depositEma = emaParams_.depositEma; vars.debtColEma = emaParams_.debtColEma; vars.lupt0DebtEma = emaParams_.lupt0DebtEma; vars.lastEmaUpdate = emaParams_.emaUpdate; vars.t0Debt2ToCollateral = interestParams_.t0Debt2ToCollateral; // calculate new interest params vars.nonAuctionedT0Debt = poolState_.t0Debt - poolState_.t0DebtInAuction; vars.newDebt = Maths.wmul(vars.nonAuctionedT0Debt, poolState_.inflator); // new meaningful deposit cannot be less than pool's debt vars.newMeaningfulDeposit = Maths.max( _meaningfulDeposit( deposits_, poolState_.t0DebtInAuction, vars.nonAuctionedT0Debt, poolState_.inflator, vars.t0Debt2ToCollateral ), vars.newDebt ); vars.newDebtCol = Maths.wmul(poolState_.inflator, vars.t0Debt2ToCollateral); vars.newLupt0Debt = Maths.wmul(lup_, vars.nonAuctionedT0Debt); // update EMAs only once per block if (vars.lastEmaUpdate != block.timestamp) { // first time EMAs are updated, initialize EMAs if (vars.lastEmaUpdate == 0) { vars.debtEma = vars.newDebt; vars.depositEma = vars.newMeaningfulDeposit; vars.debtColEma = vars.newDebtCol; vars.lupt0DebtEma = vars.newLupt0Debt; } else { vars.elapsed = int256(Maths.wdiv(block.timestamp - vars.lastEmaUpdate, 1 hours)); vars.weightMau = PRBMathSD59x18.exp(PRBMathSD59x18.mul(NEG_H_MAU_HOURS, vars.elapsed)); vars.weightTu = PRBMathSD59x18.exp(PRBMathSD59x18.mul(NEG_H_TU_HOURS, vars.elapsed)); // calculate the t0 debt EMA, used for MAU vars.debtEma = uint256( PRBMathSD59x18.mul(vars.weightMau, int256(vars.debtEma)) + PRBMathSD59x18.mul(1e18 - vars.weightMau, int256(interestParams_.debt)) ); // update the meaningful deposit EMA, used for MAU vars.depositEma = uint256( PRBMathSD59x18.mul(vars.weightMau, int256(vars.depositEma)) + PRBMathSD59x18.mul(1e18 - vars.weightMau, int256(interestParams_.meaningfulDeposit)) ); // calculate the debt squared to collateral EMA, used for TU vars.debtColEma = uint256( PRBMathSD59x18.mul(vars.weightTu, int256(vars.debtColEma)) + PRBMathSD59x18.mul(1e18 - vars.weightTu, int256(interestParams_.debtCol)) ); // calculate the EMA of LUP * t0 debt vars.lupt0DebtEma = uint256( PRBMathSD59x18.mul(vars.weightTu, int256(vars.lupt0DebtEma)) + PRBMathSD59x18.mul(1e18 - vars.weightTu, int256(interestParams_.lupt0Debt)) ); } // save EMAs in storage emaParams_.debtEma = vars.debtEma; emaParams_.depositEma = vars.depositEma; emaParams_.debtColEma = vars.debtColEma; emaParams_.lupt0DebtEma = vars.lupt0DebtEma; // save last EMA update time emaParams_.emaUpdate = block.timestamp; } // reset interest rate if pool rate > 10% and debtEma < 5% of depositEma if ( poolState_.rate > 0.1 * 1e18 && vars.debtEma < Maths.wmul(vars.depositEma, 0.05 * 1e18) ) { interestParams_.interestRate = uint208(0.1 * 1e18); interestParams_.interestRateUpdate = uint48(block.timestamp); emit ResetInterestRate( poolState_.rate, 0.1 * 1e18 ); } // otherwise calculate and update interest rate if it has been more than 12 hours since the last update else if (block.timestamp - interestParams_.interestRateUpdate > 12 hours) { vars.newInterestRate = _calculateInterestRate( poolState_, vars.debtEma, vars.depositEma, vars.debtColEma, vars.lupt0DebtEma ); if (poolState_.rate != vars.newInterestRate) { interestParams_.interestRate = uint208(vars.newInterestRate); interestParams_.interestRateUpdate = uint48(block.timestamp); emit UpdateInterestRate( poolState_.rate, vars.newInterestRate ); } } // save new interest rate params to storage interestParams_.debt = vars.newDebt; interestParams_.meaningfulDeposit = vars.newMeaningfulDeposit; interestParams_.debtCol = vars.newDebtCol; interestParams_.lupt0Debt = vars.newLupt0Debt; } /** * @notice Calculates new pool interest and scale the fenwick tree to update amount of debt owed to lenders (saved in storage). * @dev === Write state === * @dev - `Deposits.mult` (scale `Fenwick` tree with new interest accrued): * @dev update `scaling` array state * @param emaParams_ Struct for pool `EMA`s state. * @param deposits_ Struct for pool deposits state. * @param poolState_ Current state of the pool. * @param maxT0DebtToCollateral_ Max t0 debt to collateral in Pool. * @param elapsed_ Time elapsed since last inflator update. * @return newInflator_ The new value of pool inflator. * @return newInterest_ The new interest accrued. */ function accrueInterest( EmaState storage emaParams_, DepositsState storage deposits_, PoolState calldata poolState_, uint256 maxT0DebtToCollateral_, uint256 elapsed_ ) external returns (uint256 newInflator_, uint256 newInterest_) { // Scale the borrower inflator to update amount of interest owed by borrowers uint256 pendingFactor = PRBMathUD60x18.exp((poolState_.rate * elapsed_) / 365 days); // calculate the highest threshold price newInflator_ = Maths.wmul(poolState_.inflator, pendingFactor); uint256 htp = _htp(maxT0DebtToCollateral_, poolState_.inflator); uint256 accrualIndex; if (htp > MAX_PRICE) accrualIndex = 1; // if HTP is over the highest price bucket then no buckets earn interest else if (htp < MIN_PRICE) accrualIndex = MAX_FENWICK_INDEX; // if HTP is under the lowest price bucket then all buckets earn interest else accrualIndex = _indexOf(htp); // else HTP bucket earn interest uint256 lupIndex = Deposits.findIndexOfSum(deposits_, poolState_.debt); // accrual price is less of lup and htp, and prices decrease as index increases if (lupIndex > accrualIndex) accrualIndex = lupIndex; uint256 interestEarningDeposit = Deposits.prefixSum(deposits_, accrualIndex); if (interestEarningDeposit != 0) { newInterest_ = Maths.wmul( _lenderInterestMargin(_utilization(emaParams_.debtEma, emaParams_.depositEma)), Maths.wmul(pendingFactor - Maths.WAD, poolState_.debt) ); // lender factor computation, capped at 10x the interest factor for borrowers uint256 lenderFactor = Maths.min( Maths.floorWdiv(newInterest_, interestEarningDeposit), Maths.wmul(pendingFactor - Maths.WAD, Maths.wad(10)) ) + Maths.WAD; // Scale the fenwick tree to update amount of debt owed to lenders Deposits.mult(deposits_, accrualIndex, lenderFactor); } } /** * @notice Executes a flashloan from current pool. * @dev === Reverts on === * @dev - `FlashloanCallbackFailed()` if receiver is not an `ERC3156FlashBorrower` * @dev - `FlashloanIncorrectBalance()` if pool balance after flashloan is different than initial balance * @param receiver_ Address of the contract which implements the appropriate interface to receive tokens. * @param token_ Address of the `ERC20` token caller wants to borrow. * @param amount_ The denormalized amount (dependent upon token precision) of tokens to borrow. * @param data_ User-defined calldata passed to the receiver. */ function flashLoan( IERC3156FlashBorrower receiver_, address token_, uint256 amount_, bytes calldata data_ ) external { IERC20 tokenContract = IERC20(token_); uint256 initialBalance = tokenContract.balanceOf(address(this)); tokenContract.safeTransfer( address(receiver_), amount_ ); if (receiver_.onFlashLoan(msg.sender, token_, amount_, 0, data_) != keccak256("ERC3156FlashBorrower.onFlashLoan")) revert FlashloanCallbackFailed(); tokenContract.safeTransferFrom( address(receiver_), address(this), amount_ ); if (tokenContract.balanceOf(address(this)) != initialBalance) revert FlashloanIncorrectBalance(); emit Flashloan(address(receiver_), token_, amount_); } /**************************/ /*** Internal Functions ***/ /**************************/ /** * @notice Calculates new pool interest rate. */ function _calculateInterestRate( PoolState memory poolState_, uint256 debtEma_, uint256 depositEma_, uint256 debtColEma_, uint256 lupt0DebtEma_ ) internal pure returns (uint256 newInterestRate_) { // meaningful actual utilization int256 mau; // meaningful actual utilization * 1.02 int256 mau102; if (poolState_.debt != 0) { // calculate meaningful actual utilization for interest rate update mau = int256(_utilization(debtEma_, depositEma_)); mau102 = (mau * PERCENT_102) / 1e18; } // calculate target utilization int256 tu = (lupt0DebtEma_ != 0) ? int256(Maths.wdiv(debtColEma_, lupt0DebtEma_)) : int(Maths.WAD); newInterestRate_ = poolState_.rate; // raise rates if 4*(tu-1.02*mau) < (tu+1.02*mau-1)^2-1 if (4 * (tu - mau102) < (((tu + mau102 - 1e18) / 1e9) ** 2) - 1e18) { newInterestRate_ = Maths.wmul(poolState_.rate, INCREASE_COEFFICIENT); // decrease rates if 4*(tu-mau) > 1-(tu+mau-1)^2 } else if (4 * (tu - mau) > 1e18 - ((tu + mau - 1e18) / 1e9) ** 2) { newInterestRate_ = Maths.wmul(poolState_.rate, DECREASE_COEFFICIENT); } // bound rates between 10 bps and 400% newInterestRate_ = Maths.min(4 * 1e18, Maths.max(0.001 * 1e18, newInterestRate_)); } /** * @notice Calculates pool meaningful actual utilization. * @param debtEma_ `EMA` of pool debt. * @param depositEma_ `EMA` of meaningful pool deposit. * @return utilization_ Pool meaningful actual utilization value. */ function _utilization( uint256 debtEma_, uint256 depositEma_ ) internal pure returns (uint256 utilization_) { if (depositEma_ != 0) utilization_ = Maths.wdiv(debtEma_, depositEma_); } /** * @notice Calculates lender interest margin. * @param mau_ Meaningful actual utilization. * @return The lender interest margin value. */ function _lenderInterestMargin( uint256 mau_ ) internal pure returns (uint256) { // Net Interest Margin = ((1 - MAU1)^(1/3) * 0.15) // Where MAU1 is MAU capped at 100% (min(MAU,1)) // Lender Interest Margin = 1 - Net Interest Margin // PRBMath library forbids raising a number < 1e18 to a power. Using the product and quotient rules of // exponents, rewrite the equation with a coefficient s which provides sufficient precision: // Net Interest Margin = ((1 - MAU1) * s)^(1/3) / s^(1/3) * 0.15 uint256 base = 1_000_000 * 1e18 - Maths.min(mau_, 1e18) * 1_000_000; // If unutilized deposit is infinitessimal, lenders get 100% of interest. if (base < 1e18) { return 1e18; } else { // cubic root of the percentage of meaningful unutilized deposit uint256 crpud = PRBMathUD60x18.pow(base, ONE_THIRD); // finish calculating Net Interest Margin, and then convert to Lender Interest Margin return 1e18 - Maths.wdiv(Maths.wmul(crpud, 0.15 * 1e18), CUBIC_ROOT_1000000); } } /** * @notice Calculates pool's meaningful deposit. * @param deposits_ Struct for pool deposits state. * @param t0DebtInAuction_ Value of pool's t0 debt currently in auction. * @param nonAuctionedT0Debt_ Value of pool's t0 debt that is not in auction. * @param inflator_ Pool's current inflator. * @param t0Debt2ToCollateral_ `t0Debt2ToCollateral` ratio. * @return meaningfulDeposit_ Pool's meaningful deposit. */ function _meaningfulDeposit( DepositsState storage deposits_, uint256 t0DebtInAuction_, uint256 nonAuctionedT0Debt_, uint256 inflator_, uint256 t0Debt2ToCollateral_ ) internal view returns (uint256 meaningfulDeposit_) { uint256 dwatp = _dwatp(nonAuctionedT0Debt_, inflator_, t0Debt2ToCollateral_); if (dwatp == 0) { meaningfulDeposit_ = Deposits.treeSum(deposits_); } else { if (dwatp >= MAX_PRICE) meaningfulDeposit_ = 0; else if (dwatp >= MIN_PRICE) meaningfulDeposit_ = Deposits.prefixSum(deposits_, _indexOf(dwatp)); else meaningfulDeposit_ = Deposits.treeSum(deposits_); } meaningfulDeposit_ -= Maths.min( meaningfulDeposit_, Maths.wmul(t0DebtInAuction_, inflator_) ); } /**********************/ /*** View Functions ***/ /**********************/ /** * @notice Calculates pool related debt values. * @param poolBalances_ Pool debt * @param inflatorState_ Interest inflator and last update time * @param interestState_ Interest rate and t0Debt2ToCollateral accumulator * @return Current amount of debt owed by borrowers in pool. * @return Debt owed by borrowers based on last inflator snapshot. * @return Total amount of debt in auction. * @return t0debt accross all borrowers divided by their collateral, used in determining a collateralization weighted debt. */ function debtInfo( PoolBalancesState memory poolBalances_, InflatorState memory inflatorState_, InterestState memory interestState_ ) external view returns (uint256, uint256, uint256, uint256) { uint256 t0Debt = poolBalances_.t0Debt; uint256 inflator = inflatorState_.inflator; return ( Maths.ceilWmul( t0Debt, pendingInflator(inflator, inflatorState_.inflatorUpdate, interestState_.interestRate) ), Maths.ceilWmul(t0Debt, inflator), Maths.ceilWmul(poolBalances_.t0DebtInAuction, inflator), interestState_.t0Debt2ToCollateral ); } /** * @notice Calculates pool interest factor for a given interest rate and time elapsed since last inflator update. * @param interestRate_ Current pool interest rate. * @param elapsed_ Time elapsed since last inflator update. * @return The value of pool interest factor. */ function pendingInterestFactor( uint256 interestRate_, uint256 elapsed_ ) external pure returns (uint256) { return PRBMathUD60x18.exp((interestRate_ * elapsed_) / 365 days); } /** * @notice Calculates pool pending inflator given the current inflator, time of last update and current interest rate. * @param inflator_ Current pool inflator. * @param inflatorUpdate Timestamp when inflator was updated. * @param interestRate_ The interest rate of the pool. * @return The pending value of pool inflator. */ function pendingInflator( uint256 inflator_, uint256 inflatorUpdate, uint256 interestRate_ ) public view returns (uint256) { return Maths.wmul( inflator_, PRBMathUD60x18.exp((interestRate_ * (block.timestamp - inflatorUpdate)) / 365 days) ); } /** * @notice Calculates lender interest margin for a given meaningful actual utilization. * @dev Wrapper of the internal function. */ function lenderInterestMargin( uint256 mau_ ) external pure returns (uint256) { return _lenderInterestMargin(mau_); } /** * @notice Calculates pool meaningful actual utilization. * @dev Wrapper of the internal function. */ function utilization( EmaState storage emaParams_ ) external view returns (uint256 utilization_) { return _utilization(emaParams_.debtEma, emaParams_.depositEma); } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; import "./PRBMath.sol"; /// @title PRBMathSD59x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math that works with int256 numbers considered to have 18 /// trailing decimals. We call this number representation signed 59.18-decimal fixed-point, since the numbers can have /// a sign and there can be up to 59 digits in the integer part and up to 18 decimals in the fractional part. The numbers /// are bound by the minimum and the maximum values permitted by the Solidity type int256. library PRBMathSD59x18 { /// @dev log2(e) as a signed 59.18-decimal fixed-point number. int256 internal constant LOG2_E = 1_442695040888963407; /// @dev Half the SCALE number. int256 internal constant HALF_SCALE = 5e17; /// @dev The maximum value a signed 59.18-decimal fixed-point number can have. int256 internal constant MAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; /// @dev The maximum whole value a signed 59.18-decimal fixed-point number can have. int256 internal constant MAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; /// @dev The minimum value a signed 59.18-decimal fixed-point number can have. int256 internal constant MIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; /// @dev The minimum whole value a signed 59.18-decimal fixed-point number can have. int256 internal constant MIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; /// @dev How many trailing decimals can be represented. int256 internal constant SCALE = 1e18; /// INTERNAL FUNCTIONS /// /// @notice Calculate the absolute value of x. /// /// @dev Requirements: /// - x must be greater than MIN_SD59x18. /// /// @param x The number to calculate the absolute value for. /// @param result The absolute value of x. function abs(int256 x) internal pure returns (int256 result) { unchecked { if (x == MIN_SD59x18) { revert PRBMathSD59x18__AbsInputTooSmall(); } result = x < 0 ? -x : x; } } /// @notice Calculates the arithmetic average of x and y, rounding down. /// @param x The first operand as a signed 59.18-decimal fixed-point number. /// @param y The second operand as a signed 59.18-decimal fixed-point number. /// @return result The arithmetic average as a signed 59.18-decimal fixed-point number. function avg(int256 x, int256 y) internal pure returns (int256 result) { // The operations can never overflow. unchecked { int256 sum = (x >> 1) + (y >> 1); if (sum < 0) { // If at least one of x and y is odd, we add 1 to the result. This is because shifting negative numbers to the // right rounds down to infinity. assembly { result := add(sum, and(or(x, y), 1)) } } else { // If both x and y are odd, we add 1 to the result. This is because if both numbers are odd, the 0.5 // remainder gets truncated twice. result = sum + (x & y & 1); } } } /// @notice Yields the least greatest signed 59.18 decimal fixed-point number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to MAX_WHOLE_SD59x18. /// /// @param x The signed 59.18-decimal fixed-point number to ceil. /// @param result The least integer greater than or equal to x, as a signed 58.18-decimal fixed-point number. function ceil(int256 x) internal pure returns (int256 result) { if (x > MAX_WHOLE_SD59x18) { revert PRBMathSD59x18__CeilOverflow(x); } unchecked { int256 remainder = x % SCALE; if (remainder == 0) { result = x; } else { // Solidity uses C fmod style, which returns a modulus with the same sign as x. result = x - remainder; if (x > 0) { result += SCALE; } } } } /// @notice Divides two signed 59.18-decimal fixed-point numbers, returning a new signed 59.18-decimal fixed-point number. /// /// @dev Variant of "mulDiv" that works with signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - All from "PRBMath.mulDiv". /// - None of the inputs can be MIN_SD59x18. /// - The denominator cannot be zero. /// - The result must fit within int256. /// /// Caveats: /// - All from "PRBMath.mulDiv". /// /// @param x The numerator as a signed 59.18-decimal fixed-point number. /// @param y The denominator as a signed 59.18-decimal fixed-point number. /// @param result The quotient as a signed 59.18-decimal fixed-point number. function div(int256 x, int256 y) internal pure returns (int256 result) { if (x == MIN_SD59x18 || y == MIN_SD59x18) { revert PRBMathSD59x18__DivInputTooSmall(); } // Get hold of the absolute values of x and y. uint256 ax; uint256 ay; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); } // Compute the absolute value of (x*SCALE)÷y. The result must fit within int256. uint256 rAbs = PRBMath.mulDiv(ax, uint256(SCALE), ay); if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__DivOverflow(rAbs); } // Get the signs of x and y. uint256 sx; uint256 sy; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) } // XOR over sx and sy. This is basically checking whether the inputs have the same sign. If yes, the result // should be positive. Otherwise, it should be negative. result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs); } /// @notice Returns Euler's number as a signed 59.18-decimal fixed-point number. /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant). function e() internal pure returns (int256 result) { result = 2_718281828459045235; } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 133.084258667509499441. /// /// Caveats: /// - All from "exp2". /// - For any x less than -41.446531673892822322, the result is zero. /// /// @param x The exponent as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function exp(int256 x) internal pure returns (int256 result) { // Without this check, the value passed to "exp2" would be less than -59.794705707972522261. if (x < -41_446531673892822322) { return 0; } // Without this check, the value passed to "exp2" would be greater than 192. if (x >= 133_084258667509499441) { revert PRBMathSD59x18__ExpInputTooBig(x); } // Do the fixed-point multiplication inline to save gas. unchecked { int256 doubleScaleProduct = x * LOG2_E; result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - For any x less than -59.794705707972522261, the result is zero. /// /// @param x The exponent as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function exp2(int256 x) internal pure returns (int256 result) { // This works because 2^(-x) = 1/2^x. if (x < 0) { // 2^59.794705707972522262 is the maximum number whose inverse does not truncate down to zero. if (x < -59_794705707972522261) { return 0; } // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE. unchecked { result = 1e36 / exp2(-x); } } else { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (x >= 192e18) { revert PRBMathSD59x18__Exp2InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x192x64 = (uint256(x) << 64) / uint256(SCALE); // Safe to convert the result to int256 directly because the maximum input allowed is 192. result = int256(PRBMath.exp2(x192x64)); } } } /// @notice Yields the greatest signed 59.18 decimal fixed-point number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to MIN_WHOLE_SD59x18. /// /// @param x The signed 59.18-decimal fixed-point number to floor. /// @param result The greatest integer less than or equal to x, as a signed 58.18-decimal fixed-point number. function floor(int256 x) internal pure returns (int256 result) { if (x < MIN_WHOLE_SD59x18) { revert PRBMathSD59x18__FloorUnderflow(x); } unchecked { int256 remainder = x % SCALE; if (remainder == 0) { result = x; } else { // Solidity uses C fmod style, which returns a modulus with the same sign as x. result = x - remainder; if (x < 0) { result -= SCALE; } } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The signed 59.18-decimal fixed-point number to get the fractional part of. /// @param result The fractional part of x as a signed 59.18-decimal fixed-point number. function frac(int256 x) internal pure returns (int256 result) { unchecked { result = x % SCALE; } } /// @notice Converts a number from basic integer form to signed 59.18-decimal fixed-point representation. /// /// @dev Requirements: /// - x must be greater than or equal to MIN_SD59x18 divided by SCALE. /// - x must be less than or equal to MAX_SD59x18 divided by SCALE. /// /// @param x The basic integer to convert. /// @param result The same number in signed 59.18-decimal fixed-point representation. function fromInt(int256 x) internal pure returns (int256 result) { unchecked { if (x < MIN_SD59x18 / SCALE) { revert PRBMathSD59x18__FromIntUnderflow(x); } if (x > MAX_SD59x18 / SCALE) { revert PRBMathSD59x18__FromIntOverflow(x); } result = x * SCALE; } } /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within MAX_SD59x18, lest it overflows. /// - x * y cannot be negative. /// /// @param x The first operand as a signed 59.18-decimal fixed-point number. /// @param y The second operand as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function gm(int256 x, int256 y) internal pure returns (int256 result) { if (x == 0) { return 0; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. int256 xy = x * y; if (xy / x != y) { revert PRBMathSD59x18__GmOverflow(x, y); } // The product cannot be negative. if (xy < 0) { revert PRBMathSD59x18__GmNegativeProduct(x, y); } // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE // during multiplication. See the comments within the "sqrt" function. result = int256(PRBMath.sqrt(uint256(xy))); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the inverse. /// @return result The inverse as a signed 59.18-decimal fixed-point number. function inv(int256 x) internal pure returns (int256 result) { unchecked { // 1e36 is SCALE * SCALE. result = 1e36 / x; } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the insight that ln(x) = log2(x) / log2(e). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// - This doesn't return exactly 1 for 2718281828459045235, for that we would need more fine-grained precision. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the natural logarithm. /// @return result The natural logarithm as a signed 59.18-decimal fixed-point number. function ln(int256 x) internal pure returns (int256 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 195205294292027477728. unchecked { result = (log2(x) * SCALE) / LOG2_E; } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the insight that log10(x) = log2(x) / log2(10). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the common logarithm. /// @return result The common logarithm as a signed 59.18-decimal fixed-point number. function log10(int256 x) internal pure returns (int256 result) { if (x <= 0) { revert PRBMathSD59x18__LogInputTooSmall(x); } // Note that the "mul" in this block is the assembly mul operation, not the "mul" function defined in this contract. // prettier-ignore assembly { switch x case 1 { result := mul(SCALE, sub(0, 18)) } case 10 { result := mul(SCALE, sub(1, 18)) } case 100 { result := mul(SCALE, sub(2, 18)) } case 1000 { result := mul(SCALE, sub(3, 18)) } case 10000 { result := mul(SCALE, sub(4, 18)) } case 100000 { result := mul(SCALE, sub(5, 18)) } case 1000000 { result := mul(SCALE, sub(6, 18)) } case 10000000 { result := mul(SCALE, sub(7, 18)) } case 100000000 { result := mul(SCALE, sub(8, 18)) } case 1000000000 { result := mul(SCALE, sub(9, 18)) } case 10000000000 { result := mul(SCALE, sub(10, 18)) } case 100000000000 { result := mul(SCALE, sub(11, 18)) } case 1000000000000 { result := mul(SCALE, sub(12, 18)) } case 10000000000000 { result := mul(SCALE, sub(13, 18)) } case 100000000000000 { result := mul(SCALE, sub(14, 18)) } case 1000000000000000 { result := mul(SCALE, sub(15, 18)) } case 10000000000000000 { result := mul(SCALE, sub(16, 18)) } case 100000000000000000 { result := mul(SCALE, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := SCALE } case 100000000000000000000 { result := mul(SCALE, 2) } case 1000000000000000000000 { result := mul(SCALE, 3) } case 10000000000000000000000 { result := mul(SCALE, 4) } case 100000000000000000000000 { result := mul(SCALE, 5) } case 1000000000000000000000000 { result := mul(SCALE, 6) } case 10000000000000000000000000 { result := mul(SCALE, 7) } case 100000000000000000000000000 { result := mul(SCALE, 8) } case 1000000000000000000000000000 { result := mul(SCALE, 9) } case 10000000000000000000000000000 { result := mul(SCALE, 10) } case 100000000000000000000000000000 { result := mul(SCALE, 11) } case 1000000000000000000000000000000 { result := mul(SCALE, 12) } case 10000000000000000000000000000000 { result := mul(SCALE, 13) } case 100000000000000000000000000000000 { result := mul(SCALE, 14) } case 1000000000000000000000000000000000 { result := mul(SCALE, 15) } case 10000000000000000000000000000000000 { result := mul(SCALE, 16) } case 100000000000000000000000000000000000 { result := mul(SCALE, 17) } case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) } case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) } case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) } case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) } case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) } case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) } case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) } case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) } case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) } default { result := MAX_SD59x18 } } if (result == MAX_SD59x18) { // Do the fixed-point division inline to save gas. The denominator is log2(10). unchecked { result = (log2(x) * SCALE) / 3_321928094887362347; } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than zero. /// /// Caveats: /// - The results are not perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the binary logarithm. /// @return result The binary logarithm as a signed 59.18-decimal fixed-point number. function log2(int256 x) internal pure returns (int256 result) { if (x <= 0) { revert PRBMathSD59x18__LogInputTooSmall(x); } unchecked { // This works because log2(x) = -log2(1/x). int256 sign; if (x >= SCALE) { sign = 1; } else { sign = -1; // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE. assembly { x := div(1000000000000000000000000000000000000, x) } } // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n). uint256 n = PRBMath.mostSignificantBit(uint256(x / SCALE)); // The integer part of the logarithm as a signed 59.18-decimal fixed-point number. The operation can't overflow // because n is maximum 255, SCALE is 1e18 and sign is either 1 or -1. result = int256(n) * SCALE; // This is y = x * 2^(-n). int256 y = x >> n; // If y = 1, the fractional part is zero. if (y == SCALE) { return result * sign; } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. for (int256 delta = int256(HALF_SCALE); delta > 0; delta >>= 1) { y = (y * y) / SCALE; // Is y^2 > 2 and so in the range [2,4)? if (y >= 2 * SCALE) { // Add the 2^(-m) factor to the logarithm. result += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } result *= sign; } } /// @notice Multiplies two signed 59.18-decimal fixed-point numbers together, returning a new signed 59.18-decimal /// fixed-point number. /// /// @dev Variant of "mulDiv" that works with signed numbers and employs constant folding, i.e. the denominator is /// always 1e18. /// /// Requirements: /// - All from "PRBMath.mulDivFixedPoint". /// - None of the inputs can be MIN_SD59x18 /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// /// @param x The multiplicand as a signed 59.18-decimal fixed-point number. /// @param y The multiplier as a signed 59.18-decimal fixed-point number. /// @return result The product as a signed 59.18-decimal fixed-point number. function mul(int256 x, int256 y) internal pure returns (int256 result) { if (x == MIN_SD59x18 || y == MIN_SD59x18) { revert PRBMathSD59x18__MulInputTooSmall(); } unchecked { uint256 ax; uint256 ay; ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); uint256 rAbs = PRBMath.mulDivFixedPoint(ax, ay); if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__MulOverflow(rAbs); } uint256 sx; uint256 sy; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) } result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs); } } /// @notice Returns PI as a signed 59.18-decimal fixed-point number. function pi() internal pure returns (int256 result) { result = 3_141592653589793238; } /// @notice Raises x to the power of y. /// /// @dev Based on the insight that x^y = 2^(log2(x) * y). /// /// Requirements: /// - All from "exp2", "log2" and "mul". /// - z cannot be zero. /// /// Caveats: /// - All from "exp2", "log2" and "mul". /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as a signed 59.18-decimal fixed-point number. /// @param y Exponent to raise x to, as a signed 59.18-decimal fixed-point number. /// @return result x raised to power y, as a signed 59.18-decimal fixed-point number. function pow(int256 x, int256 y) internal pure returns (int256 result) { if (x == 0) { result = y == 0 ? SCALE : int256(0); } else { result = exp2(mul(log2(x), y)); } } /// @notice Raises x (signed 59.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the /// famous algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - All from "abs" and "PRBMath.mulDivFixedPoint". /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - All from "PRBMath.mulDivFixedPoint". /// - Assumes 0^0 is 1. /// /// @param x The base as a signed 59.18-decimal fixed-point number. /// @param y The exponent as an uint256. /// @return result The result as a signed 59.18-decimal fixed-point number. function powu(int256 x, uint256 y) internal pure returns (int256 result) { uint256 xAbs = uint256(abs(x)); // Calculate the first iteration of the loop in advance. uint256 rAbs = y & 1 > 0 ? xAbs : uint256(SCALE); // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = PRBMath.mulDivFixedPoint(xAbs, xAbs); // Equivalent to "y % 2 == 1" but faster. if (yAux & 1 > 0) { rAbs = PRBMath.mulDivFixedPoint(rAbs, xAbs); } } // The result must fit within the 59.18-decimal fixed-point representation. if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__PowuOverflow(rAbs); } // Is the base negative and the exponent an odd number? bool isNegative = x < 0 && y & 1 == 1; result = isNegative ? -int256(rAbs) : int256(rAbs); } /// @notice Returns 1 as a signed 59.18-decimal fixed-point number. function scale() internal pure returns (int256 result) { result = SCALE; } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x cannot be negative. /// - x must be less than MAX_SD59x18 / SCALE. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the square root. /// @return result The result as a signed 59.18-decimal fixed-point . function sqrt(int256 x) internal pure returns (int256 result) { unchecked { if (x < 0) { revert PRBMathSD59x18__SqrtNegativeInput(x); } if (x > MAX_SD59x18 / SCALE) { revert PRBMathSD59x18__SqrtOverflow(x); } // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two signed // 59.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root). result = int256(PRBMath.sqrt(uint256(x * SCALE))); } } /// @notice Converts a signed 59.18-decimal fixed-point number to basic integer form, rounding down in the process. /// @param x The signed 59.18-decimal fixed-point number to convert. /// @return result The same number in basic integer form. function toInt(int256 x) internal pure returns (int256 result) { unchecked { result = x / SCALE; } } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; import "./PRBMath.sol"; /// @title PRBMathUD60x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18 /// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60 /// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the /// maximum values permitted by the Solidity type uint256. library PRBMathUD60x18 { /// @dev Half the SCALE number. uint256 internal constant HALF_SCALE = 5e17; /// @dev log2(e) as an unsigned 60.18-decimal fixed-point number. uint256 internal constant LOG2_E = 1_442695040888963407; /// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; /// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @notice Calculates the arithmetic average of x and y, rounding down. /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number. function avg(uint256 x, uint256 y) internal pure returns (uint256 result) { // The operations can never overflow. unchecked { // The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need // to do this because if both numbers are odd, the 0.5 remainder gets truncated twice. result = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to MAX_WHOLE_UD60x18. /// /// @param x The unsigned 60.18-decimal fixed-point number to ceil. /// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number. function ceil(uint256 x) internal pure returns (uint256 result) { if (x > MAX_WHOLE_UD60x18) { revert PRBMathUD60x18__CeilOverflow(x); } assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "SCALE - remainder" but faster. let delta := sub(SCALE, remainder) // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number. /// /// @dev Uses mulDiv to enable overflow-safe multiplication and division. /// /// Requirements: /// - The denominator cannot be zero. /// /// @param x The numerator as an unsigned 60.18-decimal fixed-point number. /// @param y The denominator as an unsigned 60.18-decimal fixed-point number. /// @param result The quotient as an unsigned 60.18-decimal fixed-point number. function div(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDiv(x, SCALE, y); } /// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number. /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant). function e() internal pure returns (uint256 result) { result = 2_718281828459045235; } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 133.084258667509499441. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp(uint256 x) internal pure returns (uint256 result) { // Without this check, the value passed to "exp2" would be greater than 192. if (x >= 133_084258667509499441) { revert PRBMathUD60x18__ExpInputTooBig(x); } // Do the fixed-point multiplication inline to save gas. unchecked { uint256 doubleScaleProduct = x * LOG2_E; result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within MAX_UD60x18. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (x >= 192e18) { revert PRBMathUD60x18__Exp2InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x192x64 = (x << 64) / SCALE; // Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation. result = PRBMath.exp2(x192x64); } } /// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x. /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The unsigned 60.18-decimal fixed-point number to floor. /// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number. function floor(uint256 x) internal pure returns (uint256 result) { assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x. /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part. /// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of. /// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number. function frac(uint256 x) internal pure returns (uint256 result) { assembly { result := mod(x, SCALE) } } /// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation. /// /// @dev Requirements: /// - x must be less than or equal to MAX_UD60x18 divided by SCALE. /// /// @param x The basic integer to convert. /// @param result The same number in unsigned 60.18-decimal fixed-point representation. function fromUint(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__FromUintOverflow(x); } result = x * SCALE; } } /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within MAX_UD60x18, lest it overflows. /// /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function gm(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { return 0; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xy = x * y; if (xy / x != y) { revert PRBMathUD60x18__GmOverflow(x, y); } // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE // during multiplication. See the comments within the "sqrt" function. result = PRBMath.sqrt(xy); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse. /// @return result The inverse as an unsigned 60.18-decimal fixed-point number. function inv(uint256 x) internal pure returns (uint256 result) { unchecked { // 1e36 is SCALE * SCALE. result = 1e36 / x; } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the insight that ln(x) = log2(x) / log2(e). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm. /// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number. function ln(uint256 x) internal pure returns (uint256 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 196205294292027477728. unchecked { result = (log2(x) * SCALE) / LOG2_E; } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the insight that log10(x) = log2(x) / log2(10). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm. /// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number. function log10(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } // Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined // in this contract. // prettier-ignore assembly { switch x case 1 { result := mul(SCALE, sub(0, 18)) } case 10 { result := mul(SCALE, sub(1, 18)) } case 100 { result := mul(SCALE, sub(2, 18)) } case 1000 { result := mul(SCALE, sub(3, 18)) } case 10000 { result := mul(SCALE, sub(4, 18)) } case 100000 { result := mul(SCALE, sub(5, 18)) } case 1000000 { result := mul(SCALE, sub(6, 18)) } case 10000000 { result := mul(SCALE, sub(7, 18)) } case 100000000 { result := mul(SCALE, sub(8, 18)) } case 1000000000 { result := mul(SCALE, sub(9, 18)) } case 10000000000 { result := mul(SCALE, sub(10, 18)) } case 100000000000 { result := mul(SCALE, sub(11, 18)) } case 1000000000000 { result := mul(SCALE, sub(12, 18)) } case 10000000000000 { result := mul(SCALE, sub(13, 18)) } case 100000000000000 { result := mul(SCALE, sub(14, 18)) } case 1000000000000000 { result := mul(SCALE, sub(15, 18)) } case 10000000000000000 { result := mul(SCALE, sub(16, 18)) } case 100000000000000000 { result := mul(SCALE, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := SCALE } case 100000000000000000000 { result := mul(SCALE, 2) } case 1000000000000000000000 { result := mul(SCALE, 3) } case 10000000000000000000000 { result := mul(SCALE, 4) } case 100000000000000000000000 { result := mul(SCALE, 5) } case 1000000000000000000000000 { result := mul(SCALE, 6) } case 10000000000000000000000000 { result := mul(SCALE, 7) } case 100000000000000000000000000 { result := mul(SCALE, 8) } case 1000000000000000000000000000 { result := mul(SCALE, 9) } case 10000000000000000000000000000 { result := mul(SCALE, 10) } case 100000000000000000000000000000 { result := mul(SCALE, 11) } case 1000000000000000000000000000000 { result := mul(SCALE, 12) } case 10000000000000000000000000000000 { result := mul(SCALE, 13) } case 100000000000000000000000000000000 { result := mul(SCALE, 14) } case 1000000000000000000000000000000000 { result := mul(SCALE, 15) } case 10000000000000000000000000000000000 { result := mul(SCALE, 16) } case 100000000000000000000000000000000000 { result := mul(SCALE, 17) } case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) } case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) } case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) } case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) } case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) } case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) } case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) } case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) } case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) } default { result := MAX_UD60x18 } } if (result == MAX_UD60x18) { // Do the fixed-point division inline to save gas. The denominator is log2(10). unchecked { result = (log2(x) * SCALE) / 3_321928094887362347; } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than or equal to SCALE, otherwise the result would be negative. /// /// Caveats: /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm. /// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number. function log2(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n). uint256 n = PRBMath.mostSignificantBit(x / SCALE); // The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow // because n is maximum 255 and SCALE is 1e18. result = n * SCALE; // This is y = x * 2^(-n). uint256 y = x >> n; // If y = 1, the fractional part is zero. if (y == SCALE) { return result; } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) { y = (y * y) / SCALE; // Is y^2 > 2 and so in the range [2,4)? if (y >= 2 * SCALE) { // Add the 2^(-m) factor to the logarithm. result += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } } } /// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal /// fixed-point number. /// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function. /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The product as an unsigned 60.18-decimal fixed-point number. function mul(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDivFixedPoint(x, y); } /// @notice Returns PI as an unsigned 60.18-decimal fixed-point number. function pi() internal pure returns (uint256 result) { result = 3_141592653589793238; } /// @notice Raises x to the power of y. /// /// @dev Based on the insight that x^y = 2^(log2(x) * y). /// /// Requirements: /// - All from "exp2", "log2" and "mul". /// /// Caveats: /// - All from "exp2", "log2" and "mul". /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number. /// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number. /// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number. function pow(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { result = y == 0 ? SCALE : uint256(0); } else { result = exp2(mul(log2(x), y)); } } /// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the /// famous algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - The result must fit within MAX_UD60x18. /// /// Caveats: /// - All from "mul". /// - Assumes 0^0 is 1. /// /// @param x The base as an unsigned 60.18-decimal fixed-point number. /// @param y The exponent as an uint256. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function powu(uint256 x, uint256 y) internal pure returns (uint256 result) { // Calculate the first iteration of the loop in advance. result = y & 1 > 0 ? x : SCALE; // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. for (y >>= 1; y > 0; y >>= 1) { x = PRBMath.mulDivFixedPoint(x, x); // Equivalent to "y % 2 == 1" but faster. if (y & 1 > 0) { result = PRBMath.mulDivFixedPoint(result, x); } } } /// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number. function scale() internal pure returns (uint256 result) { result = SCALE; } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x must be less than MAX_UD60x18 / SCALE. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root. /// @return result The result as an unsigned 60.18-decimal fixed-point . function sqrt(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__SqrtOverflow(x); } // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned // 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root). result = PRBMath.sqrt(x * SCALE); } } /// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process. /// @param x The unsigned 60.18-decimal fixed-point number to convert. /// @return result The same number in basic integer form. function toUint(uint256 x) internal pure returns (uint256 result) { unchecked { result = x / SCALE; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; /** * @title Pool State */ interface IPoolState { /** * @notice Returns details of an auction for a given borrower address. * @param borrower_ Address of the borrower that is liquidated. * @return kicker_ Address of the kicker that is kicking the auction. * @return bondFactor_ The factor used for calculating bond size. * @return bondSize_ The bond amount in quote token terms. * @return kickTime_ Time the liquidation was initiated. * @return referencePrice_ Price used to determine auction start price. * @return neutralPrice_ `Neutral Price` of auction. * @return debtToCollateral_ Borrower debt to collateral, which is used in BPF for kicker's reward calculation. * @return head_ Address of the head auction. * @return next_ Address of the next auction in queue. * @return prev_ Address of the prev auction in queue. */ function auctionInfo(address borrower_) external view returns ( address kicker_, uint256 bondFactor_, uint256 bondSize_, uint256 kickTime_, uint256 referencePrice_, uint256 neutralPrice_, uint256 debtToCollateral_, address head_, address next_, address prev_ ); /** * @notice Returns pool related debt values. * @return debt_ Current amount of debt owed by borrowers in pool. * @return accruedDebt_ Debt owed by borrowers based on last inflator snapshot. * @return debtInAuction_ Total amount of debt in auction. * @return t0Debt2ToCollateral_ t0debt accross all borrowers divided by their collateral, used in determining a collateralization weighted debt. */ function debtInfo() external view returns ( uint256 debt_, uint256 accruedDebt_, uint256 debtInAuction_, uint256 t0Debt2ToCollateral_ ); /** * @notice Mapping of borrower addresses to `Borrower` structs. * @dev NOTE: Cannot use appended underscore syntax for return params since struct is used. * @param borrower_ Address of the borrower. * @return t0Debt_ Amount of debt borrower would have had if their loan was the first debt drawn from the pool. * @return collateral_ Amount of collateral that the borrower has deposited, in collateral token. * @return npTpRatio_ Np to Tp ratio of borrower at the time of last borrow or pull collateral. */ function borrowerInfo(address borrower_) external view returns ( uint256 t0Debt_, uint256 collateral_, uint256 npTpRatio_ ); /** * @notice Mapping of buckets indexes to `Bucket` structs. * @dev NOTE: Cannot use appended underscore syntax for return params since struct is used. * @param index_ Bucket index. * @return lpAccumulator_ Amount of `LP` accumulated in current bucket. * @return availableCollateral_ Amount of collateral available in current bucket. * @return bankruptcyTime_ Timestamp when bucket become insolvent, `0` if healthy. * @return bucketDeposit_ Amount of quote tokens in bucket. * @return bucketScale_ Bucket multiplier. */ function bucketInfo(uint256 index_) external view returns ( uint256 lpAccumulator_, uint256 availableCollateral_, uint256 bankruptcyTime_, uint256 bucketDeposit_, uint256 bucketScale_ ); /** * @notice Mapping of burnEventEpoch to `BurnEvent` structs. * @dev Reserve auctions correspond to burn events. * @param burnEventEpoch_ Id of the current reserve auction. * @return burnBlock_ Block in which a reserve auction started. * @return totalInterest_ Total interest as of the reserve auction. * @return totalBurned_ Total ajna tokens burned as of the reserve auction. */ function burnInfo(uint256 burnEventEpoch_) external view returns (uint256, uint256, uint256); /** * @notice Returns the latest `burnEventEpoch` of reserve auctions. * @dev If a reserve auction is active, it refers to the current reserve auction. If no reserve auction is active, it refers to the last reserve auction. * @return Current `burnEventEpoch`. */ function currentBurnEpoch() external view returns (uint256); /** * @notice Returns information about the pool `EMA (Exponential Moving Average)` variables. * @return debtColEma_ Debt squared to collateral Exponential, numerator to `TU` calculation. * @return lupt0DebtEma_ Exponential of `LUP * t0 debt`, denominator to `TU` calculation * @return debtEma_ Exponential debt moving average. * @return depositEma_ sample of meaningful deposit Exponential, denominator to `MAU` calculation. */ function emasInfo() external view returns ( uint256 debtColEma_, uint256 lupt0DebtEma_, uint256 debtEma_, uint256 depositEma_ ); /** * @notice Returns information about pool inflator. * @return inflator_ Pool inflator value. * @return lastUpdate_ The timestamp of the last `inflator` update. */ function inflatorInfo() external view returns ( uint256 inflator_, uint256 lastUpdate_ ); /** * @notice Returns information about pool interest rate. * @return interestRate_ Current interest rate in pool. * @return interestRateUpdate_ The timestamp of the last interest rate update. */ function interestRateInfo() external view returns ( uint256 interestRate_, uint256 interestRateUpdate_ ); /** * @notice Returns details about kicker balances. * @param kicker_ The address of the kicker to retrieved info for. * @return claimable_ Amount of quote token kicker can claim / withdraw from pool at any time. * @return locked_ Amount of quote token kicker locked in auctions (as bonds). */ function kickerInfo(address kicker_) external view returns ( uint256 claimable_, uint256 locked_ ); /** * @notice Mapping of buckets indexes and owner addresses to `Lender` structs. * @param index_ Bucket index. * @param lender_ Address of the liquidity provider. * @return lpBalance_ Amount of `LP` owner has in current bucket. * @return depositTime_ Time the user last deposited quote token. */ function lenderInfo( uint256 index_, address lender_ ) external view returns ( uint256 lpBalance_, uint256 depositTime_ ); /** * @notice Return the `LP` allowance a `LP` owner provided to a spender. * @param index_ Bucket index. * @param spender_ Address of the `LP` spender. * @param owner_ The initial owner of the `LP`. * @return allowance_ Amount of `LP` spender can utilize. */ function lpAllowance( uint256 index_, address spender_, address owner_ ) external view returns (uint256 allowance_); /** * @notice Returns information about a loan in the pool. * @param loanId_ Loan's id within loan heap. Max loan is position `1`. * @return borrower_ Borrower address at the given position. * @return t0DebtToCollateral_ Borrower t0 debt to collateral. */ function loanInfo( uint256 loanId_ ) external view returns ( address borrower_, uint256 t0DebtToCollateral_ ); /** * @notice Returns information about pool loans. * @return maxBorrower_ Borrower address with highest t0 debt to collateral. * @return maxT0DebtToCollateral_ Highest t0 debt to collateral in pool. * @return noOfLoans_ Total number of loans. */ function loansInfo() external view returns ( address maxBorrower_, uint256 maxT0DebtToCollateral_, uint256 noOfLoans_ ); /** * @notice Returns information about pool reserves. * @return liquidationBondEscrowed_ Amount of liquidation bond across all liquidators. * @return reserveAuctionUnclaimed_ Amount of claimable reserves which has not been taken in the `Claimable Reserve Auction`. * @return reserveAuctionKicked_ Time a `Claimable Reserve Auction` was last kicked. * @return lastKickedReserves_ Amount of reserves upon last kick, used to calculate price. * @return totalInterestEarned_ Total interest earned by all lenders in the pool */ function reservesInfo() external view returns ( uint256 liquidationBondEscrowed_, uint256 reserveAuctionUnclaimed_, uint256 reserveAuctionKicked_, uint256 lastKickedReserves_, uint256 totalInterestEarned_ ); /** * @notice Returns the `pledgedCollateral` state variable. * @return The total pledged collateral in the system, in WAD units. */ function pledgedCollateral() external view returns (uint256); /** * @notice Returns the total number of active auctions in pool. * @return totalAuctions_ Number of active auctions. */ function totalAuctionsInPool() external view returns (uint256); /** * @notice Returns the `t0Debt` state variable. * @dev This value should be multiplied by inflator in order to calculate current debt of the pool. * @return The total `t0Debt` in the system, in `WAD` units. */ function totalT0Debt() external view returns (uint256); /** * @notice Returns the `t0DebtInAuction` state variable. * @dev This value should be multiplied by inflator in order to calculate current debt in auction of the pool. * @return The total `t0DebtInAuction` in the system, in `WAD` units. */ function totalT0DebtInAuction() external view returns (uint256); /** * @notice Mapping of addresses that can transfer `LP` to a given lender. * @param lender_ Lender that receives `LP`. * @param transferor_ Transferor that transfers `LP`. * @return True if the transferor is approved by lender. */ function approvedTransferors( address lender_, address transferor_ ) external view returns (bool); } /*********************/ /*** State Structs ***/ /*********************/ /******************/ /*** Pool State ***/ /******************/ /// @dev Struct holding inflator state. struct InflatorState { uint208 inflator; // [WAD] pool's inflator uint48 inflatorUpdate; // [SEC] last time pool's inflator was updated } /// @dev Struct holding pool interest state. struct InterestState { uint208 interestRate; // [WAD] pool's interest rate uint48 interestRateUpdate; // [SEC] last time pool's interest rate was updated (not before 12 hours passed) uint256 debt; // [WAD] previous update's debt uint256 meaningfulDeposit; // [WAD] previous update's meaningfulDeposit uint256 t0Debt2ToCollateral; // [WAD] utilization weight accumulator, tracks debt and collateral relationship accross borrowers uint256 debtCol; // [WAD] previous debt squared to collateral uint256 lupt0Debt; // [WAD] previous LUP * t0 debt } /// @dev Struct holding pool EMAs state. struct EmaState { uint256 debtEma; // [WAD] sample of debt EMA, numerator to MAU calculation uint256 depositEma; // [WAD] sample of meaningful deposit EMA, denominator to MAU calculation uint256 debtColEma; // [WAD] debt squared to collateral EMA, numerator to TU calculation uint256 lupt0DebtEma; // [WAD] EMA of LUP * t0 debt, denominator to TU calculation uint256 emaUpdate; // [SEC] last time pool's EMAs were updated } /// @dev Struct holding pool balances state. struct PoolBalancesState { uint256 pledgedCollateral; // [WAD] total collateral pledged in pool uint256 t0DebtInAuction; // [WAD] Total debt in auction used to restrict LPB holder from withdrawing uint256 t0Debt; // [WAD] Pool debt as if the whole amount was incurred upon the first loan } /// @dev Struct holding pool params (in memory only). struct PoolState { uint8 poolType; // pool type, can be ERC20 or ERC721 uint256 t0Debt; // [WAD] t0 debt in pool uint256 t0DebtInAuction; // [WAD] t0 debt in auction within pool uint256 debt; // [WAD] total debt in pool, accrued in current block uint256 collateral; // [WAD] total collateral pledged in pool uint256 inflator; // [WAD] current pool inflator bool isNewInterestAccrued; // true if new interest already accrued in current block uint256 rate; // [WAD] pool's current interest rate uint256 quoteTokenScale; // [WAD] quote token scale of the pool. Same as quote token dust. } /*********************/ /*** Buckets State ***/ /*********************/ /// @dev Struct holding lender state. struct Lender { uint256 lps; // [WAD] Lender LP accumulator uint256 depositTime; // timestamp of last deposit } /// @dev Struct holding bucket state. struct Bucket { uint256 lps; // [WAD] Bucket LP accumulator uint256 collateral; // [WAD] Available collateral tokens deposited in the bucket uint256 bankruptcyTime; // Timestamp when bucket become insolvent, 0 if healthy mapping(address => Lender) lenders; // lender address to Lender struct mapping } /**********************/ /*** Deposits State ***/ /**********************/ /// @dev Struct holding deposits (Fenwick) values and scaling. struct DepositsState { uint256[8193] values; // Array of values in the FenwickTree. uint256[8193] scaling; // Array of values which scale (multiply) the FenwickTree accross indexes. } /*******************/ /*** Loans State ***/ /*******************/ /// @dev Struct holding loans state. struct LoansState { Loan[] loans; mapping (address => uint) indices; // borrower address => loan index mapping mapping (address => Borrower) borrowers; // borrower address => Borrower struct mapping } /// @dev Struct holding loan state. struct Loan { address borrower; // borrower address uint96 t0DebtToCollateral; // [WAD] Borrower t0 debt to collateral. } /// @dev Struct holding borrower state. struct Borrower { uint256 t0Debt; // [WAD] Borrower debt time-adjusted as if it was incurred upon first loan of pool. uint256 collateral; // [WAD] Collateral deposited by borrower. uint256 npTpRatio; // [WAD] Np to Tp ratio at the time of last borrow or pull collateral. } /**********************/ /*** Auctions State ***/ /**********************/ /// @dev Struct holding pool auctions state. struct AuctionsState { uint96 noOfAuctions; // total number of auctions in pool address head; // first address in auction queue address tail; // last address in auction queue uint256 totalBondEscrowed; // [WAD] total amount of quote token posted as auction kick bonds mapping(address => Liquidation) liquidations; // mapping of borrower address and auction details mapping(address => Kicker) kickers; // mapping of kicker address and kicker balances } /// @dev Struct holding liquidation state. struct Liquidation { address kicker; // address that initiated liquidation uint96 bondFactor; // [WAD] bond factor used to start liquidation uint96 kickTime; // timestamp when liquidation was started address prev; // previous liquidated borrower in auctions queue uint96 referencePrice; // [WAD] used to calculate auction start price address next; // next liquidated borrower in auctions queue uint160 bondSize; // [WAD] liquidation bond size uint96 neutralPrice; // [WAD] Neutral Price when liquidation was started uint256 debtToCollateral; // [WAD] Borrower debt to collateral, which is used in BPF for kicker's reward calculation uint256 t0ReserveSettleAmount; // [WAD] Amount of t0Debt that could be settled via reserves in this auction } /// @dev Struct holding kicker state. struct Kicker { uint256 claimable; // [WAD] kicker's claimable balance uint256 locked; // [WAD] kicker's balance of tokens locked in auction bonds } /******************************/ /*** Reserve Auctions State ***/ /******************************/ /// @dev Struct holding reserve auction state. struct ReserveAuctionState { uint256 kicked; // Time a Claimable Reserve Auction was last kicked. uint256 lastKickedReserves; // [WAD] Amount of reserves upon last kick, used to calculate price. uint256 unclaimed; // [WAD] Amount of claimable reserves which has not been taken in the Claimable Reserve Auction. uint256 latestBurnEventEpoch; // Latest burn event epoch. uint256 totalAjnaBurned; // [WAD] Total ajna burned in the pool. uint256 totalInterestEarned; // [WAD] Total interest earned by all lenders in the pool. mapping (uint256 => BurnEvent) burnEvents; // Mapping burnEventEpoch => BurnEvent. } /// @dev Struct holding burn event state. struct BurnEvent { uint256 timestamp; // time at which the burn event occured uint256 totalInterest; // [WAD] current pool interest accumulator `PoolCommons.accrueInterest().newInterest` uint256 totalBurned; // [WAD] burn amount accumulator }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; interface IERC3156FlashBorrower { /** * @dev Receive a flash loan. * @param initiator The initiator of the loan. * @param token The loan currency. * @param amount The amount of tokens lent (token precision). * @param fee The additional amount of tokens to repay. * @param data Arbitrary data structure, intended to contain user-defined parameters. * @return The `keccak256` hash of `ERC3156FlashBorrower.onFlashLoan` */ function onFlashLoan( address initiator, address token, uint256 amount, uint256 fee, bytes calldata data ) external returns (bytes32); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.18; import { PRBMathSD59x18 } from "@prb-math/contracts/PRBMathSD59x18.sol"; import { Math } from '@openzeppelin/contracts/utils/math/Math.sol'; import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol"; import { PoolType } from '../../interfaces/pool/IPool.sol'; import { InflatorState, PoolState } from '../../interfaces/pool/commons/IPoolState.sol'; import { Buckets } from '../internal/Buckets.sol'; import { Maths } from '../internal/Maths.sol'; error BucketIndexOutOfBounds(); error BucketPriceOutOfBounds(); /*************************/ /*** Price Conversions ***/ /*************************/ /// @dev constant price indices defining the min and max of the potential price range int256 constant MAX_BUCKET_INDEX = 4_156; int256 constant MIN_BUCKET_INDEX = -3_232; uint256 constant MAX_FENWICK_INDEX = 7_388; uint256 constant MIN_PRICE = 99_836_282_890; uint256 constant MAX_PRICE = 1_004_968_987.606512354182109771 * 1e18; uint256 constant MAX_INFLATED_PRICE = 50_248_449_380.325617709105488550 * 1e18; // 50 * MAX_PRICE /// @dev deposit buffer (extra margin) used for calculating reserves uint256 constant DEPOSIT_BUFFER = 1.000000001 * 1e18; /// @dev step amounts in basis points. This is a constant across pools at `0.005`, achieved by dividing `WAD` by `10,000` int256 constant FLOAT_STEP_INT = 1.005 * 1e18; /// @dev collateralization factor used to calculate borrrower HTP/TP/collateralization. uint256 constant COLLATERALIZATION_FACTOR = 1.04 * 1e18; /** * @notice Calculates the price (`WAD` precision) for a given `Fenwick` index. * @dev Reverts with `BucketIndexOutOfBounds` if index exceeds maximum constant. * @dev Uses fixed-point math to get around lack of floating point numbers in `EVM`. * @dev Fenwick index is converted to bucket index. * @dev Fenwick index to bucket index conversion: * @dev `1.00` : bucket index `0`, fenwick index `4156`: `7388-4156-3232=0`. * @dev `MAX_PRICE` : bucket index `4156`, fenwick index `0`: `7388-0-3232=4156`. * @dev `MIN_PRICE` : bucket index - `3232`, fenwick index `7388`: `7388-7388-3232=-3232`. * @dev `V1`: `price = MIN_PRICE + (FLOAT_STEP * index)` * @dev `V2`: `price = MAX_PRICE * (FLOAT_STEP ** (abs(int256(index - MAX_PRICE_INDEX))));` * @dev `V3 (final)`: `x^y = 2^(y*log_2(x))` */ function _priceAt( uint256 index_ ) pure returns (uint256) { // Lowest Fenwick index is highest price, so invert the index and offset by highest bucket index. int256 bucketIndex = MAX_BUCKET_INDEX - int256(index_); if (bucketIndex < MIN_BUCKET_INDEX || bucketIndex > MAX_BUCKET_INDEX) revert BucketIndexOutOfBounds(); return uint256( PRBMathSD59x18.exp2( PRBMathSD59x18.mul( PRBMathSD59x18.fromInt(bucketIndex), PRBMathSD59x18.log2(FLOAT_STEP_INT) ) ) ); } /** * @notice Calculates the Fenwick index for a given price. * @dev Reverts with `BucketPriceOutOfBounds` if price exceeds maximum constant. * @dev Price expected to be inputted as a `WAD` (`18` decimal). * @dev `V1`: `bucket index = (price - MIN_PRICE) / FLOAT_STEP` * @dev `V2`: `bucket index = (log(FLOAT_STEP) * price) / MAX_PRICE` * @dev `V3 (final)`: `bucket index = log_2(price) / log_2(FLOAT_STEP)` * @dev `Fenwick index = 7388 - bucket index + 3232` */ function _indexOf( uint256 price_ ) pure returns (uint256) { if (price_ < MIN_PRICE || price_ > MAX_PRICE) revert BucketPriceOutOfBounds(); int256 index = PRBMathSD59x18.div( PRBMathSD59x18.log2(int256(price_)), PRBMathSD59x18.log2(FLOAT_STEP_INT) ); int256 ceilIndex = PRBMathSD59x18.ceil(index); if (index < 0 && ceilIndex - index > 0.5 * 1e18) { return uint256(4157 - PRBMathSD59x18.toInt(ceilIndex)); } return uint256(4156 - PRBMathSD59x18.toInt(ceilIndex)); } /**********************/ /*** Pool Utilities ***/ /**********************/ /** * @notice Calculates the minimum debt amount that can be borrowed or can remain in a loan in pool. * @param debt_ The debt amount to calculate minimum debt amount for. * @param loansCount_ The number of loans in pool. * @return minDebtAmount_ Minimum debt amount value of the pool. */ function _minDebtAmount( uint256 debt_, uint256 loansCount_ ) pure returns (uint256 minDebtAmount_) { if (loansCount_ != 0) { minDebtAmount_ = Maths.wdiv(Maths.wdiv(debt_, Maths.wad(loansCount_)), 10**19); } } /** * @notice Calculates origination fee for a given interest rate. * @notice Calculated as greater of the current annualized interest rate divided by `52` (one week of interest) or `5` bps. * @param interestRate_ The current interest rate. * @return Fee rate based upon the given interest rate. */ function _borrowFeeRate( uint256 interestRate_ ) pure returns (uint256) { // greater of the current annualized interest rate divided by 52 (one week of interest) or 5 bps return Maths.max(Maths.wdiv(interestRate_, 52 * 1e18), 0.0005 * 1e18); } /** * @notice Calculates the unutilized deposit fee, charged to lenders who deposit below the `LUP`. * @param interestRate_ The current interest rate. * @return Fee rate based upon the given interest rate */ function _depositFeeRate( uint256 interestRate_ ) pure returns (uint256) { // current annualized rate divided by 365 * 3 (8 hours of interest) return Maths.wdiv(interestRate_, 365 * 3e18); } /** * @notice Determines how the inflator state should be updated * @param poolState_ State of the pool after updateInterestState was called. * @param inflatorState_ Old inflator state. * @return newInflator_ New inflator value. * @return updateTimestamp_ `True` if timestamp of last update should be updated. */ function _determineInflatorState( PoolState memory poolState_, InflatorState memory inflatorState_ ) view returns (uint208 newInflator_, bool updateTimestamp_) { newInflator_ = inflatorState_.inflator; // update pool inflator if (poolState_.isNewInterestAccrued) { newInflator_ = SafeCast.toUint208(poolState_.inflator); updateTimestamp_ = true; // if the debt in the current pool state is 0, also update the inflator and inflatorUpdate fields in inflatorState // slither-disable-next-line incorrect-equality } else if (poolState_.debt == 0) { newInflator_ = SafeCast.toUint208(Maths.WAD); updateTimestamp_ = true; // if the first loan has just been drawn, update the inflator timestamp // slither-disable-next-line incorrect-equality } else if (inflatorState_.inflator == Maths.WAD && inflatorState_.inflatorUpdate != block.timestamp){ updateTimestamp_ = true; } } /** * @notice Calculates `HTP` price. * @param maxT0DebtToCollateral_ Max t0 debt to collateral in pool. * @param inflator_ Pool's inflator. */ function _htp( uint256 maxT0DebtToCollateral_, uint256 inflator_ ) pure returns (uint256) { return Maths.wmul( Maths.wmul(maxT0DebtToCollateral_, inflator_), COLLATERALIZATION_FACTOR ); } /** * @notice Calculates debt-weighted average threshold price. * @param t0Debt_ Pool debt owed by borrowers in `t0` terms. * @param inflator_ Pool's borrower inflator. * @param t0Debt2ToCollateral_ `t0-debt-squared-to-collateral` accumulator. */ function _dwatp( uint256 t0Debt_, uint256 inflator_, uint256 t0Debt2ToCollateral_ ) pure returns (uint256) { return t0Debt_ == 0 ? 0 : Maths.wdiv( Maths.wmul( Maths.wmul(inflator_, t0Debt2ToCollateral_), COLLATERALIZATION_FACTOR ), t0Debt_ ); } /** * @notice Collateralization calculation. * @param debt_ Debt to calculate collateralization for. * @param collateral_ Collateral to calculate collateralization for. * @param price_ Price to calculate collateralization for. * @param type_ Type of the pool. * @return `True` if value of collateral exceeds or equals debt. */ function _isCollateralized( uint256 debt_, uint256 collateral_, uint256 price_, uint8 type_ ) pure returns (bool) { // `False` if LUP = MIN_PRICE unless there is no debt if (price_ == MIN_PRICE && debt_ != 0) return false; // Use collateral floor for NFT pools if (type_ == uint8(PoolType.ERC721)) { //slither-disable-next-line divide-before-multiply collateral_ = (collateral_ / Maths.WAD) * Maths.WAD; // use collateral floor } return Maths.wmul(collateral_, price_) >= Maths.wmul(COLLATERALIZATION_FACTOR, debt_); } /** * @notice Price precision adjustment used in calculating collateral dust for a bucket. * To ensure the accuracy of the exchange rate calculation, buckets with smaller prices require * larger minimum amounts of collateral. This formula imposes a lower bound independent of token scale. * @param bucketIndex_ Index of the bucket, or `0` for encumbered collateral with no bucket affinity. * @return pricePrecisionAdjustment_ Unscaled integer of the minimum number of decimal places the dust limit requires. */ function _getCollateralDustPricePrecisionAdjustment( uint256 bucketIndex_ ) pure returns (uint256 pricePrecisionAdjustment_) { // conditional is a gas optimization if (bucketIndex_ > 3900) { int256 bucketOffset = int256(bucketIndex_ - 3900); int256 result = PRBMathSD59x18.sqrt(PRBMathSD59x18.div(bucketOffset * 1e18, int256(36 * 1e18))); pricePrecisionAdjustment_ = uint256(result / 1e18); } } /** * @notice Returns the amount of collateral calculated for the given amount of `LP`. * @dev The value returned is capped at collateral amount available in bucket. * @param bucketCollateral_ Amount of collateral in bucket. * @param bucketLP_ Amount of `LP` in bucket. * @param deposit_ Current bucket deposit (quote tokens). Used to calculate bucket's exchange rate / `LP`. * @param lenderLPBalance_ The amount of `LP` to calculate collateral for. * @param bucketPrice_ Bucket's price. * @return collateralAmount_ Amount of collateral calculated for the given `LP `amount. */ function _lpToCollateral( uint256 bucketCollateral_, uint256 bucketLP_, uint256 deposit_, uint256 lenderLPBalance_, uint256 bucketPrice_ ) pure returns (uint256 collateralAmount_) { collateralAmount_ = Buckets.lpToCollateral( bucketCollateral_, bucketLP_, deposit_, lenderLPBalance_, bucketPrice_, Math.Rounding.Down ); if (collateralAmount_ > bucketCollateral_) { // user is owed more collateral than is available in the bucket collateralAmount_ = bucketCollateral_; } } /** * @notice Returns the amount of quote tokens calculated for the given amount of `LP`. * @dev The value returned is capped at available bucket deposit. * @param bucketLP_ Amount of `LP` in bucket. * @param bucketCollateral_ Amount of collateral in bucket. * @param deposit_ Current bucket deposit (quote tokens). Used to calculate bucket's exchange rate / `LP`. * @param lenderLPBalance_ The amount of `LP` to calculate quote token amount for. * @param bucketPrice_ Bucket's price. * @return quoteTokenAmount_ Amount of quote tokens calculated for the given `LP` amount, capped at available bucket deposit. */ function _lpToQuoteToken( uint256 bucketLP_, uint256 bucketCollateral_, uint256 deposit_, uint256 lenderLPBalance_, uint256 bucketPrice_ ) pure returns (uint256 quoteTokenAmount_) { quoteTokenAmount_ = Buckets.lpToQuoteTokens( bucketCollateral_, bucketLP_, deposit_, lenderLPBalance_, bucketPrice_, Math.Rounding.Down ); if (quoteTokenAmount_ > deposit_) quoteTokenAmount_ = deposit_; } /** * @notice Rounds a token amount down to the minimum amount permissible by the token scale. * @param amount_ Value to be rounded. * @param tokenScale_ Scale of the token, presented as a power of `10`. * @return scaledAmount_ Rounded value. */ function _roundToScale( uint256 amount_, uint256 tokenScale_ ) pure returns (uint256 scaledAmount_) { scaledAmount_ = (amount_ / tokenScale_) * tokenScale_; } /** * @notice Rounds a token amount up to the next amount permissible by the token scale. * @param amount_ Value to be rounded. * @param tokenScale_ Scale of the token, presented as a power of `10`. * @return scaledAmount_ Rounded value. */ function _roundUpToScale( uint256 amount_, uint256 tokenScale_ ) pure returns (uint256 scaledAmount_) { if (amount_ % tokenScale_ == 0) scaledAmount_ = amount_; else scaledAmount_ = _roundToScale(amount_, tokenScale_) + tokenScale_; } /*********************************/ /*** Reserve Auction Utilities ***/ /*********************************/ uint256 constant MINUTE_HALF_LIFE = 0.988514020352896135_356867505 * 1e27; // 0.5^(1/60) /** * @notice Calculates claimable reserves within the pool. * @dev Claimable reserve auctions and escrowed auction bonds are guaranteed by the pool. * @param debt_ Pool's debt. * @param poolSize_ Pool's deposit size. * @param totalBondEscrowed_ Total bond escrowed. * @param reserveAuctionUnclaimed_ Pool's unclaimed reserve auction. * @param quoteTokenBalance_ Pool's quote token balance. * @return claimable_ Calculated pool reserves. */ function _claimableReserves( uint256 debt_, uint256 poolSize_, uint256 totalBondEscrowed_, uint256 reserveAuctionUnclaimed_, uint256 quoteTokenBalance_ ) pure returns (uint256 claimable_) { uint256 guaranteedFunds = totalBondEscrowed_ + reserveAuctionUnclaimed_; // calculate claimable reserves if there's quote token excess if (quoteTokenBalance_ > guaranteedFunds) { claimable_ = debt_ + quoteTokenBalance_; claimable_ -= Maths.min( claimable_, // require 1.0 + 1e-9 deposit buffer (extra margin) for deposits Maths.wmul(DEPOSIT_BUFFER, poolSize_) + guaranteedFunds ); // incremental claimable reserve should not exceed excess quote in pool claimable_ = Maths.min( claimable_, quoteTokenBalance_ - guaranteedFunds ); } } /** * @notice Calculates reserves auction price. * @param reserveAuctionKicked_ Time when reserve auction was started (kicked). * @param lastKickedReserves_ Reserves to be auctioned when started (kicked). * @return price_ Calculated auction price. */ function _reserveAuctionPrice( uint256 reserveAuctionKicked_, uint256 lastKickedReserves_ ) view returns (uint256 price_) { if (reserveAuctionKicked_ != 0) { uint256 secondsElapsed = block.timestamp - reserveAuctionKicked_; uint256 hoursComponent = 1e27 >> secondsElapsed / 3600; uint256 minutesComponent = Maths.rpow(MINUTE_HALF_LIFE, secondsElapsed % 3600 / 60); uint256 initialPrice = lastKickedReserves_ == 0 ? 0 : Maths.wdiv(1_000_000_000 * 1e18, lastKickedReserves_); price_ = initialPrice * Maths.rmul(hoursComponent, minutesComponent) / 1e27; } } /*************************/ /*** Auction Utilities ***/ /*************************/ /// @dev min bond factor. uint256 constant MIN_BOND_FACTOR = 0.005 * 1e18; /// @dev max bond factor. uint256 constant MAX_BOND_FACTOR = 0.03 * 1e18; /** * @notice Calculates auction price. * @param referencePrice_ Recorded at kick, used to calculate start price. * @param kickTime_ Time when auction was kicked. * @return price_ Calculated auction price. */ function _auctionPrice( uint256 referencePrice_, uint256 kickTime_ ) view returns (uint256 price_) { uint256 elapsedMinutes = Maths.wdiv((block.timestamp - kickTime_) * 1e18, 1 minutes * 1e18); int256 timeAdjustment; if (elapsedMinutes < 120 * 1e18) { timeAdjustment = PRBMathSD59x18.mul(-1 * 1e18, int256(elapsedMinutes / 20)); price_ = 256 * Maths.wmul(referencePrice_, uint256(PRBMathSD59x18.exp2(timeAdjustment))); } else if (elapsedMinutes < 840 * 1e18) { timeAdjustment = PRBMathSD59x18.mul(-1 * 1e18, int256((elapsedMinutes - 120 * 1e18) / 120)); price_ = 4 * Maths.wmul(referencePrice_, uint256(PRBMathSD59x18.exp2(timeAdjustment))); } else { timeAdjustment = PRBMathSD59x18.mul(-1 * 1e18, int256((elapsedMinutes - 840 * 1e18) / 60)); price_ = Maths.wmul(referencePrice_, uint256(PRBMathSD59x18.exp2(timeAdjustment))) / 16; } } /** * @notice Calculates bond penalty factor. * @dev Called in kick and take. * @param debtToCollateral_ Borrower debt to collateral at time of kick. * @param neutralPrice_ `NP` of auction. * @param bondFactor_ Factor used to determine bondSize. * @param auctionPrice_ Auction price at the time of call or, for bucket takes, bucket price. * @return bpf_ Factor used in determining bond `reward` (positive) or `penalty` (negative). */ function _bpf( uint256 debtToCollateral_, uint256 neutralPrice_, uint256 bondFactor_, uint256 auctionPrice_ ) pure returns (int256) { int256 sign; if (debtToCollateral_ < neutralPrice_) { // BPF = BondFactor * min(1, max(-1, (neutralPrice - price) / (neutralPrice - debtToCollateral))) sign = Maths.minInt( 1e18, Maths.maxInt( -1 * 1e18, PRBMathSD59x18.div( int256(neutralPrice_) - int256(auctionPrice_), int256(neutralPrice_) - int256(debtToCollateral_) ) ) ); } else { int256 val = int256(neutralPrice_) - int256(auctionPrice_); if (val < 0 ) sign = -1e18; else if (val != 0) sign = 1e18; } return PRBMathSD59x18.mul(int256(bondFactor_), sign); } /** * @notice Calculates bond parameters of an auction. * @param borrowerDebt_ Borrower's debt before entering in liquidation. * @param npTpRatio_ Borrower's Np to Tp ratio */ function _bondParams( uint256 borrowerDebt_, uint256 npTpRatio_ ) pure returns (uint256 bondFactor_, uint256 bondSize_) { // bondFactor = max(min(MAX_BOND_FACTOR, (NP/TP_ratio - 1) / 10), MIN_BOND_FACTOR) bondFactor_ = Maths.max( Maths.min( MAX_BOND_FACTOR, (npTpRatio_ - 1e18) / 10 ), MIN_BOND_FACTOR ); bondSize_ = Maths.wmul(bondFactor_, borrowerDebt_); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.18; import { Math } from '@openzeppelin/contracts/utils/math/Math.sol'; import { DepositsState } from '../../interfaces/pool/commons/IPoolState.sol'; import { _priceAt, MAX_FENWICK_INDEX } from '../helpers/PoolHelper.sol'; import { Maths } from './Maths.sol'; /** @title Deposits library @notice Internal library containing common logic for deposits management. @dev Implemented as `Fenwick Tree` data structure. */ library Deposits { /// @dev Max index supported in the `Fenwick` tree uint256 internal constant SIZE = 8192; /**************/ /*** Errors ***/ /**************/ // See `IPoolErrors` for descriptions error InvalidAmount(); /** * @notice Increase a value in the FenwickTree at an index. * @dev Starts at leaf/target and moved up towards root * @dev === Reverts on === * @dev unscaled amount to add is 0 `InvalidAmount()` * @param deposits_ Deposits state struct. * @param index_ The deposit index. * @param unscaledAddAmount_ The unscaled amount to increase deposit by. */ function unscaledAdd( DepositsState storage deposits_, uint256 index_, uint256 unscaledAddAmount_ ) internal { // revert if 0 amount is added. if (unscaledAddAmount_ == 0) revert InvalidAmount(); // price buckets are indexed starting at 0, Fenwick bit logic is more elegant starting at 1 ++index_; // unscaledAddAmount_ is the raw amount to add directly to the value at index_, unaffected by the scale array // For example, to denote an amount of deposit added to the array, we would need to call unscaledAdd with // (deposit amount) / scale(index). There are two reasons for this: // 1- scale(index) is often already known in the context of where unscaledAdd(..) is called, and we want to avoid // redundant iterations through the Fenwick tree. // 2- We often need to precisely change the value in the tree, avoiding the rounding that dividing by scale(index). // This is more relevant to unscaledRemove(...), where we need to ensure the value is precisely set to 0, but we // also prefer it here for consistency. uint256 value; uint256 scaling; uint256 newValue; while (index_ <= SIZE) { value = deposits_.values[index_]; scaling = deposits_.scaling[index_]; // Compute the new value to be put in location index_ newValue = value + unscaledAddAmount_; // Update unscaledAddAmount to propogate up the Fenwick tree // Note: we can't just multiply addAmount_ by scaling[i_] due to rounding // We need to track the precice change in values[i_] in order to ensure // obliterated indices remain zero after subsequent adding to related indices // if scaling==0, the actual scale value is 1, otherwise it is scaling if (scaling != 0) unscaledAddAmount_ = Maths.wmul(newValue, scaling) - Maths.wmul(value, scaling); deposits_.values[index_] = newValue; // traverse upwards through tree via "update" route index_ += lsb(index_); } } /** * @notice Finds index and sum of first bucket that EXCEEDS the given sum * @dev Used in `LUP` calculation * @param deposits_ Struct for deposits state. * @param targetSum_ The sum to find index for. * @return sumIndex_ Smallest index where prefixsum greater than the sum. * @return sumIndexSum_ Sum at index PRECEDING `sumIndex_`. * @return sumIndexScale_ Scale of bucket PRECEDING `sumIndex_`. */ function findIndexAndSumOfSum( DepositsState storage deposits_, uint256 targetSum_ ) internal view returns (uint256 sumIndex_, uint256 sumIndexSum_, uint256 sumIndexScale_) { // i iterates over bits from MSB to LSB. We check at each stage if the target sum is to the left or right of sumIndex_+i uint256 i = 4096; // 1 << (_numBits - 1) = 1 << (13 - 1) = 4096 uint256 runningScale = Maths.WAD; // We construct the target sumIndex_ bit by bit, from MSB to LSB. lowerIndexSum_ always maintains the sum // up to the current value of sumIndex_ uint256 lowerIndexSum; uint256 curIndex; uint256 value; uint256 scaling; uint256 scaledValue; while (i > 0) { // Consider if the target index is less than or greater than sumIndex_ + i curIndex = sumIndex_ + i; value = deposits_.values[curIndex]; scaling = deposits_.scaling[curIndex]; // Compute sum up to sumIndex_ + i scaledValue = lowerIndexSum + ( scaling != 0 ? Math.mulDiv( runningScale * scaling, value, 1e36 ) : Maths.wmul(runningScale, value) ); if (scaledValue < targetSum_) { // Target value is too small, need to consider increasing sumIndex_ still if (curIndex <= MAX_FENWICK_INDEX) { // sumIndex_+i is in range of Fenwick prices. Target index has this bit set to 1. sumIndex_ = curIndex; lowerIndexSum = scaledValue; } } else { // Target index has this bit set to 0 // scaling == 0 means scale factor == 1, otherwise scale factor == scaling if (scaling != 0) runningScale = Maths.floorWmul(runningScale, scaling); // Current scaledValue is <= targetSum_, it's a candidate value for sumIndexSum_ sumIndexSum_ = scaledValue; sumIndexScale_ = runningScale; } // Shift i to next less significant bit i = i >> 1; } } /** * @notice Finds index of passed sum. Helper function for `findIndexAndSumOfSum`. * @dev Used in `LUP` calculation * @param deposits_ Deposits state struct. * @param sum_ The sum to find index for. * @return sumIndex_ Smallest index where prefixsum greater than the sum. */ function findIndexOfSum( DepositsState storage deposits_, uint256 sum_ ) internal view returns (uint256 sumIndex_) { (sumIndex_,,) = findIndexAndSumOfSum(deposits_, sum_); } /** * @notice Get least significant bit (`LSB`) of integer `i_`. * @dev Used primarily to decrement the binary index in loops, iterating over range parents. * @param i_ The integer with which to return the `LSB`. */ function lsb( uint256 i_ ) internal pure returns (uint256 lsb_) { if (i_ != 0) { // "i & (-i)" lsb_ = i_ & ((i_ ^ 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) + 1); } } /** * @notice Scale values in the tree from the index provided, upwards. * @dev Starts at passed in node and increments through range parent nodes, and ends at `8192`. * @param deposits_ Deposits state struct. * @param index_ The index to start scaling from. * @param factor_ The factor to scale the values by. */ function mult( DepositsState storage deposits_, uint256 index_, uint256 factor_ ) internal { // price buckets are indexed starting at 0, Fenwick bit logic is more elegant starting at 1 ++index_; uint256 sum; uint256 value; uint256 scaling; uint256 bit = lsb(index_); // Starting with the LSB of index, we iteratively move up towards the MSB of SIZE // Case 1: the bit of index_ is set to 1. In this case, the entire subtree below index_ // is scaled. So, we include factor_ into scaling[index_], and remember in sum how much // we increased the subtree by, so that we can use it in case we encounter 0 bits (below). // Case 2: The bit of index_ is set to 0. In this case, consider the subtree below the node // index_+bit. The subtree below that is not entirely scaled, but it does contain the // subtree what was scaled earlier. Therefore: we need to increment it's stored value // (in sum) which was set in a prior interation in case 1. while (bit <= SIZE) { if ((bit & index_) != 0) { // Case 1 as described above value = deposits_.values[index_]; scaling = deposits_.scaling[index_]; // Calc sum, will only be stored in range parents of starting node, index_ if (scaling != 0) { // Note: we can't just multiply by factor_ - 1 in the following line, as rounding will // cause obliterated indices to have nonzero values. Need to track the actual // precise delta in the value array uint256 scaledFactor = Maths.wmul(factor_, scaling); sum += Maths.wmul(scaledFactor, value) - Maths.wmul(scaling, value); // Apply scaling to all range parents less then starting node, index_ deposits_.scaling[index_] = scaledFactor; } else { // this node's scale factor is 1 sum += Maths.wmul(factor_, value) - value; deposits_.scaling[index_] = factor_; } // Unset the bit in index to continue traversing up the Fenwick tree index_ -= bit; } else { // Case 2 above. superRangeIndex is the index of the node to consider that // contains the sub range that was already scaled in prior iteration uint256 superRangeIndex = index_ + bit; value = (deposits_.values[superRangeIndex] += sum); scaling = deposits_.scaling[superRangeIndex]; // Need to be careful due to rounding to propagate actual changes upwards in tree. // sum is always equal to the actual value we changed deposits_.values[] by if (scaling != 0) sum = Maths.wmul(value, scaling) - Maths.wmul(value - sum, scaling); } // consider next most significant bit bit = bit << 1; } } /** * @notice Get prefix sum of all indexes from provided index downwards. * @dev Starts at tree root and decrements through range parent nodes summing from index `sumIndex_`'s range to index `0`. * @param deposits_ Deposits state struct. * @param sumIndex_ The index to receive the prefix sum. * @param sum_ The prefix sum from current index downwards. */ function prefixSum( DepositsState storage deposits_, uint256 sumIndex_ ) internal view returns (uint256 sum_) { // price buckets are indexed starting at 0, Fenwick bit logic is more elegant starting at 1 ++sumIndex_; uint256 runningScale = Maths.WAD; // Tracks scale(index_) as we move down Fenwick tree uint256 j = SIZE; // bit that iterates from MSB to LSB uint256 index = 0; // build up sumIndex bit by bit // Used to terminate loop. We don't need to consider final 0 bits of sumIndex_ uint256 indexLSB = lsb(sumIndex_); uint256 curIndex; while (j >= indexLSB) { curIndex = index + j; // Skip considering indices outside bounds of Fenwick tree if (curIndex > SIZE) continue; // We are considering whether to include node index + j in the sum or not. Either way, we need to scaling[index + j], // either to increment sum_ or to accumulate in runningScale uint256 scaled = deposits_.scaling[curIndex]; if (sumIndex_ & j != 0) { // node index + j of tree is included in sum uint256 value = deposits_.values[curIndex]; // Accumulate in sum_, recall that scaled==0 means that the scale factor is actually 1 sum_ += scaled != 0 ? Math.mulDiv( runningScale * scaled, value, 1e36 ) : Maths.wmul(runningScale, value); // Build up index bit by bit index = curIndex; // terminate if we've already matched sumIndex_ if (index == sumIndex_) break; } else { // node is not included in sum, but its scale needs to be included for subsequent sums if (scaled != 0) runningScale = Maths.floorWmul(runningScale, scaled); } // shift j to consider next less signficant bit j = j >> 1; } } /** * @notice Decrease a node in the `FenwickTree` at an index. * @dev Starts at leaf/target and moved up towards root. * @dev === Reverts on === * @dev unscaled amount to remove is 0 `InvalidAmount()` * @param deposits_ Deposits state struct. * @param index_ The deposit index. * @param unscaledRemoveAmount_ Unscaled amount to decrease deposit by. */ function unscaledRemove( DepositsState storage deposits_, uint256 index_, uint256 unscaledRemoveAmount_ ) internal { // revert if 0 amount is removed. if (unscaledRemoveAmount_ == 0) revert InvalidAmount(); // price buckets are indexed starting at 0, Fenwick bit logic is more elegant starting at 1 ++index_; // We operate with unscaledRemoveAmount_ here instead of a scaled quantity to avoid duplicate computation of scale factor // (thus redundant iterations through the Fenwick tree), and ALSO so that we can set the value of a given deposit exactly // to 0. while (index_ <= SIZE) { // Decrement deposits_ at index_ for removeAmount, storing new value in value uint256 value = (deposits_.values[index_] -= unscaledRemoveAmount_); uint256 scaling = deposits_.scaling[index_]; // If scale factor != 1, we need to adjust unscaledRemoveAmount by scale factor to adjust values further up in tree // On the line below, it would be tempting to replace this with: // unscaledRemoveAmount_ = Maths.wmul(unscaledRemoveAmount, scaling). This will introduce nonzero values up // the tree due to rounding. It's important to compute the actual change in deposits_.values[index_] // and propogate that upwards. if (scaling != 0) unscaledRemoveAmount_ = Maths.wmul(value + unscaledRemoveAmount_, scaling) - Maths.wmul(value, scaling); // Traverse upward through the "update" path of the Fenwick tree index_ += lsb(index_); } } /** * @notice Scale tree starting from given index. * @dev Starts at leaf/target and moved up towards root. * @param deposits_ Deposits state struct. * @param index_ The deposit index. * @return scaled_ Scaled value. */ function scale( DepositsState storage deposits_, uint256 index_ ) internal view returns (uint256 scaled_) { // price buckets are indexed starting at 0, Fenwick bit logic is more elegant starting at 1 ++index_; // start with scaled_1 = 1 scaled_ = Maths.WAD; while (index_ <= SIZE) { // Traverse up through Fenwick tree via "update" path, accumulating scale factors as we go uint256 scaling = deposits_.scaling[index_]; // scaling==0 means actual scale factor is 1 if (scaling != 0) scaled_ = Maths.wmul(scaled_, scaling); index_ += lsb(index_); } } /** * @notice Returns sum of all deposits. * @param deposits_ Deposits state struct. * @return Sum of all deposits in tree. */ function treeSum( DepositsState storage deposits_ ) internal view returns (uint256) { // In a scaled Fenwick tree, sum is at the root node and never scaled return deposits_.values[SIZE]; } /** * @notice Returns deposit value for a given deposit index. * @param deposits_ Deposits state struct. * @param index_ The deposit index. * @return depositValue_ Value of the deposit. */ function valueAt( DepositsState storage deposits_, uint256 index_ ) internal view returns (uint256 depositValue_) { // Get unscaled value at index and multiply by scale depositValue_ = Maths.wmul(unscaledValueAt(deposits_, index_), scale(deposits_,index_)); } /** * @notice Returns unscaled (deposit without interest) deposit value for a given deposit index. * @param deposits_ Deposits state struct. * @param index_ The deposit index. * @return unscaledDepositValue_ Value of unscaled deposit. */ function unscaledValueAt( DepositsState storage deposits_, uint256 index_ ) internal view returns (uint256 unscaledDepositValue_) { // In a scaled Fenwick tree, sum is at the root node, but needs to be scaled ++index_; uint256 j = 1; // Returns the unscaled value at the node. We consider the unscaled value for two reasons: // 1- If we want to zero out deposit in bucket, we need to subtract the exact unscaled value // 2- We may already have computed the scale factor, so we can avoid duplicate traversal unscaledDepositValue_ = deposits_.values[index_]; uint256 curIndex; uint256 value; uint256 scaling; while (j & index_ == 0) { curIndex = index_ - j; value = deposits_.values[curIndex]; scaling = deposits_.scaling[curIndex]; unscaledDepositValue_ -= scaling != 0 ? Maths.wmul(scaling, value) : value; j = j << 1; } } /** * @notice Returns `LUP` for a given debt value (capped at min bucket price). * @param deposits_ Deposits state struct. * @param debt_ The debt amount to calculate `LUP` for. * @return `LUP` for given debt. */ function getLup( DepositsState storage deposits_, uint256 debt_ ) internal view returns (uint256) { return _priceAt(findIndexOfSum(deposits_, debt_)); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.18; import { Math } from '@openzeppelin/contracts/utils/math/Math.sol'; import { Bucket, Lender } from '../../interfaces/pool/commons/IPoolState.sol'; import { Maths } from './Maths.sol'; /** @title Buckets library @notice Internal library containing common logic for buckets management. */ library Buckets { /**************/ /*** Events ***/ /**************/ // See `IPoolError` for descriptions error BucketBankruptcyBlock(); /***********************************/ /*** Bucket Management Functions ***/ /***********************************/ /** * @notice Add collateral to a bucket and updates `LP` for bucket and lender with the amount coresponding to collateral amount added. * @dev Increment `bucket.collateral` and `bucket.lps` accumulator * @dev - `addLenderLP`: * @dev increment `lender.lps` accumulator and `lender.depositTime` state * @param lender_ Address of the lender. * @param deposit_ Current bucket deposit (quote tokens). Used to calculate bucket's exchange rate / `LP`. * @param collateralAmountToAdd_ Additional collateral amount to add to bucket. * @param bucketPrice_ Bucket price. * @return addedLP_ Amount of bucket `LP` for the collateral amount added. */ function addCollateral( Bucket storage bucket_, address lender_, uint256 deposit_, uint256 collateralAmountToAdd_, uint256 bucketPrice_ ) internal returns (uint256 addedLP_) { // cannot deposit in the same block when bucket becomes insolvent uint256 bankruptcyTime = bucket_.bankruptcyTime; if (bankruptcyTime == block.timestamp) revert BucketBankruptcyBlock(); // calculate amount of LP to be added for the amount of collateral added to bucket addedLP_ = collateralToLP( bucket_.collateral, bucket_.lps, deposit_, collateralAmountToAdd_, bucketPrice_, Math.Rounding.Down ); // update bucket LP balance and collateral // update bucket collateral bucket_.collateral += collateralAmountToAdd_; // update bucket and lender LP balance and deposit timestamp bucket_.lps += addedLP_; addLenderLP(bucket_, bankruptcyTime, lender_, addedLP_); } /** * @notice Add amount of `LP` for a given lender in a given bucket. * @dev Increments lender lps accumulator and updates the deposit time. * @param bucket_ Bucket to record lender `LP`. * @param bankruptcyTime_ Time when bucket become insolvent. * @param lender_ Lender address to add `LP` for in the given bucket. * @param lpAmount_ Amount of `LP` to be recorded for the given lender. */ function addLenderLP( Bucket storage bucket_, uint256 bankruptcyTime_, address lender_, uint256 lpAmount_ ) internal { if (lpAmount_ != 0) { Lender storage lender = bucket_.lenders[lender_]; if (bankruptcyTime_ >= lender.depositTime) lender.lps = lpAmount_; else lender.lps += lpAmount_; lender.depositTime = block.timestamp; } } /**********************/ /*** View Functions ***/ /**********************/ /****************************/ /*** Assets to LP helpers ***/ /****************************/ /** * @notice Returns the amount of bucket `LP` calculated for the given amount of collateral. * @param bucketCollateral_ Amount of collateral in bucket. * @param bucketLP_ Amount of `LP` in bucket. * @param deposit_ Current bucket deposit (quote tokens). Used to calculate bucket's exchange rate / `LP`. * @param collateral_ The amount of collateral to calculate bucket LP for. * @param bucketPrice_ Bucket's price. * @param rounding_ The direction of rounding when calculating LP (down when adding, up when removing collateral from pool). * @return Amount of `LP` calculated for the amount of collateral. */ function collateralToLP( uint256 bucketCollateral_, uint256 bucketLP_, uint256 deposit_, uint256 collateral_, uint256 bucketPrice_, Math.Rounding rounding_ ) internal pure returns (uint256) { // case when there's no deposit nor collateral in bucket if (deposit_ == 0 && bucketCollateral_ == 0) return Maths.wmul(collateral_, bucketPrice_); // case when there's deposit or collateral in bucket but no LP to cover if (bucketLP_ == 0) return Maths.wmul(collateral_, bucketPrice_); // case when there's deposit or collateral and bucket has LP balance return Math.mulDiv( bucketLP_, collateral_ * bucketPrice_, deposit_ * Maths.WAD + bucketCollateral_ * bucketPrice_, rounding_ ); } /** * @notice Returns the amount of `LP` calculated for the given amount of quote tokens. * @param bucketCollateral_ Amount of collateral in bucket. * @param bucketLP_ Amount of `LP` in bucket. * @param deposit_ Current bucket deposit (quote tokens). Used to calculate bucket's exchange rate / `LP`. * @param quoteTokens_ The amount of quote tokens to calculate `LP` amount for. * @param bucketPrice_ Bucket's price. * @param rounding_ The direction of rounding when calculating LP (down when adding, up when removing quote tokens from pool). * @return The amount of `LP` coresponding to the given quote tokens in current bucket. */ function quoteTokensToLP( uint256 bucketCollateral_, uint256 bucketLP_, uint256 deposit_, uint256 quoteTokens_, uint256 bucketPrice_, Math.Rounding rounding_ ) internal pure returns (uint256) { // case when there's no deposit nor collateral in bucket if (deposit_ == 0 && bucketCollateral_ == 0) return quoteTokens_; // case when there's deposit or collateral in bucket but no LP to cover if (bucketLP_ == 0) return quoteTokens_; // case when there's deposit or collateral and bucket has LP balance return Math.mulDiv( bucketLP_, quoteTokens_ * Maths.WAD, deposit_ * Maths.WAD + bucketCollateral_ * bucketPrice_, rounding_ ); } /****************************/ /*** LP to Assets helpers ***/ /****************************/ /** * @notice Returns the amount of collateral calculated for the given amount of lp * @dev The value returned is not capped at collateral amount available in bucket. * @param bucketCollateral_ Amount of collateral in bucket. * @param bucketLP_ Amount of `LP` in bucket. * @param deposit_ Current bucket deposit (quote tokens). Used to calculate bucket's exchange rate / `LP`. * @param lp_ The amount of LP to calculate collateral amount for. * @param bucketPrice_ Bucket's price. * @return The amount of collateral coresponding to the given `LP` in current bucket. */ function lpToCollateral( uint256 bucketCollateral_, uint256 bucketLP_, uint256 deposit_, uint256 lp_, uint256 bucketPrice_, Math.Rounding rounding_ ) internal pure returns (uint256) { // case when there's no deposit nor collateral in bucket if (deposit_ == 0 && bucketCollateral_ == 0) return Maths.wdiv(lp_, bucketPrice_); // case when there's deposit or collateral in bucket but no LP to cover if (bucketLP_ == 0) return Maths.wdiv(lp_, bucketPrice_); // case when there's deposit or collateral and bucket has LP balance return Math.mulDiv( deposit_ * Maths.WAD + bucketCollateral_ * bucketPrice_, lp_, bucketLP_ * bucketPrice_, rounding_ ); } /** * @notice Returns the amount of quote token (in value) calculated for the given amount of `LP`. * @dev The value returned is not capped at available bucket deposit. * @param bucketCollateral_ Amount of collateral in bucket. * @param bucketLP_ Amount of `LP` in bucket. * @param deposit_ Current bucket deposit (quote tokens). Used to calculate bucket's exchange rate / `LP`. * @param lp_ The amount of LP to calculate quote tokens amount for. * @param bucketPrice_ Bucket's price. * @return The amount coresponding to the given quote tokens in current bucket. */ function lpToQuoteTokens( uint256 bucketCollateral_, uint256 bucketLP_, uint256 deposit_, uint256 lp_, uint256 bucketPrice_, Math.Rounding rounding_ ) internal pure returns (uint256) { // case when there's no deposit nor collateral in bucket if (deposit_ == 0 && bucketCollateral_ == 0) return lp_; // case when there's deposit or collateral in bucket but no LP to cover if (bucketLP_ == 0) return lp_; // case when there's deposit or collateral and bucket has LP balance return Math.mulDiv( deposit_ * Maths.WAD + bucketCollateral_ * bucketPrice_, lp_, bucketLP_ * Maths.WAD, rounding_ ); } /****************************/ /*** Exchange Rate helper ***/ /****************************/ /** * @notice Returns the exchange rate for a given bucket (conversion of 1 lp to quote token). * @param bucketCollateral_ Amount of collateral in bucket. * @param bucketLP_ Amount of `LP` in bucket. * @param bucketDeposit_ The amount of quote tokens deposited in the given bucket. * @param bucketPrice_ Bucket's price. */ function getExchangeRate( uint256 bucketCollateral_, uint256 bucketLP_, uint256 bucketDeposit_, uint256 bucketPrice_ ) internal pure returns (uint256) { return lpToQuoteTokens( bucketCollateral_, bucketLP_, bucketDeposit_, Maths.WAD, bucketPrice_, Math.Rounding.Up ); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.18; import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol"; import { PRBMathSD59x18 } from "@prb-math/contracts/PRBMathSD59x18.sol"; import { AuctionsState, Borrower, DepositsState, Loan, LoansState } from '../../interfaces/pool/commons/IPoolState.sol'; import { _priceAt } from '../helpers/PoolHelper.sol'; import { Deposits } from './Deposits.sol'; import { Maths } from './Maths.sol'; /** @title Loans library @notice Internal library containing common logic for loans management. @dev The `Loans` heap is a `Max Heap` data structure (complete binary tree), the root node is the loan with the highest t0 threshold price (`TP`) at a given time. The heap is represented as an array, where the first element is a dummy element (`Loan(address(0), 0)`) and the first value of the heap starts at index `1`, `ROOT_INDEX`. The t0 threshold price of a loan's parent is always greater than or equal to the t0 threshold price of the loan. @dev This code was modified from the following source: https://github.com/zmitton/eth-heap/blob/master/contracts/Heap.sol */ library Loans { uint256 constant ROOT_INDEX = 1; /**************/ /*** Errors ***/ /**************/ // See `IPoolErrors` for descriptions error ZeroDebtToCollateral(); /***********************/ /*** Initialization ***/ /***********************/ /** * @notice Initializes Loans Max Heap. * @dev Organizes loans so `Highest t0 threshold price` can be retrieved easily. * @param loans_ Holds Loan heap data. */ function init(LoansState storage loans_) internal { loans_.loans.push(Loan(address(0), 0)); } /***********************************/ /*** Loans Management Functions ***/ /***********************************/ /** * @notice Updates a loan: updates heap (`upsert` if `TP` not `0`, `remove` otherwise) and borrower balance. * @dev === Write state === * @dev - `_upsert`: * @dev insert or update loan in `loans` array * @dev - `remove`: * @dev remove loan from `loans` array * @dev - update borrower in `address => borrower` mapping * @param loans_ Holds loans heap data. * @param borrower_ Borrower struct with borrower details. * @param borrowerAddress_ Borrower's address to update. * @param poolRate_ Pool's current rate. * @param inAuction_ Whether the loan is in auction or not. * @param npTpRatioUpdate_ Whether the Np to Tp ratio of borrower should be updated or not. */ function update( LoansState storage loans_, Borrower memory borrower_, address borrowerAddress_, uint256 poolRate_, bool inAuction_, bool npTpRatioUpdate_ ) internal { bool activeBorrower = borrower_.t0Debt != 0 && borrower_.collateral != 0; uint256 t0DebtToCollateral = activeBorrower ? Maths.wdiv(borrower_.t0Debt, borrower_.collateral) : 0; // loan not in auction, update t0 threshold price and position in heap if (!inAuction_ ) { // get the loan id inside the heap uint256 loanId = loans_.indices[borrowerAddress_]; if (activeBorrower) { // revert if t0 threshold price is zero if (t0DebtToCollateral == 0) revert ZeroDebtToCollateral(); // update heap, insert if a new loan, update loan if already in heap _upsert(loans_, borrowerAddress_, loanId, SafeCast.toUint96(t0DebtToCollateral)); // if loan is in heap and borrwer is no longer active (no debt, no collateral) then remove loan from heap } else if (loanId != 0) { remove(loans_, borrowerAddress_, loanId); } } // update Np to Tp ratio of borrower if (npTpRatioUpdate_) { borrower_.npTpRatio = 1e18 + uint256(PRBMathSD59x18.sqrt(int256(poolRate_))) / 2; } // save borrower state loans_.borrowers[borrowerAddress_] = borrower_; } /**************************************/ /*** Loans Heap Internal Functions ***/ /**************************************/ /** * @notice Moves a `Loan` up the heap. * @param loans_ Holds loans heap data. * @param loan_ `Loan` to be moved. * @param index_ Index of `Loan` to be moved to. */ function _bubbleUp(LoansState storage loans_, Loan memory loan_, uint index_) private { uint256 count = loans_.loans.length; if (index_ == ROOT_INDEX || loan_.t0DebtToCollateral <= loans_.loans[index_ / 2].t0DebtToCollateral){ _insert(loans_, loan_, index_, count); } else { _insert(loans_, loans_.loans[index_ / 2], index_, count); _bubbleUp(loans_, loan_, index_ / 2); } } /** * @notice Moves a `Loan` down the heap. * @param loans_ Holds loans heap data. * @param loan_ `Loan` to be moved. * @param index_ Index of `Loan` to be moved to. */ function _bubbleDown(LoansState storage loans_, Loan memory loan_, uint index_) private { // Left child index. uint cIndex = index_ * 2; uint256 count = loans_.loans.length; if (count <= cIndex) { _insert(loans_, loan_, index_, count); } else { Loan memory largestChild = loans_.loans[cIndex]; if (count > cIndex + 1 && loans_.loans[cIndex + 1].t0DebtToCollateral > largestChild.t0DebtToCollateral) { largestChild = loans_.loans[++cIndex]; } if (largestChild.t0DebtToCollateral <= loan_.t0DebtToCollateral) { _insert(loans_, loan_, index_, count); } else { _insert(loans_, largestChild, index_, count); _bubbleDown(loans_, loan_, cIndex); } } } /** * @notice Inserts a `Loan` in the heap. * @param loans_ Holds loans heap data. * @param loan_ `Loan` to be inserted. * @param index_ Index of `Loan` to be inserted at. */ function _insert(LoansState storage loans_, Loan memory loan_, uint index_, uint256 count_) private { if (index_ == count_) loans_.loans.push(loan_); else loans_.loans[index_] = loan_; loans_.indices[loan_.borrower] = index_; } /** * @notice Removes `Loan` from heap given borrower address. * @param loans_ Holds loans heap data. * @param borrower_ Borrower address whose `Loan` is being updated or inserted. * @param index_ Index of `Loan` to be removed. */ function remove(LoansState storage loans_, address borrower_, uint256 index_) internal { delete loans_.indices[borrower_]; uint256 tailIndex = loans_.loans.length - 1; if (index_ == tailIndex) loans_.loans.pop(); // we're removing the tail, pop without sorting else { Loan memory tail = loans_.loans[tailIndex]; loans_.loans.pop(); // remove tail loan _bubbleUp(loans_, tail, index_); _bubbleDown(loans_, loans_.loans[index_], index_); } } /** * @notice Performs an insert or an update dependent on borrowers existance. * @param loans_ Holds loans heap data. * @param borrower_ Borrower address that is being updated or inserted. * @param index_ Index of `Loan` to be upserted. * @param t0DebtToCollateral_ Borrower t0 debt to collateral that is updated or inserted. */ function _upsert( LoansState storage loans_, address borrower_, uint256 index_, uint96 t0DebtToCollateral_ ) internal { // Loan exists, update in place. if (index_ != 0) { Loan memory currentLoan = loans_.loans[index_]; if (currentLoan.t0DebtToCollateral > t0DebtToCollateral_) { currentLoan.t0DebtToCollateral = t0DebtToCollateral_; _bubbleDown(loans_, currentLoan, index_); } else { currentLoan.t0DebtToCollateral = t0DebtToCollateral_; _bubbleUp(loans_, currentLoan, index_); } // New loan, insert it } else { _bubbleUp(loans_, Loan(borrower_, t0DebtToCollateral_), loans_.loans.length); } } /**********************/ /*** View Functions ***/ /**********************/ /** * @notice Retreives `Loan` by index, `index_`. * @param loans_ Holds loans heap data. * @param index_ Index to retrieve `Loan`. * @return `Loan` struct retrieved by index. */ function getByIndex(LoansState storage loans_, uint256 index_) internal view returns(Loan memory) { return loans_.loans.length > index_ ? loans_.loans[index_] : Loan(address(0), 0); } /** * @notice Retreives `Loan` with the highest t0 threshold price value. * @param loans_ Holds loans heap data. * @return `Max Loan` in the heap. */ function getMax(LoansState storage loans_) internal view returns(Loan memory) { return getByIndex(loans_, ROOT_INDEX); } /** * @notice Returns number of loans in pool. * @param loans_ Holds loans heap data. * @return Number of loans in pool. */ function noOfLoans(LoansState storage loans_) internal view returns (uint256) { return loans_.loans.length - 1; } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.18; /** @title Maths library @notice Internal library containing common maths. */ library Maths { uint256 internal constant WAD = 1e18; uint256 internal constant RAY = 1e27; function wmul(uint256 x, uint256 y) internal pure returns (uint256) { return (x * y + WAD / 2) / WAD; } function floorWmul(uint256 x, uint256 y) internal pure returns (uint256) { return (x * y) / WAD; } function ceilWmul(uint256 x, uint256 y) internal pure returns (uint256) { return (x * y + WAD - 1) / WAD; } function wdiv(uint256 x, uint256 y) internal pure returns (uint256) { return (x * WAD + y / 2) / y; } function floorWdiv(uint256 x, uint256 y) internal pure returns (uint256) { return (x * WAD) / y; } function ceilWdiv(uint256 x, uint256 y) internal pure returns (uint256) { return (x * WAD + y - 1) / y; } function ceilDiv(uint256 x, uint256 y) internal pure returns (uint256) { return (x + y - 1) / y; } function max(uint256 x, uint256 y) internal pure returns (uint256) { return x >= y ? x : y; } function min(uint256 x, uint256 y) internal pure returns (uint256) { return x <= y ? x : y; } function wad(uint256 x) internal pure returns (uint256) { return x * WAD; } function rmul(uint256 x, uint256 y) internal pure returns (uint256) { return (x * y + RAY / 2) / RAY; } function rpow(uint256 x, uint256 n) internal pure returns (uint256 z) { z = n % 2 != 0 ? x : RAY; for (n /= 2; n != 0; n /= 2) { x = rmul(x, x); if (n % 2 != 0) { z = rmul(z, x); } } } /*************************/ /*** Integer Functions ***/ /*************************/ function maxInt(int256 x, int256 y) internal pure returns (int256) { return x >= y ? x : y; } function minInt(int256 x, int256 y) internal pure returns (int256) { return x <= y ? x : y; } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivFixedPointOverflow(uint256 prod1); /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator); /// @notice Emitted when one of the inputs is type(int256).min. error PRBMath__MulDivSignedInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows int256. error PRBMath__MulDivSignedOverflow(uint256 rAbs); /// @notice Emitted when the input is MIN_SD59x18. error PRBMathSD59x18__AbsInputTooSmall(); /// @notice Emitted when ceiling a number overflows SD59x18. error PRBMathSD59x18__CeilOverflow(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__DivInputTooSmall(); /// @notice Emitted when one of the intermediary unsigned results overflows SD59x18. error PRBMathSD59x18__DivOverflow(uint256 rAbs); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathSD59x18__ExpInputTooBig(int256 x); /// @notice Emitted when the input is greater than 192. error PRBMathSD59x18__Exp2InputTooBig(int256 x); /// @notice Emitted when flooring a number underflows SD59x18. error PRBMathSD59x18__FloorUnderflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMathSD59x18__FromIntOverflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMathSD59x18__FromIntUnderflow(int256 x); /// @notice Emitted when the product of the inputs is negative. error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y); /// @notice Emitted when multiplying the inputs overflows SD59x18. error PRBMathSD59x18__GmOverflow(int256 x, int256 y); /// @notice Emitted when the input is less than or equal to zero. error PRBMathSD59x18__LogInputTooSmall(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__MulInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__MulOverflow(uint256 rAbs); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__PowuOverflow(uint256 rAbs); /// @notice Emitted when the input is negative. error PRBMathSD59x18__SqrtNegativeInput(int256 x); /// @notice Emitted when the calculating the square root overflows SD59x18. error PRBMathSD59x18__SqrtOverflow(int256 x); /// @notice Emitted when addition overflows UD60x18. error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y); /// @notice Emitted when ceiling a number overflows UD60x18. error PRBMathUD60x18__CeilOverflow(uint256 x); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathUD60x18__ExpInputTooBig(uint256 x); /// @notice Emitted when the input is greater than 192. error PRBMathUD60x18__Exp2InputTooBig(uint256 x); /// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18. error PRBMathUD60x18__FromUintOverflow(uint256 x); /// @notice Emitted when multiplying the inputs overflows UD60x18. error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y); /// @notice Emitted when the input is less than 1. error PRBMathUD60x18__LogInputTooSmall(uint256 x); /// @notice Emitted when the calculating the square root overflows UD60x18. error PRBMathUD60x18__SqrtOverflow(uint256 x); /// @notice Emitted when subtraction underflows UD60x18. error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y); /// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library /// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point /// representation. When it does not, it is explicitly mentioned in the NatSpec documentation. library PRBMath { /// STRUCTS /// struct SD59x18 { int256 value; } struct UD60x18 { uint256 value; } /// STORAGE /// /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @dev Largest power of two divisor of SCALE. uint256 internal constant SCALE_LPOTD = 262144; /// @dev SCALE inverted mod 2^256. uint256 internal constant SCALE_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// FUNCTIONS /// /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. /// See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows // because the initial result is 2^191 and all magic factors are less than 2^65. if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } // We're doing two things at the same time: // // 1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for // the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191 // rather than 192. // 2. Convert the result to the unsigned 60.18-decimal fixed-point format. // // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n". result *= SCALE; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first one in the binary representation of x. /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set /// @param x The uint256 number for which to find the index of the most significant bit. /// @return msb The index of the most significant bit as an uint256. function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) { if (x >= 2**128) { x >>= 128; msb += 128; } if (x >= 2**64) { x >>= 64; msb += 64; } if (x >= 2**32) { x >>= 32; msb += 32; } if (x >= 2**16) { x >>= 16; msb += 16; } if (x >= 2**8) { x >>= 8; msb += 8; } if (x >= 2**4) { x >>= 4; msb += 4; } if (x >= 2**2) { x >>= 2; msb += 2; } if (x >= 2**1) { // No need to shift x any more. msb += 1; } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Requirements: /// - The denominator cannot be zero. /// - The result must fit within uint256. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The multiplicand as an uint256. /// @param y The multiplier as an uint256. /// @param denominator The divisor as an uint256. /// @return result The result as an uint256. function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { result = prod0 / denominator; } return result; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath__MulDivOverflow(prod1, denominator); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. unchecked { // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 lpotdod = denominator & (~denominator + 1); assembly { // Divide denominator by lpotdod. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one. lpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * lpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /// @notice Calculates floor(x*y÷1e18) with full precision. /// /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of /// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717. /// /// Requirements: /// - The result must fit within uint256. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations: /// 1. x * y = type(uint256).max * SCALE /// 2. (x * y) % SCALE >= SCALE / 2 /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 >= SCALE) { revert PRBMath__MulDivFixedPointOverflow(prod1); } uint256 remainder; uint256 roundUpUnit; assembly { remainder := mulmod(x, y, SCALE) roundUpUnit := gt(remainder, 499999999999999999) } if (prod1 == 0) { unchecked { result = (prod0 / SCALE) + roundUpUnit; return result; } } assembly { result := add( mul( or( div(sub(prod0, remainder), SCALE_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1)) ), SCALE_INVERSE ), roundUpUnit ) } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - None of the inputs can be type(int256).min. /// - The result must fit within int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. function mulDivSigned( int256 x, int256 y, int256 denominator ) internal pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath__MulDivSignedInputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 ax; uint256 ay; uint256 ad; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); ad = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of (x*y)÷denominator. The result must fit within int256. uint256 rAbs = mulDiv(ax, ay, ad); if (rAbs > uint256(type(int256).max)) { revert PRBMath__MulDivSignedOverflow(rAbs); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs. // If yes, the result should be negative. result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs); } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as an uint256. function sqrt(uint256 x) internal pure returns (uint256 result) { if (x == 0) { return 0; } // Set the initial guess to the least power of two that is greater than or equal to sqrt(x). uint256 xAux = uint256(x); result = 1; if (xAux >= 0x100000000000000000000000000000000) { xAux >>= 128; result <<= 64; } if (xAux >= 0x10000000000000000) { xAux >>= 64; result <<= 32; } if (xAux >= 0x100000000) { xAux >>= 32; result <<= 16; } if (xAux >= 0x10000) { xAux >>= 16; result <<= 8; } if (xAux >= 0x100) { xAux >>= 8; result <<= 4; } if (xAux >= 0x10) { xAux >>= 4; result <<= 2; } if (xAux >= 0x8) { result <<= 1; } // The operations can never overflow because the result is max 2^127 when it enters this block. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // Seven iterations should be enough uint256 roundedDownResult = x / result; return result >= roundedDownResult ? roundedDownResult : result; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.0; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. * * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing * all math on `uint256` and `int256` and then downcasting. */ library SafeCast { /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits * * _Available since v4.7._ */ function toUint248(uint256 value) internal pure returns (uint248) { require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits"); return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits * * _Available since v4.7._ */ function toUint240(uint256 value) internal pure returns (uint240) { require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits"); return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits * * _Available since v4.7._ */ function toUint232(uint256 value) internal pure returns (uint232) { require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits"); return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits * * _Available since v4.2._ */ function toUint224(uint256 value) internal pure returns (uint224) { require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits"); return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits * * _Available since v4.7._ */ function toUint216(uint256 value) internal pure returns (uint216) { require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits"); return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits * * _Available since v4.7._ */ function toUint208(uint256 value) internal pure returns (uint208) { require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits"); return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits * * _Available since v4.7._ */ function toUint200(uint256 value) internal pure returns (uint200) { require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits"); return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits * * _Available since v4.7._ */ function toUint192(uint256 value) internal pure returns (uint192) { require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits"); return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits * * _Available since v4.7._ */ function toUint184(uint256 value) internal pure returns (uint184) { require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits"); return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits * * _Available since v4.7._ */ function toUint176(uint256 value) internal pure returns (uint176) { require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits"); return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits * * _Available since v4.7._ */ function toUint168(uint256 value) internal pure returns (uint168) { require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits"); return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits * * _Available since v4.7._ */ function toUint160(uint256 value) internal pure returns (uint160) { require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits"); return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits * * _Available since v4.7._ */ function toUint152(uint256 value) internal pure returns (uint152) { require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits"); return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits * * _Available since v4.7._ */ function toUint144(uint256 value) internal pure returns (uint144) { require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits"); return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits * * _Available since v4.7._ */ function toUint136(uint256 value) internal pure returns (uint136) { require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits"); return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits * * _Available since v2.5._ */ function toUint128(uint256 value) internal pure returns (uint128) { require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits"); return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits * * _Available since v4.7._ */ function toUint120(uint256 value) internal pure returns (uint120) { require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits"); return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits * * _Available since v4.7._ */ function toUint112(uint256 value) internal pure returns (uint112) { require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits"); return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits * * _Available since v4.7._ */ function toUint104(uint256 value) internal pure returns (uint104) { require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits"); return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits * * _Available since v4.2._ */ function toUint96(uint256 value) internal pure returns (uint96) { require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits"); return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits * * _Available since v4.7._ */ function toUint88(uint256 value) internal pure returns (uint88) { require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits"); return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits * * _Available since v4.7._ */ function toUint80(uint256 value) internal pure returns (uint80) { require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits"); return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits * * _Available since v4.7._ */ function toUint72(uint256 value) internal pure returns (uint72) { require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits"); return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits * * _Available since v2.5._ */ function toUint64(uint256 value) internal pure returns (uint64) { require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits"); return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits * * _Available since v4.7._ */ function toUint56(uint256 value) internal pure returns (uint56) { require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits"); return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits * * _Available since v4.7._ */ function toUint48(uint256 value) internal pure returns (uint48) { require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits"); return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits * * _Available since v4.7._ */ function toUint40(uint256 value) internal pure returns (uint40) { require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits"); return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits * * _Available since v2.5._ */ function toUint32(uint256 value) internal pure returns (uint32) { require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits"); return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits * * _Available since v4.7._ */ function toUint24(uint256 value) internal pure returns (uint24) { require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits"); return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits * * _Available since v2.5._ */ function toUint16(uint256 value) internal pure returns (uint16) { require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits"); return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits * * _Available since v2.5._ */ function toUint8(uint256 value) internal pure returns (uint8) { require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits"); return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. * * _Available since v3.0._ */ function toUint256(int256 value) internal pure returns (uint256) { require(value >= 0, "SafeCast: value must be positive"); return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits * * _Available since v4.7._ */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); require(downcasted == value, "SafeCast: value doesn't fit in 248 bits"); } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits * * _Available since v4.7._ */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); require(downcasted == value, "SafeCast: value doesn't fit in 240 bits"); } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits * * _Available since v4.7._ */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); require(downcasted == value, "SafeCast: value doesn't fit in 232 bits"); } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits * * _Available since v4.7._ */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); require(downcasted == value, "SafeCast: value doesn't fit in 224 bits"); } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits * * _Available since v4.7._ */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); require(downcasted == value, "SafeCast: value doesn't fit in 216 bits"); } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits * * _Available since v4.7._ */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); require(downcasted == value, "SafeCast: value doesn't fit in 208 bits"); } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits * * _Available since v4.7._ */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); require(downcasted == value, "SafeCast: value doesn't fit in 200 bits"); } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits * * _Available since v4.7._ */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); require(downcasted == value, "SafeCast: value doesn't fit in 192 bits"); } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits * * _Available since v4.7._ */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); require(downcasted == value, "SafeCast: value doesn't fit in 184 bits"); } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits * * _Available since v4.7._ */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); require(downcasted == value, "SafeCast: value doesn't fit in 176 bits"); } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits * * _Available since v4.7._ */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); require(downcasted == value, "SafeCast: value doesn't fit in 168 bits"); } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits * * _Available since v4.7._ */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); require(downcasted == value, "SafeCast: value doesn't fit in 160 bits"); } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits * * _Available since v4.7._ */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); require(downcasted == value, "SafeCast: value doesn't fit in 152 bits"); } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits * * _Available since v4.7._ */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); require(downcasted == value, "SafeCast: value doesn't fit in 144 bits"); } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits * * _Available since v4.7._ */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); require(downcasted == value, "SafeCast: value doesn't fit in 136 bits"); } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits * * _Available since v3.1._ */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); require(downcasted == value, "SafeCast: value doesn't fit in 128 bits"); } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits * * _Available since v4.7._ */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); require(downcasted == value, "SafeCast: value doesn't fit in 120 bits"); } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits * * _Available since v4.7._ */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); require(downcasted == value, "SafeCast: value doesn't fit in 112 bits"); } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits * * _Available since v4.7._ */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); require(downcasted == value, "SafeCast: value doesn't fit in 104 bits"); } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits * * _Available since v4.7._ */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); require(downcasted == value, "SafeCast: value doesn't fit in 96 bits"); } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits * * _Available since v4.7._ */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); require(downcasted == value, "SafeCast: value doesn't fit in 88 bits"); } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits * * _Available since v4.7._ */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); require(downcasted == value, "SafeCast: value doesn't fit in 80 bits"); } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits * * _Available since v4.7._ */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); require(downcasted == value, "SafeCast: value doesn't fit in 72 bits"); } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits * * _Available since v3.1._ */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); require(downcasted == value, "SafeCast: value doesn't fit in 64 bits"); } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits * * _Available since v4.7._ */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); require(downcasted == value, "SafeCast: value doesn't fit in 56 bits"); } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits * * _Available since v4.7._ */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); require(downcasted == value, "SafeCast: value doesn't fit in 48 bits"); } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits * * _Available since v4.7._ */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); require(downcasted == value, "SafeCast: value doesn't fit in 40 bits"); } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits * * _Available since v3.1._ */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); require(downcasted == value, "SafeCast: value doesn't fit in 32 bits"); } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits * * _Available since v4.7._ */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); require(downcasted == value, "SafeCast: value doesn't fit in 24 bits"); } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits * * _Available since v3.1._ */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); require(downcasted == value, "SafeCast: value doesn't fit in 16 bits"); } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits * * _Available since v3.1._ */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); require(downcasted == value, "SafeCast: value doesn't fit in 8 bits"); } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. * * _Available since v3.0._ */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256"); return int256(value); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; import { IPoolBorrowerActions } from './commons/IPoolBorrowerActions.sol'; import { IPoolLPActions } from './commons/IPoolLPActions.sol'; import { IPoolLenderActions } from './commons/IPoolLenderActions.sol'; import { IPoolKickerActions } from './commons/IPoolKickerActions.sol'; import { IPoolTakerActions } from './commons/IPoolTakerActions.sol'; import { IPoolSettlerActions } from './commons/IPoolSettlerActions.sol'; import { IPoolImmutables } from './commons/IPoolImmutables.sol'; import { IPoolState } from './commons/IPoolState.sol'; import { IPoolDerivedState } from './commons/IPoolDerivedState.sol'; import { IPoolEvents } from './commons/IPoolEvents.sol'; import { IPoolErrors } from './commons/IPoolErrors.sol'; import { IERC3156FlashLender } from './IERC3156FlashLender.sol'; /** * @title Base Pool Interface */ interface IPool is IPoolBorrowerActions, IPoolLPActions, IPoolLenderActions, IPoolKickerActions, IPoolTakerActions, IPoolSettlerActions, IPoolImmutables, IPoolState, IPoolDerivedState, IPoolEvents, IPoolErrors, IERC3156FlashLender { } /// @dev Pool type enum - `ERC20` and `ERC721` enum PoolType { ERC20, ERC721 } /// @dev `ERC20` token interface. interface IERC20Token { function balanceOf(address account) external view returns (uint256); function burn(uint256 amount) external; function decimals() external view returns (uint8); } /// @dev `ERC721` token interface. interface IERC721Token { function transferFrom( address from, address to, uint256 tokenId ) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; /** * @title Pool Borrower Actions */ interface IPoolBorrowerActions { /** * @notice Called by fully collateralized borrowers to restamp the `Np to Tp ratio` of the loan (only if loan is fully collateralized and not in auction). * The reason for stamping the `Np to Tp ratio` on the loan is to provide some certainty to the borrower as to at what price they can expect to be liquidated. * This action can restamp only the loan of `msg.sender`. */ function stampLoan() external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; /** * @title Pool `LP` Actions */ interface IPoolLPActions { /** * @notice Called by `LP` owners to approve transfer of an amount of `LP` to a new owner. * @dev Intended for use by the `PositionManager` contract. * @param spender_ The new owner of the `LP`. * @param indexes_ Bucket indexes from where `LP` are transferred. * @param amounts_ The amounts of `LP` approved to transfer (`WAD` precision). */ function increaseLPAllowance( address spender_, uint256[] calldata indexes_, uint256[] calldata amounts_ ) external; /** * @notice Called by `LP` owners to decrease the amount of `LP` that can be spend by a new owner. * @dev Intended for use by the `PositionManager` contract. * @param spender_ The new owner of the `LP`. * @param indexes_ Bucket indexes from where `LP` are transferred. * @param amounts_ The amounts of `LP` disapproved to transfer (`WAD` precision). */ function decreaseLPAllowance( address spender_, uint256[] calldata indexes_, uint256[] calldata amounts_ ) external; /** * @notice Called by `LP` owners to decrease the amount of `LP` that can be spend by a new owner. * @param spender_ Address that is having it's allowance revoked. * @param indexes_ List of bucket index to remove the allowance from. */ function revokeLPAllowance( address spender_, uint256[] calldata indexes_ ) external; /** * @notice Called by `LP` owners to allow addresses that can transfer LP. * @dev Intended for use by the `PositionManager` contract. * @param transferors_ Addresses that are allowed to transfer `LP` to new owner. */ function approveLPTransferors( address[] calldata transferors_ ) external; /** * @notice Called by `LP` owners to revoke addresses that can transfer `LP`. * @dev Intended for use by the `PositionManager` contract. * @param transferors_ Addresses that are revoked to transfer `LP` to new owner. */ function revokeLPTransferors( address[] calldata transferors_ ) external; /** * @notice Called by `LP` owners to transfers their `LP` to a different address. `approveLpOwnership` needs to be run first. * @dev Used by `PositionManager.memorializePositions()`. * @param owner_ The original owner address of the position. * @param newOwner_ The new owner address of the position. * @param indexes_ Array of price buckets index at which `LP` were moved. */ function transferLP( address owner_, address newOwner_, uint256[] calldata indexes_ ) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; /** * @title Pool Lender Actions */ interface IPoolLenderActions { /*********************************************/ /*** Quote/collateral management functions ***/ /*********************************************/ /** * @notice Called by lenders to add an amount of credit at a specified price bucket. * @param amount_ The amount of quote token to be added by a lender (`WAD` precision). * @param index_ The index of the bucket to which the quote tokens will be added. * @param expiry_ Timestamp after which this transaction will revert, preventing inclusion in a block with unfavorable price. * @return bucketLP_ The amount of `LP` changed for the added quote tokens (`WAD` precision). * @return addedAmount_ The amount of quote token added (`WAD` precision). */ function addQuoteToken( uint256 amount_, uint256 index_, uint256 expiry_ ) external returns (uint256 bucketLP_, uint256 addedAmount_); /** * @notice Called by lenders to move an amount of credit from a specified price bucket to another specified price bucket. * @param maxAmount_ The maximum amount of quote token to be moved by a lender (`WAD` precision). * @param fromIndex_ The bucket index from which the quote tokens will be removed. * @param toIndex_ The bucket index to which the quote tokens will be added. * @param expiry_ Timestamp after which this transaction will revert, preventing inclusion in a block with unfavorable price. * @return fromBucketLP_ The amount of `LP` moved out from bucket (`WAD` precision). * @return toBucketLP_ The amount of `LP` moved to destination bucket (`WAD` precision). * @return movedAmount_ The amount of quote token moved (`WAD` precision). */ function moveQuoteToken( uint256 maxAmount_, uint256 fromIndex_, uint256 toIndex_, uint256 expiry_ ) external returns (uint256 fromBucketLP_, uint256 toBucketLP_, uint256 movedAmount_); /** * @notice Called by lenders to claim collateral from a price bucket. * @param maxAmount_ The amount of collateral (`WAD` precision for `ERC20` pools, number of `NFT` tokens for `ERC721` pools) to claim. * @param index_ The bucket index from which collateral will be removed. * @return removedAmount_ The amount of collateral removed (`WAD` precision). * @return redeemedLP_ The amount of `LP` used for removing collateral amount (`WAD` precision). */ function removeCollateral( uint256 maxAmount_, uint256 index_ ) external returns (uint256 removedAmount_, uint256 redeemedLP_); /** * @notice Called by lenders to remove an amount of credit at a specified price bucket. * @param maxAmount_ The max amount of quote token to be removed by a lender (`WAD` precision). * @param index_ The bucket index from which quote tokens will be removed. * @return removedAmount_ The amount of quote token removed (`WAD` precision). * @return redeemedLP_ The amount of `LP` used for removing quote tokens amount (`WAD` precision). */ function removeQuoteToken( uint256 maxAmount_, uint256 index_ ) external returns (uint256 removedAmount_, uint256 redeemedLP_); /********************************/ /*** Interest update function ***/ /********************************/ /** * @notice Called by actors to update pool interest rate (can be updated only once in a `12` hours period of time). */ function updateInterest() external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; /** * @title Pool Kicker Actions */ interface IPoolKickerActions { /********************/ /*** Liquidations ***/ /********************/ /** * @notice Called by actors to initiate a liquidation. * @param borrower_ Identifies the loan to liquidate. * @param npLimitIndex_ Index of the lower bound of `NP` tolerated when kicking the auction. */ function kick( address borrower_, uint256 npLimitIndex_ ) external; /** * @notice Called by lenders to liquidate the top loan. * @param index_ The deposit index to use for kicking the top loan. * @param npLimitIndex_ Index of the lower bound of `NP` tolerated when kicking the auction. */ function lenderKick( uint256 index_, uint256 npLimitIndex_ ) external; /** * @notice Called by kickers to withdraw their auction bonds (the amount of quote tokens that are not locked in active auctions). * @param recipient_ Address to receive claimed bonds amount. * @param maxAmount_ The max amount to withdraw from auction bonds (`WAD` precision). Constrained by claimable amounts and liquidity. * @return withdrawnAmount_ The amount withdrawn (`WAD` precision). */ function withdrawBonds( address recipient_, uint256 maxAmount_ ) external returns (uint256 withdrawnAmount_); /***********************/ /*** Reserve Auction ***/ /***********************/ /** * @notice Called by actor to start a `Claimable Reserve Auction` (`CRA`). */ function kickReserveAuction() external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; /** * @title Pool Taker Actions */ interface IPoolTakerActions { /** * @notice Called by actors to use quote token to arb higher-priced deposit off the book. * @param borrowerAddress_ Address of the borower take is being called upon. * @param depositTake_ If `true` then the take will happen at an auction price equal with bucket price. Auction price is used otherwise. * @param index_ Index of a bucket, likely the `HPB`, in which collateral will be deposited. */ function bucketTake( address borrowerAddress_, bool depositTake_, uint256 index_ ) external; /** * @notice Called by actors to purchase collateral from the auction in exchange for quote token. * @param borrowerAddress_ Address of the borower take is being called upon. * @param maxAmount_ Max amount of collateral that will be taken from the auction (`WAD` precision for `ERC20` pools, max number of `NFT`s for `ERC721` pools). * @param callee_ Identifies where collateral should be sent and where quote token should be obtained. * @param data_ If provided, take will assume the callee implements `IERC*Taker`. Take will send collateral to * callee before passing this data to `IERC*Taker.atomicSwapCallback`. If not provided, * the callback function will not be invoked. * @return collateralTaken_ Amount of collateral taken from the auction (`WAD` precision for `ERC20` pools, max number of `NFT`s for `ERC721` pools). */ function take( address borrowerAddress_, uint256 maxAmount_, address callee_, bytes calldata data_ ) external returns (uint256 collateralTaken_); /***********************/ /*** Reserve Auction ***/ /***********************/ /** * @notice Purchases claimable reserves during a `CRA` using `Ajna` token. * @param maxAmount_ Maximum amount of quote token to purchase at the current auction price (`WAD` precision). * @return amount_ Actual amount of reserves taken (`WAD` precision). */ function takeReserves( uint256 maxAmount_ ) external returns (uint256 amount_); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; /** * @title Pool Settler Actions */ interface IPoolSettlerActions { /** * @notice Called by actors to settle an amount of debt in a completed liquidation. * @param borrowerAddress_ Address of the auctioned borrower. * @param maxDepth_ Measured from `HPB`, maximum number of buckets deep to settle debt. * @return collateralSettled_ Amount of collateral settled. * @return isBorrowerSettled_ True if all borrower's debt is settled. * @dev `maxDepth_` is used to prevent unbounded iteration clearing large liquidations. */ function settle( address borrowerAddress_, uint256 maxDepth_ ) external returns (uint256 collateralSettled_, bool isBorrowerSettled_); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; /** * @title Pool Immutables */ interface IPoolImmutables { /** * @notice Returns the type of the pool (`0` for `ERC20`, `1` for `ERC721`). */ function poolType() external pure returns (uint8); /** * @notice Returns the address of the pool's collateral token. */ function collateralAddress() external pure returns (address); /** * @notice Returns the address of the pool's quote token. */ function quoteTokenAddress() external pure returns (address); /** * @notice Returns the `quoteTokenScale` state variable. * @notice Token scale is also the minimum amount a lender may have in a bucket (dust amount). * @return The precision of the quote `ERC20` token based on decimals. */ function quoteTokenScale() external pure returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; /** * @title Pool Derived State */ interface IPoolDerivedState { /** * @notice Returns the exchange rate for a given bucket index. * @param index_ The bucket index. * @return exchangeRate_ Exchange rate of the bucket (`WAD` precision). */ function bucketExchangeRate( uint256 index_ ) external view returns (uint256 exchangeRate_); /** * @notice Returns the prefix sum of a given bucket. * @param index_ The bucket index. * @return The deposit up to given index (`WAD` precision). */ function depositUpToIndex( uint256 index_ ) external view returns (uint256); /** * @notice Returns the bucket index for a given debt amount. * @param debt_ The debt amount to calculate bucket index for (`WAD` precision). * @return Bucket index. */ function depositIndex( uint256 debt_ ) external view returns (uint256); /** * @notice Returns the total amount of quote tokens deposited in pool. * @return Total amount of deposited quote tokens (`WAD` precision). */ function depositSize() external view returns (uint256); /** * @notice Returns the meaningful actual utilization of the pool. * @return Deposit utilization (`WAD` precision). */ function depositUtilization() external view returns (uint256); /** * @notice Returns the scaling value of deposit at given index. * @param index_ Deposit index. * @return Deposit scaling (`WAD` precision). */ function depositScale( uint256 index_ ) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; /** * @title Pool Events */ interface IPoolEvents { /*********************/ /*** Lender events ***/ /*********************/ /** * @notice Emitted when lender adds quote token to the pool. * @param lender Recipient that added quote tokens. * @param index Index at which quote tokens were added. * @param amount Amount of quote tokens added to the pool (`WAD` precision). * @param lpAwarded Amount of `LP` awarded for the deposit (`WAD` precision). * @param lup `LUP` calculated after deposit. */ event AddQuoteToken( address indexed lender, uint256 indexed index, uint256 amount, uint256 lpAwarded, uint256 lup ); /** * @notice Emitted when lender moves quote token from a bucket price to another. * @param lender Recipient that moved quote tokens. * @param from Price bucket from which quote tokens were moved. * @param to Price bucket where quote tokens were moved. * @param amount Amount of quote tokens moved (`WAD` precision). * @param lpRedeemedFrom Amount of `LP` removed from the `from` bucket (`WAD` precision). * @param lpAwardedTo Amount of `LP` credited to the `to` bucket (`WAD` precision). * @param lup `LUP` calculated after removal. */ event MoveQuoteToken( address indexed lender, uint256 indexed from, uint256 indexed to, uint256 amount, uint256 lpRedeemedFrom, uint256 lpAwardedTo, uint256 lup ); /** * @notice Emitted when lender removes quote token from the pool. * @param lender Recipient that removed quote tokens. * @param index Index at which quote tokens were removed. * @param amount Amount of quote tokens removed from the pool (`WAD` precision). * @param lpRedeemed Amount of `LP` exchanged for quote token (`WAD` precision). * @param lup `LUP` calculated after removal. */ event RemoveQuoteToken( address indexed lender, uint256 indexed index, uint256 amount, uint256 lpRedeemed, uint256 lup ); /** * @notice Emitted when lender claims collateral from a bucket. * @param claimer Recipient that claimed collateral. * @param index Index at which collateral was claimed. * @param amount The amount of collateral (`WAD` precision for `ERC20` pools, number of `NFT` tokens for `ERC721` pools) transferred to the claimer. * @param lpRedeemed Amount of `LP` exchanged for quote token (`WAD` precision). */ event RemoveCollateral( address indexed claimer, uint256 indexed index, uint256 amount, uint256 lpRedeemed ); /***********************/ /*** Borrower events ***/ /***********************/ /** * @notice Emitted when borrower repays quote tokens to the pool and/or pulls collateral from the pool. * @param borrower `msg.sender` or on behalf of sender. * @param quoteRepaid Amount of quote tokens repaid to the pool (`WAD` precision). * @param collateralPulled The amount of collateral (`WAD` precision for `ERC20` pools, number of `NFT` tokens for `ERC721` pools) transferred to the claimer. * @param lup `LUP` after repay. */ event RepayDebt( address indexed borrower, uint256 quoteRepaid, uint256 collateralPulled, uint256 lup ); /**********************/ /*** Auction events ***/ /**********************/ /** * @notice Emitted when a liquidation is initiated. * @param borrower Identifies the loan being liquidated. * @param debt Debt the liquidation will attempt to cover (`WAD` precision). * @param collateral Amount of collateral up for liquidation (`WAD` precision for `ERC20` pools, number of `NFT` tokens for `ERC721` pools). * @param bond Bond amount locked by kicker (`WAD` precision). */ event Kick( address indexed borrower, uint256 debt, uint256 collateral, uint256 bond ); /** * @notice Emitted when kickers are withdrawing funds posted as auction bonds. * @param kicker The kicker withdrawing bonds. * @param reciever The address receiving withdrawn bond amount. * @param amount The bond amount that was withdrawn (`WAD` precision). */ event BondWithdrawn( address indexed kicker, address indexed reciever, uint256 amount ); /** * @notice Emitted when an actor uses quote token to arb higher-priced deposit off the book. * @param borrower Identifies the loan being liquidated. * @param index The index of the `Highest Price Bucket` used for this take. * @param amount Amount of quote token used to purchase collateral (`WAD` precision). * @param collateral Amount of collateral purchased with quote token (`WAD` precision). * @param bondChange Impact of this take to the liquidation bond (`WAD` precision). * @param isReward `True` if kicker was rewarded with `bondChange` amount, `false` if kicker was penalized. * @dev amount / collateral implies the auction price. */ event BucketTake( address indexed borrower, uint256 index, uint256 amount, uint256 collateral, uint256 bondChange, bool isReward ); /** * @notice Emitted when `LP` are awarded to a taker or kicker in a bucket take. * @param taker Actor who invoked the bucket take. * @param kicker Actor who started the auction. * @param lpAwardedTaker Amount of `LP` awarded to the taker (`WAD` precision). * @param lpAwardedKicker Amount of `LP` awarded to the actor who started the auction (`WAD` precision). */ event BucketTakeLPAwarded( address indexed taker, address indexed kicker, uint256 lpAwardedTaker, uint256 lpAwardedKicker ); /** * @notice Emitted when an actor uses quote token outside of the book to purchase collateral under liquidation. * @param borrower Identifies the loan being liquidated. * @param amount Amount of quote token used to purchase collateral (`WAD` precision). * @param collateral Amount of collateral purchased with quote token (for `ERC20` pool, `WAD` precision) or number of `NFT`s purchased (for `ERC721` pool). * @param bondChange Impact of this take to the liquidation bond (`WAD` precision). * @param isReward `True` if kicker was rewarded with `bondChange` amount, `false` if kicker was penalized. * @dev amount / collateral implies the auction price. */ event Take( address indexed borrower, uint256 amount, uint256 collateral, uint256 bondChange, bool isReward ); /** * @notice Emitted when an actor settles debt in a completed liquidation * @param borrower Identifies the loan under liquidation. * @param settledDebt Amount of pool debt settled in this transaction (`WAD` precision). * @dev When `amountRemaining_ == 0`, the auction has been completed cleared and removed from the queue. */ event Settle( address indexed borrower, uint256 settledDebt ); /** * @notice Emitted when auction is completed. * @param borrower Address of borrower that exits auction. * @param collateral Borrower's remaining collateral when auction completed (`WAD` precision). */ event AuctionSettle( address indexed borrower, uint256 collateral ); /** * @notice Emitted when `NFT` auction is completed. * @param borrower Address of borrower that exits auction. * @param collateral Borrower's remaining collateral when auction completed. * @param lp Amount of `LP` given to the borrower to compensate fractional collateral (if any, `WAD` precision). * @param index Index of the bucket with `LP` to compensate fractional collateral. */ event AuctionNFTSettle( address indexed borrower, uint256 collateral, uint256 lp, uint256 index ); /** * @notice Emitted when a `Claimaible Reserve Auction` is started. * @param claimableReservesRemaining Amount of claimable reserves which has not yet been taken (`WAD` precision). * @param auctionPrice Current price at which `1` quote token may be purchased, denominated in `Ajna`. * @param currentBurnEpoch Current burn epoch. */ event KickReserveAuction( uint256 claimableReservesRemaining, uint256 auctionPrice, uint256 currentBurnEpoch ); /** * @notice Emitted when a `Claimaible Reserve Auction` is taken. * @param claimableReservesRemaining Amount of claimable reserves which has not yet been taken (`WAD` precision). * @param auctionPrice Current price at which `1` quote token may be purchased, denominated in `Ajna`. * @param currentBurnEpoch Current burn epoch. */ event ReserveAuction( uint256 claimableReservesRemaining, uint256 auctionPrice, uint256 currentBurnEpoch ); /**************************/ /*** LP transfer events ***/ /**************************/ /** * @notice Emitted when owner increase the `LP` allowance of a spender at specified indexes with specified amounts. * @param owner `LP` owner. * @param spender Address approved to transfer `LP`. * @param indexes Bucket indexes of `LP` approved. * @param amounts `LP` amounts added (ordered by indexes, `WAD` precision). */ event IncreaseLPAllowance( address indexed owner, address indexed spender, uint256[] indexes, uint256[] amounts ); /** * @notice Emitted when owner decrease the `LP` allowance of a spender at specified indexes with specified amounts. * @param owner `LP` owner. * @param spender Address approved to transfer `LP`. * @param indexes Bucket indexes of `LP` approved. * @param amounts `LP` amounts removed (ordered by indexes, `WAD` precision). */ event DecreaseLPAllowance( address indexed owner, address indexed spender, uint256[] indexes, uint256[] amounts ); /** * @notice Emitted when lender removes the allowance of a spender for their `LP`. * @param owner `LP` owner. * @param spender Address that is having it's allowance revoked. * @param indexes List of bucket index to remove the allowance from. */ event RevokeLPAllowance( address indexed owner, address indexed spender, uint256[] indexes ); /** * @notice Emitted when lender whitelists addresses to accept `LP` from. * @param lender Recipient that approves new owner for `LP`. * @param transferors List of addresses that can transfer `LP` to lender. */ event ApproveLPTransferors( address indexed lender, address[] transferors ); /** * @notice Emitted when lender removes addresses from the `LP` transferors whitelist. * @param lender Recipient that approves new owner for `LP`. * @param transferors List of addresses that won't be able to transfer `LP` to lender anymore. */ event RevokeLPTransferors( address indexed lender, address[] transferors ); /** * @notice Emitted when a lender transfers their `LP` to a different address. * @dev Used by `PositionManager.memorializePositions()`. * @param owner The original owner address of the position. * @param newOwner The new owner address of the position. * @param indexes Array of price bucket indexes at which `LP` were transferred. * @param lp Amount of `LP` transferred (`WAD` precision). */ event TransferLP( address owner, address newOwner, uint256[] indexes, uint256 lp ); /**************************/ /*** Pool common events ***/ /**************************/ /** * @notice Emitted when `LP` are forfeited as a result of the bucket losing all assets. * @param index The index of the bucket. * @param lpForfeited Amount of `LP` forfeited by lenders (`WAD` precision). */ event BucketBankruptcy( uint256 indexed index, uint256 lpForfeited ); /** * @notice Emitted when a flashloan is taken from pool. * @param receiver The address receiving the flashloan. * @param token The address of token flashloaned from pool. * @param amount The amount of tokens flashloaned from pool (token precision). */ event Flashloan( address indexed receiver, address indexed token, uint256 amount ); /** * @notice Emitted when a loan `Np to Tp ratio` is restamped. * @param borrower Identifies the loan to update the `Np to Tp ratio`. */ event LoanStamped( address indexed borrower ); /** * @notice Emitted when pool interest rate is reset. This happens when `interest rate > 10%` and `debtEma < 5%` of `depositEma` * @param oldRate Old pool interest rate. * @param newRate New pool interest rate. */ event ResetInterestRate( uint256 oldRate, uint256 newRate ); /** * @notice Emitted when pool interest rate is updated. * @param oldRate Old pool interest rate. * @param newRate New pool interest rate. */ event UpdateInterestRate( uint256 oldRate, uint256 newRate ); /** * @notice Emitted when interest accural or update interest overflows. */ event InterestUpdateFailure(); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; /** * @title Pool Errors. */ interface IPoolErrors { /**************************/ /*** Common Pool Errors ***/ /**************************/ /** * @notice Adding liquidity above current auction price. */ error AddAboveAuctionPrice(); /** * @notice The action cannot be executed on an active auction. */ error AuctionActive(); /** * @notice Attempted auction to clear doesn't meet conditions. */ error AuctionNotClearable(); /** * @notice Auction does not meet requirements to take liquidity. */ error AuctionNotTakeable(); /** * @notice Head auction should be cleared prior of executing this action. */ error AuctionNotCleared(); /** * @notice The auction price is greater than the arbed bucket price. */ error AuctionPriceGtBucketPrice(); /** * @notice Pool already initialized. */ error AlreadyInitialized(); /** * @notice Borrower is attempting to create or modify a loan such that their loan's quote token would be less than the pool's minimum debt amount. */ error AmountLTMinDebt(); /** * @notice Recipient of borrowed quote tokens doesn't match the caller of the `drawDebt` function. */ error BorrowerNotSender(); /** * @notice Borrower has a healthy over-collateralized position. */ error BorrowerOk(); /** * @notice Borrower is attempting to borrow more quote token than they have collateral for. */ error BorrowerUnderCollateralized(); /** * @notice Operation cannot be executed in the same block when bucket becomes insolvent. */ error BucketBankruptcyBlock(); /** * @notice User attempted to merge collateral from a lower price bucket into a higher price bucket. */ error CannotMergeToHigherPrice(); /** * @notice User attempted an operation which does not exceed the dust amount, or leaves behind less than the dust amount. */ error DustAmountNotExceeded(); /** * @notice Callback invoked by `flashLoan` function did not return the expected hash (see `ERC-3156` spec). */ error FlashloanCallbackFailed(); /** * @notice Balance of pool contract before flashloan is different than the balance after flashloan. */ error FlashloanIncorrectBalance(); /** * @notice Pool cannot facilitate a flashloan for the specified token address. */ error FlashloanUnavailableForToken(); /** * @notice User is attempting to move or pull more collateral than is available. */ error InsufficientCollateral(); /** * @notice Lender is attempting to move or remove more collateral they have claim to in the bucket. * @notice Lender is attempting to remove more collateral they have claim to in the bucket. * @notice Lender must have enough `LP` to claim the desired amount of quote from the bucket. */ error InsufficientLP(); /** * @notice Bucket must have more quote available in the bucket than the lender is attempting to claim. */ error InsufficientLiquidity(); /** * @notice When increasing / decreasing `LP` allowances indexes and amounts arrays parameters should have same length. */ error InvalidAllowancesInput(); /** * @notice When transferring `LP` between indices, the new index must be a valid index. */ error InvalidIndex(); /** * @notice The amount used for performed action should be greater than `0`. */ error InvalidAmount(); /** * @notice Borrower is attempting to borrow more quote token than is available before the supplied `limitIndex`. */ error LimitIndexExceeded(); /** * @notice When moving quote token `HTP` must stay below `LUP`. * @notice When removing quote token `HTP` must stay below `LUP`. */ error LUPBelowHTP(); /** * @notice From index and to index arguments to move are the same. */ error MoveToSameIndex(); /** * @notice Owner of the `LP` must have approved the new owner prior to transfer. */ error NoAllowance(); /** * @notice Actor is attempting to take or clear an inactive auction. */ error NoAuction(); /** * @notice No pool reserves are claimable. */ error NoReserves(); /** * @notice Actor is attempting to take or clear an inactive reserves auction. */ error NoReservesAuction(); /** * @notice Lender must have non-zero `LP` when attemptign to remove quote token from the pool. */ error NoClaim(); /** * @notice Borrower has no debt to liquidate. * @notice Borrower is attempting to repay when they have no outstanding debt. */ error NoDebt(); /** * @notice Actor is attempting to kick with bucket price below the `LUP`. */ error PriceBelowLUP(); /** * @notice Lender is attempting to remove quote tokens from a bucket that exists above active auction debt from top-of-book downward. */ error RemoveDepositLockedByAuctionDebt(); /** * @notice User attempted to kick off a new auction less than `2` weeks since the last auction completed. */ error ReserveAuctionTooSoon(); /** * @notice Current block timestamp has reached or exceeded a user-provided expiration. */ error TransactionExpired(); /** * @notice The address that transfer `LP` is not approved by the `LP` receiving address. */ error TransferorNotApproved(); /** * @notice Owner of the `LP` attemps to transfer `LP` to same address. */ error TransferToSameOwner(); /** * @notice The DebtToCollateral of the loan to be inserted in loans heap is zero. */ error ZeroDebtToCollateral(); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; import { IERC3156FlashBorrower } from "./IERC3156FlashBorrower.sol"; interface IERC3156FlashLender { /** * @dev The amount of currency available to be lent. * @param token_ The loan currency. * @return The amount of `token` that can be borrowed (token precision). */ function maxFlashLoan( address token_ ) external view returns (uint256); /** * @dev The fee to be charged for a given loan. * @param token_ The loan currency. * @param amount_ The amount of tokens lent (token precision). * @return The amount of `token` to be charged for the loan (token precision), on top of the returned principal . */ function flashFee( address token_, uint256 amount_ ) external view returns (uint256); /** * @dev Initiate a flash loan. * @param receiver_ The receiver of the tokens in the loan, and the receiver of the callback. * @param token_ The loan currency. * @param amount_ The amount of tokens lent (token precision). * @param data_ Arbitrary data structure, intended to contain user-defined parameters. * @return `True` when successful flashloan, `false` otherwise. */ function flashLoan( IERC3156FlashBorrower receiver_, address token_, uint256 amount_, bytes calldata data_ ) external returns (bool); }
{ "remappings": [ "@solmate/=lib/solmate/src/", "@std/=lib/forge-std/src/", "@clones/=lib/clones-with-immutable-args/src/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@prb-math/=lib/prb-math/", "@base64-sol/=lib/base64/", "src/=src/", "base64/=lib/base64/", "clones-with-immutable-args/=lib/clones-with-immutable-args/src/", "ds-test/=lib/clones-with-immutable-args/lib/ds-test/src/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "prb-math/=lib/prb-math/contracts/" ], "optimizer": { "enabled": true, "runs": 0 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "libraries": { "src/libraries/external/BorrowerActions.sol": { "BorrowerActions": "0x37ed1d5d903adddda4fcc6d003b840c883d05402" }, "src/libraries/external/KickerActions.sol": { "KickerActions": "0xaf983b52aec0f6e127ddd51ce3367552d7916387" }, "src/libraries/external/LPActions.sol": { "LPActions": "0xac8892dd81ee0fec9c11ecf6ef3bd1a773d003fb" }, "src/libraries/external/LenderActions.sol": { "LenderActions": "0xdce7fd455e1a65b40186292657e6231f87d81c49" }, "src/libraries/external/PoolCommons.sol": { "PoolCommons": "0xe88aaf46c9124b7b08c2dcc2505429ce72979648" }, "src/libraries/external/PositionNFTSVG.sol": { "PositionNFTSVG": "0x83fcb77b91288173175a4ac70f848d57ff95a9dd" }, "src/libraries/external/SettlerActions.sol": { "SettlerActions": "0x4418b6a45d785b85e87c022d99b0ff9e267268fe" }, "src/libraries/external/TakerActions.sol": { "TakerActions": "0x9c09a67a622650037fe70f21a5f6770a363009e1" } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"name":"BucketPriceOutOfBounds","type":"error"},{"inputs":[],"name":"FlashloanCallbackFailed","type":"error"},{"inputs":[],"name":"FlashloanIncorrectBalance","type":"error"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__CeilOverflow","type":"error"},{"inputs":[],"name":"PRBMathSD59x18__DivInputTooSmall","type":"error"},{"inputs":[{"internalType":"uint256","name":"rAbs","type":"uint256"}],"name":"PRBMathSD59x18__DivOverflow","type":"error"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__Exp2InputTooBig","type":"error"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__ExpInputTooBig","type":"error"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__LogInputTooSmall","type":"error"},{"inputs":[],"name":"PRBMathSD59x18__MulInputTooSmall","type":"error"},{"inputs":[{"internalType":"uint256","name":"rAbs","type":"uint256"}],"name":"PRBMathSD59x18__MulOverflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"}],"name":"PRBMathUD60x18__Exp2InputTooBig","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"}],"name":"PRBMathUD60x18__ExpInputTooBig","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"}],"name":"PRBMathUD60x18__LogInputTooSmall","type":"error"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"}],"name":"PRBMath__MulDivFixedPointOverflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath__MulDivOverflow","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Flashloan","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldRate","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newRate","type":"uint256"}],"name":"ResetInterestRate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldRate","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newRate","type":"uint256"}],"name":"UpdateInterestRate","type":"event"},{"inputs":[{"components":[{"internalType":"uint256","name":"pledgedCollateral","type":"uint256"},{"internalType":"uint256","name":"t0DebtInAuction","type":"uint256"},{"internalType":"uint256","name":"t0Debt","type":"uint256"}],"internalType":"struct PoolBalancesState","name":"poolBalances_","type":"tuple"},{"components":[{"internalType":"uint208","name":"inflator","type":"uint208"},{"internalType":"uint48","name":"inflatorUpdate","type":"uint48"}],"internalType":"struct InflatorState","name":"inflatorState_","type":"tuple"},{"components":[{"internalType":"uint208","name":"interestRate","type":"uint208"},{"internalType":"uint48","name":"interestRateUpdate","type":"uint48"},{"internalType":"uint256","name":"debt","type":"uint256"},{"internalType":"uint256","name":"meaningfulDeposit","type":"uint256"},{"internalType":"uint256","name":"t0Debt2ToCollateral","type":"uint256"},{"internalType":"uint256","name":"debtCol","type":"uint256"},{"internalType":"uint256","name":"lupt0Debt","type":"uint256"}],"internalType":"struct InterestState","name":"interestState_","type":"tuple"}],"name":"debtInfo","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"mau_","type":"uint256"}],"name":"lenderInterestMargin","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"inflator_","type":"uint256"},{"internalType":"uint256","name":"inflatorUpdate","type":"uint256"},{"internalType":"uint256","name":"interestRate_","type":"uint256"}],"name":"pendingInflator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"interestRate_","type":"uint256"},{"internalType":"uint256","name":"elapsed_","type":"uint256"}],"name":"pendingInterestFactor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"}]
Contract Creation Code
612d0e61003a600b82828239805160001a60731461002d57634e487b7160e01b600052600060045260246000fd5b30600052607381538281f3fe73000000000000000000000000000000000000000030146080604052600436106100825760003560e01c80630cbcb4cd146100875780635676e1ff146100ad57806378792ff1146100cf5780639b5bef86146100e2578063d3f2b14a14610110578063edf6fdf614610130578063f6eb5f8514610143578063fc99bab014610176575b600080fd5b61009a6100953660046124a4565b610189565b6040519081526020015b60405180910390f35b8180156100b957600080fd5b506100cd6100c836600461255a565b6101b5565b005b61009a6100dd36600461261e565b610669565b8180156100ee57600080fd5b506101026100fd36600461264a565b61069a565b6040516100a492919061269f565b81801561011c57600080fd5b506100cd61012b3660046126c2565b6107ec565b61009a61013e366004612760565b610a26565b610156610151366004612843565b610a31565b6040805194855260208501939093529183015260608201526080016100a4565b61009a610184366004612760565b610aaf565b60006101ac6301e1338061019d848661291c565b6101a79190612949565b610ac3565b90505b92915050565b61022e604051806101e001604052806000815260200160008152602001600081526020016000815260200160008152602001600081526020016000815260200160008152602001600081526020016000815260200160008152602001600081526020016000815260200160008152602001600081525090565b84548152600185015460208083019190915260028601546040808401919091526003808801546060850152600488015461012085015288015460808401528401519084015161027d919061295d565b6101c0820181905260a08401516102949190610b1e565b8160c00181815250506102c86102be858560400151846101c001518760a001518660800151610b52565b8260c00151610bde565b8160a00181815250506102e38360a001518260800151610b1e565b60e08201526101c08101516102f9908390610b1e565b61010082015261012081015142146104f3578061012001516000036103435760c0810151815260a0810151602082015260e0810151604082015261010081015160608201526104ca565b61035f81610120015142610357919061295d565b610e10610bf5565b61014082018190526103839061037e9066cd367959873bd81990610c15565b610cda565b6101608201526101408101516103a69061037e90661d50ecc3a59ad51990610c15565b6101808201526101608101516103d2906103c890670de0b6b3a7640000612970565b8760010154610c15565b6103e58261016001518360000151610c15565b6103ef9190612997565b81526101608101516104179061040d90670de0b6b3a7640000612970565b8760020154610c15565b61042a8261016001518360200151610c15565b6104349190612997565b602082015261018081015161045f9061045590670de0b6b3a7640000612970565b8760040154610c15565b6104728261018001518360400151610c15565b61047c9190612997565b60408201526101808101516104a79061049d90670de0b6b3a7640000612970565b8760050154610c15565b6104ba8261018001518360600151610c15565b6104c49190612997565b60608201525b805185556020810151600186015560408101516002860155606081015160038601554260048601555b67016345785d8a00008360e00151118015610522575061051e816020015166b1a2bc2ec50000610b1e565b8151105b156105845767016345785d8a0000600160d01b4265ffffffffffff16028117875560e08401516040517f20ae1d4a2e8d297f3820670c20fc79531e31643d4b201892680e7df3c4ab159992610577929161269f565b60405180910390a1610637565b855461a8c0906105a390600160d01b900465ffffffffffff164261295d565b1115610637576105c6838260000151836020015184604001518560600151610d4a565b6101a0820181905260e084015114610637576101a081015165ffffffffffff4216600160d01b026001600160d01b03821617875560e08401516040517f2463616ef8e6f9bddf00e4964b853ad9050f87cd3c73985d2ee6b6c8a83369919261062e929161269f565b60405180910390a15b60c0810151600187015560a0810151600287015560e08101516004870155610100015160059095019490945550505050565b60006106908461068b6301e13380610681874261295d565b61019d908761291c565b610b1e565b90505b9392505050565b600080806106b46301e1338061019d8660e08a013561291c565b90506106c48660a0013582610b1e565b925060006106d6868860a00135610edd565b905060006b033f4a75fb6ff29166751a4b8211156106f657506001610718565b64173eb4c80a82101561070c5750611cdc610718565b61071582610efa565b90505b60006107288a8a60600135610fc4565b905081811115610736578091505b60006107428b84610fda565b905080156107dd576107866107676107628e600001548f600101546110e5565b6110f7565b61068b61077c670de0b6b3a76400008961295d565b8d60600135610b1e565b95506000670de0b6b3a76400006107c46107a089856111a1565b6107bf6107b5670de0b6b3a76400008b61295d565b61068b600a6111b6565b6111ca565b6107ce91906129bf565b90506107db8c85836111da565b505b50505050509550959350505050565b6040516370a0823160e01b815284906000906001600160a01b038316906370a082319061081d9030906004016129d2565b602060405180830381865afa15801561083a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061085e91906129e6565b90506108746001600160a01b038316888761137d565b6040516323e30c8b60e01b81527f439148f0bbc682ca079e46d6e2c2f0c1e3b820f1a291b069d8882abf8cf18dd9906001600160a01b038916906323e30c8b906108cd9033908b908b906000908c908c906004016129ff565b6020604051808303816000875af11580156108ec573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061091091906129e6565b1461092e5760405163f594248f60e01b815260040160405180910390fd5b6109436001600160a01b0383168830886113e5565b6040516370a0823160e01b815281906001600160a01b038416906370a08231906109719030906004016129d2565b602060405180830381865afa15801561098e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109b291906129e6565b146109d0576040516370fc723360e01b815260040160405180910390fd5b856001600160a01b0316876001600160a01b03167f6b15284fe89dbd5c436c2e0b06b1bf72e3a0a8e96d1b4a2abd61dfae2d7849a687604051610a1591815260200190565b60405180910390a350505050505050565b60006101af826110f7565b600080600080600087604001519050600087600001516001600160d01b03169050610a7f82610a7a838b6020015165ffffffffffff168b600001516001600160d01b0316610669565b611423565b610a898383611423565b610a978b6020015184611423565b89608001519550955095509550505093509350935093565b60006101af826000015483600101546110e5565b6000680736ea4425c11ac6318210610af65760405163062bb40d60e31b8152600481018390526024015b60405180910390fd5b6714057b7ef767814f8202610693670de0b6b3a76400006706f05b59d3b2000083010461144f565b6000670de0b6b3a7640000610b34600282612949565b610b3e848661291c565b610b4891906129bf565b6101ac9190612949565b600080610b60858585611495565b905080600003610b78576120008701545b9150610bbb565b6b033f4a75fb6ff29166751a4b8110610b945760009150610bbb565b64173eb4c80a8110610bb257610b7187610bad83610efa565b610fda565b61200087015491505b610bc9826107bf8887610b1e565b610bd3908361295d565b979650505050505050565b600081831015610bee57816101ac565b5090919050565b600081610c03600282612949565b610b3e670de0b6b3a76400008661291c565b6000600160ff1b831480610c2c5750600160ff1b82145b15610c4a57604051630d01a11b60e21b815260040160405180910390fd5b60008060008512610c5b5784610c60565b846000035b915060008412610c705783610c75565b836000035b90506000610c8383836114c2565b90506001600160ff1b03811115610cb05760405163bf79e8d960e01b815260048101829052602401610aed565b600019808713908613808218600114610cc95782610cce565b826000035b98975050505050505050565b600068023f2fa8f6da5b9d3119821215610cf657506000919050565b680736ea4425c11ac6318212610d22576040516399bb754160e01b815260048101839052602401610aed565b6714057b7ef767814f8202610693670de0b6b3a76400006706f05b59d3b20000830105611588565b60008060008760600151600014610d8f57610d6587876110e5565b9150670de0b6b3a7640000610d82670e27c49886e6000084612a5b565b610d8c9190612a8b565b90505b600084600003610da757670de0b6b3a7640000610db1565b610db18686610bf5565b60e08a015194509050670de0b6b3a76400006002633b9aca0082610dd58686612997565b610ddf9190612970565b610de99190612a8b565b610df39190612bee565b610dfd9190612970565b610e078383612970565b610e12906004612a5b565b1215610e3557610e2e8960e00151670f43fc2c04ee0000610b1e565b9350610eb3565b6002633b9aca00670de0b6b3a7640000610e4f8685612997565b610e599190612970565b610e639190612a8b565b610e6d9190612bee565b610e7f90670de0b6b3a7640000612970565b610e898483612970565b610e94906004612a5b565b1315610eb357610eb08960e00151670c7d713b49da0000610b1e565b93505b610ed0673782dace9d9000006107bf66038d7ea4c6800087610bde565b9998505050505050505050565b60006101ac610eec8484610b1e565b670e6ed27d66680000610b1e565b600064173eb4c80a821080610f1a57506b033f4a75fb6ff29166751a4b82115b15610f3857604051635665ba4560e11b815260040160405180910390fd5b6000610f5c610f468461160c565b610f57670df27a2cdf44800061160c565b6116f0565b90506000610f69826117b6565b9050600082128015610f8b57506706f05b59d3b20000610f898383612970565b135b15610fae57610fa6670de0b6b3a7640000820561103d612970565b949350505050565b610fa6670de0b6b3a7640000820561103c612970565b6000610fd08383611824565b5090949350505050565b6000610fe582612bfd565b9150670de0b6b3a7640000612000600080610fff86611914565b905060005b8184106110da5761101584846129bf565b90506120008111611004576000886120010182612001811061103957611039612c16565b01549050878516156110ba5760008983612001811061105a5761105a612c16565b0154905081600003611075576110708782610b1e565b611097565b611097611082838961291c565b826a0c097ce7bc90715b34b9f160241b611933565b6110a190896129bf565b97508294508885036110b45750506110da565b506110cd565b80156110cd576110ca86826119e2565b95505b600185901c945050611004565b505050505092915050565b600081156101af576101ac8383610bf5565b60008061110c83670de0b6b3a76400006111ca565b61111990620f424061291c565b61112d9069d3c21bcecceda100000061295d565b9050670de0b6b3a764000081101561114f5750670de0b6b3a764000092915050565b6000611163826704a03ce68d2155566119f7565b905061118961117a82670214e8348c4f0000610b1e565b68056bc75e2d63100000610bf5565b610fa690670de0b6b3a764000061295d565b50919050565b600081610b48670de0b6b3a76400008561291c565b60006101af670de0b6b3a76400008361291c565b600081831115610bee57816101ac565b6111e382612bfd565b91506000806000806111f486611914565b90505b612000811161137457808616156112e5578686612001811061121b5761121b612c16565b01549250866120010186612001811061123657611236612c16565b01549150811561129857600061124c8684610b1e565b90506112588385610b1e565b6112628286610b1e565b61126c919061295d565b61127690866129bf565b945080886120010188612001811061129057611290612c16565b0155506112d4565b826112a38685610b1e565b6112ad919061295d565b6112b790856129bf565b93508487612001018761200181106112d1576112d1612c16565b01555b6112de818761295d565b955061136c565b60006112f182886129bf565b9050848882612001811061130757611307612c16565b01600082825461131791906129bf565b9250508190559350876120010181612001811061133657611336612c16565b01549250821561136a5761135361134d868661295d565b84610b1e565b61135d8585610b1e565b611367919061295d565b94505b505b60011b6111f7565b50505050505050565b6040516001600160a01b0383166024820152604481018290526113e090849063a9059cbb60e01b906064015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b031990931692909217909152611a39565b505050565b6040516001600160a01b038085166024830152831660448201526064810182905261141d9085906323b872dd60e01b906084016113a9565b50505050565b6000670de0b6b3a764000060018161143b858761291c565b61144591906129bf565b610b48919061295d565b6000680a688906bd8b000000821061147d57604051634a4f26f160e01b815260048101839052602401610aed565b670de0b6b3a7640000604083901b0461069381611b0b565b600083156114b8576114b36114ad610eec8585610b1e565b85610bf5565b610690565b5060009392505050565b60008080600019848609848602925082811083820303915050670de0b6b3a764000081106115065760405163698d9a0160e11b815260048101829052602401610aed565b600080670de0b6b3a764000086880991506706f05b59d3b1ffff82119050826000036115445780670de0b6b3a76400008504019450505050506101af565b620400008285030493909111909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690201905092915050565b6000808212156115db5768033dd1780914b97114198212156115ac57506000919050565b6115b882600003611588565b6a0c097ce7bc90715b34b9f160241b816115d4576115d4612933565b0592915050565b680a688906bd8b000000821261147d5760405163e69458f960e01b815260048101839052602401610aed565b919050565b60008082136116315760405163309fa7dd60e11b815260048101839052602401610aed565b6000670de0b6b3a7640000831261164a57506001611663565b6000199050826a0c097ce7bc90715b34b9f160241b0492505b6000611678670de0b6b3a7640000850561219d565b670de0b6b3a764000081029350905083811d670de0b6b3a763ffff1981016116a257505002919050565b6706f05b59d3b200005b60008113156116e757670de0b6b3a7640000828002059150671bc16d674ec8000082126116df579384019360019190911d905b60011d6116ac565b50505002919050565b6000600160ff1b8314806117075750600160ff1b82145b156117255760405163b3c754a360e01b815260040160405180910390fd5b60008060008512611736578461173b565b846000035b91506000841261174b5783611750565b836000035b9050600061176783670de0b6b3a76400008461227b565b90506001600160ff1b0381111561179457604051637cb4bef560e01b815260048101829052602401610aed565b6000198087139086138082186001146117ad5782610cce565b610cce83612c2c565b6000670afdc366fbc00000600160ff1b038213156117ea57604051635399a28560e11b815260048101839052602401610aed565b670de0b6b3a7640000820760008190036118065782915061119b565b8083039150600083131561119b5750670de0b6b3a764000001919050565b60008080611000670de0b6b3a764000082808080805b86156119065761184a878b6129bf565b93508b84612001811061185f5761185f612c16565b015492508b6120010184612001811061187a5761187a612c16565b0154915081600003611895576118908684610b1e565b6118b7565b6118b76118a2838861291c565b846a0c097ce7bc90715b34b9f160241b611933565b6118c190866129bf565b90508a8110156118e057611cdc84116118db578399508094505b6118fa565b81156118f3576118f086836119e2565b95505b8098508597505b600187901c965061183a565b505050505050509250925092565b600081156116075761192b600019831860016129bf565b909116919050565b600080806000198587098587029250828110838203039150508060000361196d5783828161196357611963612933565b0492505050610693565b80841161197957600080fd5b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b6000670de0b6b3a7640000610b48838561291c565b600082600003611a1f578115611a0e576000611a18565b670de0b6b3a76400005b90506101af565b6101ac611a34611a2e856122cf565b84612385565b61144f565b6000611a8e826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166123919092919063ffffffff16565b8051909150156113e05780806020019051810190611aac9190612c48565b6113e05760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152608401610aed565b600160bf1b6001603f1b821615611b2b5768016a09e667f3bcc9090260401c5b6001603e1b821615611b46576801306fe0a31b7152df0260401c5b6001603d1b821615611b61576801172b83c7d517adce0260401c5b6001603c1b821615611b7c5768010b5586cf9890f62a0260401c5b6001603b1b821615611b97576801059b0d31585743ae0260401c5b6001603a1b821615611bb257680102c9a3e778060ee70260401c5b600160391b821615611bcd5768010163da9fb33356d80260401c5b600160381b821615611be857680100b1afa5abcbed610260401c5b600160371b821615611c035768010058c86da1c09ea20260401c5b600160361b821615611c1e576801002c605e2e8cec500260401c5b600160351b821615611c3957680100162f3904051fa10260401c5b600160341b821615611c54576801000b175effdc76ba0260401c5b600160331b821615611c6f57680100058ba01fb9f96d0260401c5b600160321b821615611c8a5768010002c5cc37da94920260401c5b600160311b821615611ca5576801000162e525ee05470260401c5b600160301b821615611cc05768010000b17255775c040260401c5b6001602f1b821615611cdb576801000058b91b5bc9ae0260401c5b6001602e1b821615611cf657680100002c5c89d5ec6d0260401c5b6001602d1b821615611d115768010000162e43f4f8310260401c5b6001602c1b821615611d2c57680100000b1721bcfc9a0260401c5b6001602b1b821615611d475768010000058b90cf1e6e0260401c5b6001602a1b821615611d62576801000002c5c863b73f0260401c5b600160291b821615611d7d57680100000162e430e5a20260401c5b600160281b821615611d98576801000000b1721835510260401c5b600160271b821615611db357680100000058b90c0b490260401c5b600160261b821615611dce5768010000002c5c8601cc0260401c5b600160251b821615611de9576801000000162e42fff00260401c5b600160241b821615611e045768010000000b17217fbb0260401c5b600160231b821615611e1f576801000000058b90bfce0260401c5b600160221b821615611e3a57680100000002c5c85fe30260401c5b600160211b821615611e555768010000000162e42ff10260401c5b600160201b821615611e7057680100000000b17217f80260401c5b6380000000821615611e8b5768010000000058b90bfc0260401c5b6340000000821615611ea6576801000000002c5c85fe0260401c5b6320000000821615611ec157680100000000162e42ff0260401c5b6310000000821615611edc576801000000000b17217f0260401c5b6308000000821615611ef757680100000000058b90c00260401c5b6304000000821615611f125768010000000002c5c8600260401c5b6302000000821615611f2d576801000000000162e4300260401c5b6301000000821615611f485768010000000000b172180260401c5b62800000821615611f62576801000000000058b90c0260401c5b62400000821615611f7c57680100000000002c5c860260401c5b62200000821615611f965768010000000000162e430260401c5b62100000821615611fb057680100000000000b17210260401c5b62080000821615611fca5768010000000000058b910260401c5b62040000821615611fe4576801000000000002c5c80260401c5b62020000821615611ffe57680100000000000162e40260401c5b620100008216156120175761b172600160401b010260401c5b61800082161561202f576158b9600160401b010260401c5b61400082161561204757612c5d600160401b010260401c5b61200082161561205f5761162e600160401b010260401c5b61100082161561207757610b17600160401b010260401c5b61080082161561208f5761058c600160401b010260401c5b6104008216156120a7576102c6600160401b010260401c5b6102008216156120bf57610163600160401b010260401c5b6101008216156120d65760b1600160401b010260401c5b60808216156120ec576059600160401b010260401c5b604082161561210257602c600160401b010260401c5b6020821615612118576016600160401b010260401c5b601082161561212e57600b600160401b010260401c5b6008821615612144576006600160401b010260401c5b600482161561215a576003600160401b010260401c5b6002821615612170576001600160401b010260401c5b6001821615612186576001600160401b010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b6000600160801b82106121bd57608091821c916121ba90826129bf565b90505b600160401b82106121db57604091821c916121d890826129bf565b90505b600160201b82106121f957602091821c916121f690826129bf565b90505b62010000821061221657601091821c9161221390826129bf565b90505b610100821061223257600891821c9161222f90826129bf565b90505b6010821061224d57600491821c9161224a90826129bf565b90505b6004821061226857600291821c9161226590826129bf565b90505b60028210611607576101af6001826129bf565b60008080600019858709858702925082811083820303915050806000036122ab5783828161196357611963612933565b838110611979578084604051631dcf306360e21b8152600401610aed92919061269f565b6000670de0b6b3a76400008210156122fd57604051633621413760e21b815260048101839052602401610aed565b6000612312670de0b6b3a7640000840461219d565b670de0b6b3a764000081029250905082811c670de0b6b3a763ffff19810161233b575050919050565b6706f05b59d3b200005b801561237d57670de0b6b3a7640000828002049150671bc16d674ec800008210612375579283019260019190911c905b60011c612345565b505050919050565b60006101ac83836114c2565b6060610690848460008585600080866001600160a01b031685876040516123b89190612c89565b60006040518083038185875af1925050503d80600081146123f5576040519150601f19603f3d011682016040523d82523d6000602084013e6123fa565b606091505b5091509150610bd3878383876060831561247557825160000361246e576001600160a01b0385163b61246e5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610aed565b5081610fa6565b610fa6838381511561248a5781518083602001fd5b8060405162461bcd60e51b8152600401610aed9190612ca5565b600080604083850312156124b757600080fd5b50508035926020909101359150565b60405161012081016001600160401b03811182821017156124f757634e487b7160e01b600052604160045260246000fd5b60405290565b604080519081016001600160401b03811182821017156124f757634e487b7160e01b600052604160045260246000fd5b803560ff8116811461160757600080fd5b801515811461254c57600080fd5b50565b80356116078161253e565b60008060008060008587036101a081121561257457600080fd5b86359550602087013594506040870135935061012080605f198301121561259a57600080fd5b6125a26124c6565b91506125b06060890161252d565b82526080880135602083015260a0880135604083015260c0880135606083015260e088013560808301526101008089013560a08401526125f1828a0161254f565b60c084015261014089013560e0840152610160890135908301525094979396509194610180013592915050565b60008060006060848603121561263357600080fd5b505081359360208301359350604090920135919050565b60008060008060008587036101a081121561266457600080fd5b8635955060208701359450610120603f198201121561268257600080fd5b509396929550505060408301926101608101359250610180013590565b918252602082015260400190565b6001600160a01b038116811461254c57600080fd5b6000806000806000608086880312156126da57600080fd5b85356126e5816126ad565b945060208601356126f5816126ad565b93506040860135925060608601356001600160401b038082111561271857600080fd5b818801915088601f83011261272c57600080fd5b81358181111561273b57600080fd5b89602082850101111561274d57600080fd5b9699959850939650602001949392505050565b60006020828403121561277257600080fd5b5035919050565b80356001600160d01b038116811461160757600080fd5b803565ffffffffffff8116811461160757600080fd5b600060e082840312156127b857600080fd5b60405160e081016001600160401b03811182821017156127e857634e487b7160e01b600052604160045260246000fd5b6040529050806127f783612779565b815261280560208401612790565b602082015260408301356040820152606083013560608201526080830135608082015260a083013560a082015260c083013560c08201525092915050565b600080600083850361018081121561285a57600080fd5b606081121561286857600080fd5b604051606081016001600160401b038111828210171561289857634e487b7160e01b600052604160045260246000fd5b604090815286358252602080880135908301528681013582820152909450605f19820112156128c657600080fd5b506128cf6124fd565b6128db60608601612779565b81526128e960808601612790565b602082015291506128fd8560a086016127a6565b90509250925092565b634e487b7160e01b600052601160045260246000fd5b80820281158282048414176101af576101af612906565b634e487b7160e01b600052601260045260246000fd5b60008261295857612958612933565b500490565b818103818111156101af576101af612906565b818103600083128015838313168383128216171561299057612990612906565b5092915050565b80820182811260008312801582168215821617156129b7576129b7612906565b505092915050565b808201808211156101af576101af612906565b6001600160a01b0391909116815260200190565b6000602082840312156129f857600080fd5b5051919050565b6001600160a01b03878116825286166020820152604081018590526060810184905260a06080820181905281018290526000828460c0840137600060c0848401015260c0601f19601f8501168301019050979650505050505050565b80820260008212600160ff1b84141615612a7757612a77612906565b81810583148215176101af576101af612906565b600082612a9a57612a9a612933565b600160ff1b821460001984141615612ab457612ab4612906565b500590565b80825b6001808611612acb5750612afe565b6001600160ff1b03829004821115612ae557612ae5612906565b80861615612af257918102915b9490941c938002612abc565b935093915050565b6000828015612b1c5760018114612b2657612b2f565b60019150506101af565b829150506101af565b5081612b3d575060006101af565b50600160008213808214612b56578015612b7557612b8f565b6001600160ff1b03839004831115612b7057612b70612906565b612b8f565b6001600160ff1b03839005831215612b8f57612b8f612906565b5080831615612b9b5750805b612bab8360011c83840283612ab9565b600082136001600160ff1b0382900483111615612bca57612bca612906565b60008212600160ff1b82900583121615612be657612be6612906565b029392505050565b60006101ac60ff841683612b06565b600060018201612c0f57612c0f612906565b5060010190565b634e487b7160e01b600052603260045260246000fd5b6000600160ff1b8201612c4157612c41612906565b5060000390565b600060208284031215612c5a57600080fd5b81516106938161253e565b60005b83811015612c80578181015183820152602001612c68565b50506000910152565b60008251612c9b818460208701612c65565b9190910192915050565b6020815260008251806020840152612cc4816040850160208701612c65565b601f01601f1916919091016040019291505056fea2646970667358221220355b992d4aaf3160c026285d382b9ee30781a9e373d5f9e4fc0ca9be8f602cf864736f6c63430008120033
Deployed Bytecode
0x73e88aaf46c9124b7b08c2dcc2505429ce7297964830146080604052600436106100825760003560e01c80630cbcb4cd146100875780635676e1ff146100ad57806378792ff1146100cf5780639b5bef86146100e2578063d3f2b14a14610110578063edf6fdf614610130578063f6eb5f8514610143578063fc99bab014610176575b600080fd5b61009a6100953660046124a4565b610189565b6040519081526020015b60405180910390f35b8180156100b957600080fd5b506100cd6100c836600461255a565b6101b5565b005b61009a6100dd36600461261e565b610669565b8180156100ee57600080fd5b506101026100fd36600461264a565b61069a565b6040516100a492919061269f565b81801561011c57600080fd5b506100cd61012b3660046126c2565b6107ec565b61009a61013e366004612760565b610a26565b610156610151366004612843565b610a31565b6040805194855260208501939093529183015260608201526080016100a4565b61009a610184366004612760565b610aaf565b60006101ac6301e1338061019d848661291c565b6101a79190612949565b610ac3565b90505b92915050565b61022e604051806101e001604052806000815260200160008152602001600081526020016000815260200160008152602001600081526020016000815260200160008152602001600081526020016000815260200160008152602001600081526020016000815260200160008152602001600081525090565b84548152600185015460208083019190915260028601546040808401919091526003808801546060850152600488015461012085015288015460808401528401519084015161027d919061295d565b6101c0820181905260a08401516102949190610b1e565b8160c00181815250506102c86102be858560400151846101c001518760a001518660800151610b52565b8260c00151610bde565b8160a00181815250506102e38360a001518260800151610b1e565b60e08201526101c08101516102f9908390610b1e565b61010082015261012081015142146104f3578061012001516000036103435760c0810151815260a0810151602082015260e0810151604082015261010081015160608201526104ca565b61035f81610120015142610357919061295d565b610e10610bf5565b61014082018190526103839061037e9066cd367959873bd81990610c15565b610cda565b6101608201526101408101516103a69061037e90661d50ecc3a59ad51990610c15565b6101808201526101608101516103d2906103c890670de0b6b3a7640000612970565b8760010154610c15565b6103e58261016001518360000151610c15565b6103ef9190612997565b81526101608101516104179061040d90670de0b6b3a7640000612970565b8760020154610c15565b61042a8261016001518360200151610c15565b6104349190612997565b602082015261018081015161045f9061045590670de0b6b3a7640000612970565b8760040154610c15565b6104728261018001518360400151610c15565b61047c9190612997565b60408201526101808101516104a79061049d90670de0b6b3a7640000612970565b8760050154610c15565b6104ba8261018001518360600151610c15565b6104c49190612997565b60608201525b805185556020810151600186015560408101516002860155606081015160038601554260048601555b67016345785d8a00008360e00151118015610522575061051e816020015166b1a2bc2ec50000610b1e565b8151105b156105845767016345785d8a0000600160d01b4265ffffffffffff16028117875560e08401516040517f20ae1d4a2e8d297f3820670c20fc79531e31643d4b201892680e7df3c4ab159992610577929161269f565b60405180910390a1610637565b855461a8c0906105a390600160d01b900465ffffffffffff164261295d565b1115610637576105c6838260000151836020015184604001518560600151610d4a565b6101a0820181905260e084015114610637576101a081015165ffffffffffff4216600160d01b026001600160d01b03821617875560e08401516040517f2463616ef8e6f9bddf00e4964b853ad9050f87cd3c73985d2ee6b6c8a83369919261062e929161269f565b60405180910390a15b60c0810151600187015560a0810151600287015560e08101516004870155610100015160059095019490945550505050565b60006106908461068b6301e13380610681874261295d565b61019d908761291c565b610b1e565b90505b9392505050565b600080806106b46301e1338061019d8660e08a013561291c565b90506106c48660a0013582610b1e565b925060006106d6868860a00135610edd565b905060006b033f4a75fb6ff29166751a4b8211156106f657506001610718565b64173eb4c80a82101561070c5750611cdc610718565b61071582610efa565b90505b60006107288a8a60600135610fc4565b905081811115610736578091505b60006107428b84610fda565b905080156107dd576107866107676107628e600001548f600101546110e5565b6110f7565b61068b61077c670de0b6b3a76400008961295d565b8d60600135610b1e565b95506000670de0b6b3a76400006107c46107a089856111a1565b6107bf6107b5670de0b6b3a76400008b61295d565b61068b600a6111b6565b6111ca565b6107ce91906129bf565b90506107db8c85836111da565b505b50505050509550959350505050565b6040516370a0823160e01b815284906000906001600160a01b038316906370a082319061081d9030906004016129d2565b602060405180830381865afa15801561083a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061085e91906129e6565b90506108746001600160a01b038316888761137d565b6040516323e30c8b60e01b81527f439148f0bbc682ca079e46d6e2c2f0c1e3b820f1a291b069d8882abf8cf18dd9906001600160a01b038916906323e30c8b906108cd9033908b908b906000908c908c906004016129ff565b6020604051808303816000875af11580156108ec573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061091091906129e6565b1461092e5760405163f594248f60e01b815260040160405180910390fd5b6109436001600160a01b0383168830886113e5565b6040516370a0823160e01b815281906001600160a01b038416906370a08231906109719030906004016129d2565b602060405180830381865afa15801561098e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109b291906129e6565b146109d0576040516370fc723360e01b815260040160405180910390fd5b856001600160a01b0316876001600160a01b03167f6b15284fe89dbd5c436c2e0b06b1bf72e3a0a8e96d1b4a2abd61dfae2d7849a687604051610a1591815260200190565b60405180910390a350505050505050565b60006101af826110f7565b600080600080600087604001519050600087600001516001600160d01b03169050610a7f82610a7a838b6020015165ffffffffffff168b600001516001600160d01b0316610669565b611423565b610a898383611423565b610a978b6020015184611423565b89608001519550955095509550505093509350935093565b60006101af826000015483600101546110e5565b6000680736ea4425c11ac6318210610af65760405163062bb40d60e31b8152600481018390526024015b60405180910390fd5b6714057b7ef767814f8202610693670de0b6b3a76400006706f05b59d3b2000083010461144f565b6000670de0b6b3a7640000610b34600282612949565b610b3e848661291c565b610b4891906129bf565b6101ac9190612949565b600080610b60858585611495565b905080600003610b78576120008701545b9150610bbb565b6b033f4a75fb6ff29166751a4b8110610b945760009150610bbb565b64173eb4c80a8110610bb257610b7187610bad83610efa565b610fda565b61200087015491505b610bc9826107bf8887610b1e565b610bd3908361295d565b979650505050505050565b600081831015610bee57816101ac565b5090919050565b600081610c03600282612949565b610b3e670de0b6b3a76400008661291c565b6000600160ff1b831480610c2c5750600160ff1b82145b15610c4a57604051630d01a11b60e21b815260040160405180910390fd5b60008060008512610c5b5784610c60565b846000035b915060008412610c705783610c75565b836000035b90506000610c8383836114c2565b90506001600160ff1b03811115610cb05760405163bf79e8d960e01b815260048101829052602401610aed565b600019808713908613808218600114610cc95782610cce565b826000035b98975050505050505050565b600068023f2fa8f6da5b9d3119821215610cf657506000919050565b680736ea4425c11ac6318212610d22576040516399bb754160e01b815260048101839052602401610aed565b6714057b7ef767814f8202610693670de0b6b3a76400006706f05b59d3b20000830105611588565b60008060008760600151600014610d8f57610d6587876110e5565b9150670de0b6b3a7640000610d82670e27c49886e6000084612a5b565b610d8c9190612a8b565b90505b600084600003610da757670de0b6b3a7640000610db1565b610db18686610bf5565b60e08a015194509050670de0b6b3a76400006002633b9aca0082610dd58686612997565b610ddf9190612970565b610de99190612a8b565b610df39190612bee565b610dfd9190612970565b610e078383612970565b610e12906004612a5b565b1215610e3557610e2e8960e00151670f43fc2c04ee0000610b1e565b9350610eb3565b6002633b9aca00670de0b6b3a7640000610e4f8685612997565b610e599190612970565b610e639190612a8b565b610e6d9190612bee565b610e7f90670de0b6b3a7640000612970565b610e898483612970565b610e94906004612a5b565b1315610eb357610eb08960e00151670c7d713b49da0000610b1e565b93505b610ed0673782dace9d9000006107bf66038d7ea4c6800087610bde565b9998505050505050505050565b60006101ac610eec8484610b1e565b670e6ed27d66680000610b1e565b600064173eb4c80a821080610f1a57506b033f4a75fb6ff29166751a4b82115b15610f3857604051635665ba4560e11b815260040160405180910390fd5b6000610f5c610f468461160c565b610f57670df27a2cdf44800061160c565b6116f0565b90506000610f69826117b6565b9050600082128015610f8b57506706f05b59d3b20000610f898383612970565b135b15610fae57610fa6670de0b6b3a7640000820561103d612970565b949350505050565b610fa6670de0b6b3a7640000820561103c612970565b6000610fd08383611824565b5090949350505050565b6000610fe582612bfd565b9150670de0b6b3a7640000612000600080610fff86611914565b905060005b8184106110da5761101584846129bf565b90506120008111611004576000886120010182612001811061103957611039612c16565b01549050878516156110ba5760008983612001811061105a5761105a612c16565b0154905081600003611075576110708782610b1e565b611097565b611097611082838961291c565b826a0c097ce7bc90715b34b9f160241b611933565b6110a190896129bf565b97508294508885036110b45750506110da565b506110cd565b80156110cd576110ca86826119e2565b95505b600185901c945050611004565b505050505092915050565b600081156101af576101ac8383610bf5565b60008061110c83670de0b6b3a76400006111ca565b61111990620f424061291c565b61112d9069d3c21bcecceda100000061295d565b9050670de0b6b3a764000081101561114f5750670de0b6b3a764000092915050565b6000611163826704a03ce68d2155566119f7565b905061118961117a82670214e8348c4f0000610b1e565b68056bc75e2d63100000610bf5565b610fa690670de0b6b3a764000061295d565b50919050565b600081610b48670de0b6b3a76400008561291c565b60006101af670de0b6b3a76400008361291c565b600081831115610bee57816101ac565b6111e382612bfd565b91506000806000806111f486611914565b90505b612000811161137457808616156112e5578686612001811061121b5761121b612c16565b01549250866120010186612001811061123657611236612c16565b01549150811561129857600061124c8684610b1e565b90506112588385610b1e565b6112628286610b1e565b61126c919061295d565b61127690866129bf565b945080886120010188612001811061129057611290612c16565b0155506112d4565b826112a38685610b1e565b6112ad919061295d565b6112b790856129bf565b93508487612001018761200181106112d1576112d1612c16565b01555b6112de818761295d565b955061136c565b60006112f182886129bf565b9050848882612001811061130757611307612c16565b01600082825461131791906129bf565b9250508190559350876120010181612001811061133657611336612c16565b01549250821561136a5761135361134d868661295d565b84610b1e565b61135d8585610b1e565b611367919061295d565b94505b505b60011b6111f7565b50505050505050565b6040516001600160a01b0383166024820152604481018290526113e090849063a9059cbb60e01b906064015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b031990931692909217909152611a39565b505050565b6040516001600160a01b038085166024830152831660448201526064810182905261141d9085906323b872dd60e01b906084016113a9565b50505050565b6000670de0b6b3a764000060018161143b858761291c565b61144591906129bf565b610b48919061295d565b6000680a688906bd8b000000821061147d57604051634a4f26f160e01b815260048101839052602401610aed565b670de0b6b3a7640000604083901b0461069381611b0b565b600083156114b8576114b36114ad610eec8585610b1e565b85610bf5565b610690565b5060009392505050565b60008080600019848609848602925082811083820303915050670de0b6b3a764000081106115065760405163698d9a0160e11b815260048101829052602401610aed565b600080670de0b6b3a764000086880991506706f05b59d3b1ffff82119050826000036115445780670de0b6b3a76400008504019450505050506101af565b620400008285030493909111909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690201905092915050565b6000808212156115db5768033dd1780914b97114198212156115ac57506000919050565b6115b882600003611588565b6a0c097ce7bc90715b34b9f160241b816115d4576115d4612933565b0592915050565b680a688906bd8b000000821261147d5760405163e69458f960e01b815260048101839052602401610aed565b919050565b60008082136116315760405163309fa7dd60e11b815260048101839052602401610aed565b6000670de0b6b3a7640000831261164a57506001611663565b6000199050826a0c097ce7bc90715b34b9f160241b0492505b6000611678670de0b6b3a7640000850561219d565b670de0b6b3a764000081029350905083811d670de0b6b3a763ffff1981016116a257505002919050565b6706f05b59d3b200005b60008113156116e757670de0b6b3a7640000828002059150671bc16d674ec8000082126116df579384019360019190911d905b60011d6116ac565b50505002919050565b6000600160ff1b8314806117075750600160ff1b82145b156117255760405163b3c754a360e01b815260040160405180910390fd5b60008060008512611736578461173b565b846000035b91506000841261174b5783611750565b836000035b9050600061176783670de0b6b3a76400008461227b565b90506001600160ff1b0381111561179457604051637cb4bef560e01b815260048101829052602401610aed565b6000198087139086138082186001146117ad5782610cce565b610cce83612c2c565b6000670afdc366fbc00000600160ff1b038213156117ea57604051635399a28560e11b815260048101839052602401610aed565b670de0b6b3a7640000820760008190036118065782915061119b565b8083039150600083131561119b5750670de0b6b3a764000001919050565b60008080611000670de0b6b3a764000082808080805b86156119065761184a878b6129bf565b93508b84612001811061185f5761185f612c16565b015492508b6120010184612001811061187a5761187a612c16565b0154915081600003611895576118908684610b1e565b6118b7565b6118b76118a2838861291c565b846a0c097ce7bc90715b34b9f160241b611933565b6118c190866129bf565b90508a8110156118e057611cdc84116118db578399508094505b6118fa565b81156118f3576118f086836119e2565b95505b8098508597505b600187901c965061183a565b505050505050509250925092565b600081156116075761192b600019831860016129bf565b909116919050565b600080806000198587098587029250828110838203039150508060000361196d5783828161196357611963612933565b0492505050610693565b80841161197957600080fd5b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b6000670de0b6b3a7640000610b48838561291c565b600082600003611a1f578115611a0e576000611a18565b670de0b6b3a76400005b90506101af565b6101ac611a34611a2e856122cf565b84612385565b61144f565b6000611a8e826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166123919092919063ffffffff16565b8051909150156113e05780806020019051810190611aac9190612c48565b6113e05760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152608401610aed565b600160bf1b6001603f1b821615611b2b5768016a09e667f3bcc9090260401c5b6001603e1b821615611b46576801306fe0a31b7152df0260401c5b6001603d1b821615611b61576801172b83c7d517adce0260401c5b6001603c1b821615611b7c5768010b5586cf9890f62a0260401c5b6001603b1b821615611b97576801059b0d31585743ae0260401c5b6001603a1b821615611bb257680102c9a3e778060ee70260401c5b600160391b821615611bcd5768010163da9fb33356d80260401c5b600160381b821615611be857680100b1afa5abcbed610260401c5b600160371b821615611c035768010058c86da1c09ea20260401c5b600160361b821615611c1e576801002c605e2e8cec500260401c5b600160351b821615611c3957680100162f3904051fa10260401c5b600160341b821615611c54576801000b175effdc76ba0260401c5b600160331b821615611c6f57680100058ba01fb9f96d0260401c5b600160321b821615611c8a5768010002c5cc37da94920260401c5b600160311b821615611ca5576801000162e525ee05470260401c5b600160301b821615611cc05768010000b17255775c040260401c5b6001602f1b821615611cdb576801000058b91b5bc9ae0260401c5b6001602e1b821615611cf657680100002c5c89d5ec6d0260401c5b6001602d1b821615611d115768010000162e43f4f8310260401c5b6001602c1b821615611d2c57680100000b1721bcfc9a0260401c5b6001602b1b821615611d475768010000058b90cf1e6e0260401c5b6001602a1b821615611d62576801000002c5c863b73f0260401c5b600160291b821615611d7d57680100000162e430e5a20260401c5b600160281b821615611d98576801000000b1721835510260401c5b600160271b821615611db357680100000058b90c0b490260401c5b600160261b821615611dce5768010000002c5c8601cc0260401c5b600160251b821615611de9576801000000162e42fff00260401c5b600160241b821615611e045768010000000b17217fbb0260401c5b600160231b821615611e1f576801000000058b90bfce0260401c5b600160221b821615611e3a57680100000002c5c85fe30260401c5b600160211b821615611e555768010000000162e42ff10260401c5b600160201b821615611e7057680100000000b17217f80260401c5b6380000000821615611e8b5768010000000058b90bfc0260401c5b6340000000821615611ea6576801000000002c5c85fe0260401c5b6320000000821615611ec157680100000000162e42ff0260401c5b6310000000821615611edc576801000000000b17217f0260401c5b6308000000821615611ef757680100000000058b90c00260401c5b6304000000821615611f125768010000000002c5c8600260401c5b6302000000821615611f2d576801000000000162e4300260401c5b6301000000821615611f485768010000000000b172180260401c5b62800000821615611f62576801000000000058b90c0260401c5b62400000821615611f7c57680100000000002c5c860260401c5b62200000821615611f965768010000000000162e430260401c5b62100000821615611fb057680100000000000b17210260401c5b62080000821615611fca5768010000000000058b910260401c5b62040000821615611fe4576801000000000002c5c80260401c5b62020000821615611ffe57680100000000000162e40260401c5b620100008216156120175761b172600160401b010260401c5b61800082161561202f576158b9600160401b010260401c5b61400082161561204757612c5d600160401b010260401c5b61200082161561205f5761162e600160401b010260401c5b61100082161561207757610b17600160401b010260401c5b61080082161561208f5761058c600160401b010260401c5b6104008216156120a7576102c6600160401b010260401c5b6102008216156120bf57610163600160401b010260401c5b6101008216156120d65760b1600160401b010260401c5b60808216156120ec576059600160401b010260401c5b604082161561210257602c600160401b010260401c5b6020821615612118576016600160401b010260401c5b601082161561212e57600b600160401b010260401c5b6008821615612144576006600160401b010260401c5b600482161561215a576003600160401b010260401c5b6002821615612170576001600160401b010260401c5b6001821615612186576001600160401b010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b6000600160801b82106121bd57608091821c916121ba90826129bf565b90505b600160401b82106121db57604091821c916121d890826129bf565b90505b600160201b82106121f957602091821c916121f690826129bf565b90505b62010000821061221657601091821c9161221390826129bf565b90505b610100821061223257600891821c9161222f90826129bf565b90505b6010821061224d57600491821c9161224a90826129bf565b90505b6004821061226857600291821c9161226590826129bf565b90505b60028210611607576101af6001826129bf565b60008080600019858709858702925082811083820303915050806000036122ab5783828161196357611963612933565b838110611979578084604051631dcf306360e21b8152600401610aed92919061269f565b6000670de0b6b3a76400008210156122fd57604051633621413760e21b815260048101839052602401610aed565b6000612312670de0b6b3a7640000840461219d565b670de0b6b3a764000081029250905082811c670de0b6b3a763ffff19810161233b575050919050565b6706f05b59d3b200005b801561237d57670de0b6b3a7640000828002049150671bc16d674ec800008210612375579283019260019190911c905b60011c612345565b505050919050565b60006101ac83836114c2565b6060610690848460008585600080866001600160a01b031685876040516123b89190612c89565b60006040518083038185875af1925050503d80600081146123f5576040519150601f19603f3d011682016040523d82523d6000602084013e6123fa565b606091505b5091509150610bd3878383876060831561247557825160000361246e576001600160a01b0385163b61246e5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610aed565b5081610fa6565b610fa6838381511561248a5781518083602001fd5b8060405162461bcd60e51b8152600401610aed9190612ca5565b600080604083850312156124b757600080fd5b50508035926020909101359150565b60405161012081016001600160401b03811182821017156124f757634e487b7160e01b600052604160045260246000fd5b60405290565b604080519081016001600160401b03811182821017156124f757634e487b7160e01b600052604160045260246000fd5b803560ff8116811461160757600080fd5b801515811461254c57600080fd5b50565b80356116078161253e565b60008060008060008587036101a081121561257457600080fd5b86359550602087013594506040870135935061012080605f198301121561259a57600080fd5b6125a26124c6565b91506125b06060890161252d565b82526080880135602083015260a0880135604083015260c0880135606083015260e088013560808301526101008089013560a08401526125f1828a0161254f565b60c084015261014089013560e0840152610160890135908301525094979396509194610180013592915050565b60008060006060848603121561263357600080fd5b505081359360208301359350604090920135919050565b60008060008060008587036101a081121561266457600080fd5b8635955060208701359450610120603f198201121561268257600080fd5b509396929550505060408301926101608101359250610180013590565b918252602082015260400190565b6001600160a01b038116811461254c57600080fd5b6000806000806000608086880312156126da57600080fd5b85356126e5816126ad565b945060208601356126f5816126ad565b93506040860135925060608601356001600160401b038082111561271857600080fd5b818801915088601f83011261272c57600080fd5b81358181111561273b57600080fd5b89602082850101111561274d57600080fd5b9699959850939650602001949392505050565b60006020828403121561277257600080fd5b5035919050565b80356001600160d01b038116811461160757600080fd5b803565ffffffffffff8116811461160757600080fd5b600060e082840312156127b857600080fd5b60405160e081016001600160401b03811182821017156127e857634e487b7160e01b600052604160045260246000fd5b6040529050806127f783612779565b815261280560208401612790565b602082015260408301356040820152606083013560608201526080830135608082015260a083013560a082015260c083013560c08201525092915050565b600080600083850361018081121561285a57600080fd5b606081121561286857600080fd5b604051606081016001600160401b038111828210171561289857634e487b7160e01b600052604160045260246000fd5b604090815286358252602080880135908301528681013582820152909450605f19820112156128c657600080fd5b506128cf6124fd565b6128db60608601612779565b81526128e960808601612790565b602082015291506128fd8560a086016127a6565b90509250925092565b634e487b7160e01b600052601160045260246000fd5b80820281158282048414176101af576101af612906565b634e487b7160e01b600052601260045260246000fd5b60008261295857612958612933565b500490565b818103818111156101af576101af612906565b818103600083128015838313168383128216171561299057612990612906565b5092915050565b80820182811260008312801582168215821617156129b7576129b7612906565b505092915050565b808201808211156101af576101af612906565b6001600160a01b0391909116815260200190565b6000602082840312156129f857600080fd5b5051919050565b6001600160a01b03878116825286166020820152604081018590526060810184905260a06080820181905281018290526000828460c0840137600060c0848401015260c0601f19601f8501168301019050979650505050505050565b80820260008212600160ff1b84141615612a7757612a77612906565b81810583148215176101af576101af612906565b600082612a9a57612a9a612933565b600160ff1b821460001984141615612ab457612ab4612906565b500590565b80825b6001808611612acb5750612afe565b6001600160ff1b03829004821115612ae557612ae5612906565b80861615612af257918102915b9490941c938002612abc565b935093915050565b6000828015612b1c5760018114612b2657612b2f565b60019150506101af565b829150506101af565b5081612b3d575060006101af565b50600160008213808214612b56578015612b7557612b8f565b6001600160ff1b03839004831115612b7057612b70612906565b612b8f565b6001600160ff1b03839005831215612b8f57612b8f612906565b5080831615612b9b5750805b612bab8360011c83840283612ab9565b600082136001600160ff1b0382900483111615612bca57612bca612906565b60008212600160ff1b82900583121615612be657612be6612906565b029392505050565b60006101ac60ff841683612b06565b600060018201612c0f57612c0f612906565b5060010190565b634e487b7160e01b600052603260045260246000fd5b6000600160ff1b8201612c4157612c41612906565b5060000390565b600060208284031215612c5a57600080fd5b81516106938161253e565b60005b83811015612c80578181015183820152602001612c68565b50506000910152565b60008251612c9b818460208701612c65565b9190910192915050565b6020815260008251806020840152612cc4816040850160208701612c65565b601f01601f1916919091016040019291505056fea2646970667358221220355b992d4aaf3160c026285d382b9ee30781a9e373d5f9e4fc0ca9be8f602cf864736f6c63430008120033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.