ETH Price: $3,413.96 (+3.00%)

Contract

0xed96E69d54609D9f2cFf8AaCD66CCF83c8A1B470
 
Transaction Hash
Method
Block
From
To
Admin Unlock206522732024-09-01 0:56:1187 days ago1725152171IN
0xed96E69d...3c8A1B470
0 ETH0.000040091.68196545
Unlock206522712024-09-01 0:55:4787 days ago1725152147IN
0xed96E69d...3c8A1B470
0 ETH0.000047011.62747657
Unlock206522662024-09-01 0:54:4787 days ago1725152087IN
0xed96E69d...3c8A1B470
0 ETH0.000049151.70161485
Unlock203148822024-07-15 22:26:35134 days ago1721082395IN
0xed96E69d...3c8A1B470
0 ETH0.000221757.78081309
Unlock195943412024-04-06 4:36:23235 days ago1712378183IN
0xed96E69d...3c8A1B470
0 ETH0.000311039.35975559
Unlock195444412024-03-30 4:36:11242 days ago1711773371IN
0xed96E69d...3c8A1B470
0 ETH0.0008777526.41386817
Add Executor195443762024-03-30 4:23:11242 days ago1711772591IN
0xed96E69d...3c8A1B470
0 ETH0.0009161219.81102275
Unlock195442472024-03-30 3:57:23242 days ago1711771043IN
0xed96E69d...3c8A1B470
0 ETH0.0009166317.52850912
Unlock195437422024-03-30 2:15:11242 days ago1711764911IN
0xed96E69d...3c8A1B470
0 ETH0.0011151821.32525421
Unlock195436382024-03-30 1:53:59242 days ago1711763639IN
0xed96E69d...3c8A1B470
0 ETH0.0010927720.89679464
Unlock195434002024-03-30 1:06:11242 days ago1711760771IN
0xed96E69d...3c8A1B470
0 ETH0.0010545820.16641415
Unlock195427522024-03-29 22:55:23242 days ago1711752923IN
0xed96E69d...3c8A1B470
0 ETH0.0011857822.67526922
Unlock195426102024-03-29 22:26:23242 days ago1711751183IN
0xed96E69d...3c8A1B470
0 ETH0.0012098223.13505041
Unlock195425292024-03-29 22:10:11242 days ago1711750211IN
0xed96E69d...3c8A1B470
0 ETH0.0012008922.96437936
Unlock195424562024-03-29 21:55:35242 days ago1711749335IN
0xed96E69d...3c8A1B470
0 ETH0.0015946224.17049532
Unlock195424342024-03-29 21:51:11242 days ago1711749071IN
0xed96E69d...3c8A1B470
0 ETH0.0017246626.1416098
Unlock195424022024-03-29 21:44:23242 days ago1711748663IN
0xed96E69d...3c8A1B470
0 ETH0.0013046224.94791746
Unlock195423252024-03-29 21:28:35242 days ago1711747715IN
0xed96E69d...3c8A1B470
0 ETH0.0014849228.3957799
Unlock195422062024-03-29 21:04:11242 days ago1711746251IN
0xed96E69d...3c8A1B470
0 ETH0.0012980124.82142915
Unlock195421972024-03-29 21:02:23242 days ago1711746143IN
0xed96E69d...3c8A1B470
0 ETH0.0014619527.95640721
Unlock195421572024-03-29 20:54:11242 days ago1711745651IN
0xed96E69d...3c8A1B470
0 ETH0.0013888426.55837271
Unlock195420752024-03-29 20:37:35242 days ago1711744655IN
0xed96E69d...3c8A1B470
0 ETH0.001725926.16039997
Unlock195417692024-03-29 19:35:59242 days ago1711740959IN
0xed96E69d...3c8A1B470
0 ETH0.0015034728.75038122
Unlock195416522024-03-29 19:11:59242 days ago1711739519IN
0xed96E69d...3c8A1B470
0 ETH0.0013518125.85034211
Unlock195415142024-03-29 18:43:47242 days ago1711737827IN
0xed96E69d...3c8A1B470
0 ETH0.0013217325.27505021
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
PondWater

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 5000 runs

Other Settings:
paris EvmVersion, MIT license
File 1 of 47 : PondWater.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { IERC20 } from '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import { ExecutorManager } from '../Helpers/ExecutorManager.sol';
import { MathHelpers } from '../Helpers/MathHelpers.sol';

import { ISablierV2MerkleStreamerFactory } from "@sablier/v2-periphery/src/interfaces/ISablierV2MerkleStreamerFactory.sol";
import { ISablierV2MerkleStreamerLL } from "@sablier/v2-periphery/src/interfaces/ISablierV2MerkleStreamerLL.sol";
import { ISablierV2LockupLinear } from "@sablier/v2-core/src/interfaces/ISablierV2LockupLinear.sol";
import { LockupLinear } from "@sablier/v2-core/src/types/DataTypes.sol";
import { IAdminable as ISabilerAdminable } from "@sablier/v2-core/src/interfaces/IAdminable.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import { IPondWater } from './IPondWater.sol';
import { IMiningPerCycle } from '../SpawningV2/IMiningPerCycle.sol';

contract PondWater is ExecutorManager, MathHelpers, IPondWater, ReentrancyGuard {

    uint40 public constant intervalPeriod = 1 weeks; // 604800 or 7*24*60*60

    uint40 public atInterval;
    uint256 public realizedOuncesAtInterval = 0;
    mapping(uint40 => uint256) public toDebitAtInterval;
    mapping(uint40 => uint256) public toCreditAtInterval;

    bool public bypassMiningMax = false;

    bool public isOpen = false;
    uint40 public constant lockSlipBeforeClose = 5;
    uint40 public lastStreamAtInterval = 0;

    uint256 public lockIDIndex = 1;

    mapping(uint256 => LockData) public locks;

    uint40 public intervalOffset;

    IERC20 public coinToLock;

    ISablierV2MerkleStreamerFactory public sabilerFactory;
    ISablierV2LockupLinear public sabilerLockupLinear;

    IMiningPerCycle public miningChecker;

    uint256 public checkCycleDeltas = 5;
    uint256 public cycleDeltaNumerator = (10 ** 18) * 2;
    uint256 public minedToLockedNumerator = 10 ** 18;

    mapping(address => mapping(uint256 => uint256)) public userLockedPerCycle;

    constructor(
        uint40 _intervalOffset,
        IERC20 _coinToLock,
        ISablierV2MerkleStreamerFactory _sabilerFactory,
        ISablierV2LockupLinear _sabilerLockupLinear,
        IMiningPerCycle _miningChecker
    ) {
        _addExecutor(msg.sender);
        coinToLock = _coinToLock;
        atInterval = getIntervalFromChain() - 2;

        intervalOffset = _intervalOffset;
        sabilerFactory = _sabilerFactory;
        sabilerLockupLinear = _sabilerLockupLinear;
        miningChecker = _miningChecker;
    }

    modifier validLockId(uint256 lockId) {
        if (locks[lockId].amount == 0) revert LockDoesNotExist(lockId);
        _;   
    }

    modifier onlyOpen() {
        if (!isOpen) revert NotOpen();
        _;   
    }

    function updateBypassMiningMax(bool _bypassMiningMax) external onlyExecutor() {
        bypassMiningMax = _bypassMiningMax;
    }

    function updateMiningChecker(IMiningPerCycle _miningChecker) external onlyExecutor() {
        miningChecker = _miningChecker;
    }

    function updateIntervalOffset(uint40 _intervalOffset) external onlyExecutor() {
        intervalOffset = _intervalOffset;
    }

    function updateMinedToLockedNumerator(uint256 _minedToLockedNumerator) external onlyExecutor() {
        minedToLockedNumerator = _minedToLockedNumerator;
    }

    function updateCheckCycleDeltas(uint256 _checkCycleDeltas) external onlyExecutor() {
        checkCycleDeltas = _checkCycleDeltas;
    }

    function updateCycleDeltaNumerator(uint256 _cycleDeltaNumerator) external onlyExecutor() {
        cycleDeltaNumerator = _cycleDeltaNumerator;
    }

    function getLock(uint256 id) validLockId(id) public view returns (LockData memory) {
        return locks[id];
    }

    function getUserLockedPerCycle(address _locker, uint256 _cycle) external view returns(uint256) {
        return userLockedPerCycle[_locker][_cycle];
    }

    function getIntervalFromChain() public view returns(uint40 intervalFromChain) {
        intervalFromChain = (uint40(block.timestamp) - intervalOffset) / intervalPeriod;
    }

    function getIntervalStartTime(uint40 interval) public view returns(uint40 startTime) {
        startTime = (interval * intervalPeriod) + intervalOffset;
    }

    function _leapfrog() internal {
        uint256 maxInterval = getIntervalFromChain();

        while (atInterval < maxInterval) {
            atInterval++;

            uint256 credits = toCreditAtInterval[atInterval];
            uint256 debits = toDebitAtInterval[atInterval];
            delete toCreditAtInterval[atInterval];
            delete toDebitAtInterval[atInterval];

            realizedOuncesAtInterval += credits - debits;

            emit OuncesObserved(atInterval, realizedOuncesAtInterval, credits, debits);
        }
    }

    function computeLockFactor(uint8 _lockPeriodIndex) public pure returns (uint40 intervals, uint256 factor) {
        if (_lockPeriodIndex > 7) revert InvalidLockPeriod();
        intervals = (uint40(2) ** _lockPeriodIndex);
        factor = (_lockPeriodIndex * divisionDenominator) ** 2;
    }

    function computeLockFactorWithAmount(uint256 _amount, uint8 _lockPeriodIndex) public pure returns (uint40 intervals, uint256 factor, uint256 value) {
        (intervals, factor) = computeLockFactor(_lockPeriodIndex);
        value = _multiplyWithNumerator(_amount, factor);
    }

    function computeDeltaMultiplierWithAmount(uint256 _delta, uint256 _amount) internal view returns(uint256 computed) {
        computed = _multiplyWithNumerator(_amount, minedToLockedNumerator);

        if (_delta != 0) {
            computed = _multiplyWithNumerator(
                computed,
                // 1 / ((delta * numerator) + 1)
                (divisionDenominator ** 2) / ((_delta * cycleDeltaNumerator) + divisionDenominator)
            );
        }
    }

    function readUserLockAmounts(address _locker) public view returns(uint256 canLock, uint256 hasLocked) {
        uint256 delta = 0;
        uint256 currentCycle = miningChecker.cycleIndex();

        while (delta <= checkCycleDeltas) {
            canLock += computeDeltaMultiplierWithAmount(delta, miningChecker.minedPerCycle(_locker, currentCycle));
            hasLocked += computeDeltaMultiplierWithAmount(delta, userLockedPerCycle[_locker][currentCycle]);

            if (currentCycle == 0) {
                break;
            }

            unchecked {
                delta++;
                currentCycle--;
            }
        }
    }

    function _lock(
        address _locker,
        uint256 _amount,
        uint8 _lockPeriodIndex
    ) private onlyOpen() returns(uint256 lockId) {
        if (bypassMiningMax != true) {
            (uint256 canLock, uint256 hasLocked) = readUserLockAmounts(_locker);
            if ((hasLocked + _amount) > canLock) revert OverUserMaximumLock(canLock, hasLocked);
        }

        userLockedPerCycle[_locker][miningChecker.cycleIndex()] += _amount;

        (uint40 lockForIntervals,,uint256 value) = computeLockFactorWithAmount(_amount, _lockPeriodIndex);
        
        uint40 nextInterval = getIntervalFromChain() + 1;

        toCreditAtInterval[nextInterval] += value;
        toDebitAtInterval[nextInterval + lockForIntervals] += value;

        lockId = ++lockIDIndex;

        locks[lockId] = LockData({
            owner: _locker,
            amount: _amount,
            startInterval: nextInterval,
            lastsFor: lockForIntervals
        });

        emit Lock(_locker, lockId, _amount, nextInterval, lockForIntervals);
    }

    function lock(uint256 _amount, uint8 _lockPeriodIndex) external nonReentrant returns(uint256 lockId) {
        if (_amount == 0) revert InvalidLockAmount();
        SafeERC20.safeTransferFrom(coinToLock, msg.sender, address(this), _amount);
        return(_lock(msg.sender, _amount, _lockPeriodIndex));
    }

    function _unlock(uint256 id, address unlockFor) private validLockId(id) {
        LockData storage lockData = locks[id];

        if (unlockFor != lockData.owner) revert NotOwnerOfLock();
        if (!isOpen || ((lockData.startInterval + lockData.lastsFor) >= getIntervalFromChain())) revert CannotUnlockYet();

        uint256 amount = lockData.amount;

        delete locks[id];

        SafeERC20.safeTransfer(coinToLock, unlockFor, amount);

        emit Unlock(unlockFor, id);
    }

    function unlock(uint256 id) external nonReentrant {
        _unlock(id, msg.sender);
    }

    function adminUnlock(uint256 id) external onlyExecutor()  {
        _unlock(id, locks[id].owner);
    }

    function adminUnlock(uint256 id, address unlockFor) external onlyExecutor() {
        _unlock(id, unlockFor);
    }

    function leapfrog() external onlyExecutor() {
        _leapfrog();
    }

    function _getCliff(bool skip, uint40 forInterval) private view returns(uint40 cliff) {
        if (skip) {
            cliff = 0;
        } else {
            cliff = uint40(getIntervalStartTime(forInterval) - block.timestamp);
        }
    }

    function streamWater(CreateStreamParameters calldata parameters) external onlyExecutor() onlyOpen() returns (ISablierV2MerkleStreamerLL streamer) {
        uint40 forInterval = getIntervalFromChain() + 1;

        streamer = sabilerFactory.createMerkleStreamerLL(
            address(this), // initialAdmin
            sabilerLockupLinear, // lockupLinear
            parameters.asset, // asset
            parameters.merkleRoot, // merkleRoot
            getIntervalStartTime(forInterval + 2), // endTime of interval + 1
            // durations
            LockupLinear.Durations({
                // get the difference between the next interval start and now.
                cliff: _getCliff(parameters.skipCliff, forInterval),
                total: 1 weeks
            }),
            false, // cancelable
            true, // transferable
            parameters.ipfsCID, // ipfsCID
            parameters.assetAmount, // aggregateAmount
            parameters.recipientsCount // recipientsCount
        );

        require(parameters.asset.transferFrom(msg.sender, address(streamer), parameters.assetAmount));

        emit NewStream(forInterval, streamer);
    }

    function xferSabiler(ISabilerAdminable toTrans) external onlyExecutor() {
        toTrans.transferAdmin(msg.sender);
    }

    function deposit(IERC20 token, uint256 amount) external onlyExecutor() {
        token.transferFrom(msg.sender, address(this), amount);
    }

    function withdraw(IERC20 token, uint256 amount) external onlyExecutor() {
        token.transfer(msg.sender, amount);
    }

    function ounceStatus() external view returns(uint40 forInterval, uint256 realized, uint256 unrealized) {
        forInterval = atInterval;
        realized = realizedOuncesAtInterval;
        unrealized = realized;

        for (uint40 i = forInterval; i <= (getIntervalFromChain() + 1); i++) {
            unrealized += toCreditAtInterval[i];
            unrealized -= toDebitAtInterval[i];
        }
    }

    function _close() onlyOpen() private {
        isOpen = false;
    }

    function executorClose() external onlyExecutor() {
        _close();
    }

    function close() external {
        if (lastStreamAtInterval == 0 || getIntervalFromChain() <= (atInterval + lastStreamAtInterval)) revert CannotClose();
        _close();
    }

    function executorOpen() external onlyExecutor() {
        if(lockIDIndex != 1 || isOpen) revert CannotOpen();
        isOpen = true;
    }
}

File 2 of 47 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

File 3 of 47 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 4 of 47 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 5 of 47 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

File 6 of 47 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 7 of 47 : IERC721Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

File 8 of 47 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 9 of 47 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 10 of 47 : Common.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

// Common.sol
//
// Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.

/*//////////////////////////////////////////////////////////////////////////
                                CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);

/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);

/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();

/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);

/*//////////////////////////////////////////////////////////////////////////
                                    CONSTANTS
//////////////////////////////////////////////////////////////////////////*/

/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;

/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;

/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;

/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;

/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;

/*//////////////////////////////////////////////////////////////////////////
                                    FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
    unchecked {
        // Start from 0.5 in the 192.64-bit fixed-point format.
        result = 0x800000000000000000000000000000000000000000000000;

        // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
        //
        // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
        // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
        // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
        // we know that `x & 0xFF` is also 1.
        if (x & 0xFF00000000000000 > 0) {
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
        }

        if (x & 0xFF000000000000 > 0) {
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
        }

        if (x & 0xFF0000000000 > 0) {
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
        }

        if (x & 0xFF00000000 > 0) {
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
        }

        if (x & 0xFF000000 > 0) {
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
        }

        if (x & 0xFF0000 > 0) {
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
        }

        if (x & 0xFF00 > 0) {
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
        }

        if (x & 0xFF > 0) {
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
        }

        // In the code snippet below, two operations are executed simultaneously:
        //
        // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
        // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
        // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
        //
        // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
        // integer part, $2^n$.
        result *= UNIT;
        result >>= (191 - (x >> 64));
    }
}

/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
///     x >>= 128;
///     result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
    // 2^128
    assembly ("memory-safe") {
        let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^64
    assembly ("memory-safe") {
        let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^32
    assembly ("memory-safe") {
        let factor := shl(5, gt(x, 0xFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^16
    assembly ("memory-safe") {
        let factor := shl(4, gt(x, 0xFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^8
    assembly ("memory-safe") {
        let factor := shl(3, gt(x, 0xFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^4
    assembly ("memory-safe") {
        let factor := shl(2, gt(x, 0xF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^2
    assembly ("memory-safe") {
        let factor := shl(1, gt(x, 0x3))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^1
    // No need to shift x any more.
    assembly ("memory-safe") {
        let factor := gt(x, 0x1)
        result := or(result, factor)
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
    // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
    // variables such that product = prod1 * 2^256 + prod0.
    uint256 prod0; // Least significant 256 bits of the product
    uint256 prod1; // Most significant 256 bits of the product
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    // Handle non-overflow cases, 256 by 256 division.
    if (prod1 == 0) {
        unchecked {
            return prod0 / denominator;
        }
    }

    // Make sure the result is less than 2^256. Also prevents denominator == 0.
    if (prod1 >= denominator) {
        revert PRBMath_MulDiv_Overflow(x, y, denominator);
    }

    ////////////////////////////////////////////////////////////////////////////
    // 512 by 256 division
    ////////////////////////////////////////////////////////////////////////////

    // Make division exact by subtracting the remainder from [prod1 prod0].
    uint256 remainder;
    assembly ("memory-safe") {
        // Compute remainder using the mulmod Yul instruction.
        remainder := mulmod(x, y, denominator)

        // Subtract 256 bit number from 512-bit number.
        prod1 := sub(prod1, gt(remainder, prod0))
        prod0 := sub(prod0, remainder)
    }

    unchecked {
        // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
        // because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
        // For more detail, see https://cs.stackexchange.com/q/138556/92363.
        uint256 lpotdod = denominator & (~denominator + 1);
        uint256 flippedLpotdod;

        assembly ("memory-safe") {
            // Factor powers of two out of denominator.
            denominator := div(denominator, lpotdod)

            // Divide [prod1 prod0] by lpotdod.
            prod0 := div(prod0, lpotdod)

            // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
            // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
            // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
            flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
        }

        // Shift in bits from prod1 into prod0.
        prod0 |= prod1 * flippedLpotdod;

        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
        // four bits. That is, denominator * inv = 1 mod 2^4.
        uint256 inverse = (3 * denominator) ^ 2;

        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
        // in modular arithmetic, doubling the correct bits in each step.
        inverse *= 2 - denominator * inverse; // inverse mod 2^8
        inverse *= 2 - denominator * inverse; // inverse mod 2^16
        inverse *= 2 - denominator * inverse; // inverse mod 2^32
        inverse *= 2 - denominator * inverse; // inverse mod 2^64
        inverse *= 2 - denominator * inverse; // inverse mod 2^128
        inverse *= 2 - denominator * inverse; // inverse mod 2^256

        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
        // is no longer required.
        result = prod0 * inverse;
    }
}

/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
///     x * y = MAX\_UINT256 * UNIT \\
///     (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
    uint256 prod0;
    uint256 prod1;
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    if (prod1 == 0) {
        unchecked {
            return prod0 / UNIT;
        }
    }

    if (prod1 >= UNIT) {
        revert PRBMath_MulDiv18_Overflow(x, y);
    }

    uint256 remainder;
    assembly ("memory-safe") {
        remainder := mulmod(x, y, UNIT)
        result :=
            mul(
                or(
                    div(sub(prod0, remainder), UNIT_LPOTD),
                    mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
                ),
                UNIT_INVERSE
            )
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
    if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
        revert PRBMath_MulDivSigned_InputTooSmall();
    }

    // Get hold of the absolute values of x, y and the denominator.
    uint256 xAbs;
    uint256 yAbs;
    uint256 dAbs;
    unchecked {
        xAbs = x < 0 ? uint256(-x) : uint256(x);
        yAbs = y < 0 ? uint256(-y) : uint256(y);
        dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
    }

    // Compute the absolute value of x*y÷denominator. The result must fit in int256.
    uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
    if (resultAbs > uint256(type(int256).max)) {
        revert PRBMath_MulDivSigned_Overflow(x, y);
    }

    // Get the signs of x, y and the denominator.
    uint256 sx;
    uint256 sy;
    uint256 sd;
    assembly ("memory-safe") {
        // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
        sx := sgt(x, sub(0, 1))
        sy := sgt(y, sub(0, 1))
        sd := sgt(denominator, sub(0, 1))
    }

    // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
    // If there are, the result should be negative. Otherwise, it should be positive.
    unchecked {
        result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
    }
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
    if (x == 0) {
        return 0;
    }

    // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
    //
    // We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
    //
    // $$
    // msb(x) <= x <= 2*msb(x)$
    // $$
    //
    // We write $msb(x)$ as $2^k$, and we get:
    //
    // $$
    // k = log_2(x)
    // $$
    //
    // Thus, we can write the initial inequality as:
    //
    // $$
    // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
    // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
    // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
    // $$
    //
    // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
    uint256 xAux = uint256(x);
    result = 1;
    if (xAux >= 2 ** 128) {
        xAux >>= 128;
        result <<= 64;
    }
    if (xAux >= 2 ** 64) {
        xAux >>= 64;
        result <<= 32;
    }
    if (xAux >= 2 ** 32) {
        xAux >>= 32;
        result <<= 16;
    }
    if (xAux >= 2 ** 16) {
        xAux >>= 16;
        result <<= 8;
    }
    if (xAux >= 2 ** 8) {
        xAux >>= 8;
        result <<= 4;
    }
    if (xAux >= 2 ** 4) {
        xAux >>= 4;
        result <<= 2;
    }
    if (xAux >= 2 ** 2) {
        result <<= 1;
    }

    // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
    // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
    // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
    // precision into the expected uint128 result.
    unchecked {
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;

        // If x is not a perfect square, round the result toward zero.
        uint256 roundedResult = x / result;
        if (result >= roundedResult) {
            result = roundedResult;
        }
    }
}

File 11 of 47 : UD2x18.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

/*

██████╗ ██████╗ ██████╗ ███╗   ███╗ █████╗ ████████╗██╗  ██╗
██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║  ██║
██████╔╝██████╔╝██████╔╝██╔████╔██║███████║   ██║   ███████║
██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║   ██║   ██╔══██║
██║     ██║  ██║██████╔╝██║ ╚═╝ ██║██║  ██║   ██║   ██║  ██║
╚═╝     ╚═╝  ╚═╝╚═════╝ ╚═╝     ╚═╝╚═╝  ╚═╝   ╚═╝   ╚═╝  ╚═╝

██╗   ██╗██████╗ ██████╗ ██╗  ██╗ ██╗ █████╗
██║   ██║██╔══██╗╚════██╗╚██╗██╔╝███║██╔══██╗
██║   ██║██║  ██║ █████╔╝ ╚███╔╝ ╚██║╚█████╔╝
██║   ██║██║  ██║██╔═══╝  ██╔██╗  ██║██╔══██╗
╚██████╔╝██████╔╝███████╗██╔╝ ██╗ ██║╚█████╔╝
 ╚═════╝ ╚═════╝ ╚══════╝╚═╝  ╚═╝ ╚═╝ ╚════╝

*/

import "./ud2x18/Casting.sol";
import "./ud2x18/Constants.sol";
import "./ud2x18/Errors.sol";
import "./ud2x18/ValueType.sol";

File 12 of 47 : UD60x18.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

/*

██████╗ ██████╗ ██████╗ ███╗   ███╗ █████╗ ████████╗██╗  ██╗
██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║  ██║
██████╔╝██████╔╝██████╔╝██╔████╔██║███████║   ██║   ███████║
██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║   ██║   ██╔══██║
██║     ██║  ██║██████╔╝██║ ╚═╝ ██║██║  ██║   ██║   ██║  ██║
╚═╝     ╚═╝  ╚═╝╚═════╝ ╚═╝     ╚═╝╚═╝  ╚═╝   ╚═╝   ╚═╝  ╚═╝

██╗   ██╗██████╗  ██████╗  ██████╗ ██╗  ██╗ ██╗ █████╗
██║   ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗
██║   ██║██║  ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝
██║   ██║██║  ██║██╔═══██╗████╔╝██║ ██╔██╗  ██║██╔══██╗
╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝
 ╚═════╝ ╚═════╝  ╚═════╝  ╚═════╝ ╚═╝  ╚═╝ ╚═╝ ╚════╝

*/

import "./ud60x18/Casting.sol";
import "./ud60x18/Constants.sol";
import "./ud60x18/Conversions.sol";
import "./ud60x18/Errors.sol";
import "./ud60x18/Helpers.sol";
import "./ud60x18/Math.sol";
import "./ud60x18/ValueType.sol";

File 13 of 47 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD1x18 } from "./ValueType.sol";

/// @notice Casts an SD1x18 number into SD59x18.
/// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18.
function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(SD1x18.unwrap(x)));
}

/// @notice Casts an SD1x18 number into UD2x18.
/// - x must be positive.
function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x);
    }
    result = UD2x18.wrap(uint64(xInt));
}

/// @notice Casts an SD1x18 number into UD60x18.
/// @dev Requirements:
/// - x must be positive.
function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x);
    }
    result = UD60x18.wrap(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint256.
/// @dev Requirements:
/// - x must be positive.
function intoUint256(SD1x18 x) pure returns (uint256 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x);
    }
    result = uint256(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint128.
/// @dev Requirements:
/// - x must be positive.
function intoUint128(SD1x18 x) pure returns (uint128 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x);
    }
    result = uint128(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint40.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(SD1x18 x) pure returns (uint40 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x);
    }
    if (xInt > int64(uint64(Common.MAX_UINT40))) {
        revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x);
    }
    result = uint40(uint64(xInt));
}

/// @notice Alias for {wrap}.
function sd1x18(int64 x) pure returns (SD1x18 result) {
    result = SD1x18.wrap(x);
}

/// @notice Unwraps an SD1x18 number into int64.
function unwrap(SD1x18 x) pure returns (int64 result) {
    result = SD1x18.unwrap(x);
}

/// @notice Wraps an int64 number into SD1x18.
function wrap(int64 x) pure returns (SD1x18 result) {
    result = SD1x18.wrap(x);
}

File 14 of 47 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD1x18 } from "./ValueType.sol";

/// @dev Euler's number as an SD1x18 number.
SD1x18 constant E = SD1x18.wrap(2_718281828459045235);

/// @dev The maximum value an SD1x18 number can have.
int64 constant uMAX_SD1x18 = 9_223372036854775807;
SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18);

/// @dev The maximum value an SD1x18 number can have.
int64 constant uMIN_SD1x18 = -9_223372036854775808;
SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18);

/// @dev PI as an SD1x18 number.
SD1x18 constant PI = SD1x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of SD1x18.
SD1x18 constant UNIT = SD1x18.wrap(1e18);
int256 constant uUNIT = 1e18;

File 15 of 47 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD1x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18.
error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18.
error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128.
error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256.
error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);

File 16 of 47 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD1x18 is int64;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD59x18,
    Casting.intoUD2x18,
    Casting.intoUD60x18,
    Casting.intoUint256,
    Casting.intoUint128,
    Casting.intoUint40,
    Casting.unwrap
} for SD1x18 global;

File 17 of 47 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Casts an SD59x18 number into int256.
/// @dev This is basically a functional alias for {unwrap}.
function intoInt256(SD59x18 x) pure returns (int256 result) {
    result = SD59x18.unwrap(x);
}

/// @notice Casts an SD59x18 number into SD1x18.
/// @dev Requirements:
/// - x must be greater than or equal to `uMIN_SD1x18`.
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < uMIN_SD1x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x);
    }
    if (xInt > uMAX_SD1x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x);
    }
    result = SD1x18.wrap(int64(xInt));
}

/// @notice Casts an SD59x18 number into UD2x18.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `uMAX_UD2x18`.
function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x);
    }
    if (xInt > int256(uint256(uMAX_UD2x18))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x);
    }
    result = UD2x18.wrap(uint64(uint256(xInt)));
}

/// @notice Casts an SD59x18 number into UD60x18.
/// @dev Requirements:
/// - x must be positive.
function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x);
    }
    result = UD60x18.wrap(uint256(xInt));
}

/// @notice Casts an SD59x18 number into uint256.
/// @dev Requirements:
/// - x must be positive.
function intoUint256(SD59x18 x) pure returns (uint256 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x);
    }
    result = uint256(xInt);
}

/// @notice Casts an SD59x18 number into uint128.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `uMAX_UINT128`.
function intoUint128(SD59x18 x) pure returns (uint128 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x);
    }
    if (xInt > int256(uint256(MAX_UINT128))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x);
    }
    result = uint128(uint256(xInt));
}

/// @notice Casts an SD59x18 number into uint40.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(SD59x18 x) pure returns (uint40 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x);
    }
    if (xInt > int256(uint256(MAX_UINT40))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x);
    }
    result = uint40(uint256(xInt));
}

/// @notice Alias for {wrap}.
function sd(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

/// @notice Alias for {wrap}.
function sd59x18(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

/// @notice Unwraps an SD59x18 number into int256.
function unwrap(SD59x18 x) pure returns (int256 result) {
    result = SD59x18.unwrap(x);
}

/// @notice Wraps an int256 number into SD59x18.
function wrap(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

File 18 of 47 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD59x18 } from "./ValueType.sol";

// NOTICE: the "u" prefix stands for "unwrapped".

/// @dev Euler's number as an SD59x18 number.
SD59x18 constant E = SD59x18.wrap(2_718281828459045235);

/// @dev The maximum input permitted in {exp}.
int256 constant uEXP_MAX_INPUT = 133_084258667509499440;
SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT);

/// @dev The maximum input permitted in {exp2}.
int256 constant uEXP2_MAX_INPUT = 192e18 - 1;
SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT);

/// @dev Half the UNIT number.
int256 constant uHALF_UNIT = 0.5e18;
SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT);

/// @dev $log_2(10)$ as an SD59x18 number.
int256 constant uLOG2_10 = 3_321928094887362347;
SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10);

/// @dev $log_2(e)$ as an SD59x18 number.
int256 constant uLOG2_E = 1_442695040888963407;
SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E);

/// @dev The maximum value an SD59x18 number can have.
int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967;
SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18);

/// @dev The maximum whole value an SD59x18 number can have.
int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18);

/// @dev The minimum value an SD59x18 number can have.
int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968;
SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18);

/// @dev The minimum whole value an SD59x18 number can have.
int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18);

/// @dev PI as an SD59x18 number.
SD59x18 constant PI = SD59x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of SD59x18.
int256 constant uUNIT = 1e18;
SD59x18 constant UNIT = SD59x18.wrap(1e18);

/// @dev The unit number squared.
int256 constant uUNIT_SQUARED = 1e36;
SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED);

/// @dev Zero as an SD59x18 number.
SD59x18 constant ZERO = SD59x18.wrap(0);

File 19 of 47 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD59x18 } from "./ValueType.sol";

/// @notice Thrown when taking the absolute value of `MIN_SD59x18`.
error PRBMath_SD59x18_Abs_MinSD59x18();

/// @notice Thrown when ceiling a number overflows SD59x18.
error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x);

/// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMath_SD59x18_Convert_Overflow(int256 x);

/// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMath_SD59x18_Convert_Underflow(int256 x);

/// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`.
error PRBMath_SD59x18_Div_InputTooSmall();

/// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18.
error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x);

/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x);

/// @notice Thrown when flooring a number underflows SD59x18.
error PRBMath_SD59x18_Floor_Underflow(SD59x18 x);

/// @notice Thrown when taking the geometric mean of two numbers and their product is negative.
error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y);

/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18.
error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18.
error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256.
error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x);

/// @notice Thrown when taking the logarithm of a number less than or equal to zero.
error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x);

/// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`.
error PRBMath_SD59x18_Mul_InputTooSmall();

/// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y);

/// @notice Thrown when taking the square root of a negative number.
error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x);

/// @notice Thrown when the calculating the square root overflows SD59x18.
error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);

File 20 of 47 : Helpers.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { wrap } from "./Casting.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Implements the checked addition operation (+) in the SD59x18 type.
function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    return wrap(x.unwrap() + y.unwrap());
}

/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) {
    return wrap(x.unwrap() & bits);
}

/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    return wrap(x.unwrap() & y.unwrap());
}

/// @notice Implements the equal (=) operation in the SD59x18 type.
function eq(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() == y.unwrap();
}

/// @notice Implements the greater than operation (>) in the SD59x18 type.
function gt(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() > y.unwrap();
}

/// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type.
function gte(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() >= y.unwrap();
}

/// @notice Implements a zero comparison check function in the SD59x18 type.
function isZero(SD59x18 x) pure returns (bool result) {
    result = x.unwrap() == 0;
}

/// @notice Implements the left shift operation (<<) in the SD59x18 type.
function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() << bits);
}

/// @notice Implements the lower than operation (<) in the SD59x18 type.
function lt(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() < y.unwrap();
}

/// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type.
function lte(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() <= y.unwrap();
}

/// @notice Implements the unchecked modulo operation (%) in the SD59x18 type.
function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() % y.unwrap());
}

/// @notice Implements the not equal operation (!=) in the SD59x18 type.
function neq(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() != y.unwrap();
}

/// @notice Implements the NOT (~) bitwise operation in the SD59x18 type.
function not(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(~x.unwrap());
}

/// @notice Implements the OR (|) bitwise operation in the SD59x18 type.
function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() | y.unwrap());
}

/// @notice Implements the right shift operation (>>) in the SD59x18 type.
function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() >> bits);
}

/// @notice Implements the checked subtraction operation (-) in the SD59x18 type.
function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() - y.unwrap());
}

/// @notice Implements the checked unary minus operation (-) in the SD59x18 type.
function unary(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(-x.unwrap());
}

/// @notice Implements the unchecked addition operation (+) in the SD59x18 type.
function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(x.unwrap() + y.unwrap());
    }
}

/// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type.
function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(x.unwrap() - y.unwrap());
    }
}

/// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type.
function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(-x.unwrap());
    }
}

/// @notice Implements the XOR (^) bitwise operation in the SD59x18 type.
function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() ^ y.unwrap());
}

File 21 of 47 : Math.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import {
    uEXP_MAX_INPUT,
    uEXP2_MAX_INPUT,
    uHALF_UNIT,
    uLOG2_10,
    uLOG2_E,
    uMAX_SD59x18,
    uMAX_WHOLE_SD59x18,
    uMIN_SD59x18,
    uMIN_WHOLE_SD59x18,
    UNIT,
    uUNIT,
    uUNIT_SQUARED,
    ZERO
} from "./Constants.sol";
import { wrap } from "./Helpers.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Calculates the absolute value of x.
///
/// @dev Requirements:
/// - x must be greater than `MIN_SD59x18`.
///
/// @param x The SD59x18 number for which to calculate the absolute value.
/// @param result The absolute value of x as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function abs(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Abs_MinSD59x18();
    }
    result = xInt < 0 ? wrap(-xInt) : x;
}

/// @notice Calculates the arithmetic average of x and y.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The arithmetic average as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();

    unchecked {
        // This operation is equivalent to `x / 2 +  y / 2`, and it can never overflow.
        int256 sum = (xInt >> 1) + (yInt >> 1);

        if (sum < 0) {
            // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right
            // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`.
            assembly ("memory-safe") {
                result := add(sum, and(or(xInt, yInt), 1))
            }
        } else {
            // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting.
            result = wrap(sum + (xInt & yInt & 1));
        }
    }
}

/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to `MAX_WHOLE_SD59x18`.
///
/// @param x The SD59x18 number to ceil.
/// @param result The smallest whole number greater than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt > uMAX_WHOLE_SD59x18) {
        revert Errors.PRBMath_SD59x18_Ceil_Overflow(x);
    }

    int256 remainder = xInt % uUNIT;
    if (remainder == 0) {
        result = x;
    } else {
        unchecked {
            // Solidity uses C fmod style, which returns a modulus with the same sign as x.
            int256 resultInt = xInt - remainder;
            if (xInt > 0) {
                resultInt += uUNIT;
            }
            result = wrap(resultInt);
        }
    }
}

/// @notice Divides two SD59x18 numbers, returning a new SD59x18 number.
///
/// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute
/// values separately.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The denominator must not be zero.
/// - The result must fit in SD59x18.
///
/// @param x The numerator as an SD59x18 number.
/// @param y The denominator as an SD59x18 number.
/// @param result The quotient as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Div_InputTooSmall();
    }

    // Get hold of the absolute values of x and y.
    uint256 xAbs;
    uint256 yAbs;
    unchecked {
        xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
        yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
    }

    // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18.
    uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs);
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Div_Overflow(x, y);
    }

    // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
    // negative, 0 for positive or zero).
    bool sameSign = (xInt ^ yInt) > -1;

    // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
    unchecked {
        result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
    }
}

/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}.
///
/// Requirements:
/// - Refer to the requirements in {exp2}.
/// - x must be less than 133_084258667509499441.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();

    // This check prevents values greater than 192e18 from being passed to {exp2}.
    if (xInt > uEXP_MAX_INPUT) {
        revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x);
    }

    unchecked {
        // Inline the fixed-point multiplication to save gas.
        int256 doubleUnitProduct = xInt * uLOG2_E;
        result = exp2(wrap(doubleUnitProduct / uUNIT));
    }
}

/// @notice Calculates the binary exponent of x using the binary fraction method using the following formula:
///
/// $$
/// 2^{-x} = \frac{1}{2^x}
/// $$
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Notes:
/// - If x is less than -59_794705707972522261, the result is zero.
///
/// Requirements:
/// - x must be less than 192e18.
/// - The result must fit in SD59x18.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        // The inverse of any number less than this is truncated to zero.
        if (xInt < -59_794705707972522261) {
            return ZERO;
        }

        unchecked {
            // Inline the fixed-point inversion to save gas.
            result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap());
        }
    } else {
        // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
        if (xInt > uEXP2_MAX_INPUT) {
            revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x);
        }

        unchecked {
            // Convert x to the 192.64-bit fixed-point format.
            uint256 x_192x64 = uint256((xInt << 64) / uUNIT);

            // It is safe to cast the result to int256 due to the checks above.
            result = wrap(int256(Common.exp2(x_192x64)));
        }
    }
}

/// @notice Yields the greatest whole number less than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be greater than or equal to `MIN_WHOLE_SD59x18`.
///
/// @param x The SD59x18 number to floor.
/// @param result The greatest whole number less than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < uMIN_WHOLE_SD59x18) {
        revert Errors.PRBMath_SD59x18_Floor_Underflow(x);
    }

    int256 remainder = xInt % uUNIT;
    if (remainder == 0) {
        result = x;
    } else {
        unchecked {
            // Solidity uses C fmod style, which returns a modulus with the same sign as x.
            int256 resultInt = xInt - remainder;
            if (xInt < 0) {
                resultInt -= uUNIT;
            }
            result = wrap(resultInt);
        }
    }
}

/// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right.
/// of the radix point for negative numbers.
/// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
/// @param x The SD59x18 number to get the fractional part of.
/// @param result The fractional part of x as an SD59x18 number.
function frac(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() % uUNIT);
}

/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x * y must fit in SD59x18.
/// - x * y must not be negative, since complex numbers are not supported.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == 0 || yInt == 0) {
        return ZERO;
    }

    unchecked {
        // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it.
        int256 xyInt = xInt * yInt;
        if (xyInt / xInt != yInt) {
            revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y);
        }

        // The product must not be negative, since complex numbers are not supported.
        if (xyInt < 0) {
            revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y);
        }

        // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
        // during multiplication. See the comments in {Common.sqrt}.
        uint256 resultUint = Common.sqrt(uint256(xyInt));
        result = wrap(int256(resultUint));
    }
}

/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The SD59x18 number for which to calculate the inverse.
/// @return result The inverse as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(uUNIT_SQUARED / x.unwrap());
}

/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(SD59x18 x) pure returns (SD59x18 result) {
    // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
    // {log2} can return is ~195_205294292027477728.
    result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}

/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
    }

    // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}.
    // prettier-ignore
    assembly ("memory-safe") {
        switch x
        case 1 { result := mul(uUNIT, sub(0, 18)) }
        case 10 { result := mul(uUNIT, sub(1, 18)) }
        case 100 { result := mul(uUNIT, sub(2, 18)) }
        case 1000 { result := mul(uUNIT, sub(3, 18)) }
        case 10000 { result := mul(uUNIT, sub(4, 18)) }
        case 100000 { result := mul(uUNIT, sub(5, 18)) }
        case 1000000 { result := mul(uUNIT, sub(6, 18)) }
        case 10000000 { result := mul(uUNIT, sub(7, 18)) }
        case 100000000 { result := mul(uUNIT, sub(8, 18)) }
        case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
        case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
        case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
        case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
        case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
        case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
        case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
        case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
        case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
        case 1000000000000000000 { result := 0 }
        case 10000000000000000000 { result := uUNIT }
        case 100000000000000000000 { result := mul(uUNIT, 2) }
        case 1000000000000000000000 { result := mul(uUNIT, 3) }
        case 10000000000000000000000 { result := mul(uUNIT, 4) }
        case 100000000000000000000000 { result := mul(uUNIT, 5) }
        case 1000000000000000000000000 { result := mul(uUNIT, 6) }
        case 10000000000000000000000000 { result := mul(uUNIT, 7) }
        case 100000000000000000000000000 { result := mul(uUNIT, 8) }
        case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
        case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
        case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
        case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
        case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
        case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
        case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
        case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
        case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
        case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
        case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
        case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
        case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
        case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
        case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
        case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
        case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
        case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
        case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
        case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
        case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
        case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
        case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
        case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
        case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
        case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
        case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
        case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
        case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
        case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
        case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
        case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
        case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
        case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
        case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
        case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
        case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
        case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
        case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
        case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
        case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
        case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
        default { result := uMAX_SD59x18 }
    }

    if (result.unwrap() == uMAX_SD59x18) {
        unchecked {
            // Inline the fixed-point division to save gas.
            result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
        }
    }
}

/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation.
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x must be greater than zero.
///
/// @param x The SD59x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt <= 0) {
        revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
    }

    unchecked {
        int256 sign;
        if (xInt >= uUNIT) {
            sign = 1;
        } else {
            sign = -1;
            // Inline the fixed-point inversion to save gas.
            xInt = uUNIT_SQUARED / xInt;
        }

        // Calculate the integer part of the logarithm.
        uint256 n = Common.msb(uint256(xInt / uUNIT));

        // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow
        // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1.
        int256 resultInt = int256(n) * uUNIT;

        // Calculate $y = x * 2^{-n}$.
        int256 y = xInt >> n;

        // If y is the unit number, the fractional part is zero.
        if (y == uUNIT) {
            return wrap(resultInt * sign);
        }

        // Calculate the fractional part via the iterative approximation.
        // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
        int256 DOUBLE_UNIT = 2e18;
        for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
            y = (y * y) / uUNIT;

            // Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
            if (y >= DOUBLE_UNIT) {
                // Add the 2^{-m} factor to the logarithm.
                resultInt = resultInt + delta;

                // Halve y, which corresponds to z/2 in the Wikipedia article.
                y >>= 1;
            }
        }
        resultInt *= sign;
        result = wrap(resultInt);
    }
}

/// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number.
///
/// @dev Notes:
/// - Refer to the notes in {Common.mulDiv18}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv18}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The result must fit in SD59x18.
///
/// @param x The multiplicand as an SD59x18 number.
/// @param y The multiplier as an SD59x18 number.
/// @return result The product as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Mul_InputTooSmall();
    }

    // Get hold of the absolute values of x and y.
    uint256 xAbs;
    uint256 yAbs;
    unchecked {
        xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
        yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
    }

    // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18.
    uint256 resultAbs = Common.mulDiv18(xAbs, yAbs);
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y);
    }

    // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
    // negative, 0 for positive or zero).
    bool sameSign = (xInt ^ yInt) > -1;

    // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
    unchecked {
        result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
    }
}

/// @notice Raises x to the power of y using the following formula:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}, {log2}, and {mul}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as an SD59x18 number.
/// @param y Exponent to raise x to, as an SD59x18 number
/// @return result x raised to power y, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();

    // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
    if (xInt == 0) {
        return yInt == 0 ? UNIT : ZERO;
    }
    // If x is `UNIT`, the result is always `UNIT`.
    else if (xInt == uUNIT) {
        return UNIT;
    }

    // If y is zero, the result is always `UNIT`.
    if (yInt == 0) {
        return UNIT;
    }
    // If y is `UNIT`, the result is always x.
    else if (yInt == uUNIT) {
        return x;
    }

    // Calculate the result using the formula.
    result = exp2(mul(log2(x), y));
}

/// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {abs} and {Common.mulDiv18}.
/// - The result must fit in SD59x18.
///
/// @param x The base as an SD59x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) {
    uint256 xAbs = uint256(abs(x).unwrap());

    // Calculate the first iteration of the loop in advance.
    uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT);

    // Equivalent to `for(y /= 2; y > 0; y /= 2)`.
    uint256 yAux = y;
    for (yAux >>= 1; yAux > 0; yAux >>= 1) {
        xAbs = Common.mulDiv18(xAbs, xAbs);

        // Equivalent to `y % 2 == 1`.
        if (yAux & 1 > 0) {
            resultAbs = Common.mulDiv18(resultAbs, xAbs);
        }
    }

    // The result must fit in SD59x18.
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y);
    }

    unchecked {
        // Is the base negative and the exponent odd? If yes, the result should be negative.
        int256 resultInt = int256(resultAbs);
        bool isNegative = x.unwrap() < 0 && y & 1 == 1;
        if (isNegative) {
            resultInt = -resultInt;
        }
        result = wrap(resultInt);
    }
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - Only the positive root is returned.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x cannot be negative, since complex numbers are not supported.
/// - x must be less than `MAX_SD59x18 / UNIT`.
///
/// @param x The SD59x18 number for which to calculate the square root.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x);
    }
    if (xInt > uMAX_SD59x18 / uUNIT) {
        revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x);
    }

    unchecked {
        // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers.
        // In this case, the two numbers are both the square root.
        uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT));
        result = wrap(int256(resultUint));
    }
}

File 22 of 47 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;

/// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int256.
type SD59x18 is int256;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoInt256,
    Casting.intoSD1x18,
    Casting.intoUD2x18,
    Casting.intoUD60x18,
    Casting.intoUint256,
    Casting.intoUint128,
    Casting.intoUint40,
    Casting.unwrap
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

using {
    Math.abs,
    Math.avg,
    Math.ceil,
    Math.div,
    Math.exp,
    Math.exp2,
    Math.floor,
    Math.frac,
    Math.gm,
    Math.inv,
    Math.log10,
    Math.log2,
    Math.ln,
    Math.mul,
    Math.pow,
    Math.powu,
    Math.sqrt
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

using {
    Helpers.add,
    Helpers.and,
    Helpers.eq,
    Helpers.gt,
    Helpers.gte,
    Helpers.isZero,
    Helpers.lshift,
    Helpers.lt,
    Helpers.lte,
    Helpers.mod,
    Helpers.neq,
    Helpers.not,
    Helpers.or,
    Helpers.rshift,
    Helpers.sub,
    Helpers.uncheckedAdd,
    Helpers.uncheckedSub,
    Helpers.uncheckedUnary,
    Helpers.xor
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                    OPERATORS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes it possible to use these operators on the SD59x18 type.
using {
    Helpers.add as +,
    Helpers.and2 as &,
    Math.div as /,
    Helpers.eq as ==,
    Helpers.gt as >,
    Helpers.gte as >=,
    Helpers.lt as <,
    Helpers.lte as <=,
    Helpers.mod as %,
    Math.mul as *,
    Helpers.neq as !=,
    Helpers.not as ~,
    Helpers.or as |,
    Helpers.sub as -,
    Helpers.unary as -,
    Helpers.xor as ^
} for SD59x18 global;

File 23 of 47 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { UD2x18 } from "./ValueType.sol";

/// @notice Casts a UD2x18 number into SD1x18.
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) {
    uint64 xUint = UD2x18.unwrap(x);
    if (xUint > uint64(uMAX_SD1x18)) {
        revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x);
    }
    result = SD1x18.wrap(int64(xUint));
}

/// @notice Casts a UD2x18 number into SD59x18.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18.
function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x))));
}

/// @notice Casts a UD2x18 number into UD60x18.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18.
function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint128.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128.
function intoUint128(UD2x18 x) pure returns (uint128 result) {
    result = uint128(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint256.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256.
function intoUint256(UD2x18 x) pure returns (uint256 result) {
    result = uint256(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint40.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(UD2x18 x) pure returns (uint40 result) {
    uint64 xUint = UD2x18.unwrap(x);
    if (xUint > uint64(Common.MAX_UINT40)) {
        revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x);
    }
    result = uint40(xUint);
}

/// @notice Alias for {wrap}.
function ud2x18(uint64 x) pure returns (UD2x18 result) {
    result = UD2x18.wrap(x);
}

/// @notice Unwrap a UD2x18 number into uint64.
function unwrap(UD2x18 x) pure returns (uint64 result) {
    result = UD2x18.unwrap(x);
}

/// @notice Wraps a uint64 number into UD2x18.
function wrap(uint64 x) pure returns (UD2x18 result) {
    result = UD2x18.wrap(x);
}

File 24 of 47 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD2x18 } from "./ValueType.sol";

/// @dev Euler's number as a UD2x18 number.
UD2x18 constant E = UD2x18.wrap(2_718281828459045235);

/// @dev The maximum value a UD2x18 number can have.
uint64 constant uMAX_UD2x18 = 18_446744073709551615;
UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18);

/// @dev PI as a UD2x18 number.
UD2x18 constant PI = UD2x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of UD2x18.
uint256 constant uUNIT = 1e18;
UD2x18 constant UNIT = UD2x18.wrap(1e18);

File 25 of 47 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD2x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18.
error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x);

/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40.
error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);

File 26 of 47 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD2x18 is uint64;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD1x18,
    Casting.intoSD59x18,
    Casting.intoUD60x18,
    Casting.intoUint256,
    Casting.intoUint128,
    Casting.intoUint40,
    Casting.unwrap
} for UD2x18 global;

File 27 of 47 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD59x18 } from "../sd59x18/Constants.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "./ValueType.sol";

/// @notice Casts a UD60x18 number into SD1x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uint256(int256(uMAX_SD1x18))) {
        revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x);
    }
    result = SD1x18.wrap(int64(uint64(xUint)));
}

/// @notice Casts a UD60x18 number into UD2x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_UD2x18`.
function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uMAX_UD2x18) {
        revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x);
    }
    result = UD2x18.wrap(uint64(xUint));
}

/// @notice Casts a UD60x18 number into SD59x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_SD59x18`.
function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uint256(uMAX_SD59x18)) {
        revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x);
    }
    result = SD59x18.wrap(int256(xUint));
}

/// @notice Casts a UD60x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint256(UD60x18 x) pure returns (uint256 result) {
    result = UD60x18.unwrap(x);
}

/// @notice Casts a UD60x18 number into uint128.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT128`.
function intoUint128(UD60x18 x) pure returns (uint128 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > MAX_UINT128) {
        revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x);
    }
    result = uint128(xUint);
}

/// @notice Casts a UD60x18 number into uint40.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(UD60x18 x) pure returns (uint40 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > MAX_UINT40) {
        revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x);
    }
    result = uint40(xUint);
}

/// @notice Alias for {wrap}.
function ud(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

/// @notice Alias for {wrap}.
function ud60x18(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

/// @notice Unwraps a UD60x18 number into uint256.
function unwrap(UD60x18 x) pure returns (uint256 result) {
    result = UD60x18.unwrap(x);
}

/// @notice Wraps a uint256 number into the UD60x18 value type.
function wrap(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

File 28 of 47 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD60x18 } from "./ValueType.sol";

// NOTICE: the "u" prefix stands for "unwrapped".

/// @dev Euler's number as a UD60x18 number.
UD60x18 constant E = UD60x18.wrap(2_718281828459045235);

/// @dev The maximum input permitted in {exp}.
uint256 constant uEXP_MAX_INPUT = 133_084258667509499440;
UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT);

/// @dev The maximum input permitted in {exp2}.
uint256 constant uEXP2_MAX_INPUT = 192e18 - 1;
UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT);

/// @dev Half the UNIT number.
uint256 constant uHALF_UNIT = 0.5e18;
UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT);

/// @dev $log_2(10)$ as a UD60x18 number.
uint256 constant uLOG2_10 = 3_321928094887362347;
UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10);

/// @dev $log_2(e)$ as a UD60x18 number.
uint256 constant uLOG2_E = 1_442695040888963407;
UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E);

/// @dev The maximum value a UD60x18 number can have.
uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935;
UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18);

/// @dev The maximum whole value a UD60x18 number can have.
uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000;
UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18);

/// @dev PI as a UD60x18 number.
UD60x18 constant PI = UD60x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of UD60x18.
uint256 constant uUNIT = 1e18;
UD60x18 constant UNIT = UD60x18.wrap(uUNIT);

/// @dev The unit number squared.
uint256 constant uUNIT_SQUARED = 1e36;
UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED);

/// @dev Zero as a UD60x18 number.
UD60x18 constant ZERO = UD60x18.wrap(0);

File 29 of 47 : Conversions.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { uMAX_UD60x18, uUNIT } from "./Constants.sol";
import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol";
import { UD60x18 } from "./ValueType.sol";

/// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`.
/// @dev The result is rounded toward zero.
/// @param x The UD60x18 number to convert.
/// @return result The same number in basic integer form.
function convert(UD60x18 x) pure returns (uint256 result) {
    result = UD60x18.unwrap(x) / uUNIT;
}

/// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`.
///
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UD60x18 / UNIT`.
///
/// @param x The basic integer to convert.
/// @param result The same number converted to UD60x18.
function convert(uint256 x) pure returns (UD60x18 result) {
    if (x > uMAX_UD60x18 / uUNIT) {
        revert PRBMath_UD60x18_Convert_Overflow(x);
    }
    unchecked {
        result = UD60x18.wrap(x * uUNIT);
    }
}

File 30 of 47 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD60x18 } from "./ValueType.sol";

/// @notice Thrown when ceiling a number overflows UD60x18.
error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x);

/// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18.
error PRBMath_UD60x18_Convert_Overflow(uint256 x);

/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x);

/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x);

/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18.
error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18.
error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x);

/// @notice Thrown when taking the logarithm of a number less than 1.
error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x);

/// @notice Thrown when calculating the square root overflows UD60x18.
error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);

File 31 of 47 : Helpers.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { wrap } from "./Casting.sol";
import { UD60x18 } from "./ValueType.sol";

/// @notice Implements the checked addition operation (+) in the UD60x18 type.
function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() + y.unwrap());
}

/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() & bits);
}

/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() & y.unwrap());
}

/// @notice Implements the equal operation (==) in the UD60x18 type.
function eq(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() == y.unwrap();
}

/// @notice Implements the greater than operation (>) in the UD60x18 type.
function gt(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() > y.unwrap();
}

/// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type.
function gte(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() >= y.unwrap();
}

/// @notice Implements a zero comparison check function in the UD60x18 type.
function isZero(UD60x18 x) pure returns (bool result) {
    // This wouldn't work if x could be negative.
    result = x.unwrap() == 0;
}

/// @notice Implements the left shift operation (<<) in the UD60x18 type.
function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() << bits);
}

/// @notice Implements the lower than operation (<) in the UD60x18 type.
function lt(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() < y.unwrap();
}

/// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type.
function lte(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() <= y.unwrap();
}

/// @notice Implements the checked modulo operation (%) in the UD60x18 type.
function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() % y.unwrap());
}

/// @notice Implements the not equal operation (!=) in the UD60x18 type.
function neq(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() != y.unwrap();
}

/// @notice Implements the NOT (~) bitwise operation in the UD60x18 type.
function not(UD60x18 x) pure returns (UD60x18 result) {
    result = wrap(~x.unwrap());
}

/// @notice Implements the OR (|) bitwise operation in the UD60x18 type.
function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() | y.unwrap());
}

/// @notice Implements the right shift operation (>>) in the UD60x18 type.
function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() >> bits);
}

/// @notice Implements the checked subtraction operation (-) in the UD60x18 type.
function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() - y.unwrap());
}

/// @notice Implements the unchecked addition operation (+) in the UD60x18 type.
function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(x.unwrap() + y.unwrap());
    }
}

/// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type.
function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(x.unwrap() - y.unwrap());
    }
}

/// @notice Implements the XOR (^) bitwise operation in the UD60x18 type.
function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() ^ y.unwrap());
}

File 32 of 47 : Math.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { wrap } from "./Casting.sol";
import {
    uEXP_MAX_INPUT,
    uEXP2_MAX_INPUT,
    uHALF_UNIT,
    uLOG2_10,
    uLOG2_E,
    uMAX_UD60x18,
    uMAX_WHOLE_UD60x18,
    UNIT,
    uUNIT,
    uUNIT_SQUARED,
    ZERO
} from "./Constants.sol";
import { UD60x18 } from "./ValueType.sol";

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Calculates the arithmetic average of x and y using the following formula:
///
/// $$
/// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2)
/// $$
///
/// In English, this is what this formula does:
///
/// 1. AND x and y.
/// 2. Calculate half of XOR x and y.
/// 3. Add the two results together.
///
/// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here:
/// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The arithmetic average as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();
    unchecked {
        result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1));
    }
}

/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to `MAX_WHOLE_UD60x18`.
///
/// @param x The UD60x18 number to ceil.
/// @param result The smallest whole number greater than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    if (xUint > uMAX_WHOLE_UD60x18) {
        revert Errors.PRBMath_UD60x18_Ceil_Overflow(x);
    }

    assembly ("memory-safe") {
        // Equivalent to `x % UNIT`.
        let remainder := mod(x, uUNIT)

        // Equivalent to `UNIT - remainder`.
        let delta := sub(uUNIT, remainder)

        // Equivalent to `x + remainder > 0 ? delta : 0`.
        result := add(x, mul(delta, gt(remainder, 0)))
    }
}

/// @notice Divides two UD60x18 numbers, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @param x The numerator as a UD60x18 number.
/// @param y The denominator as a UD60x18 number.
/// @param result The quotient as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap()));
}

/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Requirements:
/// - x must be less than 133_084258667509499441.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    // This check prevents values greater than 192e18 from being passed to {exp2}.
    if (xUint > uEXP_MAX_INPUT) {
        revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x);
    }

    unchecked {
        // Inline the fixed-point multiplication to save gas.
        uint256 doubleUnitProduct = xUint * uLOG2_E;
        result = exp2(wrap(doubleUnitProduct / uUNIT));
    }
}

/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693
///
/// Requirements:
/// - x must be less than 192e18.
/// - The result must fit in UD60x18.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
    if (xUint > uEXP2_MAX_INPUT) {
        revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x);
    }

    // Convert x to the 192.64-bit fixed-point format.
    uint256 x_192x64 = (xUint << 64) / uUNIT;

    // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation.
    result = wrap(Common.exp2(x_192x64));
}

/// @notice Yields the greatest whole number less than or equal to x.
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The UD60x18 number to floor.
/// @param result The greatest whole number less than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(UD60x18 x) pure returns (UD60x18 result) {
    assembly ("memory-safe") {
        // Equivalent to `x % UNIT`.
        let remainder := mod(x, uUNIT)

        // Equivalent to `x - remainder > 0 ? remainder : 0)`.
        result := sub(x, mul(remainder, gt(remainder, 0)))
    }
}

/// @notice Yields the excess beyond the floor of x using the odd function definition.
/// @dev See https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The UD60x18 number to get the fractional part of.
/// @param result The fractional part of x as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function frac(UD60x18 x) pure returns (UD60x18 result) {
    assembly ("memory-safe") {
        result := mod(x, uUNIT)
    }
}

/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down.
///
/// @dev Requirements:
/// - x * y must fit in UD60x18.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();
    if (xUint == 0 || yUint == 0) {
        return ZERO;
    }

    unchecked {
        // Checking for overflow this way is faster than letting Solidity do it.
        uint256 xyUint = xUint * yUint;
        if (xyUint / xUint != yUint) {
            revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y);
        }

        // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
        // during multiplication. See the comments in {Common.sqrt}.
        result = wrap(Common.sqrt(xyUint));
    }
}

/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The UD60x18 number for which to calculate the inverse.
/// @return result The inverse as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(UD60x18 x) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(uUNIT_SQUARED / x.unwrap());
    }
}

/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(UD60x18 x) pure returns (UD60x18 result) {
    unchecked {
        // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
        // {log2} can return is ~196_205294292027477728.
        result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
    }
}

/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    if (xUint < uUNIT) {
        revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
    }

    // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}.
    // prettier-ignore
    assembly ("memory-safe") {
        switch x
        case 1 { result := mul(uUNIT, sub(0, 18)) }
        case 10 { result := mul(uUNIT, sub(1, 18)) }
        case 100 { result := mul(uUNIT, sub(2, 18)) }
        case 1000 { result := mul(uUNIT, sub(3, 18)) }
        case 10000 { result := mul(uUNIT, sub(4, 18)) }
        case 100000 { result := mul(uUNIT, sub(5, 18)) }
        case 1000000 { result := mul(uUNIT, sub(6, 18)) }
        case 10000000 { result := mul(uUNIT, sub(7, 18)) }
        case 100000000 { result := mul(uUNIT, sub(8, 18)) }
        case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
        case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
        case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
        case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
        case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
        case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
        case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
        case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
        case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
        case 1000000000000000000 { result := 0 }
        case 10000000000000000000 { result := uUNIT }
        case 100000000000000000000 { result := mul(uUNIT, 2) }
        case 1000000000000000000000 { result := mul(uUNIT, 3) }
        case 10000000000000000000000 { result := mul(uUNIT, 4) }
        case 100000000000000000000000 { result := mul(uUNIT, 5) }
        case 1000000000000000000000000 { result := mul(uUNIT, 6) }
        case 10000000000000000000000000 { result := mul(uUNIT, 7) }
        case 100000000000000000000000000 { result := mul(uUNIT, 8) }
        case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
        case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
        case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
        case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
        case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
        case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
        case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
        case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
        case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
        case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
        case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
        case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
        case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
        case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
        case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
        case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
        case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
        case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
        case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
        case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
        case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
        case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
        case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
        case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
        case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
        case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
        case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
        case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
        case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
        case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
        case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
        case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
        case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
        case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
        case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
        case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
        case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
        case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
        case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
        case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
        case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
        case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) }
        default { result := uMAX_UD60x18 }
    }

    if (result.unwrap() == uMAX_UD60x18) {
        unchecked {
            // Inline the fixed-point division to save gas.
            result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
        }
    }
}

/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x must be greater than zero.
///
/// @param x The UD60x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    if (xUint < uUNIT) {
        revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
    }

    unchecked {
        // Calculate the integer part of the logarithm.
        uint256 n = Common.msb(xUint / uUNIT);

        // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n
        // n is at most 255 and UNIT is 1e18.
        uint256 resultUint = n * uUNIT;

        // Calculate $y = x * 2^{-n}$.
        uint256 y = xUint >> n;

        // If y is the unit number, the fractional part is zero.
        if (y == uUNIT) {
            return wrap(resultUint);
        }

        // Calculate the fractional part via the iterative approximation.
        // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
        uint256 DOUBLE_UNIT = 2e18;
        for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
            y = (y * y) / uUNIT;

            // Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
            if (y >= DOUBLE_UNIT) {
                // Add the 2^{-m} factor to the logarithm.
                resultUint += delta;

                // Halve y, which corresponds to z/2 in the Wikipedia article.
                y >>= 1;
            }
        }
        result = wrap(resultUint);
    }
}

/// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @dev See the documentation in {Common.mulDiv18}.
/// @param x The multiplicand as a UD60x18 number.
/// @param y The multiplier as a UD60x18 number.
/// @return result The product as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap()));
}

/// @notice Raises x to the power of y.
///
/// For $1 \leq x \leq \infty$, the following standard formula is used:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used:
///
/// $$
/// i = \frac{1}{x}
/// w = 2^{log_2{i} * y}
/// x^y = \frac{1}{w}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2} and {mul}.
/// - Returns `UNIT` for 0^0.
/// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();

    // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
    if (xUint == 0) {
        return yUint == 0 ? UNIT : ZERO;
    }
    // If x is `UNIT`, the result is always `UNIT`.
    else if (xUint == uUNIT) {
        return UNIT;
    }

    // If y is zero, the result is always `UNIT`.
    if (yUint == 0) {
        return UNIT;
    }
    // If y is `UNIT`, the result is always x.
    else if (yUint == uUNIT) {
        return x;
    }

    // If x is greater than `UNIT`, use the standard formula.
    if (xUint > uUNIT) {
        result = exp2(mul(log2(x), y));
    }
    // Conversely, if x is less than `UNIT`, use the equivalent formula.
    else {
        UD60x18 i = wrap(uUNIT_SQUARED / xUint);
        UD60x18 w = exp2(mul(log2(i), y));
        result = wrap(uUNIT_SQUARED / w.unwrap());
    }
}

/// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - The result must fit in UD60x18.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) {
    // Calculate the first iteration of the loop in advance.
    uint256 xUint = x.unwrap();
    uint256 resultUint = y & 1 > 0 ? xUint : uUNIT;

    // Equivalent to `for(y /= 2; y > 0; y /= 2)`.
    for (y >>= 1; y > 0; y >>= 1) {
        xUint = Common.mulDiv18(xUint, xUint);

        // Equivalent to `y % 2 == 1`.
        if (y & 1 > 0) {
            resultUint = Common.mulDiv18(resultUint, xUint);
        }
    }
    result = wrap(resultUint);
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must be less than `MAX_UD60x18 / UNIT`.
///
/// @param x The UD60x18 number for which to calculate the square root.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    unchecked {
        if (xUint > uMAX_UD60x18 / uUNIT) {
            revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x);
        }
        // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers.
        // In this case, the two numbers are both the square root.
        result = wrap(Common.sqrt(xUint * uUNIT));
    }
}

File 33 of 47 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;

/// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256.
/// @dev The value type is defined here so it can be imported in all other files.
type UD60x18 is uint256;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD1x18,
    Casting.intoUD2x18,
    Casting.intoSD59x18,
    Casting.intoUint128,
    Casting.intoUint256,
    Casting.intoUint40,
    Casting.unwrap
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
    Math.avg,
    Math.ceil,
    Math.div,
    Math.exp,
    Math.exp2,
    Math.floor,
    Math.frac,
    Math.gm,
    Math.inv,
    Math.ln,
    Math.log10,
    Math.log2,
    Math.mul,
    Math.pow,
    Math.powu,
    Math.sqrt
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
    Helpers.add,
    Helpers.and,
    Helpers.eq,
    Helpers.gt,
    Helpers.gte,
    Helpers.isZero,
    Helpers.lshift,
    Helpers.lt,
    Helpers.lte,
    Helpers.mod,
    Helpers.neq,
    Helpers.not,
    Helpers.or,
    Helpers.rshift,
    Helpers.sub,
    Helpers.uncheckedAdd,
    Helpers.uncheckedSub,
    Helpers.xor
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                    OPERATORS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes it possible to use these operators on the UD60x18 type.
using {
    Helpers.add as +,
    Helpers.and2 as &,
    Math.div as /,
    Helpers.eq as ==,
    Helpers.gt as >,
    Helpers.gte as >=,
    Helpers.lt as <,
    Helpers.lte as <=,
    Helpers.or as |,
    Helpers.mod as %,
    Math.mul as *,
    Helpers.neq as !=,
    Helpers.not as ~,
    Helpers.sub as -,
    Helpers.xor as ^
} for UD60x18 global;

File 34 of 47 : IAdminable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

/// @title IAdminable
/// @notice Contract module that provides a basic access control mechanism, with an admin that can be
/// granted exclusive access to specific functions. The inheriting contract must set the initial admin
/// in the constructor.
interface IAdminable {
    /*//////////////////////////////////////////////////////////////////////////
                                       EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Emitted when the admin is transferred.
    /// @param oldAdmin The address of the old admin.
    /// @param newAdmin The address of the new admin.
    event TransferAdmin(address indexed oldAdmin, address indexed newAdmin);

    /*//////////////////////////////////////////////////////////////////////////
                                 CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice The address of the admin account or contract.
    function admin() external view returns (address);

    /*//////////////////////////////////////////////////////////////////////////
                               NON-CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Transfers the contract admin to a new address.
    ///
    /// @dev Notes:
    /// - Does not revert if the admin is the same.
    /// - This function can potentially leave the contract without an admin, thereby removing any
    /// functionality that is only available to the admin.
    ///
    /// Requirements:
    /// - `msg.sender` must be the contract admin.
    ///
    /// @param newAdmin The address of the new admin.
    function transferAdmin(address newAdmin) external;
}

File 35 of 47 : ISablierV2Base.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { UD60x18 } from "@prb/math/src/UD60x18.sol";

import { IAdminable } from "./IAdminable.sol";
import { ISablierV2Comptroller } from "./ISablierV2Comptroller.sol";

/// @title ISablierV2Base
/// @notice Base logic for all Sablier V2 streaming contracts.
interface ISablierV2Base is IAdminable {
    /*//////////////////////////////////////////////////////////////////////////
                                       EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Emitted when the admin claims all protocol revenues accrued for a particular ERC-20 asset.
    /// @param admin The address of the contract admin.
    /// @param asset The contract address of the ERC-20 asset the protocol revenues have been claimed for.
    /// @param protocolRevenues The amount of protocol revenues claimed, denoted in units of the asset's decimals.
    event ClaimProtocolRevenues(address indexed admin, IERC20 indexed asset, uint128 protocolRevenues);

    /// @notice Emitted when the admin sets a new comptroller contract.
    /// @param admin The address of the contract admin.
    /// @param oldComptroller The address of the old comptroller contract.
    /// @param newComptroller The address of the new comptroller contract.
    event SetComptroller(
        address indexed admin, ISablierV2Comptroller oldComptroller, ISablierV2Comptroller newComptroller
    );

    /*//////////////////////////////////////////////////////////////////////////
                                 CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Retrieves the maximum fee that can be charged by the protocol or a broker, denoted as a fixed-point
    /// number where 1e18 is 100%.
    /// @dev This value is hard coded as a constant.
    function MAX_FEE() external view returns (UD60x18);

    /// @notice Retrieves the address of the comptroller contract, responsible for the Sablier V2 protocol
    /// configuration.
    function comptroller() external view returns (ISablierV2Comptroller);

    /// @notice Retrieves the protocol revenues accrued for the provided ERC-20 asset, in units of the asset's
    /// decimals.
    /// @param asset The contract address of the ERC-20 asset to query.
    function protocolRevenues(IERC20 asset) external view returns (uint128 revenues);

    /*//////////////////////////////////////////////////////////////////////////
                               NON-CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Claims all accumulated protocol revenues for the provided ERC-20 asset.
    ///
    /// @dev Emits a {ClaimProtocolRevenues} event.
    ///
    /// Requirements:
    /// - `msg.sender` must be the contract admin.
    ///
    /// @param asset The contract address of the ERC-20 asset for which to claim protocol revenues.
    function claimProtocolRevenues(IERC20 asset) external;

    /// @notice Assigns a new comptroller contract responsible for the protocol configuration.
    ///
    /// @dev Emits a {SetComptroller} event.
    ///
    /// Notes:
    /// - Does not revert if the comptroller is the same.
    ///
    /// Requirements:
    /// - `msg.sender` must be the contract admin.
    ///
    /// @param newComptroller The address of the new comptroller contract.
    function setComptroller(ISablierV2Comptroller newComptroller) external;
}

File 36 of 47 : ISablierV2Comptroller.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { UD60x18 } from "@prb/math/src/UD60x18.sol";

import { IAdminable } from "./IAdminable.sol";

/// @title ISablierV2Controller
/// @notice This contract is in charge of the Sablier V2 protocol configuration, handling such values as the
/// protocol fees.
interface ISablierV2Comptroller is IAdminable {
    /*//////////////////////////////////////////////////////////////////////////
                                       EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Emitted when the admin sets a new flash fee.
    /// @param admin The address of the contract admin.
    /// @param oldFlashFee The old flash fee, denoted as a fixed-point number.
    /// @param newFlashFee The new flash fee, denoted as a fixed-point number.
    event SetFlashFee(address indexed admin, UD60x18 oldFlashFee, UD60x18 newFlashFee);

    /// @notice Emitted when the admin sets a new protocol fee for the provided ERC-20 asset.
    /// @param admin The address of the contract admin.
    /// @param asset The contract address of the ERC-20 asset the new protocol fee has been set for.
    /// @param oldProtocolFee The old protocol fee, denoted as a fixed-point number.
    /// @param newProtocolFee The new protocol fee, denoted as a fixed-point number.
    event SetProtocolFee(address indexed admin, IERC20 indexed asset, UD60x18 oldProtocolFee, UD60x18 newProtocolFee);

    /// @notice Emitted when the admin enables or disables an ERC-20 asset for flash loaning.
    /// @param admin The address of the contract admin.
    /// @param asset The contract address of the ERC-20 asset to toggle.
    /// @param newFlag Whether the ERC-20 asset can be flash loaned.
    event ToggleFlashAsset(address indexed admin, IERC20 indexed asset, bool newFlag);

    /*//////////////////////////////////////////////////////////////////////////
                                 CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Retrieves the global flash fee, denoted as a fixed-point number where 1e18 is 100%.
    ///
    /// @dev Notes:
    /// - This fee represents a percentage, not an amount. Do not confuse it with {IERC3156FlashLender.flashFee},
    /// which calculates the fee amount for a specified flash loan amount.
    /// - Unlike the protocol fee, this is a global fee applied to all flash loans, not a per-asset fee.
    function flashFee() external view returns (UD60x18 fee);

    /// @notice Retrieves a flag indicating whether the provided ERC-20 asset can be flash loaned.
    /// @param token The contract address of the ERC-20 asset to check.
    function isFlashAsset(IERC20 token) external view returns (bool result);

    /// @notice Retrieves the protocol fee for all streams created with the provided ERC-20 asset.
    /// @param asset The contract address of the ERC-20 asset to query.
    /// @return fee The protocol fee denoted as a fixed-point number where 1e18 is 100%.
    function protocolFees(IERC20 asset) external view returns (UD60x18 fee);

    /*//////////////////////////////////////////////////////////////////////////
                               NON-CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Updates the flash fee charged on all flash loans made with any ERC-20 asset.
    ///
    /// @dev Emits a {SetFlashFee} event.
    ///
    /// Notes:
    /// - Does not revert if the fee is the same.
    ///
    /// Requirements:
    /// - `msg.sender` must be the contract admin.
    ///
    /// @param newFlashFee The new flash fee to set, denoted as a fixed-point number where 1e18 is 100%.
    function setFlashFee(UD60x18 newFlashFee) external;

    /// @notice Sets a new protocol fee that will be charged on all streams created with the provided ERC-20 asset.
    ///
    /// @dev Emits a {SetProtocolFee} event.
    ///
    /// Notes:
    /// - The fee is not denoted in units of the asset's decimals; it is a fixed-point number. Refer to the
    /// PRBMath documentation for more detail on the logic of UD60x18.
    /// - Does not revert if the fee is the same.
    ///
    /// Requirements:
    /// - `msg.sender` must be the contract admin.
    ///
    /// @param asset The contract address of the ERC-20 asset to update the fee for.
    /// @param newProtocolFee The new protocol fee, denoted as a fixed-point number where 1e18 is 100%.
    function setProtocolFee(IERC20 asset, UD60x18 newProtocolFee) external;

    /// @notice Toggles the flash loanability of an ERC-20 asset.
    ///
    /// @dev Emits a {ToggleFlashAsset} event.
    ///
    /// Requirements:
    /// - `msg.sender` must be the admin.
    ///
    /// @param asset The address of the ERC-20 asset to toggle.
    function toggleFlashAsset(IERC20 asset) external;
}

File 37 of 47 : ISablierV2Lockup.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol";

import { Lockup } from "../types/DataTypes.sol";
import { ISablierV2Base } from "./ISablierV2Base.sol";
import { ISablierV2NFTDescriptor } from "./ISablierV2NFTDescriptor.sol";

/// @title ISablierV2Lockup
/// @notice Common logic between all Sablier V2 Lockup streaming contracts.
interface ISablierV2Lockup is
    ISablierV2Base, // 1 inherited component
    IERC721Metadata // 2 inherited components
{
    /*//////////////////////////////////////////////////////////////////////////
                                       EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Emitted when a stream is canceled.
    /// @param streamId The id of the stream.
    /// @param sender The address of the stream's sender.
    /// @param recipient The address of the stream's recipient.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param senderAmount The amount of assets refunded to the stream's sender, denoted in units of the asset's
    /// decimals.
    /// @param recipientAmount The amount of assets left for the stream's recipient to withdraw, denoted in units of the
    /// asset's decimals.
    event CancelLockupStream(
        uint256 streamId,
        address indexed sender,
        address indexed recipient,
        IERC20 indexed asset,
        uint128 senderAmount,
        uint128 recipientAmount
    );

    /// @notice Emitted when a sender gives up the right to cancel a stream.
    /// @param streamId The id of the stream.
    event RenounceLockupStream(uint256 indexed streamId);

    /// @notice Emitted when the admin sets a new NFT descriptor contract.
    /// @param admin The address of the current contract admin.
    /// @param oldNFTDescriptor The address of the old NFT descriptor contract.
    /// @param newNFTDescriptor The address of the new NFT descriptor contract.
    event SetNFTDescriptor(
        address indexed admin, ISablierV2NFTDescriptor oldNFTDescriptor, ISablierV2NFTDescriptor newNFTDescriptor
    );

    /// @notice Emitted when assets are withdrawn from a stream.
    /// @param streamId The id of the stream.
    /// @param to The address that has received the withdrawn assets.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param amount The amount of assets withdrawn, denoted in units of the asset's decimals.
    event WithdrawFromLockupStream(uint256 indexed streamId, address indexed to, IERC20 indexed asset, uint128 amount);

    /*//////////////////////////////////////////////////////////////////////////
                                 CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Retrieves the address of the ERC-20 asset used for streaming.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getAsset(uint256 streamId) external view returns (IERC20 asset);

    /// @notice Retrieves the amount deposited in the stream, denoted in units of the asset's decimals.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getDepositedAmount(uint256 streamId) external view returns (uint128 depositedAmount);

    /// @notice Retrieves the stream's end time, which is a Unix timestamp.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getEndTime(uint256 streamId) external view returns (uint40 endTime);

    /// @notice Retrieves the stream's recipient.
    /// @dev Reverts if the NFT has been burned.
    /// @param streamId The stream id for the query.
    function getRecipient(uint256 streamId) external view returns (address recipient);

    /// @notice Retrieves the amount refunded to the sender after a cancellation, denoted in units of the asset's
    /// decimals. This amount is always zero unless the stream was canceled.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getRefundedAmount(uint256 streamId) external view returns (uint128 refundedAmount);

    /// @notice Retrieves the stream's sender.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getSender(uint256 streamId) external view returns (address sender);

    /// @notice Retrieves the stream's start time, which is a Unix timestamp.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getStartTime(uint256 streamId) external view returns (uint40 startTime);

    /// @notice Retrieves the amount withdrawn from the stream, denoted in units of the asset's decimals.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getWithdrawnAmount(uint256 streamId) external view returns (uint128 withdrawnAmount);

    /// @notice Retrieves a flag indicating whether the stream can be canceled. When the stream is cold, this
    /// flag is always `false`.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function isCancelable(uint256 streamId) external view returns (bool result);

    /// @notice Retrieves a flag indicating whether the stream is cold, i.e. settled, canceled, or depleted.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function isCold(uint256 streamId) external view returns (bool result);

    /// @notice Retrieves a flag indicating whether the stream is depleted.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function isDepleted(uint256 streamId) external view returns (bool result);

    /// @notice Retrieves a flag indicating whether the stream exists.
    /// @dev Does not revert if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function isStream(uint256 streamId) external view returns (bool result);

    /// @notice Retrieves a flag indicating whether the stream NFT can be transferred.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function isTransferable(uint256 streamId) external view returns (bool result);

    /// @notice Retrieves a flag indicating whether the stream is warm, i.e. either pending or streaming.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function isWarm(uint256 streamId) external view returns (bool result);

    /// @notice Counter for stream ids, used in the create functions.
    function nextStreamId() external view returns (uint256);

    /// @notice Calculates the amount that the sender would be refunded if the stream were canceled, denoted in units
    /// of the asset's decimals.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function refundableAmountOf(uint256 streamId) external view returns (uint128 refundableAmount);

    /// @notice Retrieves the stream's status.
    /// @param streamId The stream id for the query.
    function statusOf(uint256 streamId) external view returns (Lockup.Status status);

    /// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount);

    /// @notice Retrieves a flag indicating whether the stream was canceled.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function wasCanceled(uint256 streamId) external view returns (bool result);

    /// @notice Calculates the amount that the recipient can withdraw from the stream, denoted in units of the asset's
    /// decimals.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function withdrawableAmountOf(uint256 streamId) external view returns (uint128 withdrawableAmount);

    /*//////////////////////////////////////////////////////////////////////////
                               NON-CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Burns the NFT associated with the stream.
    ///
    /// @dev Emits a {Transfer} event.
    ///
    /// Requirements:
    /// - Must not be delegate called.
    /// - `streamId` must reference a depleted stream.
    /// - The NFT must exist.
    /// - `msg.sender` must be either the NFT owner or an approved third party.
    ///
    /// @param streamId The id of the stream NFT to burn.
    function burn(uint256 streamId) external;

    /// @notice Cancels the stream and refunds any remaining assets to the sender.
    ///
    /// @dev Emits a {Transfer}, {CancelLockupStream}, and {MetadataUpdate} event.
    ///
    /// Notes:
    /// - If there any assets left for the recipient to withdraw, the stream is marked as canceled. Otherwise, the
    /// stream is marked as depleted.
    /// - This function attempts to invoke a hook on the recipient, if the resolved address is a contract.
    ///
    /// Requirements:
    /// - Must not be delegate called.
    /// - The stream must be warm and cancelable.
    /// - `msg.sender` must be the stream's sender.
    ///
    /// @param streamId The id of the stream to cancel.
    function cancel(uint256 streamId) external;

    /// @notice Cancels multiple streams and refunds any remaining assets to the sender.
    ///
    /// @dev Emits multiple {Transfer}, {CancelLockupStream}, and {MetadataUpdate} events.
    ///
    /// Notes:
    /// - Refer to the notes in {cancel}.
    ///
    /// Requirements:
    /// - All requirements from {cancel} must be met for each stream.
    ///
    /// @param streamIds The ids of the streams to cancel.
    function cancelMultiple(uint256[] calldata streamIds) external;

    /// @notice Removes the right of the stream's sender to cancel the stream.
    ///
    /// @dev Emits a {RenounceLockupStream} and {MetadataUpdate} event.
    ///
    /// Notes:
    /// - This is an irreversible operation.
    /// - This function attempts to invoke a hook on the stream's recipient, provided that the recipient is a contract.
    ///
    /// Requirements:
    /// - Must not be delegate called.
    /// - `streamId` must reference a warm stream.
    /// - `msg.sender` must be the stream's sender.
    /// - The stream must be cancelable.
    ///
    /// @param streamId The id of the stream to renounce.
    function renounce(uint256 streamId) external;

    /// @notice Sets a new NFT descriptor contract, which produces the URI describing the Sablier stream NFTs.
    ///
    /// @dev Emits a {SetNFTDescriptor} and {BatchMetadataUpdate} event.
    ///
    /// Notes:
    /// - Does not revert if the NFT descriptor is the same.
    ///
    /// Requirements:
    /// - `msg.sender` must be the contract admin.
    ///
    /// @param newNFTDescriptor The address of the new NFT descriptor contract.
    function setNFTDescriptor(ISablierV2NFTDescriptor newNFTDescriptor) external;

    /// @notice Withdraws the provided amount of assets from the stream to the `to` address.
    ///
    /// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event.
    ///
    /// Notes:
    /// - This function attempts to invoke a hook on the stream's recipient, provided that the recipient is a contract
    /// and `msg.sender` is either the sender or an approved operator.
    ///
    /// Requirements:
    /// - Must not be delegate called.
    /// - `streamId` must not reference a null or depleted stream.
    /// - `msg.sender` must be the stream's sender, the stream's recipient or an approved third party.
    /// - `to` must be the recipient if `msg.sender` is the stream's sender.
    /// - `to` must not be the zero address.
    /// - `amount` must be greater than zero and must not exceed the withdrawable amount.
    ///
    /// @param streamId The id of the stream to withdraw from.
    /// @param to The address receiving the withdrawn assets.
    /// @param amount The amount to withdraw, denoted in units of the asset's decimals.
    function withdraw(uint256 streamId, address to, uint128 amount) external;

    /// @notice Withdraws the maximum withdrawable amount from the stream to the provided address `to`.
    ///
    /// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event.
    ///
    /// Notes:
    /// - Refer to the notes in {withdraw}.
    ///
    /// Requirements:
    /// - Refer to the requirements in {withdraw}.
    ///
    /// @param streamId The id of the stream to withdraw from.
    /// @param to The address receiving the withdrawn assets.
    function withdrawMax(uint256 streamId, address to) external;

    /// @notice Withdraws the maximum withdrawable amount from the stream to the current recipient, and transfers the
    /// NFT to `newRecipient`.
    ///
    /// @dev Emits a {WithdrawFromLockupStream} and a {Transfer} event.
    ///
    /// Notes:
    /// - If the withdrawable amount is zero, the withdrawal is skipped.
    /// - Refer to the notes in {withdraw}.
    ///
    /// Requirements:
    /// - `msg.sender` must be the stream's recipient.
    /// - Refer to the requirements in {withdraw}.
    /// - Refer to the requirements in {IERC721.transferFrom}.
    ///
    /// @param streamId The id of the stream NFT to transfer.
    /// @param newRecipient The address of the new owner of the stream NFT.
    function withdrawMaxAndTransfer(uint256 streamId, address newRecipient) external;

    /// @notice Withdraws assets from streams to the provided address `to`.
    ///
    /// @dev Emits multiple {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} events.
    ///
    /// Notes:
    /// - This function attempts to call a hook on the recipient of each stream, unless `msg.sender` is the recipient.
    ///
    /// Requirements:
    /// - All requirements from {withdraw} must be met for each stream.
    /// - There must be an equal number of `streamIds` and `amounts`.
    ///
    /// @param streamIds The ids of the streams to withdraw from.
    /// @param to The address receiving the withdrawn assets.
    /// @param amounts The amounts to withdraw, denoted in units of the asset's decimals.
    function withdrawMultiple(uint256[] calldata streamIds, address to, uint128[] calldata amounts) external;
}

File 38 of 47 : ISablierV2LockupLinear.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { Lockup, LockupLinear } from "../types/DataTypes.sol";
import { ISablierV2Lockup } from "./ISablierV2Lockup.sol";

/// @title ISablierV2LockupLinear
/// @notice Creates and manages Lockup streams with linear streaming functions.
interface ISablierV2LockupLinear is ISablierV2Lockup {
    /*//////////////////////////////////////////////////////////////////////////
                                       EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Emitted when a stream is created.
    /// @param streamId The id of the newly created stream.
    /// @param funder The address which funded the stream.
    /// @param sender The address streaming the assets, with the ability to cancel the stream.
    /// @param recipient The address receiving the assets.
    /// @param amounts Struct containing (i) the deposit amount, (ii) the protocol fee amount, and (iii) the
    /// broker fee amount, all denoted in units of the asset's decimals.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param cancelable Boolean indicating whether the stream will be cancelable or not.
    /// @param transferable Boolean indicating whether the stream NFT is transferable or not.
    /// @param range Struct containing (i) the stream's start time, (ii) cliff time, and (iii) end time, all as Unix
    /// timestamps.
    /// @param broker The address of the broker who has helped create the stream, e.g. a front-end website.
    event CreateLockupLinearStream(
        uint256 streamId,
        address funder,
        address indexed sender,
        address indexed recipient,
        Lockup.CreateAmounts amounts,
        IERC20 indexed asset,
        bool cancelable,
        bool transferable,
        LockupLinear.Range range,
        address broker
    );

    /*//////////////////////////////////////////////////////////////////////////
                                 CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Retrieves the stream's cliff time, which is a Unix timestamp.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getCliffTime(uint256 streamId) external view returns (uint40 cliffTime);

    /// @notice Retrieves the stream's range, which is a struct containing (i) the stream's start time, (ii) cliff
    /// time, and (iii) end time, all as Unix timestamps.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getRange(uint256 streamId) external view returns (LockupLinear.Range memory range);

    /// @notice Retrieves the stream entity.
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function getStream(uint256 streamId) external view returns (LockupLinear.Stream memory stream);

    /// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals.
    ///
    /// When the stream is warm, the streaming function is:
    ///
    /// $$
    /// f(x) = x * d + c
    /// $$
    ///
    /// Where:
    ///
    /// - $x$ is the elapsed time divided by the stream's total duration.
    /// - $d$ is the deposited amount.
    /// - $c$ is the cliff amount.
    ///
    /// Upon cancellation of the stream, the amount streamed is calculated as the difference between the deposited
    /// amount and the refunded amount. Ultimately, when the stream becomes depleted, the streamed amount is equivalent
    /// to the total amount withdrawn.
    ///
    /// @dev Reverts if `streamId` references a null stream.
    /// @param streamId The stream id for the query.
    function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount);

    /*//////////////////////////////////////////////////////////////////////////
                               NON-CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Creates a stream by setting the start time to `block.timestamp`, and the end time to
    /// the sum of `block.timestamp` and `params.durations.total`. The stream is funded by `msg.sender` and is wrapped
    /// in an ERC-721 NFT.
    ///
    /// @dev Emits a {Transfer} and {CreateLockupLinearStream} event.
    ///
    /// Requirements:
    /// - All requirements in {createWithRange} must be met for the calculated parameters.
    ///
    /// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}.
    /// @return streamId The id of the newly created stream.
    function createWithDurations(LockupLinear.CreateWithDurations calldata params)
        external
        returns (uint256 streamId);

    /// @notice Creates a stream with the provided start time and end time as the range. The stream is
    /// funded by `msg.sender` and is wrapped in an ERC-721 NFT.
    ///
    /// @dev Emits a {Transfer} and {CreateLockupLinearStream} event.
    ///
    /// Notes:
    /// - As long as the times are ordered, it is not an error for the start or the cliff time to be in the past.
    ///
    /// Requirements:
    /// - Must not be delegate called.
    /// - `params.totalAmount` must be greater than zero.
    /// - If set, `params.broker.fee` must not be greater than `MAX_FEE`.
    /// - `params.range.start` must be less than or equal to `params.range.cliff`.
    /// - `params.range.cliff` must be less than `params.range.end`.
    /// - `params.range.end` must be in the future.
    /// - `params.recipient` must not be the zero address.
    /// - `msg.sender` must have allowed this contract to spend at least `params.totalAmount` assets.
    ///
    /// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}.
    /// @return streamId The id of the newly created stream.
    function createWithRange(LockupLinear.CreateWithRange calldata params) external returns (uint256 streamId);
}

File 39 of 47 : ISablierV2NFTDescriptor.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol";

/// @title ISablierV2NFTDescriptor
/// @notice This contract generates the URI describing the Sablier V2 stream NFTs.
/// @dev Inspired by Uniswap V3 Positions NFTs.
interface ISablierV2NFTDescriptor {
    /// @notice Produces the URI describing a particular stream NFT.
    /// @dev This is a data URI with the JSON contents directly inlined.
    /// @param sablier The address of the Sablier contract the stream was created in.
    /// @param streamId The id of the stream for which to produce a description.
    /// @return uri The URI of the ERC721-compliant metadata.
    function tokenURI(IERC721Metadata sablier, uint256 streamId) external view returns (string memory uri);
}

File 40 of 47 : DataTypes.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { UD2x18 } from "@prb/math/src/UD2x18.sol";
import { UD60x18 } from "@prb/math/src/UD60x18.sol";

// DataTypes.sol
//
// This file defines all structs used in V2 Core, most of which are organized under three namespaces:
//
// - Lockup
// - LockupDynamic
// - LockupLinear
//
// You will notice that some structs contain "slot" annotations - they are used to indicate the
// storage layout of the struct. It is more gas efficient to group small data types together so
// that they fit in a single 32-byte slot.

/// @notice Struct encapsulating the broker parameters passed to the create functions. Both can be set to zero.
/// @param account The address receiving the broker's fee.
/// @param fee The broker's percentage fee from the total amount, denoted as a fixed-point number where 1e18 is 100%.
struct Broker {
    address account;
    UD60x18 fee;
}

/// @notice Namespace for the structs used in both {SablierV2LockupLinear} and {SablierV2LockupDynamic}.
library Lockup {
    /// @notice Struct encapsulating the deposit, withdrawn, and refunded amounts, all denoted in units
    /// of the asset's decimals.
    /// @dev Because the deposited and the withdrawn amount are often read together, declaring them in
    /// the same slot saves gas.
    /// @param deposited The initial amount deposited in the stream, net of fees.
    /// @param withdrawn The cumulative amount withdrawn from the stream.
    /// @param refunded The amount refunded to the sender. Unless the stream was canceled, this is always zero.
    struct Amounts {
        // slot 0
        uint128 deposited;
        uint128 withdrawn;
        // slot 1
        uint128 refunded;
    }

    /// @notice Struct encapsulating the deposit amount, the protocol fee amount, and the broker fee amount,
    /// all denoted in units of the asset's decimals.
    /// @param deposit The amount to deposit in the stream.
    /// @param protocolFee The protocol fee amount.
    /// @param brokerFee The broker fee amount.
    struct CreateAmounts {
        uint128 deposit;
        uint128 protocolFee;
        uint128 brokerFee;
    }

    /// @notice Enum representing the different statuses of a stream.
    /// @custom:value PENDING Stream created but not started; assets are in a pending state.
    /// @custom:value STREAMING Active stream where assets are currently being streamed.
    /// @custom:value SETTLED All assets have been streamed; recipient is due to withdraw them.
    /// @custom:value CANCELED Canceled stream; remaining assets await recipient's withdrawal.
    /// @custom:value DEPLETED Depleted stream; all assets have been withdrawn and/or refunded.
    enum Status {
        PENDING, // value 0
        STREAMING, // value 1
        SETTLED, // value 2
        CANCELED, // value 3
        DEPLETED // value 4
    }
}

/// @notice Namespace for the structs used in {SablierV2LockupDynamic}.
library LockupDynamic {
    /// @notice Struct encapsulating the parameters for the {SablierV2LockupDynamic.createWithDeltas} function.
    /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
    /// same as `msg.sender`.
    /// @param recipient The address receiving the assets.
    /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
    /// fees, all denoted in units of the asset's decimals.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param cancelable Indicates if the stream is cancelable.
    /// @param transferable Indicates if the stream NFT is transferable.
    /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
    /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
    /// @param segments Segments with deltas used to compose the custom streaming curve. Milestones are calculated by
    /// starting from `block.timestamp` and adding each delta to the previous milestone.
    struct CreateWithDeltas {
        address sender;
        bool cancelable;
        bool transferable;
        address recipient;
        uint128 totalAmount;
        IERC20 asset;
        Broker broker;
        SegmentWithDelta[] segments;
    }

    /// @notice Struct encapsulating the parameters for the {SablierV2LockupDynamic.createWithMilestones}
    /// function.
    /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
    /// same as `msg.sender`.
    /// @param startTime The Unix timestamp indicating the stream's start.
    /// @param cancelable Indicates if the stream is cancelable.
    /// @param transferable Indicates if the stream NFT is transferable.
    /// @param recipient The address receiving the assets.
    /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
    /// fees, all denoted in units of the asset's decimals.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
    /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
    /// @param segments Segments used to compose the custom streaming curve.
    struct CreateWithMilestones {
        address sender;
        uint40 startTime;
        bool cancelable;
        bool transferable;
        address recipient;
        uint128 totalAmount;
        IERC20 asset;
        Broker broker;
        Segment[] segments;
    }

    /// @notice Struct encapsulating the time range.
    /// @param start The Unix timestamp indicating the stream's start.
    /// @param end The Unix timestamp indicating the stream's end.
    struct Range {
        uint40 start;
        uint40 end;
    }

    /// @notice Segment struct used in the Lockup Dynamic stream.
    /// @param amount The amount of assets to be streamed in this segment, denoted in units of the asset's decimals.
    /// @param exponent The exponent of this segment, denoted as a fixed-point number.
    /// @param milestone The Unix timestamp indicating this segment's end.
    struct Segment {
        // slot 0
        uint128 amount;
        UD2x18 exponent;
        uint40 milestone;
    }

    /// @notice Segment struct used at runtime in {SablierV2LockupDynamic.createWithDeltas}.
    /// @param amount The amount of assets to be streamed in this segment, denoted in units of the asset's decimals.
    /// @param exponent The exponent of this segment, denoted as a fixed-point number.
    /// @param delta The time difference in seconds between this segment and the previous one.
    struct SegmentWithDelta {
        uint128 amount;
        UD2x18 exponent;
        uint40 delta;
    }

    /// @notice Lockup Dynamic stream.
    /// @dev The fields are arranged like this to save gas via tight variable packing.
    /// @param sender The address streaming the assets, with the ability to cancel the stream.
    /// @param startTime The Unix timestamp indicating the stream's start.
    /// @param endTime The Unix timestamp indicating the stream's end.
    /// @param isCancelable Boolean indicating if the stream is cancelable.
    /// @param wasCanceled Boolean indicating if the stream was canceled.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param isDepleted Boolean indicating if the stream is depleted.
    /// @param isStream Boolean indicating if the struct entity exists.
    /// @param isTransferable Boolean indicating if the stream NFT is transferable.
    /// @param amounts Struct containing the deposit, withdrawn, and refunded amounts, all denoted in units of the
    /// asset's decimals.
    /// @param segments Segments used to compose the custom streaming curve.
    struct Stream {
        // slot 0
        address sender;
        uint40 startTime;
        uint40 endTime;
        bool isCancelable;
        bool wasCanceled;
        // slot 1
        IERC20 asset;
        bool isDepleted;
        bool isStream;
        bool isTransferable;
        // slot 2 and 3
        Lockup.Amounts amounts;
        // slots [4..n]
        Segment[] segments;
    }
}

/// @notice Namespace for the structs used in {SablierV2LockupLinear}.
library LockupLinear {
    /// @notice Struct encapsulating the parameters for the {SablierV2LockupLinear.createWithDurations} function.
    /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
    /// same as `msg.sender`.
    /// @param recipient The address receiving the assets.
    /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
    /// fees, all denoted in units of the asset's decimals.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param cancelable Indicates if the stream is cancelable.
    /// @param transferable Indicates if the stream NFT is transferable.
    /// @param durations Struct containing (i) cliff period duration and (ii) total stream duration, both in seconds.
    /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
    /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
    struct CreateWithDurations {
        address sender;
        address recipient;
        uint128 totalAmount;
        IERC20 asset;
        bool cancelable;
        bool transferable;
        Durations durations;
        Broker broker;
    }

    /// @notice Struct encapsulating the parameters for the {SablierV2LockupLinear.createWithRange} function.
    /// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
    /// same as `msg.sender`.
    /// @param recipient The address receiving the assets.
    /// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
    /// fees, all denoted in units of the asset's decimals.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param cancelable Indicates if the stream is cancelable.
    /// @param transferable Indicates if the stream NFT is transferable.
    /// @param range Struct containing (i) the stream's start time, (ii) cliff time, and (iii) end time, all as Unix
    /// timestamps.
    /// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
    /// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
    struct CreateWithRange {
        address sender;
        address recipient;
        uint128 totalAmount;
        IERC20 asset;
        bool cancelable;
        bool transferable;
        Range range;
        Broker broker;
    }

    /// @notice Struct encapsulating the cliff duration and the total duration.
    /// @param cliff The cliff duration in seconds.
    /// @param total The total duration in seconds.
    struct Durations {
        uint40 cliff;
        uint40 total;
    }

    /// @notice Struct encapsulating the time range.
    /// @param start The Unix timestamp for the stream's start.
    /// @param cliff The Unix timestamp for the cliff period's end.
    /// @param end The Unix timestamp for the stream's end.
    struct Range {
        uint40 start;
        uint40 cliff;
        uint40 end;
    }

    /// @notice Lockup Linear stream.
    /// @dev The fields are arranged like this to save gas via tight variable packing.
    /// @param sender The address streaming the assets, with the ability to cancel the stream.
    /// @param startTime The Unix timestamp indicating the stream's start.
    /// @param cliffTime The Unix timestamp indicating the cliff period's end.
    /// @param isCancelable Boolean indicating if the stream is cancelable.
    /// @param wasCanceled Boolean indicating if the stream was canceled.
    /// @param asset The contract address of the ERC-20 asset used for streaming.
    /// @param endTime The Unix timestamp indicating the stream's end.
    /// @param isDepleted Boolean indicating if the stream is depleted.
    /// @param isStream Boolean indicating if the struct entity exists.
    /// @param isTransferable Boolean indicating if the stream NFT is transferable.
    /// @param amounts Struct containing the deposit, withdrawn, and refunded amounts, all denoted in units of the
    /// asset's decimals.
    struct Stream {
        // slot 0
        address sender;
        uint40 startTime;
        uint40 cliffTime;
        bool isCancelable;
        bool wasCanceled;
        // slot 1
        IERC20 asset;
        uint40 endTime;
        bool isDepleted;
        bool isStream;
        bool isTransferable;
        // slot 2 and 3
        Lockup.Amounts amounts;
    }
}

File 41 of 47 : ISablierV2MerkleStreamer.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IAdminable } from "@sablier/v2-core/src/interfaces/IAdminable.sol";
import { ISablierV2Lockup } from "@sablier/v2-core/src/interfaces/ISablierV2Lockup.sol";

/// @title ISablierV2MerkleStreamer
/// @notice A contract that lets user claim Sablier streams using Merkle proofs. An interesting use case for
/// MerkleStream is airstreams, which is a portmanteau of "airdrop" and "stream". This is an airdrop model where the
/// tokens are distributed over time, as opposed to all at once.
/// @dev This is the base interface for MerkleStreamer contracts. See the Sablier docs for more guidance on how
/// streaming works: https://docs.sablier.com/.
interface ISablierV2MerkleStreamer is IAdminable {
    /*//////////////////////////////////////////////////////////////////////////
                                       EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Emitted when a recipient claims a stream.
    event Claim(uint256 index, address indexed recipient, uint128 amount, uint256 indexed streamId);

    /// @notice Emitted when the admin claws back the unclaimed tokens.
    event Clawback(address indexed admin, address indexed to, uint128 amount);

    /*//////////////////////////////////////////////////////////////////////////
                                 CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice The streamed ERC-20 asset.
    /// @dev This is an immutable state variable.
    function ASSET() external returns (IERC20);

    /// @notice A flag indicating whether the streams can be canceled.
    /// @dev This is an immutable state variable.
    function CANCELABLE() external returns (bool);

    /// @notice The cut-off point for the Merkle streamer, as a Unix timestamp. A value of zero means there
    /// is no expiration.
    /// @dev This is an immutable state variable.
    function EXPIRATION() external returns (uint40);

    /// @notice Returns a flag indicating whether a claim has been made for a given index.
    /// @dev Uses a bitmap to save gas.
    /// @param index The index of the recipient to check.
    function hasClaimed(uint256 index) external returns (bool);

    /// @notice Returns a flag indicating whether the Merkle streamer has expired.
    function hasExpired() external view returns (bool);

    /// @notice The address of the {SablierV2Lockup} contract.
    function LOCKUP() external returns (ISablierV2Lockup);

    /// @notice The root of the Merkle tree used to validate the claims.
    /// @dev This is an immutable state variable.
    function MERKLE_ROOT() external returns (bytes32);

    /// @notice A flag indicating whether the stream NFTs are transferable.
    /// @dev This is an immutable state variable.
    function TRANSFERABLE() external returns (bool);

    /*//////////////////////////////////////////////////////////////////////////
                               NON-CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Claws back the unclaimed tokens from the Merkle streamer.
    ///
    /// @dev Emits a {Clawback} event.
    ///
    /// Notes:
    /// - If the protocol is not zero, the expiration check is not made.
    ///
    /// Requirements:
    /// - The caller must be the admin.
    /// - The campaign must either be expired or not have an expiration.
    ///
    /// @param to The address to receive the tokens.
    /// @param amount The amount of tokens to claw back.
    function clawback(address to, uint128 amount) external;
}

File 42 of 47 : ISablierV2MerkleStreamerFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { ISablierV2LockupLinear } from "@sablier/v2-core/src/interfaces/ISablierV2LockupLinear.sol";
import { LockupLinear } from "@sablier/v2-core/src/types/DataTypes.sol";

import { ISablierV2MerkleStreamerLL } from "./ISablierV2MerkleStreamerLL.sol";

/// @title ISablierV2MerkleStreamerFactory
/// @notice Deploys new Lockup Linear Merkle streamers via CREATE2.
interface ISablierV2MerkleStreamerFactory {
    /*//////////////////////////////////////////////////////////////////////////
                                       EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Emitted when a Sablier V2 Lockup Linear Merkle streamer is created.
    event CreateMerkleStreamerLL(
        ISablierV2MerkleStreamerLL merkleStreamer,
        address indexed admin,
        ISablierV2LockupLinear indexed lockupLinear,
        IERC20 indexed asset,
        bytes32 merkleRoot,
        uint40 expiration,
        LockupLinear.Durations streamDurations,
        bool cancelable,
        bool transferable,
        string ipfsCID,
        uint256 aggregateAmount,
        uint256 recipientsCount
    );

    /*//////////////////////////////////////////////////////////////////////////
                               NON-CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Creates a new Merkle streamer that uses Lockup Linear.
    /// @dev Emits a {CreateMerkleStreamerLL} event.
    /// @param initialAdmin The initial admin of the Merkle streamer contract.
    /// @param lockupLinear The address of the {SablierV2LockupLinear} contract.
    /// @param asset The address of the streamed ERC-20 asset.
    /// @param merkleRoot The Merkle root of the claim data.
    /// @param expiration The expiration of the streaming campaign, as a Unix timestamp.
    /// @param streamDurations The durations for each stream due to the recipient.
    /// @param cancelable Indicates if each stream will be cancelable.
    /// @param transferable Indicates if each stream NFT will be transferable.
    /// @param ipfsCID Metadata parameter emitted for indexing purposes.
    /// @param aggregateAmount Total amount of ERC-20 assets to be streamed to all recipients.
    /// @param recipientsCount Total number of recipients eligible to claim.
    /// @return merkleStreamerLL The address of the newly created Merkle streamer contract.
    function createMerkleStreamerLL(
        address initialAdmin,
        ISablierV2LockupLinear lockupLinear,
        IERC20 asset,
        bytes32 merkleRoot,
        uint40 expiration,
        LockupLinear.Durations memory streamDurations,
        bool cancelable,
        bool transferable,
        string memory ipfsCID,
        uint256 aggregateAmount,
        uint256 recipientsCount
    )
        external
        returns (ISablierV2MerkleStreamerLL merkleStreamerLL);
}

File 43 of 47 : ISablierV2MerkleStreamerLL.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;

import { ISablierV2LockupLinear } from "@sablier/v2-core/src/interfaces/ISablierV2LockupLinear.sol";

import { ISablierV2MerkleStreamer } from "./ISablierV2MerkleStreamer.sol";

/// @title ISablierV2MerkleStreamerLL
/// @notice Merkle streamer that creates Lockup Linear streams.
interface ISablierV2MerkleStreamerLL is ISablierV2MerkleStreamer {
    /*//////////////////////////////////////////////////////////////////////////
                                 CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice The address of the {SablierV2LockupLinear} contract.
    function LOCKUP_LINEAR() external view returns (ISablierV2LockupLinear);

    /// @notice The total streaming duration of each stream.
    function streamDurations() external view returns (uint40 cliff, uint40 duration);

    /*//////////////////////////////////////////////////////////////////////////
                               NON-CONSTANT FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Makes the claim by creating a Lockup Linear stream to the recipient.
    ///
    /// @dev Emits a {Claim} event.
    ///
    /// Requirements:
    /// - The campaign must not have expired.
    /// - The stream must not have been claimed already.
    /// - The protocol fee must be zero.
    /// - The Merkle proof must be valid.
    ///
    /// @param index The index of the recipient in the Merkle tree.
    /// @param recipient The address of the stream holder.
    /// @param amount The amount of tokens to be streamed.
    /// @param merkleProof The Merkle proof of inclusion in the stream.
    /// @return streamId The id of the newly created stream.
    function claim(
        uint256 index,
        address recipient,
        uint128 amount,
        bytes32[] calldata merkleProof
    )
        external
        returns (uint256 streamId);
}

File 44 of 47 : ExecutorManager.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

contract ExecutorManager {
    error NotExecutor(address attempted);
    error CannotRemoveSelf();

    mapping(address => bool) public executors;

    constructor() {
        _addExecutor(msg.sender);
    }

    modifier onlyExecutor() {
        if (isExecutor(msg.sender) != true) revert NotExecutor(msg.sender);
        _;
    }

    function isExecutor(address _executor) public view returns(bool) {
        return(executors[_executor] == true);
    }

    function _addExecutor(address _toAdd) internal {
        executors[_toAdd] = true;
    }

    function addExecutor(address _toAdd) onlyExecutor external virtual {
        _addExecutor(_toAdd);
    }

    function _removeExecutor(address _toRemove) internal {
        if (_toRemove == msg.sender) revert CannotRemoveSelf();
        executors[_toRemove] = false;
    }

    function removeExecutor(address _toRemove) onlyExecutor external virtual {
        _removeExecutor(_toRemove);
    }
}

File 45 of 47 : MathHelpers.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

contract MathHelpers {
    uint256 public constant divisionDenominator = 10**18;

    function _multiplyWithNumerator(uint256 _amount, uint256 _numerator) internal pure returns(uint256) {
        return((_amount * _numerator) / divisionDenominator);
    }
}

File 46 of 47 : IPondWater.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { IERC20 } from '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import { ISablierV2MerkleStreamerFactory } from "@sablier/v2-periphery/src/interfaces/ISablierV2MerkleStreamerFactory.sol";
import { ISablierV2MerkleStreamerLL } from "@sablier/v2-periphery/src/interfaces/ISablierV2MerkleStreamerLL.sol";
import { ISablierV2LockupLinear } from "@sablier/v2-core/src/interfaces/ISablierV2LockupLinear.sol";
import { IAdminable as ISabilerAdminable } from "@sablier/v2-core/src/interfaces/IAdminable.sol";
import { IMiningPerCycle } from '../SpawningV2/IMiningPerCycle.sol';

interface IPondWaterBase {
    /// @notice Emitted when a lock is created
    /// @param locker The address that created the lock
    /// @param id The lock id
    /// @param locked The amount locked
    /// @param startsAt The start interval of the lock
    /// @param lockedFor The duration of the lock, in intervals
    event Lock(address indexed locker, uint256 indexed id, uint256 locked, uint40 startsAt, uint40 lockedFor);

    /// @notice Emitted when a lock is unlocked
    /// @param locker The address that unlocked/owns the lock
    /// @param id The lock id
    event Unlock(address indexed locker, uint256 indexed id);

    /// @notice Emitted when a new stream is created
    /// @param forInterval The interval the stream was created for / starts at
    /// @param streamer The streamer contract
    event NewStream(uint40 indexed forInterval, ISablierV2MerkleStreamerLL indexed streamer);

    /// @notice Emitted when leapfrog is called and new ounces are calculated
    /// @param observedInterval The interval the leapfrog was called at
    /// @param realized The realized amount at observedInterval
    /// @param credits The total credits at observedInterval
    /// @param debits The total debits at observedInterval
    event OuncesObserved(uint40 indexed observedInterval, uint256 realized, uint256 credits, uint256 debits);

    /// @notice Thrown when the locking period is not open
    error NotOpen();

    /// @notice Thrown when the lock period is invalid
    error InvalidLockPeriod();

    /// @notice Thrown when the lock amount is invalid
    error InvalidLockAmount();

    /// @notice Thrown when the lock does not exist
    /// @param id The lock id that does not exist
    error LockDoesNotExist(uint256 id);

    /// @notice Thrown when the lock cannot be unlocked yet
    error CannotUnlockYet();

    /// @notice Thrown when the lock is not owned by the caller
    error NotOwnerOfLock();

    /// @notice Thrown when the contract cannot be closed
    error CannotClose();

    /// @notice Thrown when the user cannot lock more
    /// @param canLock The maximum lock amount
    /// @param hasLocked The amount already locked
    error OverUserMaximumLock(uint256 canLock, uint256 hasLocked);

    /// @notice Thrown when the contract cannot be opened
    error CannotOpen();

    /// @notice Data for a specific lock
    /// @param owner The owner of the lock
    /// @param amount The amount locked
    /// @param startInterval The start interval of the lock
    /// @param lastsFor The duration of the lock, in intervals
    struct LockData {
        address owner;
        uint256 amount;
        uint40 startInterval;
        uint40 lastsFor;
    }

    /// @notice The mining checker contract, this is a constant
    /// @return checker The mining checker contract
    function miningChecker() external view returns(IMiningPerCycle checker);

    /// @notice How many deltas to lookback for the mining checker
    /// @return checkCycleDeltas The number of deltas to lookback for the mining checker
    function checkCycleDeltas() external view returns(uint256 checkCycleDeltas);

    /// @notice Read the cycle delta numerator
    /// @return cycleDeltaNumerator The cycle delta numerator
    function cycleDeltaNumerator() external view returns(uint256 cycleDeltaNumerator);

    /// @notice Get the amount a user locked in a given cycle
    /// @param locker The locker to get the amount for
    /// @param cycle The cycle to get the amount for
    /// @return lockedPerCycle The amount locked
    function getUserLockedPerCycle(address locker, uint256 cycle) external view returns(uint256 lockedPerCycle);

    /// @notice Whether the contract is open
    /// @return isOpen Whether the contract is open
    function isOpen() external view returns(bool);

    /// @notice Get the faucet interval period in seconds
    function intervalPeriod() external view returns(uint40);

    /// @notice Get the interval offset
    function intervalOffset() external view returns(uint40);

    /// @notice Get the token that is locked in this contract
    /// @return coinToLock The token that is locked in this contract
    function coinToLock() external view returns(IERC20);

    /// @notice Get the lock data for a given lock id
    /// @param id The lock id
    /// @return lockData The lock data
    function getLock(uint256 id) view external returns (LockData memory lockData);

    /// @notice Get the current index
    /// @return atInterval The current index
    function atInterval() external view returns(uint40);

    /// @notice Get the realized amount at the current interval
    /// @return realized The realized amount at the current interval
    function realizedOuncesAtInterval() external view returns(uint256 realized);

    /// @notice Get the current lock index
    /// @return lockIDIndex The current lock index
    function lockIDIndex() external view returns(uint256);

    /// @notice Get the sablier factory
    /// @return sabilerFactory The sablier factory
    function sabilerFactory() external view returns(ISablierV2MerkleStreamerFactory sabilerFactory);

    /// @notice Get the sablier lockup linear contract
    /// @return sabilerLockupLinear The sablier lockup linear contract
    function sabilerLockupLinear() external view returns(ISablierV2LockupLinear sabilerLockupLinear);

    /// @notice Compute the interval from the chain timestamp
    /// @return getIntervalFromChain The interval computed from the chain timestamp
    function getIntervalFromChain() external view returns(uint40);

    /// @notice Get the start time for a given interval
    /// @param interval The interval to compute
    /// @return startTime The start time for the given interval
    function getIntervalStartTime(uint40 interval) external view returns(uint40 startTime);

    /// @notice Get the lock amounts for a given user
    /// @param locker The locker to get the lock amounts for
    /// @return canLock The weighted amount the locker can lock
    /// @return hasLocked The weighted amount the locker has locked
    function readUserLockAmounts(address locker) external view returns(uint256 canLock, uint256 hasLocked);

    /// @notice Compute the lock factor/interval count for a given lock period index
    /// @param lockPeriodIndex The lock period index
    /// @return intervalCount The intervals for the lock period index
    /// @return factor The factor for the lock period index
    function computeLockFactor(uint8 lockPeriodIndex) external pure returns (uint40 intervalCount, uint256 factor);

    /// @notice Compute the lock factor/interval count/computed value for a given lock period index and amount
    /// @param amount The amount to compute the lock factor for
    /// @param lockPeriodIndex The lock period index
    /// @return intervalCount The interval count to lock for
    /// @return factor The factor for the interval count
    /// @return value The value for the lock period index with the factor computed
    function computeLockFactorWithAmount(uint256 amount, uint8 lockPeriodIndex) external pure returns (uint40 intervalCount, uint256 factor, uint256 value);

    /// @notice Lock an amount for a given lock period index
    /// @param amount The amount to lock
    /// @param lockPeriodIndex The lock period index
    /// @return lockId The lock id
    function lock(uint256 amount, uint8 lockPeriodIndex) external returns(uint256 lockId);

    /// @notice Unlock a given lock id
    /// @param id The lock id to unlock
    function unlock(uint256 id) external;

    function leapfrog() external;

    /// @notice Get the status of the contract
    /// @return forInterval The interval for the current status
    /// @return realized The realized amount at forInterval
    /// @return unrealized The unrealized amount (includes the realized amount)
    function ounceStatus() external view returns(uint40 forInterval, uint256 realized, uint256 unrealized);

    /// @notice Close the contract if possible
    function close() external;
}

interface IPondWaterAdmin is IPondWaterBase {
    struct CreateStreamParameters {
        IERC20 asset;
        uint256 assetAmount;
        string ipfsCID;
        bytes32 merkleRoot;
        uint256 recipientsCount;
        bool skipCliff;
    }

    function streamWater(CreateStreamParameters calldata parameters) external returns (ISablierV2MerkleStreamerLL streamer);
    function adminUnlock(uint256 id) external;
    function adminUnlock(uint256 id, address unlockFor) external;
    function xferSabiler(ISabilerAdminable toTrans) external;
    function deposit(IERC20 token, uint256 amount) external;
    function withdraw(IERC20 token, uint256 amount) external;
    function executorClose() external;
    function updateCheckCycleDeltas(uint256 checkCycleDeltas) external;
    function updateCycleDeltaNumerator(uint256 cycleDeltaNumerator) external;
    function updateIntervalOffset(uint40 intervalOffset) external;
    function executorOpen() external;
    function updateMinedToLockedNumerator(uint256 minedToLockedNumerator) external;
    function updateMiningChecker(IMiningPerCycle miningChecker) external;
}

interface IPondWater is IPondWaterBase, IPondWaterAdmin {}

File 47 of 47 : IMiningPerCycle.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IMiningPerCycle {
    function cycleIndex() external view returns (uint256 index);
    function minedPerCycle(address checkAddress, uint256 cycleIndex) external view returns (uint256 mined);
}

Settings
{
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs",
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 5000
  },
  "remappings": [],
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"uint40","name":"_intervalOffset","type":"uint40"},{"internalType":"contract IERC20","name":"_coinToLock","type":"address"},{"internalType":"contract ISablierV2MerkleStreamerFactory","name":"_sabilerFactory","type":"address"},{"internalType":"contract ISablierV2LockupLinear","name":"_sabilerLockupLinear","type":"address"},{"internalType":"contract IMiningPerCycle","name":"_miningChecker","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"CannotClose","type":"error"},{"inputs":[],"name":"CannotOpen","type":"error"},{"inputs":[],"name":"CannotRemoveSelf","type":"error"},{"inputs":[],"name":"CannotUnlockYet","type":"error"},{"inputs":[],"name":"InvalidLockAmount","type":"error"},{"inputs":[],"name":"InvalidLockPeriod","type":"error"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"LockDoesNotExist","type":"error"},{"inputs":[{"internalType":"address","name":"attempted","type":"address"}],"name":"NotExecutor","type":"error"},{"inputs":[],"name":"NotOpen","type":"error"},{"inputs":[],"name":"NotOwnerOfLock","type":"error"},{"inputs":[{"internalType":"uint256","name":"canLock","type":"uint256"},{"internalType":"uint256","name":"hasLocked","type":"uint256"}],"name":"OverUserMaximumLock","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"locker","type":"address"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"locked","type":"uint256"},{"indexed":false,"internalType":"uint40","name":"startsAt","type":"uint40"},{"indexed":false,"internalType":"uint40","name":"lockedFor","type":"uint40"}],"name":"Lock","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint40","name":"forInterval","type":"uint40"},{"indexed":true,"internalType":"contract ISablierV2MerkleStreamerLL","name":"streamer","type":"address"}],"name":"NewStream","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint40","name":"observedInterval","type":"uint40"},{"indexed":false,"internalType":"uint256","name":"realized","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"credits","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"debits","type":"uint256"}],"name":"OuncesObserved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"locker","type":"address"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"Unlock","type":"event"},{"inputs":[{"internalType":"address","name":"_toAdd","type":"address"}],"name":"addExecutor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"adminUnlock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"address","name":"unlockFor","type":"address"}],"name":"adminUnlock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"atInterval","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bypassMiningMax","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"checkCycleDeltas","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"close","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"coinToLock","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"_lockPeriodIndex","type":"uint8"}],"name":"computeLockFactor","outputs":[{"internalType":"uint40","name":"intervals","type":"uint40"},{"internalType":"uint256","name":"factor","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint8","name":"_lockPeriodIndex","type":"uint8"}],"name":"computeLockFactorWithAmount","outputs":[{"internalType":"uint40","name":"intervals","type":"uint40"},{"internalType":"uint256","name":"factor","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"cycleDeltaNumerator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"divisionDenominator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"executorClose","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"executorOpen","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"executors","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getIntervalFromChain","outputs":[{"internalType":"uint40","name":"intervalFromChain","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint40","name":"interval","type":"uint40"}],"name":"getIntervalStartTime","outputs":[{"internalType":"uint40","name":"startTime","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"getLock","outputs":[{"components":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint40","name":"startInterval","type":"uint40"},{"internalType":"uint40","name":"lastsFor","type":"uint40"}],"internalType":"struct IPondWaterBase.LockData","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_locker","type":"address"},{"internalType":"uint256","name":"_cycle","type":"uint256"}],"name":"getUserLockedPerCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"intervalOffset","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"intervalPeriod","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_executor","type":"address"}],"name":"isExecutor","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isOpen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastStreamAtInterval","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"leapfrog","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint8","name":"_lockPeriodIndex","type":"uint8"}],"name":"lock","outputs":[{"internalType":"uint256","name":"lockId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lockIDIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lockSlipBeforeClose","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"locks","outputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint40","name":"startInterval","type":"uint40"},{"internalType":"uint40","name":"lastsFor","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minedToLockedNumerator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"miningChecker","outputs":[{"internalType":"contract IMiningPerCycle","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ounceStatus","outputs":[{"internalType":"uint40","name":"forInterval","type":"uint40"},{"internalType":"uint256","name":"realized","type":"uint256"},{"internalType":"uint256","name":"unrealized","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_locker","type":"address"}],"name":"readUserLockAmounts","outputs":[{"internalType":"uint256","name":"canLock","type":"uint256"},{"internalType":"uint256","name":"hasLocked","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"realizedOuncesAtInterval","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_toRemove","type":"address"}],"name":"removeExecutor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sabilerFactory","outputs":[{"internalType":"contract ISablierV2MerkleStreamerFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sabilerLockupLinear","outputs":[{"internalType":"contract ISablierV2LockupLinear","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"contract IERC20","name":"asset","type":"address"},{"internalType":"uint256","name":"assetAmount","type":"uint256"},{"internalType":"string","name":"ipfsCID","type":"string"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"recipientsCount","type":"uint256"},{"internalType":"bool","name":"skipCliff","type":"bool"}],"internalType":"struct IPondWaterAdmin.CreateStreamParameters","name":"parameters","type":"tuple"}],"name":"streamWater","outputs":[{"internalType":"contract ISablierV2MerkleStreamerLL","name":"streamer","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint40","name":"","type":"uint40"}],"name":"toCreditAtInterval","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint40","name":"","type":"uint40"}],"name":"toDebitAtInterval","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"unlock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_bypassMiningMax","type":"bool"}],"name":"updateBypassMiningMax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_checkCycleDeltas","type":"uint256"}],"name":"updateCheckCycleDeltas","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_cycleDeltaNumerator","type":"uint256"}],"name":"updateCycleDeltaNumerator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint40","name":"_intervalOffset","type":"uint40"}],"name":"updateIntervalOffset","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_minedToLockedNumerator","type":"uint256"}],"name":"updateMinedToLockedNumerator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IMiningPerCycle","name":"_miningChecker","type":"address"}],"name":"updateMiningChecker","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"userLockedPerCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IAdminable","name":"toTrans","type":"address"}],"name":"xferSabiler","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405260006003556006805466ffffffffffffff1916905560016007556005600d55671bc16d674ec80000600e55670de0b6b3a7640000600f553480156200004857600080fd5b5060405162002c7738038062002c778339810160408190526200006b91620001b8565b62000094336001600160a01b03166000908152602081905260409020805460ff19166001179055565b60018055620000c1336001600160a01b03166000908152602081905260409020805460ff19166001179055565b60098054600160281b600160c81b031916650100000000006001600160a01b038716021790556002620000f362000170565b620000ff919062000241565b6002805464ffffffffff92831664ffffffffff19918216179091556009805497909216961695909517909455600a80546001600160a01b039384166001600160a01b031991821617909155600b805492841692821692909217909155600c80549290941691161790915550620002a8565b60095460009062093a80906200018e9064ffffffffff164262000241565b6200019a919062000275565b905090565b6001600160a01b0381168114620001b557600080fd5b50565b600080600080600060a08688031215620001d157600080fd5b855164ffffffffff81168114620001e757600080fd5b6020870151909550620001fa816200019f565b60408701519094506200020d816200019f565b606087015190935062000220816200019f565b608087015190925062000233816200019f565b809150509295509295909350565b64ffffffffff8281168282160390808211156200026e57634e487b7160e01b600052601160045260246000fd5b5092915050565b600064ffffffffff808416806200029c57634e487b7160e01b600052601260045260246000fd5b92169190910492915050565b6129bf80620002b86000396000f3fe608060405234801561001057600080fd5b50600436106103415760003560e01c80636ba0616e116101bd578063c1c2b1cf116100f9578063debfda30116100a2578063e3e9ddf51161007c578063e3e9ddf5146107b6578063f3fef3a3146107c9578063f4dadc61146107dc578063f81878101461086057600080fd5b8063debfda3014610769578063df92cea21461079a578063e0a93d67146107ad57600080fd5b8063cd39f202116100d3578063cd39f202146106e9578063d68f4dd1146106fc578063da71b37b1461075657600080fd5b8063c1c2b1cf146106b9578063c5301576146106cc578063cb0e5a01146106d657600080fd5b80639645490111610166578063a036f18511610140578063a036f18514610674578063b81cd3151461068b578063bac114c41461069e578063c0309974146106a657600080fd5b80639645490114610635578063998e42421461063e5780639ac2a0111461065157600080fd5b8063848b2fa911610197578063848b2fa91461060d578063891140ad1461061a5780638c9e3eb31461062257600080fd5b80636ba0616e1461059457806370860f8e146105a7578063833491f2146105dd57600080fd5b8063369557311161028c578063544c3d5511610235578063632b3f2c1161020f578063632b3f2c1461055e57806365e6c03b1461057a5780636911efb3146105835780636b8d2d7c1461058c57600080fd5b8063544c3d55146104ea5780635cf80b62146105205780636198e3391461054b57600080fd5b806347cbe5a61161026657806347cbe5a61461049c57806347e7ef24146104af578063541a80ad146104c257600080fd5b8063369557311461044757806343d726d61461047257806347535d7b1461047a57600080fd5b80631f5a0bbe116102ee5780632af93c70116102c85780632af93c70146103fe5780632d1781bc1461041e5780633659099b1461042757600080fd5b80631f5a0bbe146103bb57806324788429146103ce57806327a101f5146103e157600080fd5b80630c33783d1161031f5780630c33783d14610384578063116b37f9146103975780631e401b39146103aa57600080fd5b806301668b2a146103465780630b41f3d3146103505780630b6a84ed14610373575b600080fd5b61034e610868565b005b6103586108b3565b60405164ffffffffff90911681526020015b60405180910390f35b6009546103589064ffffffffff1681565b61034e610392366004612289565b6108de565b6103586103a53660046122a2565b61091f565b6002546103589064ffffffffff1681565b61034e6103c93660046122de565b610949565b61034e6103dc3660046122de565b6109b0565b6103f0670de0b6b3a764000081565b60405190815260200161036a565b6103f061040c3660046122a2565b60056020526000908152604090205481565b6103f0600e5481565b6103f06104353660046122a2565b60046020526000908152604090205481565b61045a6104553660046122fb565b6109f5565b6040516001600160a01b03909116815260200161036a565b61034e610c73565b60065461048c90610100900460ff1681565b604051901515815260200161036a565b61034e6104aa3660046122de565b610d02565b61034e6104bd366004612336565b610d78565b6104d56104d03660046122de565b610e4a565b6040805192835260208301919091520161036a565b6103f06104f8366004612336565b6001600160a01b03919091166000908152601060209081526040808320938352929052205490565b6103f061052e366004612336565b601060209081526000928352604080842090915290825290205481565b61034e610559366004612289565b610fcf565b60095461045a906501000000000090046001600160a01b031681565b6103f0600f5481565b6103f0600d5481565b610358600581565b600b5461045a906001600160a01b031681565b6105ba6105b5366004612378565b610fea565b6040805164ffffffffff909416845260208401929092529082015260600161036a565b6105f06105eb3660046123a4565b611010565b6040805164ffffffffff909316835260208301919091520161036a565b60065461048c9060ff1681565b61034e611086565b61034e6106303660046122a2565b611140565b6103f060075481565b6103f061064c366004612378565b6111b4565b61048c61065f3660046122de565b60006020819052908152604090205460ff1681565b6006546103589062010000900464ffffffffff1681565b61034e610699366004612289565b61122f565b61034e611270565b600a5461045a906001600160a01b031681565b600c5461045a906001600160a01b031681565b61035862093a8081565b61034e6106e4366004612289565b6112ac565b61034e6106f7366004612289565b61130b565b61070f61070a366004612289565b61134c565b6040805182516001600160a01b03168152602080840151908201528282015164ffffffffff908116928201929092526060928301519091169181019190915260800161036a565b61034e6107643660046122de565b61141b565b61048c6107773660046122de565b6001600160a01b031660009081526020819052604090205460ff16151560011490565b61034e6107a83660046123bf565b6114cc565b6103f060035481565b61034e6107c43660046123fd565b611516565b61034e6107d7366004612336565b611565565b6108296107ea366004612289565b6008602052600090815260409020805460018201546002909201546001600160a01b03909116919064ffffffffff808216916501000000000090041684565b604080516001600160a01b039095168552602085019390935264ffffffffff9182169284019290925216606082015260800161036a565b6105ba6115ed565b3360009081526020819052604090205460ff16151560011415156001146108a957604051635cf20d6360e01b81523360048201526024015b60405180910390fd5b6108b1611686565b565b60095460009062093a80906108cf9064ffffffffff1642612449565b6108d9919061249d565b905090565b3360009081526020819052604090205460ff161515600114151560011461091a57604051635cf20d6360e01b81523360048201526024016108a0565b600f55565b60095460009064ffffffffff1661093962093a80846124c1565b61094391906124ea565b92915050565b3360009081526020819052604090205460ff161515600114151560011461098557604051635cf20d6360e01b81523360048201526024016108a0565b6109ad816001600160a01b03166000908152602081905260409020805460ff19166001179055565b50565b3360009081526020819052604090205460ff16151560011415156001146109ec57604051635cf20d6360e01b81523360048201526024016108a0565b6109ad8161178b565b3360009081526020819052604081205460ff1615156001141515600114610a3157604051635cf20d6360e01b81523360048201526024016108a0565b600654610100900460ff16610a72576040517fddafad9800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6000610a7c6108b3565b610a879060016124ea565b600a54600b549192506001600160a01b03908116916373b01dbb91309116610ab260208801886122de565b6060880135610ac56103a58860026124ea565b6040805180820190915280610ae9610ae360c08e0160a08f016123fd565b8b6117ee565b64ffffffffff16815262093a8060209091015260006001610b0d60408e018e612508565b8e602001358f608001356040518d63ffffffff1660e01b8152600401610b3e9c9b9a9998979695949392919061259f565b6020604051808303816000875af1158015610b5d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b819190612635565b9150610b9060208401846122de565b6040517f23b872dd0000000000000000000000000000000000000000000000000000000081523360048201526001600160a01b0384811660248301526020860135604483015291909116906323b872dd906064016020604051808303816000875af1158015610c03573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c279190612652565b610c3057600080fd5b6040516001600160a01b0383169064ffffffffff8316907f77598ee78de5a86cf5a667beac6d2274006d1b684919b2500cfb79493e1929a890600090a350919050565b60065462010000900464ffffffffff161580610cc35750600654600254610caa9164ffffffffff62010000909104811691166124ea565b64ffffffffff16610cb96108b3565b64ffffffffff1611155b15610cfa576040517f65284b4c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6108b1611820565b3360009081526020819052604090205460ff1615156001141515600114610d3e57604051635cf20d6360e01b81523360048201526024016108a0565b600c80547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b3360009081526020819052604090205460ff1615156001141515600114610db457604051635cf20d6360e01b81523360048201526024016108a0565b6040517f23b872dd000000000000000000000000000000000000000000000000000000008152336004820152306024820152604481018290526001600160a01b038316906323b872dd906064015b6020604051808303816000875af1158015610e21573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e459190612652565b505050565b600080600080600c60009054906101000a90046001600160a01b03166001600160a01b031663ef77f8386040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ea3573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ec7919061266f565b90505b600d548211610fc857600c546040517fddc356170000000000000000000000000000000000000000000000000000000081526001600160a01b03878116600483015260248201849052610f6b92859291169063ddc3561790604401602060405180830381865afa158015610f42573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610f66919061266f565b61188b565b610f759085612688565b6001600160a01b0386166000908152601060209081526040808320858452909152902054909450610fa790839061188b565b610fb19084612688565b92508015610fc85760019091019060001901610eca565b5050915091565b610fd76118e8565b610fe1813361195b565b6109ad60018055565b6000806000610ff884611010565b90935091506110078583611b43565b90509250925092565b60008060078360ff161115611051576040517f2a82a34f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61105c836002612875565b91506002611075670de0b6b3a764000060ff861661288b565b61107f91906128a2565b9050915091565b3360009081526020819052604090205460ff16151560011415156001146110c257604051635cf20d6360e01b81523360048201526024016108a0565b60075460011415806110db5750600654610100900460ff165b15611112576040517f323513bd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600680547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff16610100179055565b3360009081526020819052604090205460ff161515600114151560011461117c57604051635cf20d6360e01b81523360048201526024016108a0565b600980547fffffffffffffffffffffffffffffffffffffffffffffffffffffff00000000001664ffffffffff92909216919091179055565b60006111be6118e8565b826000036111f8576040517f409fef3300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600954611219906501000000000090046001600160a01b0316333086611b62565b611224338484611c19565b905061094360018055565b3360009081526020819052604090205460ff161515600114151560011461126b57604051635cf20d6360e01b81523360048201526024016108a0565b600d55565b3360009081526020819052604090205460ff1615156001141515600114610cfa57604051635cf20d6360e01b81523360048201526024016108a0565b3360009081526020819052604090205460ff16151560011415156001146112e857604051635cf20d6360e01b81523360048201526024016108a0565b6000818152600860205260409020546109ad9082906001600160a01b031661195b565b3360009081526020819052604090205460ff161515600114151560011461134757604051635cf20d6360e01b81523360048201526024016108a0565b600e55565b6040805160808101825260008082526020820181905291810182905260608101919091526000828152600860205260408120600101548391036113be576040517f555d5cd2000000000000000000000000000000000000000000000000000000008152600481018290526024016108a0565b5050600090815260086020908152604091829020825160808101845281546001600160a01b031681526001820154928101929092526002015464ffffffffff80821693830193909352650100000000009004909116606082015290565b3360009081526020819052604090205460ff161515600114151560011461145757604051635cf20d6360e01b81523360048201526024016108a0565b6040517f75829def0000000000000000000000000000000000000000000000000000000081523360048201526001600160a01b038216906375829def90602401600060405180830381600087803b1580156114b157600080fd5b505af11580156114c5573d6000803e3d6000fd5b5050505050565b3360009081526020819052604090205460ff161515600114151560011461150857604051635cf20d6360e01b81523360048201526024016108a0565b611512828261195b565b5050565b3360009081526020819052604090205460ff161515600114151560011461155257604051635cf20d6360e01b81523360048201526024016108a0565b6006805460ff1916911515919091179055565b3360009081526020819052604090205460ff16151560011415156001146115a157604051635cf20d6360e01b81523360048201526024016108a0565b6040517fa9059cbb000000000000000000000000000000000000000000000000000000008152336004820152602481018290526001600160a01b0383169063a9059cbb90604401610e02565b60025460035464ffffffffff9091169080825b6116086108b3565b6116139060016124ea565b64ffffffffff168164ffffffffff16116116805764ffffffffff81166000908152600560205260409020546116489083612688565b64ffffffffff821660009081526004602052604090205490925061166c90836128b1565b915080611678816128c4565b915050611600565b50909192565b60006116906108b3565b64ffffffffff1690505b60025464ffffffffff168111156109ad576002805464ffffffffff169060006116c2836128c4565b82546101009290920a64ffffffffff8181021990931691831602179091556002805482166000908152600560209081526040808320805460049093528184205490849055935490941682529281205590915061171e81836128b1565b6003600082825461172f9190612688565b90915550506002546003546040805191825260208201859052810183905264ffffffffff909116907fbf489296322e6f347a404ab22fe08541df0d3d593f7e08b5b3877559e3b377b89060600160405180910390a2505061169a565b336001600160a01b038216036117cd576040517f5e03d55f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001600160a01b03166000908152602081905260409020805460ff19169055565b600082156117fe57506000610943565b426118088361091f565b64ffffffffff1661181991906128b1565b9392505050565b600654610100900460ff16611861576040517fddafad9800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600680547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055565b600061189982600f54611b43565b905082156109435761181981670de0b6b3a7640000600e54866118bc919061288b565b6118c69190612688565b6118d96002670de0b6b3a76400006128a2565b6118e391906128e8565b611b43565b600260015403611954576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c0060448201526064016108a0565b6002600155565b6000828152600860205260408120600101548391036119a9576040517f555d5cd2000000000000000000000000000000000000000000000000000000008152600481018290526024016108a0565b600083815260086020526040902080546001600160a01b038481169116146119fd576040517f7f074cf500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600654610100900460ff161580611a465750611a176108b3565b600282015464ffffffffff91821691611a3c91650100000000008104821691166124ea565b64ffffffffff1610155b15611a7d576040517f67d8bc0000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600180820154600086815260086020526040812080547fffffffffffffffffffffffff000000000000000000000000000000000000000016815592830155600290910180547fffffffffffffffffffffffffffffffffffffffffffff00000000000000000000169055600954611b06906501000000000090046001600160a01b03168583611f49565b60405185906001600160a01b038616907f6381d9813cabeb57471b5a7e05078e64845ccdb563146a6911d536f24ce960f190600090a35050505050565b6000670de0b6b3a7640000611b58838561288b565b61181991906128e8565b6040516001600160a01b0380851660248301528316604482015260648101829052611c139085907f23b872dd00000000000000000000000000000000000000000000000000000000906084015b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152611f92565b50505050565b600654600090610100900460ff16611c5d576040517fddafad9800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60065460ff161515600114611ccd57600080611c7886610e4a565b909250905081611c888683612688565b1115611cca576040517fc4041e0d00000000000000000000000000000000000000000000000000000000815260048101839052602481018290526044016108a0565b50505b6001600160a01b038085166000908152601060209081526040808320600c5482517fef77f83800000000000000000000000000000000000000000000000000000000815292518996929594919092169263ef77f83892600480830193928290030181865afa158015611d43573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d67919061266f565b81526020019081526020016000206000828254611d849190612688565b909155506000905080611d978585610fea565b92505091506000611da66108b3565b611db19060016124ea565b64ffffffffff8116600090815260056020526040812080549293508492909190611ddc908490612688565b9091555082905060046000611df186856124ea565b64ffffffffff1664ffffffffff1681526020019081526020016000206000828254611e1c9190612688565b909155505060078054600090611e31906128fc565b9182905550604080516080810182526001600160a01b038a811680835260208084018c815264ffffffffff8881168688018181528c83166060808a0182815260008d8152600889528c90209a518b549a167fffffffffffffffffffffffff0000000000000000000000000000000000000000909a16999099178a55945160018a01559051600290980180549751841665010000000000027fffffffffffffffffffffffffffffffffffffffffffff00000000000000000000909816989093169790971795909517905585518d81529182019390935293840192909252929650869290917f1b25091f383cba212d5e47f30dcc73a111f1304bf07e7f2c8503c7c311ddc6f0910160405180910390a35050509392505050565b6040516001600160a01b038316602482015260448101829052610e459084907fa9059cbb0000000000000000000000000000000000000000000000000000000090606401611baf565b6000611fe7826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166120949092919063ffffffff16565b90508051600014806120085750808060200190518101906120089190612652565b610e45576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f7420737563636565640000000000000000000000000000000000000000000060648201526084016108a0565b60606120a384846000856120ab565b949350505050565b60608247101561213d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c000000000000000000000000000000000000000000000000000060648201526084016108a0565b600080866001600160a01b03168587604051612159919061293a565b60006040518083038185875af1925050503d8060008114612196576040519150601f19603f3d011682016040523d82523d6000602084013e61219b565b606091505b50915091506121ac878383876121b7565b979650505050505050565b60608315612240578251600003612239576001600160a01b0385163b612239576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016108a0565b50816120a3565b6120a383838151156122555781518083602001fd5b806040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108a09190612956565b60006020828403121561229b57600080fd5b5035919050565b6000602082840312156122b457600080fd5b813564ffffffffff8116811461181957600080fd5b6001600160a01b03811681146109ad57600080fd5b6000602082840312156122f057600080fd5b8135611819816122c9565b60006020828403121561230d57600080fd5b813567ffffffffffffffff81111561232457600080fd5b820160c0818503121561181957600080fd5b6000806040838503121561234957600080fd5b8235612354816122c9565b946020939093013593505050565b803560ff8116811461237357600080fd5b919050565b6000806040838503121561238b57600080fd5b8235915061239b60208401612362565b90509250929050565b6000602082840312156123b657600080fd5b61181982612362565b600080604083850312156123d257600080fd5b8235915060208301356123e4816122c9565b809150509250929050565b80151581146109ad57600080fd5b60006020828403121561240f57600080fd5b8135611819816123ef565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b64ffffffffff8281168282160390808211156124675761246761241a565b5092915050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600064ffffffffff808416806124b5576124b561246e565b92169190910492915050565b64ffffffffff8181168382160280821691908281146124e2576124e261241a565b505092915050565b64ffffffffff8181168382160190808211156124675761246761241a565b60008083357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe184360301811261253d57600080fd5b83018035915067ffffffffffffffff82111561255857600080fd5b60200191503681900382131561256d57600080fd5b9250929050565b818352818160208501375060006020828401015260006020601f19601f840116840101905092915050565b60006001600160a01b03808f168352808e166020840152808d166040840152508a606083015264ffffffffff808b166080840152808a511660a08401528060208b01511660c0840152506125f760e083018915159052565b86151561010083015261018061012083015261261861018083018688612574565b6101408301949094525061016001529a9950505050505050505050565b60006020828403121561264757600080fd5b8151611819816122c9565b60006020828403121561266457600080fd5b8151611819816123ef565b60006020828403121561268157600080fd5b5051919050565b808201808211156109435761094361241a565b600181815b808511156126d9578164ffffffffff048211156126bf576126bf61241a565b808516156126cc57918102915b93841c93908002906126a0565b509250929050565b600181815b808511156126d95781600019048211156127025761270261241a565b8085161561270f57918102915b93841c93908002906126e6565b60008261272b57506001610943565b8161273857506000610943565b816001811461274e57600281146127585761278a565b6001915050610943565b60ff8411156127695761276961241a565b6001841b915064ffffffffff8211156127845761278461241a565b50610943565b5060208310610133831016604e8410600b84101617156127c2575081810a64ffffffffff8111156127bd576127bd61241a565b610943565b6127cc838361269b565b8064ffffffffff048211156127e3576127e361241a565b029392505050565b6000826127fa57506001610943565b8161280757506000610943565b816001811461274e57600281036128345760ff8411156128295761282961241a565b50506001821b610943565b5060208310610133831016604e8410600b8410161715612857575081810a610943565b61286183836126e1565b80600019048211156127e3576127e361241a565b600061181960ff841664ffffffffff841661271c565b80820281158282048414176109435761094361241a565b600061181960ff8416836127eb565b818103818111156109435761094361241a565b600064ffffffffff8083168181036128de576128de61241a565b6001019392505050565b6000826128f7576128f761246e565b500490565b6000600019820361290f5761290f61241a565b5060010190565b60005b83811015612931578181015183820152602001612919565b50506000910152565b6000825161294c818460208701612916565b9190910192915050565b6020815260008251806020840152612975816040850160208701612916565b601f01601f1916919091016040019291505056fea2646970667358221220c9c75d659681d7675a946ca3629000228e67d2d727030041363b7dbf154dbd8864736f6c63430008130033000000000000000000000000000000000000000000000000000000000008d810000000000000000000000000423f4e6138e475d85cf7ea071ac92097ed631eea0000000000000000000000001a272b596b10f02931480bc7a3617db4a8d154e3000000000000000000000000afb979d9afad1ad27c5eff4e27226e3ab9e5dcc90000000000000000000000002d50efbc3690b6d0ea0b179c18f016ae9031c00a

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106103415760003560e01c80636ba0616e116101bd578063c1c2b1cf116100f9578063debfda30116100a2578063e3e9ddf51161007c578063e3e9ddf5146107b6578063f3fef3a3146107c9578063f4dadc61146107dc578063f81878101461086057600080fd5b8063debfda3014610769578063df92cea21461079a578063e0a93d67146107ad57600080fd5b8063cd39f202116100d3578063cd39f202146106e9578063d68f4dd1146106fc578063da71b37b1461075657600080fd5b8063c1c2b1cf146106b9578063c5301576146106cc578063cb0e5a01146106d657600080fd5b80639645490111610166578063a036f18511610140578063a036f18514610674578063b81cd3151461068b578063bac114c41461069e578063c0309974146106a657600080fd5b80639645490114610635578063998e42421461063e5780639ac2a0111461065157600080fd5b8063848b2fa911610197578063848b2fa91461060d578063891140ad1461061a5780638c9e3eb31461062257600080fd5b80636ba0616e1461059457806370860f8e146105a7578063833491f2146105dd57600080fd5b8063369557311161028c578063544c3d5511610235578063632b3f2c1161020f578063632b3f2c1461055e57806365e6c03b1461057a5780636911efb3146105835780636b8d2d7c1461058c57600080fd5b8063544c3d55146104ea5780635cf80b62146105205780636198e3391461054b57600080fd5b806347cbe5a61161026657806347cbe5a61461049c57806347e7ef24146104af578063541a80ad146104c257600080fd5b8063369557311461044757806343d726d61461047257806347535d7b1461047a57600080fd5b80631f5a0bbe116102ee5780632af93c70116102c85780632af93c70146103fe5780632d1781bc1461041e5780633659099b1461042757600080fd5b80631f5a0bbe146103bb57806324788429146103ce57806327a101f5146103e157600080fd5b80630c33783d1161031f5780630c33783d14610384578063116b37f9146103975780631e401b39146103aa57600080fd5b806301668b2a146103465780630b41f3d3146103505780630b6a84ed14610373575b600080fd5b61034e610868565b005b6103586108b3565b60405164ffffffffff90911681526020015b60405180910390f35b6009546103589064ffffffffff1681565b61034e610392366004612289565b6108de565b6103586103a53660046122a2565b61091f565b6002546103589064ffffffffff1681565b61034e6103c93660046122de565b610949565b61034e6103dc3660046122de565b6109b0565b6103f0670de0b6b3a764000081565b60405190815260200161036a565b6103f061040c3660046122a2565b60056020526000908152604090205481565b6103f0600e5481565b6103f06104353660046122a2565b60046020526000908152604090205481565b61045a6104553660046122fb565b6109f5565b6040516001600160a01b03909116815260200161036a565b61034e610c73565b60065461048c90610100900460ff1681565b604051901515815260200161036a565b61034e6104aa3660046122de565b610d02565b61034e6104bd366004612336565b610d78565b6104d56104d03660046122de565b610e4a565b6040805192835260208301919091520161036a565b6103f06104f8366004612336565b6001600160a01b03919091166000908152601060209081526040808320938352929052205490565b6103f061052e366004612336565b601060209081526000928352604080842090915290825290205481565b61034e610559366004612289565b610fcf565b60095461045a906501000000000090046001600160a01b031681565b6103f0600f5481565b6103f0600d5481565b610358600581565b600b5461045a906001600160a01b031681565b6105ba6105b5366004612378565b610fea565b6040805164ffffffffff909416845260208401929092529082015260600161036a565b6105f06105eb3660046123a4565b611010565b6040805164ffffffffff909316835260208301919091520161036a565b60065461048c9060ff1681565b61034e611086565b61034e6106303660046122a2565b611140565b6103f060075481565b6103f061064c366004612378565b6111b4565b61048c61065f3660046122de565b60006020819052908152604090205460ff1681565b6006546103589062010000900464ffffffffff1681565b61034e610699366004612289565b61122f565b61034e611270565b600a5461045a906001600160a01b031681565b600c5461045a906001600160a01b031681565b61035862093a8081565b61034e6106e4366004612289565b6112ac565b61034e6106f7366004612289565b61130b565b61070f61070a366004612289565b61134c565b6040805182516001600160a01b03168152602080840151908201528282015164ffffffffff908116928201929092526060928301519091169181019190915260800161036a565b61034e6107643660046122de565b61141b565b61048c6107773660046122de565b6001600160a01b031660009081526020819052604090205460ff16151560011490565b61034e6107a83660046123bf565b6114cc565b6103f060035481565b61034e6107c43660046123fd565b611516565b61034e6107d7366004612336565b611565565b6108296107ea366004612289565b6008602052600090815260409020805460018201546002909201546001600160a01b03909116919064ffffffffff808216916501000000000090041684565b604080516001600160a01b039095168552602085019390935264ffffffffff9182169284019290925216606082015260800161036a565b6105ba6115ed565b3360009081526020819052604090205460ff16151560011415156001146108a957604051635cf20d6360e01b81523360048201526024015b60405180910390fd5b6108b1611686565b565b60095460009062093a80906108cf9064ffffffffff1642612449565b6108d9919061249d565b905090565b3360009081526020819052604090205460ff161515600114151560011461091a57604051635cf20d6360e01b81523360048201526024016108a0565b600f55565b60095460009064ffffffffff1661093962093a80846124c1565b61094391906124ea565b92915050565b3360009081526020819052604090205460ff161515600114151560011461098557604051635cf20d6360e01b81523360048201526024016108a0565b6109ad816001600160a01b03166000908152602081905260409020805460ff19166001179055565b50565b3360009081526020819052604090205460ff16151560011415156001146109ec57604051635cf20d6360e01b81523360048201526024016108a0565b6109ad8161178b565b3360009081526020819052604081205460ff1615156001141515600114610a3157604051635cf20d6360e01b81523360048201526024016108a0565b600654610100900460ff16610a72576040517fddafad9800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6000610a7c6108b3565b610a879060016124ea565b600a54600b549192506001600160a01b03908116916373b01dbb91309116610ab260208801886122de565b6060880135610ac56103a58860026124ea565b6040805180820190915280610ae9610ae360c08e0160a08f016123fd565b8b6117ee565b64ffffffffff16815262093a8060209091015260006001610b0d60408e018e612508565b8e602001358f608001356040518d63ffffffff1660e01b8152600401610b3e9c9b9a9998979695949392919061259f565b6020604051808303816000875af1158015610b5d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b819190612635565b9150610b9060208401846122de565b6040517f23b872dd0000000000000000000000000000000000000000000000000000000081523360048201526001600160a01b0384811660248301526020860135604483015291909116906323b872dd906064016020604051808303816000875af1158015610c03573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c279190612652565b610c3057600080fd5b6040516001600160a01b0383169064ffffffffff8316907f77598ee78de5a86cf5a667beac6d2274006d1b684919b2500cfb79493e1929a890600090a350919050565b60065462010000900464ffffffffff161580610cc35750600654600254610caa9164ffffffffff62010000909104811691166124ea565b64ffffffffff16610cb96108b3565b64ffffffffff1611155b15610cfa576040517f65284b4c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6108b1611820565b3360009081526020819052604090205460ff1615156001141515600114610d3e57604051635cf20d6360e01b81523360048201526024016108a0565b600c80547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b3360009081526020819052604090205460ff1615156001141515600114610db457604051635cf20d6360e01b81523360048201526024016108a0565b6040517f23b872dd000000000000000000000000000000000000000000000000000000008152336004820152306024820152604481018290526001600160a01b038316906323b872dd906064015b6020604051808303816000875af1158015610e21573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e459190612652565b505050565b600080600080600c60009054906101000a90046001600160a01b03166001600160a01b031663ef77f8386040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ea3573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ec7919061266f565b90505b600d548211610fc857600c546040517fddc356170000000000000000000000000000000000000000000000000000000081526001600160a01b03878116600483015260248201849052610f6b92859291169063ddc3561790604401602060405180830381865afa158015610f42573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610f66919061266f565b61188b565b610f759085612688565b6001600160a01b0386166000908152601060209081526040808320858452909152902054909450610fa790839061188b565b610fb19084612688565b92508015610fc85760019091019060001901610eca565b5050915091565b610fd76118e8565b610fe1813361195b565b6109ad60018055565b6000806000610ff884611010565b90935091506110078583611b43565b90509250925092565b60008060078360ff161115611051576040517f2a82a34f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61105c836002612875565b91506002611075670de0b6b3a764000060ff861661288b565b61107f91906128a2565b9050915091565b3360009081526020819052604090205460ff16151560011415156001146110c257604051635cf20d6360e01b81523360048201526024016108a0565b60075460011415806110db5750600654610100900460ff165b15611112576040517f323513bd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600680547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff16610100179055565b3360009081526020819052604090205460ff161515600114151560011461117c57604051635cf20d6360e01b81523360048201526024016108a0565b600980547fffffffffffffffffffffffffffffffffffffffffffffffffffffff00000000001664ffffffffff92909216919091179055565b60006111be6118e8565b826000036111f8576040517f409fef3300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600954611219906501000000000090046001600160a01b0316333086611b62565b611224338484611c19565b905061094360018055565b3360009081526020819052604090205460ff161515600114151560011461126b57604051635cf20d6360e01b81523360048201526024016108a0565b600d55565b3360009081526020819052604090205460ff1615156001141515600114610cfa57604051635cf20d6360e01b81523360048201526024016108a0565b3360009081526020819052604090205460ff16151560011415156001146112e857604051635cf20d6360e01b81523360048201526024016108a0565b6000818152600860205260409020546109ad9082906001600160a01b031661195b565b3360009081526020819052604090205460ff161515600114151560011461134757604051635cf20d6360e01b81523360048201526024016108a0565b600e55565b6040805160808101825260008082526020820181905291810182905260608101919091526000828152600860205260408120600101548391036113be576040517f555d5cd2000000000000000000000000000000000000000000000000000000008152600481018290526024016108a0565b5050600090815260086020908152604091829020825160808101845281546001600160a01b031681526001820154928101929092526002015464ffffffffff80821693830193909352650100000000009004909116606082015290565b3360009081526020819052604090205460ff161515600114151560011461145757604051635cf20d6360e01b81523360048201526024016108a0565b6040517f75829def0000000000000000000000000000000000000000000000000000000081523360048201526001600160a01b038216906375829def90602401600060405180830381600087803b1580156114b157600080fd5b505af11580156114c5573d6000803e3d6000fd5b5050505050565b3360009081526020819052604090205460ff161515600114151560011461150857604051635cf20d6360e01b81523360048201526024016108a0565b611512828261195b565b5050565b3360009081526020819052604090205460ff161515600114151560011461155257604051635cf20d6360e01b81523360048201526024016108a0565b6006805460ff1916911515919091179055565b3360009081526020819052604090205460ff16151560011415156001146115a157604051635cf20d6360e01b81523360048201526024016108a0565b6040517fa9059cbb000000000000000000000000000000000000000000000000000000008152336004820152602481018290526001600160a01b0383169063a9059cbb90604401610e02565b60025460035464ffffffffff9091169080825b6116086108b3565b6116139060016124ea565b64ffffffffff168164ffffffffff16116116805764ffffffffff81166000908152600560205260409020546116489083612688565b64ffffffffff821660009081526004602052604090205490925061166c90836128b1565b915080611678816128c4565b915050611600565b50909192565b60006116906108b3565b64ffffffffff1690505b60025464ffffffffff168111156109ad576002805464ffffffffff169060006116c2836128c4565b82546101009290920a64ffffffffff8181021990931691831602179091556002805482166000908152600560209081526040808320805460049093528184205490849055935490941682529281205590915061171e81836128b1565b6003600082825461172f9190612688565b90915550506002546003546040805191825260208201859052810183905264ffffffffff909116907fbf489296322e6f347a404ab22fe08541df0d3d593f7e08b5b3877559e3b377b89060600160405180910390a2505061169a565b336001600160a01b038216036117cd576040517f5e03d55f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001600160a01b03166000908152602081905260409020805460ff19169055565b600082156117fe57506000610943565b426118088361091f565b64ffffffffff1661181991906128b1565b9392505050565b600654610100900460ff16611861576040517fddafad9800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600680547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055565b600061189982600f54611b43565b905082156109435761181981670de0b6b3a7640000600e54866118bc919061288b565b6118c69190612688565b6118d96002670de0b6b3a76400006128a2565b6118e391906128e8565b611b43565b600260015403611954576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c0060448201526064016108a0565b6002600155565b6000828152600860205260408120600101548391036119a9576040517f555d5cd2000000000000000000000000000000000000000000000000000000008152600481018290526024016108a0565b600083815260086020526040902080546001600160a01b038481169116146119fd576040517f7f074cf500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600654610100900460ff161580611a465750611a176108b3565b600282015464ffffffffff91821691611a3c91650100000000008104821691166124ea565b64ffffffffff1610155b15611a7d576040517f67d8bc0000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600180820154600086815260086020526040812080547fffffffffffffffffffffffff000000000000000000000000000000000000000016815592830155600290910180547fffffffffffffffffffffffffffffffffffffffffffff00000000000000000000169055600954611b06906501000000000090046001600160a01b03168583611f49565b60405185906001600160a01b038616907f6381d9813cabeb57471b5a7e05078e64845ccdb563146a6911d536f24ce960f190600090a35050505050565b6000670de0b6b3a7640000611b58838561288b565b61181991906128e8565b6040516001600160a01b0380851660248301528316604482015260648101829052611c139085907f23b872dd00000000000000000000000000000000000000000000000000000000906084015b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152611f92565b50505050565b600654600090610100900460ff16611c5d576040517fddafad9800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60065460ff161515600114611ccd57600080611c7886610e4a565b909250905081611c888683612688565b1115611cca576040517fc4041e0d00000000000000000000000000000000000000000000000000000000815260048101839052602481018290526044016108a0565b50505b6001600160a01b038085166000908152601060209081526040808320600c5482517fef77f83800000000000000000000000000000000000000000000000000000000815292518996929594919092169263ef77f83892600480830193928290030181865afa158015611d43573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d67919061266f565b81526020019081526020016000206000828254611d849190612688565b909155506000905080611d978585610fea565b92505091506000611da66108b3565b611db19060016124ea565b64ffffffffff8116600090815260056020526040812080549293508492909190611ddc908490612688565b9091555082905060046000611df186856124ea565b64ffffffffff1664ffffffffff1681526020019081526020016000206000828254611e1c9190612688565b909155505060078054600090611e31906128fc565b9182905550604080516080810182526001600160a01b038a811680835260208084018c815264ffffffffff8881168688018181528c83166060808a0182815260008d8152600889528c90209a518b549a167fffffffffffffffffffffffff0000000000000000000000000000000000000000909a16999099178a55945160018a01559051600290980180549751841665010000000000027fffffffffffffffffffffffffffffffffffffffffffff00000000000000000000909816989093169790971795909517905585518d81529182019390935293840192909252929650869290917f1b25091f383cba212d5e47f30dcc73a111f1304bf07e7f2c8503c7c311ddc6f0910160405180910390a35050509392505050565b6040516001600160a01b038316602482015260448101829052610e459084907fa9059cbb0000000000000000000000000000000000000000000000000000000090606401611baf565b6000611fe7826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166120949092919063ffffffff16565b90508051600014806120085750808060200190518101906120089190612652565b610e45576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f7420737563636565640000000000000000000000000000000000000000000060648201526084016108a0565b60606120a384846000856120ab565b949350505050565b60608247101561213d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c000000000000000000000000000000000000000000000000000060648201526084016108a0565b600080866001600160a01b03168587604051612159919061293a565b60006040518083038185875af1925050503d8060008114612196576040519150601f19603f3d011682016040523d82523d6000602084013e61219b565b606091505b50915091506121ac878383876121b7565b979650505050505050565b60608315612240578251600003612239576001600160a01b0385163b612239576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016108a0565b50816120a3565b6120a383838151156122555781518083602001fd5b806040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108a09190612956565b60006020828403121561229b57600080fd5b5035919050565b6000602082840312156122b457600080fd5b813564ffffffffff8116811461181957600080fd5b6001600160a01b03811681146109ad57600080fd5b6000602082840312156122f057600080fd5b8135611819816122c9565b60006020828403121561230d57600080fd5b813567ffffffffffffffff81111561232457600080fd5b820160c0818503121561181957600080fd5b6000806040838503121561234957600080fd5b8235612354816122c9565b946020939093013593505050565b803560ff8116811461237357600080fd5b919050565b6000806040838503121561238b57600080fd5b8235915061239b60208401612362565b90509250929050565b6000602082840312156123b657600080fd5b61181982612362565b600080604083850312156123d257600080fd5b8235915060208301356123e4816122c9565b809150509250929050565b80151581146109ad57600080fd5b60006020828403121561240f57600080fd5b8135611819816123ef565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b64ffffffffff8281168282160390808211156124675761246761241a565b5092915050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600064ffffffffff808416806124b5576124b561246e565b92169190910492915050565b64ffffffffff8181168382160280821691908281146124e2576124e261241a565b505092915050565b64ffffffffff8181168382160190808211156124675761246761241a565b60008083357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe184360301811261253d57600080fd5b83018035915067ffffffffffffffff82111561255857600080fd5b60200191503681900382131561256d57600080fd5b9250929050565b818352818160208501375060006020828401015260006020601f19601f840116840101905092915050565b60006001600160a01b03808f168352808e166020840152808d166040840152508a606083015264ffffffffff808b166080840152808a511660a08401528060208b01511660c0840152506125f760e083018915159052565b86151561010083015261018061012083015261261861018083018688612574565b6101408301949094525061016001529a9950505050505050505050565b60006020828403121561264757600080fd5b8151611819816122c9565b60006020828403121561266457600080fd5b8151611819816123ef565b60006020828403121561268157600080fd5b5051919050565b808201808211156109435761094361241a565b600181815b808511156126d9578164ffffffffff048211156126bf576126bf61241a565b808516156126cc57918102915b93841c93908002906126a0565b509250929050565b600181815b808511156126d95781600019048211156127025761270261241a565b8085161561270f57918102915b93841c93908002906126e6565b60008261272b57506001610943565b8161273857506000610943565b816001811461274e57600281146127585761278a565b6001915050610943565b60ff8411156127695761276961241a565b6001841b915064ffffffffff8211156127845761278461241a565b50610943565b5060208310610133831016604e8410600b84101617156127c2575081810a64ffffffffff8111156127bd576127bd61241a565b610943565b6127cc838361269b565b8064ffffffffff048211156127e3576127e361241a565b029392505050565b6000826127fa57506001610943565b8161280757506000610943565b816001811461274e57600281036128345760ff8411156128295761282961241a565b50506001821b610943565b5060208310610133831016604e8410600b8410161715612857575081810a610943565b61286183836126e1565b80600019048211156127e3576127e361241a565b600061181960ff841664ffffffffff841661271c565b80820281158282048414176109435761094361241a565b600061181960ff8416836127eb565b818103818111156109435761094361241a565b600064ffffffffff8083168181036128de576128de61241a565b6001019392505050565b6000826128f7576128f761246e565b500490565b6000600019820361290f5761290f61241a565b5060010190565b60005b83811015612931578181015183820152602001612919565b50506000910152565b6000825161294c818460208701612916565b9190910192915050565b6020815260008251806020840152612975816040850160208701612916565b601f01601f1916919091016040019291505056fea2646970667358221220c9c75d659681d7675a946ca3629000228e67d2d727030041363b7dbf154dbd8864736f6c63430008130033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000000000000000000000000000000000000008d810000000000000000000000000423f4e6138e475d85cf7ea071ac92097ed631eea0000000000000000000000001a272b596b10f02931480bc7a3617db4a8d154e3000000000000000000000000afb979d9afad1ad27c5eff4e27226e3ab9e5dcc90000000000000000000000002d50efbc3690b6d0ea0b179c18f016ae9031c00a

-----Decoded View---------------
Arg [0] : _intervalOffset (uint40): 579600
Arg [1] : _coinToLock (address): 0x423f4e6138E475D85CF7Ea071AC92097Ed631eea
Arg [2] : _sabilerFactory (address): 0x1A272b596b10f02931480BC7a3617db4a8d154E3
Arg [3] : _sabilerLockupLinear (address): 0xAFb979d9afAd1aD27C5eFf4E27226E3AB9e5dCC9
Arg [4] : _miningChecker (address): 0x2D50efbc3690b6D0Ea0B179C18F016ae9031c00a

-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 000000000000000000000000000000000000000000000000000000000008d810
Arg [1] : 000000000000000000000000423f4e6138e475d85cf7ea071ac92097ed631eea
Arg [2] : 0000000000000000000000001a272b596b10f02931480bc7a3617db4a8d154e3
Arg [3] : 000000000000000000000000afb979d9afad1ad27c5eff4e27226e3ab9e5dcc9
Arg [4] : 0000000000000000000000002d50efbc3690b6d0ea0b179c18f016ae9031c00a


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.