Feature Tip: Add private address tag to any address under My Name Tag !
Source Code
Overview
ETH Balance
0 ETH
Eth Value
$0.00| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| 0x60c06040 | 23786836 | 11 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
Outbox
Compiler Version
v0.8.30+commit.73712a01
Optimization Enabled:
Yes with 200 runs
Other Settings:
prague EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IRollup} from "@aztec/core/interfaces/IRollup.sol";
import {IOutbox} from "@aztec/core/interfaces/messagebridge/IOutbox.sol";
import {Hash} from "@aztec/core/libraries/crypto/Hash.sol";
import {MerkleLib} from "@aztec/core/libraries/crypto/MerkleLib.sol";
import {DataStructures} from "@aztec/core/libraries/DataStructures.sol";
import {Errors} from "@aztec/core/libraries/Errors.sol";
import {BitMaps} from "@oz/utils/structs/BitMaps.sol";
/**
* @title Outbox
* @author Aztec Labs
* @notice Lives on L1 and is used to consume L2 -> L1 messages. Messages are inserted by the Rollup
* and will be consumed by the portal contracts.
*/
contract Outbox is IOutbox {
using Hash for DataStructures.L2ToL1Msg;
using BitMaps for BitMaps.BitMap;
struct RootData {
// This is the outhash specified by header.globalvariables.outHash of any given block.
bytes32 root;
BitMaps.BitMap nullified;
}
IRollup public immutable ROLLUP;
uint256 public immutable VERSION;
mapping(uint256 l2BlockNumber => RootData root) internal roots;
constructor(address _rollup, uint256 _version) {
ROLLUP = IRollup(_rollup);
VERSION = _version;
}
/**
* @notice Inserts the root of a merkle tree containing all of the L2 to L1 messages in a block
*
* @dev Only callable by the rollup contract
* @dev Emits `RootAdded` upon inserting the root successfully
*
* @param _l2BlockNumber - The L2 Block Number in which the L2 to L1 messages reside
* @param _root - The merkle root of the tree where all the L2 to L1 messages are leaves
*/
function insert(uint256 _l2BlockNumber, bytes32 _root) external override(IOutbox) {
require(msg.sender == address(ROLLUP), Errors.Outbox__Unauthorized());
require(_l2BlockNumber > ROLLUP.getProvenBlockNumber(), Errors.Outbox__BlockAlreadyProven(_l2BlockNumber));
roots[_l2BlockNumber].root = _root;
emit RootAdded(_l2BlockNumber, _root);
}
/**
* @notice Consumes an entry from the Outbox
*
* @dev Only useable by portals / recipients of messages
* @dev Emits `MessageConsumed` when consuming messages
*
* @param _message - The L2 to L1 message
* @param _l2BlockNumber - The block number specifying the block that contains the message we want to consume
* @param _leafIndex - The index inside the merkle tree where the message is located
* @param _path - The sibling path used to prove inclusion of the message, the _path length directly depends
* on the total amount of L2 to L1 messages in the block. i.e. the length of _path is equal to the depth of the
* L1 to L2 message tree.
*/
function consume(
DataStructures.L2ToL1Msg calldata _message,
uint256 _l2BlockNumber,
uint256 _leafIndex,
bytes32[] calldata _path
) external override(IOutbox) {
require(_path.length < 256, Errors.Outbox__PathTooLong());
require(_leafIndex < (1 << _path.length), Errors.Outbox__LeafIndexOutOfBounds(_leafIndex, _path.length));
require(_l2BlockNumber <= ROLLUP.getProvenBlockNumber(), Errors.Outbox__BlockNotProven(_l2BlockNumber));
require(_message.sender.version == VERSION, Errors.Outbox__VersionMismatch(_message.sender.version, VERSION));
require(
msg.sender == _message.recipient.actor, Errors.Outbox__InvalidRecipient(_message.recipient.actor, msg.sender)
);
require(block.chainid == _message.recipient.chainId, Errors.Outbox__InvalidChainId());
RootData storage rootData = roots[_l2BlockNumber];
bytes32 blockRoot = rootData.root;
require(blockRoot != bytes32(0), Errors.Outbox__NothingToConsumeAtBlock(_l2BlockNumber));
uint256 leafId = (1 << _path.length) + _leafIndex;
require(!rootData.nullified.get(leafId), Errors.Outbox__AlreadyNullified(_l2BlockNumber, leafId));
bytes32 messageHash = _message.sha256ToField();
MerkleLib.verifyMembership(_path, messageHash, _leafIndex, blockRoot);
rootData.nullified.set(leafId);
emit MessageConsumed(_l2BlockNumber, blockRoot, messageHash, leafId);
}
/**
* @notice Checks to see if an L2 to L1 message in a specific block has been consumed
*
* @dev - This function does not throw. Out-of-bounds access is considered valid, but will always return false
*
* @param _l2BlockNumber - The block number specifying the block that contains the message we want to check
* @param _leafId - The unique id of the message leaf
*
* @return bool - True if the message has been consumed, false otherwise
*/
function hasMessageBeenConsumedAtBlock(uint256 _l2BlockNumber, uint256 _leafId)
external
view
override(IOutbox)
returns (bool)
{
return roots[_l2BlockNumber].nullified.get(_leafId);
}
/**
* @notice Fetch the root data for a given block number
* Returns (0, 0) if the block is not proven
*
* @param _l2BlockNumber - The block number to fetch the root data for
*
* @return bytes32 - The root of the merkle tree containing the L2 to L1 messages
*/
function getRootData(uint256 _l2BlockNumber) external view override(IOutbox) returns (bytes32) {
if (_l2BlockNumber > ROLLUP.getProvenBlockNumber()) {
return bytes32(0);
}
RootData storage rootData = roots[_l2BlockNumber];
return rootData.root;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IFeeJuicePortal} from "@aztec/core/interfaces/IFeeJuicePortal.sol";
import {SlasherFlavor} from "@aztec/core/interfaces/ISlasher.sol";
import {IVerifier} from "@aztec/core/interfaces/IVerifier.sol";
import {IInbox} from "@aztec/core/interfaces/messagebridge/IInbox.sol";
import {IOutbox} from "@aztec/core/interfaces/messagebridge/IOutbox.sol";
import {BlockLog, CompressedTempBlockLog} from "@aztec/core/libraries/compressed-data/BlockLog.sol";
import {StakingQueueConfig} from "@aztec/core/libraries/compressed-data/StakingQueueConfig.sol";
import {CompressedChainTips, ChainTips} from "@aztec/core/libraries/compressed-data/Tips.sol";
import {CommitteeAttestations} from "@aztec/core/libraries/rollup/AttestationLib.sol";
import {FeeHeader, L1FeeData, ManaBaseFeeComponents} from "@aztec/core/libraries/rollup/FeeLib.sol";
import {FeeAssetPerEthE9, EthValue, FeeAssetValue} from "@aztec/core/libraries/rollup/FeeLib.sol";
import {ProposedHeader} from "@aztec/core/libraries/rollup/ProposedHeaderLib.sol";
import {ProposeArgs} from "@aztec/core/libraries/rollup/ProposeLib.sol";
import {RewardConfig} from "@aztec/core/libraries/rollup/RewardLib.sol";
import {RewardBoostConfig} from "@aztec/core/reward-boost/RewardBooster.sol";
import {IHaveVersion} from "@aztec/governance/interfaces/IRegistry.sol";
import {IRewardDistributor} from "@aztec/governance/interfaces/IRewardDistributor.sol";
import {Signature} from "@aztec/shared/libraries/SignatureLib.sol";
import {Timestamp, Slot, Epoch} from "@aztec/shared/libraries/TimeMath.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
struct PublicInputArgs {
bytes32 previousArchive;
bytes32 endArchive;
address proverId;
}
struct SubmitEpochRootProofArgs {
uint256 start; // inclusive
uint256 end; // inclusive
PublicInputArgs args;
bytes32[] fees;
CommitteeAttestations attestations; // attestations for the last block in epoch
bytes blobInputs;
bytes proof;
}
/**
* @notice Struct for storing flags for block header validation
* @param ignoreDA - True will ignore DA check, otherwise checks
*/
struct BlockHeaderValidationFlags {
bool ignoreDA;
}
struct GenesisState {
bytes32 vkTreeRoot;
bytes32 protocolContractTreeRoot;
bytes32 genesisArchiveRoot;
}
struct RollupConfigInput {
uint256 aztecSlotDuration;
uint256 aztecEpochDuration;
uint256 targetCommitteeSize;
uint256 lagInEpochs;
uint256 aztecProofSubmissionEpochs;
uint256 slashingQuorum;
uint256 slashingRoundSize;
uint256 slashingLifetimeInRounds;
uint256 slashingExecutionDelayInRounds;
uint256[3] slashAmounts;
uint256 slashingOffsetInRounds;
SlasherFlavor slasherFlavor;
address slashingVetoer;
uint256 slashingDisableDuration;
uint256 manaTarget;
uint256 exitDelaySeconds;
uint32 version;
EthValue provingCostPerMana;
RewardConfig rewardConfig;
RewardBoostConfig rewardBoostConfig;
StakingQueueConfig stakingQueueConfig;
uint256 localEjectionThreshold;
Timestamp earliestRewardsClaimableTimestamp;
}
struct RollupConfig {
bytes32 vkTreeRoot;
bytes32 protocolContractTreeRoot;
uint32 version;
IERC20 feeAsset;
IFeeJuicePortal feeAssetPortal;
IVerifier epochProofVerifier;
IInbox inbox;
IOutbox outbox;
}
struct RollupStore {
CompressedChainTips tips; // put first such that the struct slot structure is easy to follow for cheatcodes
mapping(uint256 blockNumber => bytes32 archive) archives;
// The following represents a circular buffer. Key is `blockNumber % size`.
mapping(uint256 circularIndex => CompressedTempBlockLog temp) tempBlockLogs;
RollupConfig config;
}
interface IRollupCore {
event L2BlockProposed(uint256 indexed blockNumber, bytes32 indexed archive, bytes32[] versionedBlobHashes);
event L2ProofVerified(uint256 indexed blockNumber, address indexed proverId);
event BlockInvalidated(uint256 indexed blockNumber);
event RewardConfigUpdated(RewardConfig rewardConfig);
event ManaTargetUpdated(uint256 indexed manaTarget);
event PrunedPending(uint256 provenBlockNumber, uint256 pendingBlockNumber);
event RewardsClaimableUpdated(bool isRewardsClaimable);
function setRewardsClaimable(bool _isRewardsClaimable) external;
function claimSequencerRewards(address _recipient) external returns (uint256);
function claimProverRewards(address _recipient, Epoch[] memory _epochs) external returns (uint256);
function prune() external;
function updateL1GasFeeOracle() external;
function setProvingCostPerMana(EthValue _provingCostPerMana) external;
function propose(
ProposeArgs calldata _args,
CommitteeAttestations memory _attestations,
address[] memory _signers,
Signature memory _attestationsAndSignersSignature,
bytes calldata _blobInput
) external;
function submitEpochRootProof(SubmitEpochRootProofArgs calldata _args) external;
function invalidateBadAttestation(
uint256 _blockNumber,
CommitteeAttestations memory _attestations,
address[] memory _committee,
uint256 _invalidIndex
) external;
function invalidateInsufficientAttestations(
uint256 _blockNumber,
CommitteeAttestations memory _attestations,
address[] memory _committee
) external;
function setRewardConfig(RewardConfig memory _config) external;
function updateManaTarget(uint256 _manaTarget) external;
// solhint-disable-next-line func-name-mixedcase
function L1_BLOCK_AT_GENESIS() external view returns (uint256);
}
interface IRollup is IRollupCore, IHaveVersion {
function validateHeaderWithAttestations(
ProposedHeader calldata _header,
CommitteeAttestations memory _attestations,
address[] memory _signers,
Signature memory _attestationsAndSignersSignature,
bytes32 _digest,
bytes32 _blobsHash,
BlockHeaderValidationFlags memory _flags
) external;
function canProposeAtTime(Timestamp _ts, bytes32 _archive, address _who) external returns (Slot, uint256);
function getTips() external view returns (ChainTips memory);
function status(uint256 _myHeaderBlockNumber)
external
view
returns (
uint256 provenBlockNumber,
bytes32 provenArchive,
uint256 pendingBlockNumber,
bytes32 pendingArchive,
bytes32 archiveOfMyBlock,
Epoch provenEpochNumber
);
function getEpochProofPublicInputs(
uint256 _start,
uint256 _end,
PublicInputArgs calldata _args,
bytes32[] calldata _fees,
bytes calldata _blobPublicInputs
) external view returns (bytes32[] memory);
function validateBlobs(bytes calldata _blobsInputs) external view returns (bytes32[] memory, bytes32, bytes[] memory);
function getManaBaseFeeComponentsAt(Timestamp _timestamp, bool _inFeeAsset)
external
view
returns (ManaBaseFeeComponents memory);
function getManaBaseFeeAt(Timestamp _timestamp, bool _inFeeAsset) external view returns (uint256);
function getL1FeesAt(Timestamp _timestamp) external view returns (L1FeeData memory);
function getFeeAssetPerEth() external view returns (FeeAssetPerEthE9);
function getEpochForBlock(uint256 _blockNumber) external view returns (Epoch);
function canPruneAtTime(Timestamp _ts) external view returns (bool);
function archive() external view returns (bytes32);
function archiveAt(uint256 _blockNumber) external view returns (bytes32);
function getProvenBlockNumber() external view returns (uint256);
function getPendingBlockNumber() external view returns (uint256);
function getBlock(uint256 _blockNumber) external view returns (BlockLog memory);
function getFeeHeader(uint256 _blockNumber) external view returns (FeeHeader memory);
function getBlobCommitmentsHash(uint256 _blockNumber) external view returns (bytes32);
function getCurrentBlobCommitmentsHash() external view returns (bytes32);
function getSharesFor(address _prover) external view returns (uint256);
function getSequencerRewards(address _sequencer) external view returns (uint256);
function getCollectiveProverRewardsForEpoch(Epoch _epoch) external view returns (uint256);
function getSpecificProverRewardsForEpoch(Epoch _epoch, address _prover) external view returns (uint256);
function getHasSubmitted(Epoch _epoch, uint256 _length, address _prover) external view returns (bool);
function getHasClaimed(address _prover, Epoch _epoch) external view returns (bool);
function getProofSubmissionEpochs() external view returns (uint256);
function getManaTarget() external view returns (uint256);
function getManaLimit() external view returns (uint256);
function getProvingCostPerManaInEth() external view returns (EthValue);
function getProvingCostPerManaInFeeAsset() external view returns (FeeAssetValue);
function getFeeAsset() external view returns (IERC20);
function getFeeAssetPortal() external view returns (IFeeJuicePortal);
function getRewardDistributor() external view returns (IRewardDistributor);
function getBurnAddress() external view returns (address);
function getInbox() external view returns (IInbox);
function getOutbox() external view returns (IOutbox);
function getRewardConfig() external view returns (RewardConfig memory);
function getBlockReward() external view returns (uint256);
function getEarliestRewardsClaimableTimestamp() external view returns (Timestamp);
function isRewardsClaimable() external view returns (bool);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {DataStructures} from "../../libraries/DataStructures.sol";
/**
* @title IOutbox
* @author Aztec Labs
* @notice Lives on L1 and is used to consume L2 -> L1 messages. Messages are inserted by the Rollup
* and will be consumed by the portal contracts.
*/
interface IOutbox {
event RootAdded(uint256 indexed l2BlockNumber, bytes32 indexed root);
event MessageConsumed(
uint256 indexed l2BlockNumber, bytes32 indexed root, bytes32 indexed messageHash, uint256 leafId
);
// docs:start:outbox_insert
/**
* @notice Inserts the root of a merkle tree containing all of the L2 to L1 messages in
* a block specified by _l2BlockNumber.
* @dev Only callable by the rollup contract
* @dev Emits `RootAdded` upon inserting the root successfully
* @param _l2BlockNumber - The L2 Block Number in which the L2 to L1 messages reside
* @param _root - The merkle root of the tree where all the L2 to L1 messages are leaves
*/
function insert(uint256 _l2BlockNumber, bytes32 _root) external;
// docs:end:outbox_insert
// docs:start:outbox_consume
/**
* @notice Consumes an entry from the Outbox
* @dev Only useable by portals / recipients of messages
* @dev Emits `MessageConsumed` when consuming messages
* @param _message - The L2 to L1 message
* @param _l2BlockNumber - The block number specifying the block that contains the message we want to consume
* @param _leafIndex - The index inside the merkle tree where the message is located
* @param _path - The sibling path used to prove inclusion of the message, the _path length directly depends
* on the total amount of L2 to L1 messages in the block. i.e. the length of _path is equal to the depth of the
* L1 to L2 message tree.
*/
function consume(
DataStructures.L2ToL1Msg calldata _message,
uint256 _l2BlockNumber,
uint256 _leafIndex,
bytes32[] calldata _path
) external;
// docs:end:outbox_consume
// docs:start:outbox_has_message_been_consumed_at_block_and_index
/**
* @notice Checks to see if an L2 to L1 message in a specific block has been consumed
* @dev - This function does not throw. Out-of-bounds access is considered valid, but will always return false
* @param _l2BlockNumber - The block number specifying the block that contains the message we want to check
* @param _leafId - The unique id of the message leaf
*/
function hasMessageBeenConsumedAtBlock(uint256 _l2BlockNumber, uint256 _leafId) external view returns (bool);
// docs:end:outbox_has_message_been_consumed_at_block_and_index
/**
* @notice Fetch the root data for a given block number
* Returns (0, 0) if the block is not proven
*
* @param _l2BlockNumber - The block number to fetch the root data for
*
* @return bytes32 - The root of the merkle tree containing the L2 to L1 messages
*/
function getRootData(uint256 _l2BlockNumber) external view returns (bytes32);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {DataStructures} from "@aztec/core/libraries/DataStructures.sol";
/**
* @title Hash library
* @author Aztec Labs
* @notice Library that contains helper functions to compute hashes for data structures and convert to field elements
* Using sha256 as the hash function since it hits a good balance between gas cost and circuit size.
*/
library Hash {
/**
* @notice Computes the sha256 hash of the L1 to L2 message and converts it to a field element
* @param _message - The L1 to L2 message to hash
* @return The hash of the provided message as a field element
*/
function sha256ToField(DataStructures.L1ToL2Msg memory _message) internal pure returns (bytes32) {
return sha256ToField(
abi.encode(_message.sender, _message.recipient, _message.content, _message.secretHash, _message.index)
);
}
/**
* @notice Computes the sha256 hash of the L2 to L1 message and converts it to a field element
* @param _message - The L2 to L1 message to hash
* @return The hash of the provided message as a field element
*/
function sha256ToField(DataStructures.L2ToL1Msg memory _message) internal pure returns (bytes32) {
return sha256ToField(
abi.encodePacked(
_message.sender.actor,
_message.sender.version,
_message.recipient.actor,
_message.recipient.chainId,
_message.content
)
);
}
/**
* @notice Computes the sha256 hash of the provided data and converts it to a field element
* @dev Truncating one byte to convert the hash to a field element. We prepend a byte rather than cast
* bytes31(bytes32) to match Noir's to_be_bytes.
* @param _data - The bytes to hash
* @return The hash of the provided data as a field element
*/
function sha256ToField(bytes memory _data) internal pure returns (bytes32) {
return bytes32(bytes.concat(new bytes(1), bytes31(sha256(_data))));
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Hash} from "@aztec/core/libraries/crypto/Hash.sol";
import {Errors} from "@aztec/core/libraries/Errors.sol";
/**
* @title Merkle Library
* @author Aztec Labs
* @notice Library that contains functions useful when interacting with Merkle Trees
*/
library MerkleLib {
/**
* @notice Verifies the membership of a leaf and path against an expected root.
* @dev In the case of a mismatched root, and subsequent inability to verify membership, this function throws.
* @param _path - The sibling path of the message as a leaf, used to prove message inclusion
* @param _leaf - The hash of the message we are trying to prove inclusion for
* @param _index - The index of the message inside the L2 to L1 message tree
* @param _expectedRoot - The expected root to check the validity of the message and sibling path with.
* @notice -
* E.g. A sibling path for a leaf at index 3 (L) in a tree of depth 3 (between 5 and 8 leafs) consists of the 3
* elements denoted as *'s
* d0: [ root ]
* d1: [ ] [*]
* d2: [*] [ ] [ ] [ ]
* d3: [ ] [ ] [*] [L] [ ] [ ] [ ] [ ].
* And the elements would be ordered as: [ d3_index_2, d2_index_0, d1_index_1 ].
*/
function verifyMembership(bytes32[] calldata _path, bytes32 _leaf, uint256 _index, bytes32 _expectedRoot)
internal
pure
{
bytes32 subtreeRoot = _leaf;
/// @notice - We use the indexAtHeight to see whether our child of the next subtree is at the left or the right side
uint256 indexAtHeight = _index;
for (uint256 height = 0; height < _path.length; height++) {
/// @notice - This affects the way we concatenate our two children to then hash and calculate the root, as any odd
/// indexes (index bit-masked with least significant bit) are right-sided children.
bool isRight = (indexAtHeight & 1) == 1;
subtreeRoot = isRight
? Hash.sha256ToField(bytes.concat(_path[height], subtreeRoot))
: Hash.sha256ToField(bytes.concat(subtreeRoot, _path[height]));
/// @notice - We divide by two here to get the index of the parent of the current subtreeRoot in its own layer
indexAtHeight >>= 1;
}
// Security: Ensure the index doesn't have bits set beyond the tree height
// This prevents replay attacks where an attacker could use index 8 with path length 2 to walk the same path as
// index 0.
require(indexAtHeight == 0, Errors.MerkleLib__InvalidIndexForPathLength());
require(subtreeRoot == _expectedRoot, Errors.MerkleLib__InvalidRoot(_expectedRoot, subtreeRoot, _leaf, _index));
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
/**
* @title Data Structures Library
* @author Aztec Labs
* @notice Library that contains data structures used throughout the Aztec protocol
*/
library DataStructures {
// docs:start:l1_actor
/**
* @notice Actor on L1.
* @param actor - The address of the actor
* @param chainId - The chainId of the actor
*/
struct L1Actor {
address actor;
uint256 chainId;
}
// docs:end:l1_actor
// docs:start:l2_actor
/**
* @notice Actor on L2.
* @param actor - The aztec address of the actor
* @param version - Ahe Aztec instance the actor is on
*/
struct L2Actor {
bytes32 actor;
uint256 version;
}
// docs:end:l2_actor
// docs:start:l1_to_l2_msg
/**
* @notice Struct containing a message from L1 to L2
* @param sender - The sender of the message
* @param recipient - The recipient of the message
* @param content - The content of the message (application specific) padded to bytes32 or hashed if larger.
* @param secretHash - The secret hash of the message (make it possible to hide when a specific message is consumed on
* L2).
* @param index - Global leaf index on the L1 to L2 messages tree.
*/
struct L1ToL2Msg {
L1Actor sender;
L2Actor recipient;
bytes32 content;
bytes32 secretHash;
uint256 index;
}
// docs:end:l1_to_l2_msg
// docs:start:l2_to_l1_msg
/**
* @notice Struct containing a message from L2 to L1
* @param sender - The sender of the message
* @param recipient - The recipient of the message
* @param content - The content of the message (application specific) padded to bytes32 or hashed if larger.
* @dev Not to be confused with L2ToL1Message in Noir circuits
*/
struct L2ToL1Msg {
DataStructures.L2Actor sender;
DataStructures.L1Actor recipient;
bytes32 content;
}
// docs:end:l2_to_l1_msg
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {SlashRound} from "@aztec/core/libraries/SlashRoundLib.sol";
import {Timestamp, Slot, Epoch} from "@aztec/core/libraries/TimeLib.sol";
/**
* @title Errors Library
* @author Aztec Labs
* @notice Library that contains errors used throughout the Aztec protocol
* Errors are prefixed with the contract name to make it easy to identify where the error originated
* when there are multiple contracts that could have thrown the error.
*
* Sigs are provided for easy reference, but don't trust; verify! run `forge inspect
* src/core/libraries/Errors.sol:Errors errors`
*/
library Errors {
// DEVNET related
error DevNet__NoPruningAllowed(); // 0x6984c590
error DevNet__InvalidProposer(address expected, address actual); // 0x11e6e6f7
// Inbox
error Inbox__Unauthorized(); // 0xe5336a6b
error Inbox__ActorTooLarge(bytes32 actor); // 0xa776a06e
error Inbox__VersionMismatch(uint256 expected, uint256 actual); // 0x47452014
error Inbox__ContentTooLarge(bytes32 content); // 0x47452014
error Inbox__SecretHashTooLarge(bytes32 secretHash); // 0xecde7e2c
error Inbox__MustBuildBeforeConsume(); // 0xc4901999
error Inbox__Ignition();
// Outbox
error Outbox__Unauthorized(); // 0x2c9490c2
error Outbox__InvalidChainId(); // 0x577ec7c4
error Outbox__VersionMismatch(uint256 expected, uint256 actual);
error Outbox__NothingToConsume(bytes32 messageHash); // 0xfb4fb506
error Outbox__IncompatibleEntryArguments(
bytes32 messageHash,
uint64 storedFee,
uint64 feePassed,
uint32 storedVersion,
uint32 versionPassed,
uint32 storedDeadline,
uint32 deadlinePassed
); // 0x5e789f34
error Outbox__RootAlreadySetAtBlock(uint256 l2BlockNumber); // 0x3eccfd3e
error Outbox__InvalidRecipient(address expected, address actual); // 0x57aad581
error Outbox__AlreadyNullified(uint256 l2BlockNumber, uint256 leafIndex); // 0xfd71c2d4
error Outbox__NothingToConsumeAtBlock(uint256 l2BlockNumber); // 0xa4508f22
error Outbox__BlockNotProven(uint256 l2BlockNumber); // 0x0e194a6d
error Outbox__BlockAlreadyProven(uint256 l2BlockNumber);
error Outbox__PathTooLong();
error Outbox__LeafIndexOutOfBounds(uint256 leafIndex, uint256 pathLength);
// Rollup
error Rollup__InsufficientBondAmount(uint256 minimum, uint256 provided); // 0xa165f276
error Rollup__InsufficientFundsInEscrow(uint256 required, uint256 available); // 0xa165f276
error Rollup__InvalidArchive(bytes32 expected, bytes32 actual); // 0xb682a40e
error Rollup__InvalidBlockNumber(uint256 expected, uint256 actual); // 0xe5edf847
error Rollup__InvalidInHash(bytes32 expected, bytes32 actual); // 0xcd6f4233
error Rollup__InvalidPreviousArchive(bytes32 expected, bytes32 actual); // 0xb682a40e
error Rollup__InvalidProof(); // 0xa5b2ba17
error Rollup__InvalidProposedArchive(bytes32 expected, bytes32 actual); // 0x32532e73
error Rollup__InvalidTimestamp(Timestamp expected, Timestamp actual); // 0x3132e895
error Rollup__InvalidAttestations();
error Rollup__AttestationsAreValid();
error Rollup__InvalidAttestationIndex();
error Rollup__BlockAlreadyProven();
error Rollup__BlockNotInPendingChain();
error Rollup__InvalidBlobHash(bytes32 expected, bytes32 actual); // 0x13031e6a
error Rollup__InvalidBlobProof(bytes32 blobHash); // 0x5ca17bef
error Rollup__NoEpochToProve(); // 0xcbaa3951
error Rollup__NonSequentialProving(); // 0x1e5be132
error Rollup__NothingToPrune(); // 0x850defd3
error Rollup__SlotAlreadyInChain(Slot lastSlot, Slot proposedSlot); // 0x83510bd0
error Rollup__TimestampInFuture(Timestamp max, Timestamp actual); // 0x89f30690
error Rollup__TimestampTooOld(); // 0x72ed9c81
error Rollup__TryingToProveNonExistingBlock(); // 0x34ef4954
error Rollup__UnavailableTxs(bytes32 txsHash); // 0x414906c3
error Rollup__NonZeroDaFee(); // 0xd9c75f52
error Rollup__InvalidBasisPointFee(uint256 basisPointFee); // 0x4292d136
error Rollup__InvalidManaBaseFee(uint256 expected, uint256 actual); // 0x73b6d896
error Rollup__StartAndEndNotSameEpoch(Epoch start, Epoch end); // 0xb64ec33e
error Rollup__StartIsNotFirstBlockOfEpoch(); // 0x4ef11e0d
error Rollup__StartIsNotBuildingOnProven(); // 0x4a59f42e
error Rollup__TooManyBlocksInEpoch(uint256 expected, uint256 actual); // 0x7d5b1408
error Rollup__NotPastDeadline(Epoch deadline, Epoch currentEpoch);
error Rollup__PastDeadline(Epoch deadline, Epoch currentEpoch);
error Rollup__ProverHaveAlreadySubmitted(address prover, Epoch epoch);
error Rollup__InvalidManaTarget(uint256 minimum, uint256 provided);
error Rollup__ManaLimitExceeded();
error Rollup__RewardsNotClaimable();
error Rollup__TooSoonToSetRewardsClaimable(uint256 earliestRewardsClaimableTimestamp, uint256 currentTimestamp);
error Rollup__InvalidFirstEpochProof();
error Rollup__InvalidCoinbase();
error Rollup__UnavailableTempBlockLog(uint256 blockNumber, uint256 pendingBlockNumber, uint256 upperLimit);
error Rollup__NoBlobsInBlock();
// ProposedHeaderLib
error HeaderLib__InvalidHeaderSize(uint256 expected, uint256 actual); // 0xf3ccb247
error HeaderLib__InvalidSlotNumber(Slot expected, Slot actual); // 0x09ba91ff
// MerkleLib
error MerkleLib__InvalidRoot(bytes32 expected, bytes32 actual, bytes32 leaf, uint256 leafIndex); // 0x5f216bf1
error MerkleLib__InvalidIndexForPathLength();
// SampleLib
error SampleLib__IndexOutOfBounds(uint256 requested, uint256 bound); // 0xa12fc559
error SampleLib__SampleLargerThanIndex(uint256 sample, uint256 index); // 0xa11b0f79
// Sequencer Selection (ValidatorSelection)
error ValidatorSelection__EpochNotSetup(); // 0x10816cae
error ValidatorSelection__InvalidProposer(address expected, address actual); // 0xa8843a68
error ValidatorSelection__MissingProposerSignature(address proposer, uint256 index);
error ValidatorSelection__InvalidDeposit(address attester, address proposer); // 0x533169bd
error ValidatorSelection__InsufficientAttestations(uint256 minimumNeeded, uint256 provided); // 0xaf47297f
error ValidatorSelection__InvalidCommitteeCommitment(bytes32 reconstructed, bytes32 expected); // 0xca8d5954
error ValidatorSelection__InsufficientValidatorSetSize(uint256 actual, uint256 expected); // 0xf4f28e99
error ValidatorSelection__ProposerIndexTooLarge(uint256 index);
// Staking
error Staking__AlreadyQueued(address _attester);
error Staking__QueueEmpty();
error Staking__DepositOutOfGas();
error Staking__AlreadyActive(address attester); // 0x5e206fa4
error Staking__QueueAlreadyFlushed(Epoch epoch); // 0x21148c78
error Staking__AlreadyRegistered(address instance, address attester);
error Staking__CannotSlashExitedStake(address); // 0x45bf4940
error Staking__FailedToRemove(address); // 0xa7d7baab
error Staking__InvalidDeposit(address attester, address proposer); // 0xf33fe8c6
error Staking__InvalidRecipient(address); // 0x7e2f7f1c
error Staking__InsufficientStake(uint256, uint256); // 0x903aee24
error Staking__NoOneToSlash(address); // 0x7e2f7f1c
error Staking__NotExiting(address); // 0xef566ee0
error Staking__InitiateWithdrawNeeded(address);
error Staking__NotSlasher(address, address); // 0x23a6f432
error Staking__NotWithdrawer(address, address); // 0x8e668e5d
error Staking__NothingToExit(address); // 0xd2aac9b6
error Staking__WithdrawalNotUnlockedYet(Timestamp, Timestamp); // 0x88e1826c
error Staking__WithdrawFailed(address); // 0x377422c1
error Staking__OutOfBounds(uint256, uint256); // 0x4bea6597
error Staking__NotRollup(address); // 0xf5509eb3
error Staking__RollupAlreadyRegistered(address); // 0x108a39c8
error Staking__InvalidRollupAddress(address); // 0xd876720e
error Staking__NotCanonical(address); // 0x6244212e
error Staking__InstanceDoesNotExist(address);
error Staking__InsufficientPower(uint256, uint256);
error Staking__AlreadyExiting(address);
error Staking__FatalError(string);
error Staking__NotOurProposal(uint256, address, address);
error Staking__IncorrectGovProposer(uint256);
error Staking__GovernanceAlreadySet();
error Staking__InsufficientBootstrapValidators(uint256 queueSize, uint256 bootstrapFlushSize);
error Staking__InvalidStakingQueueConfig();
error Staking__InvalidNormalFlushSizeQuotient();
// Fee Juice Portal
error FeeJuicePortal__AlreadyInitialized(); // 0xc7a172fe
error FeeJuicePortal__InvalidInitialization(); // 0xfd9b3208
error FeeJuicePortal__Unauthorized(); // 0x67e3691e
// Proof Commitment Escrow
error ProofCommitmentEscrow__InsufficientBalance(uint256 balance, uint256 requested); // 0x09b8b789
error ProofCommitmentEscrow__NotOwner(address caller); // 0x2ac332c1
error ProofCommitmentEscrow__WithdrawRequestNotReady(uint256 current, Timestamp readyAt); // 0xb32ab8a7
// FeeLib
error FeeLib__InvalidFeeAssetPriceModifier(); // 0xf2fb32ad
error FeeLib__AlreadyPreheated();
// SignatureLib (duplicated)
error SignatureLib__InvalidSignature(address, address); // 0xd9cbae6c
error AttestationLib__InvalidDataSize(uint256, uint256);
error AttestationLib__SignatureIndicesSizeMismatch(uint256, uint256);
error AttestationLib__SignaturesOrAddressesSizeMismatch(uint256, uint256);
error AttestationLib__SignersSizeMismatch(uint256, uint256);
error AttestationLib__NotASignatureAtIndex(uint256 index);
error AttestationLib__NotAnAddressAtIndex(uint256 index);
// RewardBooster
error RewardBooster__OnlyRollup(address caller);
error RewardLib__InvalidSequencerBps();
// TallySlashingProposer
error TallySlashingProposer__InvalidSignature();
error TallySlashingProposer__InvalidVoteLength(uint256 expected, uint256 actual);
error TallySlashingProposer__RoundAlreadyExecuted(SlashRound round);
error TallySlashingProposer__InvalidNumberOfCommittees(uint256 expected, uint256 actual);
error TallySlashingProposer__RoundNotComplete(SlashRound round);
error TallySlashingProposer__InvalidCommitteeSize(uint256 expected, uint256 actual);
error TallySlashingProposer__InvalidCommitteeCommitment();
error TallySlashingProposer__InvalidQuorumAndRoundSize(uint256 quorum, uint256 roundSize);
error TallySlashingProposer__QuorumMustBeGreaterThanZero();
error TallySlashingProposer__InvalidSlashAmounts(uint256[3] slashAmounts);
error TallySlashingProposer__LifetimeMustBeGreaterThanExecutionDelay(uint256 lifetime, uint256 executionDelay);
error TallySlashingProposer__LifetimeMustBeLessThanRoundabout(uint256 lifetime, uint256 roundabout);
error TallySlashingProposer__RoundSizeInEpochsMustBeGreaterThanZero(uint256 roundSizeInEpochs);
error TallySlashingProposer__RoundSizeTooLarge(uint256 roundSize, uint256 maxRoundSize);
error TallySlashingProposer__CommitteeSizeMustBeGreaterThanZero(uint256 committeeSize);
error TallySlashingProposer__SlashAmountTooLarge();
error TallySlashingProposer__VoteAlreadyCastInCurrentSlot(Slot slot);
error TallySlashingProposer__RoundOutOfRange(SlashRound round, SlashRound currentRound);
error TallySlashingProposer__RoundSizeMustBeMultipleOfEpochDuration(uint256 roundSize, uint256 epochDuration);
error TallySlashingProposer__VotingNotOpen(SlashRound currentRound);
error TallySlashingProposer__SlashOffsetMustBeGreaterThanZero(uint256 slashOffset);
error TallySlashingProposer__InvalidEpochIndex(uint256 epochIndex, uint256 roundSizeInEpochs);
error TallySlashingProposer__VoteSizeTooBig(uint256 voteSize, uint256 maxSize);
error TallySlashingProposer__VotesMustBeMultipleOf4(uint256 votes);
// SlashPayloadLib
error SlashPayload_ArraySizeMismatch(uint256 expected, uint256 actual);
// OpenZeppelin dependencies
// ECDSA
error ECDSAInvalidSignature();
error ECDSAInvalidSignatureLength(uint256 length);
error ECDSAInvalidSignatureS(bytes32 s);
// Ownable
error OwnableUnauthorizedAccount(address account);
error OwnableInvalidOwner(address owner);
// Checkpoints
error CheckpointUnorderedInsertion();
// ERC20
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
error ERC20InvalidSender(address sender);
error ERC20InvalidReceiver(address receiver);
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
error ERC20InvalidApprover(address approver);
error ERC20InvalidSpender(address spender);
// SafeCast
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
error SafeCastOverflowedIntToUint(int256 value);
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
error SafeCastOverflowedUintToInt(uint256 value);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/BitMaps.sol)
pragma solidity ^0.8.20;
/**
* @dev Library for managing uint256 to bool mapping in a compact and efficient way, provided the keys are sequential.
* Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
*
* BitMaps pack 256 booleans across each bit of a single 256-bit slot of `uint256` type.
* Hence booleans corresponding to 256 _sequential_ indices would only consume a single slot,
* unlike the regular `bool` which would consume an entire slot for a single value.
*
* This results in gas savings in two ways:
*
* - Setting a zero value to non-zero only once every 256 times
* - Accessing the same warm slot for every 256 _sequential_ indices
*/
library BitMaps {
struct BitMap {
mapping(uint256 bucket => uint256) _data;
}
/**
* @dev Returns whether the bit at `index` is set.
*/
function get(BitMap storage bitmap, uint256 index) internal view returns (bool) {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
return bitmap._data[bucket] & mask != 0;
}
/**
* @dev Sets the bit at `index` to the boolean `value`.
*/
function setTo(BitMap storage bitmap, uint256 index, bool value) internal {
if (value) {
set(bitmap, index);
} else {
unset(bitmap, index);
}
}
/**
* @dev Sets the bit at `index`.
*/
function set(BitMap storage bitmap, uint256 index) internal {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
bitmap._data[bucket] |= mask;
}
/**
* @dev Unsets the bit at `index`.
*/
function unset(BitMap storage bitmap, uint256 index) internal {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
bitmap._data[bucket] &= ~mask;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IRollup} from "@aztec/core/interfaces/IRollup.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {IInbox} from "./messagebridge/IInbox.sol";
interface IFeeJuicePortal {
event DepositToAztecPublic(bytes32 indexed to, uint256 amount, bytes32 secretHash, bytes32 key, uint256 index);
event FeesDistributed(address indexed to, uint256 amount);
function distributeFees(address _to, uint256 _amount) external;
function depositToAztecPublic(bytes32 _to, uint256 _amount, bytes32 _secretHash) external returns (bytes32, uint256);
// solhint-disable-next-line func-name-mixedcase
function UNDERLYING() external view returns (IERC20);
// solhint-disable-next-line func-name-mixedcase
function L2_TOKEN_ADDRESS() external view returns (bytes32);
// solhint-disable-next-line func-name-mixedcase
function VERSION() external view returns (uint256);
// solhint-disable-next-line func-name-mixedcase
function INBOX() external view returns (IInbox);
// solhint-disable-next-line func-name-mixedcase
function ROLLUP() external view returns (IRollup);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
enum SlasherFlavor {
NONE,
TALLY,
EMPIRE
}
interface ISlasher {
event VetoedPayload(address indexed payload);
event SlashingDisabled(uint256 disabledUntil);
function slash(IPayload _payload) external returns (bool);
function vetoPayload(IPayload _payload) external returns (bool);
function setSlashingEnabled(bool _enabled) external;
function isSlashingEnabled() external view returns (bool);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
interface IVerifier {
function verify(bytes calldata _proof, bytes32[] calldata _publicInputs) external view returns (bool);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {DataStructures} from "../../libraries/DataStructures.sol";
/**
* @title Inbox
* @author Aztec Labs
* @notice Lives on L1 and is used to pass messages into the rollup from L1.
*/
interface IInbox {
struct InboxState {
// Rolling hash of all messages inserted into the inbox.
// Used by clients to check for consistency.
bytes16 rollingHash;
// This value is not used much by the contract, but it is useful for synching the node faster
// as it can more easily figure out if it can just skip looking for events for a time period.
uint64 totalMessagesInserted;
// Number of a tree which is currently being filled
uint64 inProgress;
}
/**
* @notice Emitted when a message is sent
* @param l2BlockNumber - The L2 block number in which the message is included
* @param index - The index of the message in the L1 to L2 messages tree
* @param hash - The hash of the message
* @param rollingHash - The rolling hash of all messages inserted into the inbox
*/
event MessageSent(uint256 indexed l2BlockNumber, uint256 index, bytes32 indexed hash, bytes16 rollingHash);
event InboxSynchronized(uint256 indexed inProgress);
// docs:start:send_l1_to_l2_message
/**
* @notice Inserts a new message into the Inbox
* @dev Emits `MessageSent` with data for easy access by the sequencer
* @param _recipient - The recipient of the message
* @param _content - The content of the message (application specific)
* @param _secretHash - The secret hash of the message (make it possible to hide when a specific message is consumed
* on L2)
* @return The key of the message in the set and its leaf index in the tree
*/
function sendL2Message(DataStructures.L2Actor memory _recipient, bytes32 _content, bytes32 _secretHash)
external
returns (bytes32, uint256);
// docs:end:send_l1_to_l2_message
// docs:start:consume
/**
* @notice Consumes the current tree, and starts a new one if needed
* @dev Only callable by the rollup contract
* @dev In the first iteration we return empty tree root because first block's messages tree is always
* empty because there has to be a 1 block lag to prevent sequencer DOS attacks
*
* @param _toConsume - The block number to consume
*
* @return The root of the consumed tree
*/
function consume(uint256 _toConsume) external returns (bytes32);
// docs:end:consume
function catchUp(uint256 _pendingBlockNumber) external;
function getFeeAssetPortal() external view returns (address);
function getRoot(uint256 _blockNumber) external view returns (bytes32);
function getState() external view returns (InboxState memory);
function getTotalMessagesInserted() external view returns (uint64);
function getInProgress() external view returns (uint64);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {CompressedFeeHeader, FeeHeader, FeeHeaderLib} from "@aztec/core/libraries/compressed-data/fees/FeeStructs.sol";
import {CompressedSlot, CompressedTimeMath} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {Slot} from "@aztec/shared/libraries/TimeMath.sol";
/**
* @notice Struct for storing block data, set in proposal.
* @param archive - Archive tree root of the block
* @param headerHash - Hash of the proposed block header
* @param blobCommitmentsHash - H(...H(H(commitment_0), commitment_1).... commitment_n) - used to validate we are using
* the same blob commitments on L1 and in the rollup circuit
* @param attestationsHash - Hash of the attestations for this block
* @param payloadDigest - Digest of the proposal payload that was attested to
* @param slotNumber - This block's slot
*/
struct BlockLog {
bytes32 archive;
bytes32 headerHash;
bytes32 blobCommitmentsHash;
bytes32 attestationsHash;
bytes32 payloadDigest;
Slot slotNumber;
FeeHeader feeHeader;
}
struct TempBlockLog {
bytes32 headerHash;
bytes32 blobCommitmentsHash;
bytes32 attestationsHash;
bytes32 payloadDigest;
Slot slotNumber;
FeeHeader feeHeader;
}
struct CompressedTempBlockLog {
bytes32 headerHash;
bytes32 blobCommitmentsHash;
bytes32 attestationsHash;
bytes32 payloadDigest;
CompressedSlot slotNumber;
CompressedFeeHeader feeHeader;
}
library CompressedTempBlockLogLib {
using CompressedTimeMath for Slot;
using CompressedTimeMath for CompressedSlot;
using FeeHeaderLib for FeeHeader;
using FeeHeaderLib for CompressedFeeHeader;
function compress(TempBlockLog memory _blockLog) internal pure returns (CompressedTempBlockLog memory) {
return CompressedTempBlockLog({
headerHash: _blockLog.headerHash,
blobCommitmentsHash: _blockLog.blobCommitmentsHash,
attestationsHash: _blockLog.attestationsHash,
payloadDigest: _blockLog.payloadDigest,
slotNumber: _blockLog.slotNumber.compress(),
feeHeader: _blockLog.feeHeader.compress()
});
}
function decompress(CompressedTempBlockLog memory _compressedBlockLog) internal pure returns (TempBlockLog memory) {
return TempBlockLog({
headerHash: _compressedBlockLog.headerHash,
blobCommitmentsHash: _compressedBlockLog.blobCommitmentsHash,
attestationsHash: _compressedBlockLog.attestationsHash,
payloadDigest: _compressedBlockLog.payloadDigest,
slotNumber: _compressedBlockLog.slotNumber.decompress(),
feeHeader: _compressedBlockLog.feeHeader.decompress()
});
}
}// SPDX-License-Identifier: Apache-2.0
pragma solidity >=0.8.27;
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
type CompressedStakingQueueConfig is uint256;
/**
* If the number of validators in the rollup is 0, and the number of validators in the queue is less than
* `bootstrapValidatorSetSize`, then `getEntryQueueFlushSize` will return 0.
*
* If the number of validators in the rollup is 0, and the number of validators in the queue is greater than or equal to
* `bootstrapValidatorSetSize`, then `getEntryQueueFlushSize` will return `bootstrapFlushSize`.
*
* If the number of validators in the rollup is greater than 0 and less than `bootstrapValidatorSetSize`, then
* `getEntryQueueFlushSize` will return `bootstrapFlushSize`.
*
* If the number of validators in the rollup is greater than or equal to `bootstrapValidatorSetSize`, then
* `getEntryQueueFlushSize` will return Max( `normalFlushSizeMin`, `activeAttesterCount` / `normalFlushSizeQuotient`).
*
* NOTE: If the normalFlushSizeMin is 0 and the validator set is empty, above will return max(0, 0) and it won't be
* possible to add validators. This can close the queue even if there are members in the validator set if a very high
* `normalFlushSizeQuotient` is used.
*
* NOTE: We will NEVER flush more than `maxQueueFlushSize` validators: it is applied as a Max at the end of every
* calculation.
* This can be used to prevent a situation where flushing the queue would exceed the block gas limit.
*/
struct StakingQueueConfig {
uint256 bootstrapValidatorSetSize;
uint256 bootstrapFlushSize;
uint256 normalFlushSizeMin;
uint256 normalFlushSizeQuotient;
uint256 maxQueueFlushSize;
}
library StakingQueueConfigLib {
using SafeCast for uint256;
uint256 private constant MASK_32BIT = 0xFFFFFFFF;
function compress(StakingQueueConfig memory _config) internal pure returns (CompressedStakingQueueConfig) {
uint256 value = 0;
value |= uint256(_config.maxQueueFlushSize.toUint32());
value |= uint256(_config.normalFlushSizeQuotient.toUint32()) << 32;
value |= uint256(_config.normalFlushSizeMin.toUint32()) << 64;
value |= uint256(_config.bootstrapFlushSize.toUint32()) << 96;
value |= uint256(_config.bootstrapValidatorSetSize.toUint32()) << 128;
return CompressedStakingQueueConfig.wrap(value);
}
function decompress(CompressedStakingQueueConfig _compressedConfig) internal pure returns (StakingQueueConfig memory) {
uint256 value = CompressedStakingQueueConfig.unwrap(_compressedConfig);
return StakingQueueConfig({
bootstrapValidatorSetSize: (value >> 128) & MASK_32BIT,
bootstrapFlushSize: (value >> 96) & MASK_32BIT,
normalFlushSizeMin: (value >> 64) & MASK_32BIT,
normalFlushSizeQuotient: (value >> 32) & MASK_32BIT,
maxQueueFlushSize: value & MASK_32BIT
});
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
struct ChainTips {
uint256 pendingBlockNumber;
uint256 provenBlockNumber;
}
type CompressedChainTips is uint256;
library ChainTipsLib {
using SafeCast for uint256;
uint256 internal constant PENDING_BLOCK_NUMBER_MASK =
0xffffffffffffffffffffffffffffffff00000000000000000000000000000000;
uint256 internal constant PROVEN_BLOCK_NUMBER_MASK = 0xffffffffffffffffffffffffffffffff;
function getPendingBlockNumber(CompressedChainTips _compressedChainTips) internal pure returns (uint256) {
return CompressedChainTips.unwrap(_compressedChainTips) >> 128;
}
function getProvenBlockNumber(CompressedChainTips _compressedChainTips) internal pure returns (uint256) {
return CompressedChainTips.unwrap(_compressedChainTips) & PROVEN_BLOCK_NUMBER_MASK;
}
function updatePendingBlockNumber(CompressedChainTips _compressedChainTips, uint256 _pendingBlockNumber)
internal
pure
returns (CompressedChainTips)
{
uint256 value = CompressedChainTips.unwrap(_compressedChainTips) & ~PENDING_BLOCK_NUMBER_MASK;
return CompressedChainTips.wrap(value | (uint256(_pendingBlockNumber.toUint128()) << 128));
}
function updateProvenBlockNumber(CompressedChainTips _compressedChainTips, uint256 _provenBlockNumber)
internal
pure
returns (CompressedChainTips)
{
uint256 value = CompressedChainTips.unwrap(_compressedChainTips) & ~PROVEN_BLOCK_NUMBER_MASK;
return CompressedChainTips.wrap(value | _provenBlockNumber.toUint128());
}
function compress(ChainTips memory _chainTips) internal pure returns (CompressedChainTips) {
// We are doing cast to uint128 but inside a uint256 to not wreck the shifting.
uint256 pending = _chainTips.pendingBlockNumber.toUint128();
uint256 proven = _chainTips.provenBlockNumber.toUint128();
return CompressedChainTips.wrap((pending << 128) | proven);
}
function decompress(CompressedChainTips _compressedChainTips) internal pure returns (ChainTips memory) {
return ChainTips({
pendingBlockNumber: getPendingBlockNumber(_compressedChainTips),
provenBlockNumber: getProvenBlockNumber(_compressedChainTips)
});
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity ^0.8.27;
import {Errors} from "@aztec/core/libraries/Errors.sol";
import {Signature, SignatureLib} from "@aztec/shared/libraries/SignatureLib.sol";
uint256 constant SIGNATURE_LENGTH = 65; // v (1) + r (32) + s (32)
uint256 constant ADDRESS_LENGTH = 20;
/**
* @notice The domain separator for the signatures
*/
enum SignatureDomainSeparator {
blockProposal,
blockAttestation,
attestationsAndSigners
}
// A committee attestation can be made up of a signature and an address.
// Committee members that have attested will produce a signature, and if they have not attested, the signature will be
// empty and an address provided.
struct CommitteeAttestation {
address addr;
Signature signature;
}
struct CommitteeAttestations {
// bitmap of which indices are signatures
bytes signatureIndices;
// tightly packed signatures and addresses
bytes signaturesOrAddresses;
}
library AttestationLib {
using SignatureLib for Signature;
/**
* @notice Checks if the given CommitteeAttestations is empty
* Wll return true if either component is empty as they are needed together.
* @param _attestations - The committee attestations
* @return True if the committee attestations are empty, false otherwise
*/
function isEmpty(CommitteeAttestations memory _attestations) internal pure returns (bool) {
return _attestations.signatureIndices.length == 0 || _attestations.signaturesOrAddresses.length == 0;
}
/**
* @notice Checks if the given index in the CommitteeAttestations is a signature
* @param _attestations - The committee attestations
* @param _index - The index to check
* @return True if the index is a signature, false otherwise
*
* @dev The signatureIndices is a bitmap of which indices are signatures.
* The index is a signature if the bit at the index is 1.
* The index is an address if the bit at the index is 0.
*
* See its use over in ValidatorSelectionLib.sol
*/
function isSignature(CommitteeAttestations memory _attestations, uint256 _index) internal pure returns (bool) {
uint256 byteIndex = _index / 8;
uint256 shift = 7 - (_index % 8);
return (uint8(_attestations.signatureIndices[byteIndex]) >> shift) & 1 == 1;
}
/**
* @notice Gets the signature at the given index
* @param _attestations - The committee attestations
* @param _index - The index of the signature to get
*/
function getSignature(CommitteeAttestations memory _attestations, uint256 _index)
internal
pure
returns (Signature memory)
{
bytes memory signaturesOrAddresses = _attestations.signaturesOrAddresses;
require(isSignature(_attestations, _index), Errors.AttestationLib__NotASignatureAtIndex(_index));
uint256 dataPtr;
assembly {
// Skip length
dataPtr := add(signaturesOrAddresses, 0x20)
}
// Move to the start of the signature
for (uint256 i = 0; i < _index; ++i) {
dataPtr += isSignature(_attestations, i) ? SIGNATURE_LENGTH : ADDRESS_LENGTH;
}
uint8 v;
bytes32 r;
bytes32 s;
assembly {
v := byte(0, mload(dataPtr))
dataPtr := add(dataPtr, 1)
r := mload(dataPtr)
dataPtr := add(dataPtr, 32)
s := mload(dataPtr)
}
return Signature({v: v, r: r, s: s});
}
/**
* @notice Gets the address at the given index
* @param _attestations - The committee attestations
* @param _index - The index of the address to get
*/
function getAddress(CommitteeAttestations memory _attestations, uint256 _index) internal pure returns (address) {
bytes memory signaturesOrAddresses = _attestations.signaturesOrAddresses;
require(!isSignature(_attestations, _index), Errors.AttestationLib__NotAnAddressAtIndex(_index));
uint256 dataPtr;
assembly {
// Skip length
dataPtr := add(signaturesOrAddresses, 0x20)
}
// Move to the start of the signature
for (uint256 i = 0; i < _index; ++i) {
dataPtr += isSignature(_attestations, i) ? SIGNATURE_LENGTH : ADDRESS_LENGTH;
}
address addr;
assembly {
addr := shr(96, mload(dataPtr))
}
return addr;
}
/**
* Recovers the committee from the addresses in the attestations and signers.
*
* @custom:reverts SignatureIndicesSizeMismatch if the signature indices have a wrong size
* @custom:reverts OutOfBounds throws if reading data beyond the `_attestations`
* @custom:reverts SignaturesOrAddressesSizeMismatch if the signatures or addresses object has wrong size
*
* @param _attestations - The committee attestations
* @param _signers The addresses of the committee members that signed the attestations. Provided in order to not have
* to recover them from their attestations' signatures (and hence save gas). The addresses of the non-signing
* committee members are directly included in the attestations.
* @param _length - The number of addresses to return, should match the number of committee members
* @return The addresses of the committee members.
*/
function reconstructCommitteeFromSigners(
CommitteeAttestations memory _attestations,
address[] memory _signers,
uint256 _length
) internal pure returns (address[] memory) {
uint256 bitmapBytes = (_length + 7) / 8; // Round up to nearest byte
require(
bitmapBytes == _attestations.signatureIndices.length,
Errors.AttestationLib__SignatureIndicesSizeMismatch(bitmapBytes, _attestations.signatureIndices.length)
);
// To get a ref that we can easily use with the assembly down below.
bytes memory signaturesOrAddresses = _attestations.signaturesOrAddresses;
address[] memory addresses = new address[](_length);
uint256 signersIndex;
uint256 dataPtr;
uint256 currentByte;
uint256 bitMask;
assembly {
// Skip length
dataPtr := add(signaturesOrAddresses, 0x20)
}
uint256 offset = dataPtr;
for (uint256 i = 0; i < _length; ++i) {
// Load new byte every 8 iterations
if (i % 8 == 0) {
uint256 byteIndex = i / 8;
currentByte = uint8(_attestations.signatureIndices[byteIndex]);
bitMask = 128; // 0b10000000
}
bool isSignatureFlag = (currentByte & bitMask) != 0;
bitMask >>= 1;
if (isSignatureFlag) {
dataPtr += SIGNATURE_LENGTH;
addresses[i] = _signers[signersIndex];
signersIndex++;
} else {
address addr;
assembly {
addr := shr(96, mload(dataPtr))
dataPtr := add(dataPtr, 20)
}
addresses[i] = addr;
}
}
// Ensure that the size of data provided actually matches what we expect
uint256 sizeOfSignaturesAndAddresses =
(signersIndex * SIGNATURE_LENGTH) + ((_length - signersIndex) * ADDRESS_LENGTH);
require(
sizeOfSignaturesAndAddresses == _attestations.signaturesOrAddresses.length,
Errors.AttestationLib__SignaturesOrAddressesSizeMismatch(
sizeOfSignaturesAndAddresses, _attestations.signaturesOrAddresses.length
)
);
require(signersIndex == _signers.length, Errors.AttestationLib__SignersSizeMismatch(signersIndex, _signers.length));
// Ensure that the reads were within the boundaries of the data, and that we have read all the data.
// This check is an extra precaution. There are two cases, we we would end up with an invalid
// read, and both should be covered by the above checks.
// 1. If trying to read beyond the expected data, the bitmap must have more ones than signatures,
// but this will make the the `sizeOfSignaturesAndAddresses` larger than passed data.
// 2. If trying to read less than expected data, the bitmap must have fewer ones than signatures,
// but this will make the the `sizeOfSignaturesAndAddresses` smaller than passed data.
uint256 upperLimit = offset + _attestations.signaturesOrAddresses.length;
require(dataPtr == upperLimit, Errors.AttestationLib__InvalidDataSize(dataPtr - offset, upperLimit - offset));
return addresses;
}
function getAttestationsAndSignersDigest(CommitteeAttestations memory _attestations, address[] memory _signers)
internal
pure
returns (bytes32)
{
return keccak256(abi.encode(SignatureDomainSeparator.attestationsAndSigners, _attestations, _signers));
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {BlobLib} from "@aztec-blob-lib/BlobLib.sol";
import {
EthValue,
FeeAssetValue,
FeeAssetPerEthE9,
CompressedFeeConfig,
FeeConfigLib,
FeeConfig,
PriceLib
} from "@aztec/core/libraries/compressed-data/fees/FeeConfig.sol";
import {
L1FeeData,
CompressedL1FeeData,
L1GasOracleValues,
FeeStructsLib,
FeeHeader,
CompressedFeeHeader,
FeeHeaderLib
} from "@aztec/core/libraries/compressed-data/fees/FeeStructs.sol";
import {CompressedSlot, CompressedTimeMath} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {Math} from "@oz/utils/math/Math.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {SignedMath} from "@oz/utils/math/SignedMath.sol";
import {Errors} from "./../Errors.sol";
import {Slot, Timestamp, TimeLib} from "./../TimeLib.sol";
import {STFLib} from "./STFLib.sol";
// The lowest number of fee asset per eth is 10 with a precision of 1e9.
uint256 constant MINIMUM_FEE_ASSET_PER_ETH = 10e9;
uint256 constant MAX_FEE_ASSET_PRICE_MODIFIER = 1e6;
uint256 constant FEE_ASSET_PRICE_UPDATE_FRACTION = 100e6;
uint256 constant L1_GAS_PER_BLOCK_PROPOSED = 300_000;
uint256 constant L1_GAS_PER_EPOCH_VERIFIED = 1_000_000;
uint256 constant MINIMUM_CONGESTION_MULTIPLIER = 1e9;
// The magic values are used to have the fakeExponential case where
// (numerator / denominator) is close to 0.117, as that leads to ~1.125 multiplier
// per increase by TARGET of the numerator;
uint256 constant MAGIC_CONGESTION_VALUE_DIVISOR = 1e8;
uint256 constant MAGIC_CONGESTION_VALUE_MULTIPLIER = 854_700_854;
uint256 constant BLOB_GAS_PER_BLOB = 2 ** 17;
uint256 constant BLOBS_PER_BLOCK = 3;
struct OracleInput {
int256 feeAssetPriceModifier;
}
struct ManaBaseFeeComponents {
uint256 congestionCost;
uint256 congestionMultiplier;
uint256 sequencerCost;
uint256 proverCost;
}
struct FeeStore {
CompressedFeeConfig config;
L1GasOracleValues l1GasOracleValues;
mapping(uint256 blockNumber => CompressedFeeHeader feeHeader) feeHeaders;
}
library FeeLib {
using Math for uint256;
using SafeCast for int256;
using SafeCast for uint256;
using SignedMath for int256;
using PriceLib for EthValue;
using TimeLib for Slot;
using TimeLib for Timestamp;
using FeeHeaderLib for FeeHeader;
using FeeHeaderLib for CompressedFeeHeader;
using CompressedTimeMath for CompressedSlot;
using CompressedTimeMath for Slot;
using FeeStructsLib for L1FeeData;
using FeeStructsLib for CompressedL1FeeData;
using FeeConfigLib for FeeConfig;
using FeeConfigLib for CompressedFeeConfig;
Slot internal constant LIFETIME = Slot.wrap(5);
Slot internal constant LAG = Slot.wrap(2);
bytes32 private constant FEE_STORE_POSITION = keccak256("aztec.fee.storage");
function initialize(uint256 _manaTarget, EthValue _provingCostPerMana) internal {
FeeStore storage feeStore = getStorage();
feeStore.config = FeeConfig({
manaTarget: _manaTarget,
congestionUpdateFraction: _manaTarget * MAGIC_CONGESTION_VALUE_MULTIPLIER / MAGIC_CONGESTION_VALUE_DIVISOR,
provingCostPerMana: _provingCostPerMana
}).compress();
feeStore.l1GasOracleValues = L1GasOracleValues({
pre: L1FeeData({baseFee: 1 gwei, blobFee: 1}).compress(),
post: L1FeeData({baseFee: block.basefee, blobFee: BlobLib.getBlobBaseFee()}).compress(),
slotOfChange: LIFETIME.compress()
});
}
function updateManaTarget(uint256 _manaTarget) internal {
FeeStore storage feeStore = getStorage();
FeeConfig memory config = feeStore.config.decompress();
config.manaTarget = _manaTarget;
config.congestionUpdateFraction = _manaTarget * MAGIC_CONGESTION_VALUE_MULTIPLIER / MAGIC_CONGESTION_VALUE_DIVISOR;
feeStore.config = config.compress();
}
function updateProvingCostPerMana(EthValue _provingCostPerMana) internal {
FeeStore storage feeStore = getStorage();
FeeConfig memory config = feeStore.config.decompress();
config.provingCostPerMana = _provingCostPerMana;
feeStore.config = config.compress();
}
function updateL1GasFeeOracle() internal {
Slot slot = Timestamp.wrap(block.timestamp).slotFromTimestamp();
// The slot where we find a new queued value acceptable
FeeStore storage feeStore = getStorage();
Slot acceptableSlot = feeStore.l1GasOracleValues.slotOfChange.decompress() + (LIFETIME - LAG);
if (slot < acceptableSlot) {
return;
}
feeStore.l1GasOracleValues = L1GasOracleValues({
pre: feeStore.l1GasOracleValues.post,
post: L1FeeData({baseFee: block.basefee, blobFee: BlobLib.getBlobBaseFee()}).compress(),
slotOfChange: (slot + LAG).compress()
});
}
function computeFeeHeader(
uint256 _blockNumber,
int256 _feeAssetPriceModifier,
uint256 _manaUsed,
uint256 _congestionCost,
uint256 _proverCost
) internal view returns (FeeHeader memory) {
require(
SignedMath.abs(_feeAssetPriceModifier) <= MAX_FEE_ASSET_PRICE_MODIFIER,
Errors.FeeLib__InvalidFeeAssetPriceModifier()
);
CompressedFeeHeader parentFeeHeader = STFLib.getFeeHeader(_blockNumber - 1);
return FeeHeader({
excessMana: FeeLib.computeExcessMana(parentFeeHeader),
feeAssetPriceNumerator: FeeLib.clampedAdd(parentFeeHeader.getFeeAssetPriceNumerator(), _feeAssetPriceModifier),
manaUsed: _manaUsed,
congestionCost: _congestionCost,
proverCost: _proverCost
});
}
function getL1FeesAt(Timestamp _timestamp) internal view returns (L1FeeData memory) {
FeeStore storage feeStore = getStorage();
return _timestamp.slotFromTimestamp() < feeStore.l1GasOracleValues.slotOfChange.decompress()
? feeStore.l1GasOracleValues.pre.decompress()
: feeStore.l1GasOracleValues.post.decompress();
}
function getManaBaseFeeComponentsAt(uint256 _blockOfInterest, Timestamp _timestamp, bool _inFeeAsset)
internal
view
returns (ManaBaseFeeComponents memory)
{
FeeStore storage feeStore = getStorage();
uint256 manaTarget = feeStore.config.getManaTarget();
if (manaTarget == 0) {
return ManaBaseFeeComponents({sequencerCost: 0, proverCost: 0, congestionCost: 0, congestionMultiplier: 0});
}
EthValue sequencerCostPerMana;
EthValue proverCostPerMana;
EthValue total;
{
L1FeeData memory fees = FeeLib.getL1FeesAt(_timestamp);
// Sequencer cost per mana
{
uint256 ethUsed =
(L1_GAS_PER_BLOCK_PROPOSED * fees.baseFee) + (BLOBS_PER_BLOCK * BLOB_GAS_PER_BLOB * fees.blobFee);
sequencerCostPerMana = EthValue.wrap(Math.mulDiv(ethUsed, 1, manaTarget, Math.Rounding.Ceil));
}
// Prover cost per mana
{
proverCostPerMana = EthValue.wrap(
Math.mulDiv(
Math.mulDiv(L1_GAS_PER_EPOCH_VERIFIED, fees.baseFee, TimeLib.getStorage().epochDuration, Math.Rounding.Ceil),
1,
manaTarget,
Math.Rounding.Ceil
)
) + feeStore.config.getProvingCostPerMana();
}
total = sequencerCostPerMana + proverCostPerMana;
}
CompressedFeeHeader parentFeeHeader = STFLib.getFeeHeader(_blockOfInterest);
uint256 excessMana =
FeeLib.clampedAdd(parentFeeHeader.getExcessMana() + parentFeeHeader.getManaUsed(), -int256(manaTarget));
uint256 congestionMultiplier_ = congestionMultiplier(excessMana);
EthValue congestionCost = EthValue.wrap(
Math.mulDiv(EthValue.unwrap(total), congestionMultiplier_, MINIMUM_CONGESTION_MULTIPLIER, Math.Rounding.Floor)
) - total;
FeeAssetPerEthE9 feeAssetPrice =
_inFeeAsset ? FeeLib.getFeeAssetPerEthAtBlock(_blockOfInterest) : FeeAssetPerEthE9.wrap(1e9);
return ManaBaseFeeComponents({
sequencerCost: FeeAssetValue.unwrap(sequencerCostPerMana.toFeeAsset(feeAssetPrice)),
proverCost: FeeAssetValue.unwrap(proverCostPerMana.toFeeAsset(feeAssetPrice)),
congestionCost: FeeAssetValue.unwrap(congestionCost.toFeeAsset(feeAssetPrice)),
congestionMultiplier: congestionMultiplier_
});
}
function isTxsEnabled() internal view returns (bool) {
// If the target is 0, the limit is 0. And no transactions can enter
return getManaTarget() > 0;
}
function getManaTarget() internal view returns (uint256) {
return getStorage().config.getManaTarget();
}
function getManaLimit() internal view returns (uint256) {
FeeStore storage feeStore = getStorage();
return feeStore.config.getManaTarget() * 2;
}
function getProvingCostPerMana() internal view returns (EthValue) {
return getStorage().config.getProvingCostPerMana();
}
function getFeeAssetPerEthAtBlock(uint256 _blockNumber) internal view returns (FeeAssetPerEthE9) {
return getFeeAssetPerEth(STFLib.getFeeHeader(_blockNumber).getFeeAssetPriceNumerator());
}
function computeExcessMana(CompressedFeeHeader _feeHeader) internal view returns (uint256) {
FeeStore storage feeStore = getStorage();
return clampedAdd(_feeHeader.getExcessMana() + _feeHeader.getManaUsed(), -int256(feeStore.config.getManaTarget()));
}
function congestionMultiplier(uint256 _numerator) internal view returns (uint256) {
FeeStore storage feeStore = getStorage();
return fakeExponential(MINIMUM_CONGESTION_MULTIPLIER, _numerator, feeStore.config.getCongestionUpdateFraction());
}
function getFeeAssetPerEth(uint256 _numerator) internal pure returns (FeeAssetPerEthE9) {
return
FeeAssetPerEthE9.wrap(fakeExponential(MINIMUM_FEE_ASSET_PER_ETH, _numerator, FEE_ASSET_PRICE_UPDATE_FRACTION));
}
function summedBaseFee(ManaBaseFeeComponents memory _components) internal pure returns (uint256) {
return _components.sequencerCost + _components.proverCost + _components.congestionCost;
}
function getStorage() internal pure returns (FeeStore storage storageStruct) {
bytes32 position = FEE_STORE_POSITION;
assembly {
storageStruct.slot := position
}
}
/**
* @notice Clamps the addition of a signed integer to a uint256
* Useful for running values, whose minimum value will be 0
* but should not throw if going below.
* @param _a The base value
* @param _b The value to add
* @return The clamped value
*/
function clampedAdd(uint256 _a, int256 _b) internal pure returns (uint256) {
if (_b >= 0) {
return _a + _b.toUint256();
}
uint256 sub = SignedMath.abs(_b);
if (_a > sub) {
return _a - sub;
}
return 0;
}
/**
* @notice An approximation of the exponential function: factor * e ** (numerator / denominator)
*
* The function is the same as used in EIP-4844
* https://github.com/ethereum/EIPs/blob/master/EIPS/eip-4844.md
*
* Approximated using a taylor series.
* For shorthand below, let `a = factor`, `x = numerator`, `d = denominator`
*
* f(x) = a
* + (a * x) / d
* + (a * x ** 2) / (2 * d ** 2)
* + (a * x ** 3) / (6 * d ** 3)
* + (a * x ** 4) / (24 * d ** 4)
* + (a * x ** 5) / (120 * d ** 5)
* + ...
*
* For integer precision purposes, we will multiply by the denominator for intermediary steps and then
* finally do a division by it.
* The notation below might look slightly strange, but it is to try to convey the program flow below.
*
* e(x) = ( a * d
* + a * d * x / d
* + ((a * d * x / d) * x) / (2 * d)
* + ((((a * d * x / d) * x) / (2 * d)) * x) / (3 * d)
* + ((((((a * d * x / d) * x) / (2 * d)) * x) / (3 * d)) * x) / (4 * d)
* + ((((((((a * d * x / d) * x) / (2 * d)) * x) / (3 * d)) * x) / (4 * d)) * x) / (5 * d)
* + ...
* ) / d
*
* The notation might make it a bit of a pain to look at, but f(x) and e(x) are the same.
* Gotta love integer math.
*
* @dev Notice that as _numerator grows, the computation will quickly overflow.
* As long as the `_denominator` is fairly small, it won't bring us back down to not overflow
* For our purposes, this is acceptable, as if we have a fee that is so high that it would overflow and throw
* then we would have other problems.
*
* @param _factor The base value
* @param _numerator The numerator
* @param _denominator The denominator
* @return The approximated value `_factor * e ** (_numerator / _denominator)`
*/
function fakeExponential(uint256 _factor, uint256 _numerator, uint256 _denominator) private pure returns (uint256) {
uint256 i = 1;
uint256 output = 0;
uint256 numeratorAccumulator = _factor * _denominator;
while (numeratorAccumulator > 0) {
output += numeratorAccumulator;
numeratorAccumulator = (numeratorAccumulator * _numerator) / (_denominator * i);
i += 1;
}
return output / _denominator;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Hash} from "@aztec/core/libraries/crypto/Hash.sol";
import {Slot, Timestamp} from "@aztec/core/libraries/TimeLib.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
struct AppendOnlyTreeSnapshot {
bytes32 root;
uint32 nextAvailableLeafIndex;
}
struct PartialStateReference {
AppendOnlyTreeSnapshot noteHashTree;
AppendOnlyTreeSnapshot nullifierTree;
AppendOnlyTreeSnapshot publicDataTree;
}
struct StateReference {
AppendOnlyTreeSnapshot l1ToL2MessageTree;
// Note: Can't use "partial" name here as in protocol specs because it is a reserved solidity keyword
PartialStateReference partialStateReference;
}
struct GasFees {
uint128 feePerDaGas;
uint128 feePerL2Gas;
}
struct ContentCommitment {
bytes32 blobsHash;
bytes32 inHash;
bytes32 outHash;
}
struct ProposedHeader {
bytes32 lastArchiveRoot;
ContentCommitment contentCommitment;
Slot slotNumber;
Timestamp timestamp;
address coinbase;
bytes32 feeRecipient;
GasFees gasFees;
uint256 totalManaUsed;
}
/**
* @title ProposedHeader Library
* @author Aztec Labs
* @notice Decoding and validating a proposed L2 block header
*/
library ProposedHeaderLib {
using SafeCast for uint256;
/**
* @notice Hash the proposed header
*
* @dev The hashing here MUST match what is in the proposed_block_header.ts
*
* @param _header The header to hash
*
* @return The hash of the header
*/
function hash(ProposedHeader memory _header) internal pure returns (bytes32) {
return Hash.sha256ToField(
abi.encodePacked(
_header.lastArchiveRoot,
_header.contentCommitment.blobsHash,
_header.contentCommitment.inHash,
_header.contentCommitment.outHash,
_header.slotNumber,
Timestamp.unwrap(_header.timestamp).toUint64(),
_header.coinbase,
_header.feeRecipient,
_header.gasFees.feePerDaGas,
_header.gasFees.feePerL2Gas,
_header.totalManaUsed
)
);
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {BlobLib} from "@aztec-blob-lib/BlobLib.sol";
import {RollupStore, IRollupCore, BlockHeaderValidationFlags} from "@aztec/core/interfaces/IRollup.sol";
import {TempBlockLog} from "@aztec/core/libraries/compressed-data/BlockLog.sol";
import {FeeHeader} from "@aztec/core/libraries/compressed-data/fees/FeeStructs.sol";
import {ChainTipsLib, CompressedChainTips} from "@aztec/core/libraries/compressed-data/Tips.sol";
import {Errors} from "@aztec/core/libraries/Errors.sol";
import {SignatureDomainSeparator, CommitteeAttestations} from "@aztec/core/libraries/rollup/AttestationLib.sol";
import {OracleInput, FeeLib, ManaBaseFeeComponents} from "@aztec/core/libraries/rollup/FeeLib.sol";
import {ValidatorSelectionLib} from "@aztec/core/libraries/rollup/ValidatorSelectionLib.sol";
import {Timestamp, Slot, Epoch, TimeLib} from "@aztec/core/libraries/TimeLib.sol";
import {CompressedSlot, CompressedTimeMath} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {Signature} from "@aztec/shared/libraries/SignatureLib.sol";
import {ProposedHeader, ProposedHeaderLib, StateReference} from "./ProposedHeaderLib.sol";
import {STFLib} from "./STFLib.sol";
struct ProposeArgs {
bytes32 archive;
// Including stateReference here so that the archiver can reconstruct the full block header.
// It doesn't need to be in the proposed header as the values are not used in propose() and they are committed to
// by the last archive and blobs hash.
// It can be removed if the archiver can refer to world state for the updated roots.
StateReference stateReference;
OracleInput oracleInput;
ProposedHeader header;
}
struct ProposePayload {
bytes32 archive;
StateReference stateReference;
OracleInput oracleInput;
bytes32 headerHash;
}
struct InterimProposeValues {
ProposedHeader header;
bytes32[] blobHashes;
bytes32 blobsHashesCommitment;
bytes[] blobCommitments;
bytes32 inHash;
bytes32 headerHash;
bytes32 attestationsHash;
bytes32 payloadDigest;
Epoch currentEpoch;
bool isFirstBlockOfEpoch;
bool isTxsEnabled;
}
/**
* @param header - The proposed block header
* @param digest - The digest that signatures signed
* @param currentTime - The time of execution
* @param blobsHashesCommitment - The blobs hash for this block, provided for simpler future simulation
* @param flags - Flags specific to the execution, whether certain checks should be skipped
*/
struct ValidateHeaderArgs {
ProposedHeader header;
bytes32 digest;
uint256 manaBaseFee;
bytes32 blobsHashesCommitment;
BlockHeaderValidationFlags flags;
}
/**
* @title ProposeLib
* @author Aztec Labs
* @notice Library responsible for handling the L2 block proposal flow in the Aztec rollup.
*
* @dev This library implements the core block proposal mechanism that allows designated proposers to submit
* new L2 blocks to extend the rollup chain. It orchestrates the entire proposal process including:
* - Blob validation and commitment calculation
* - Header validation against chain state and timing constraints
* - Validator selection and proposer verification
* - Fee calculation and mana consumption tracking
* - State transitions and archive updates
* - Message processing between L1 and L2 via the Inbox and Outbox contracts
*
* The proposal flow operates within Aztec's time-based model where:
* - Each slot has a designated proposer selected from the validator set
* - Blocks must be proposed in the correct time slot and build on the current chain tip
* - Proposers must provide valid attestations from committee members
* - All state transitions are atomically applied upon successful validation
*
* Key functions:
* - `propose`: Main entry point called from `RollupCore.propose`.
* Handles the complete block proposal process from validation to state updates.
* - `validateHeader`: Validates block header against chain state, timing, and fee requirements.
* Called internally from `propose`, and externally from `RollupCore.validateHeaderWithAttestations`,
* used by proposers to ensure the header is valid before submitting the tx.
*
* Dependencies on other main libraries:
* - STFLib: State Transition Function library for chain state management, pruning, and storage access
* - FeeLib: Fee calculation library for mana pricing, L1 gas oracles, and fee header computation
* - ValidatorSelectionLib: Validator and committee management for epoch setup and proposer verification
* - BlobLib: Blob commitment validation and hash calculation for data availability
* - ProposedHeaderLib: Block header hashing and validation utilities
*
* Security considerations:
* - Only the designated proposer for the current slot can propose a block, enforced by
* validating the proposer validator signature among attestations. All other attestations are not
* verified on chain until time of proof submission.
* - Each block must built on the immediate previous one, ensuring no forks. This is enforced by checking
* the last archive root and block numbers. If the previous block is invalid, the proposer is expected to
* first invalidate it.
* - Blob commitments are validated, to ensure that the values provided correctly match the actual blobs published
*/
library ProposeLib {
using TimeLib for Timestamp;
using TimeLib for Slot;
using TimeLib for Epoch;
using CompressedTimeMath for CompressedSlot;
using ChainTipsLib for CompressedChainTips;
/**
* @notice Publishes a new L2 block to the pending chain.
* @dev Handles a proposed L2 block, validates it, and updates rollup state adding it to the pending chain.
* Orchestrates blob validation, header validation, proposer verification, fee calculations, and state
* transitions. Automatically prunes unproven blocks if the proof submission window has passed.
*
* Note that some validations and processes are disabled if the chain is configured to run without
* transactions, such as during ignition phase:
* - No fee header computation or L1 gas fee oracle update
* - No inbox message consumption or outbox message insertion
*
* Validations performed:
* - Blob commitments against provided blob data: Errors.Rollup__InvalidBlobHash,
* Errors.Rollup__InvalidBlobProof
* - Block header validations (see validateHeader function for details)
* - Proposer signature is valid for designated slot proposer:
* Errors.ValidatorSelection__MissingProposerSignature
* - Inbox hash matches expected value (when txs enabled): Errors.Rollup__InvalidInHash
*
* Validations NOT performed:
* - Committee attestations (only proposer signature verified)
* - Transaction validity and state root computation (done at proof submission via a validity proof)
*
* State changes:
* - Increment pending block number
* - Store archive root for the new block number
* - Store block metadata in circular storage (TempBlockLog)
* - Update L1 gas fee oracle (when txs enabled)
* - Consume inbox messages (when txs enabled)
* - Insert outbox messages (when txs enabled)
* - Setup epoch for validator selection (first block of the epoch)
*
* @param _args - The arguments to propose the block
* @param _attestations - Committee attestations in a packed format:
* - Contains an array of length equal to the committee size
* - At position `i`: if committee member `i` attested, contains their signature over the digest;
* if not, contains their address
* - Includes a bitmap indicating whether position `i` contains a signature (true) or address (false)
* - This format allows reconstructing the committee commitment (hash of all committee addresses)
* by either recovering addresses from signatures or using the addresses
* @param _signers - Addresses of the signers in the attestations:
* - Must match the addresses that would be recovered from signatures in _attestations
* - Same length as the number of signatures in _attestations
* - Used to verify that the proposer is one of the committee members by allowing cheap reconstruction of the
* commitment
* - Allows computing committee commitment without expensive signature recovery on-chain thus saving gas
* - Nodes must validate actual signatures off-chain when downloading blocks
* @param _blobsInput - The bytes to verify our input blob commitments match real blobs:
* - input[:1] - num blobs in block
* - input[1:] - blob commitments (48 bytes * num blobs in block)
* @param _checkBlob - Whether to skip blob related checks. Hardcoded to true in RollupCore, exists only to be
* overridden in tests
*/
function propose(
ProposeArgs calldata _args,
CommitteeAttestations memory _attestations,
address[] memory _signers,
Signature calldata _attestationsAndSignersSignature,
bytes calldata _blobsInput,
bool _checkBlob
) internal {
// Prune unproven blocks if the proof submission window has passed
if (STFLib.canPruneAtTime(Timestamp.wrap(block.timestamp))) {
STFLib.prune();
}
// Keep intermediate values in memory to avoid stack too deep errors
InterimProposeValues memory v;
// Transactions are disabled during ignition phase
v.isTxsEnabled = FeeLib.isTxsEnabled();
// Since ignition have no transactions, we need not waste gas updating pricing oracle.
if (v.isTxsEnabled) {
FeeLib.updateL1GasFeeOracle();
}
// Validate blob commitments against actual blob data and extract hashes
// TODO(#13430): The below blobsHashesCommitment known as blobsHash elsewhere in the code. The name is confusingly
// similar to blobCommitmentsHash, see comment in BlobLib.sol -> validateBlobs().
(v.blobHashes, v.blobsHashesCommitment, v.blobCommitments) = BlobLib.validateBlobs(_blobsInput, _checkBlob);
v.header = _args.header;
// Compute header hash for computing the payload digest
v.headerHash = ProposedHeaderLib.hash(v.header);
// Setup epoch by sampling the committee for the current epoch and setting the seed for the one after the next.
// This is a no-op if the epoch is already set up, so it only gets executed by the first block of the epoch.
v.currentEpoch = Timestamp.wrap(block.timestamp).epochFromTimestamp();
ValidatorSelectionLib.setupEpoch(v.currentEpoch);
// Calculate mana base fee components for header validation
ManaBaseFeeComponents memory components;
if (v.isTxsEnabled) {
// Since ignition have no transactions, we need not waste gas computing the fee components
components = getManaBaseFeeComponentsAt(Timestamp.wrap(block.timestamp), true);
}
// Create payload digest signed by the committee members
v.payloadDigest = digest(
ProposePayload({
archive: _args.archive,
stateReference: _args.stateReference,
oracleInput: _args.oracleInput,
headerHash: v.headerHash
})
);
// Validate block header
validateHeader(
ValidateHeaderArgs({
header: v.header,
digest: v.payloadDigest,
manaBaseFee: FeeLib.summedBaseFee(components),
blobsHashesCommitment: v.blobsHashesCommitment,
flags: BlockHeaderValidationFlags({ignoreDA: false})
})
);
{
// Verify that the proposer is the correct one for this slot by checking their signature in the attestations
ValidatorSelectionLib.verifyProposer(
v.header.slotNumber,
v.currentEpoch,
_attestations,
_signers,
v.payloadDigest,
_attestationsAndSignersSignature,
true
);
}
// Begin state updates - get storage reference and current chain tips
RollupStore storage rollupStore = STFLib.getStorage();
CompressedChainTips tips = rollupStore.tips;
// Increment block number and update chain tips
uint256 blockNumber = tips.getPendingBlockNumber() + 1;
tips = tips.updatePendingBlockNumber(blockNumber);
// Calculate accumulated blob commitments hash for this block
// Blob commitments are collected and proven per root rollup proof (per epoch),
// so we need to know whether we are at the epoch start:
v.isFirstBlockOfEpoch = v.currentEpoch > STFLib.getEpochForBlock(blockNumber - 1) || blockNumber == 1;
bytes32 blobCommitmentsHash = BlobLib.calculateBlobCommitmentsHash(
STFLib.getBlobCommitmentsHash(blockNumber - 1), v.blobCommitments, v.isFirstBlockOfEpoch
);
// Compute fee header for block metadata
FeeHeader memory feeHeader;
if (v.isTxsEnabled) {
// Since ignition have no transactions, we need not waste gas deriving the fee header
feeHeader = FeeLib.computeFeeHeader(
blockNumber,
_args.oracleInput.feeAssetPriceModifier,
v.header.totalManaUsed,
components.congestionCost,
components.proverCost
);
}
// Hash attestations for storage in block log
// Compute attestationsHash from the attestations
v.attestationsHash = keccak256(abi.encode(_attestations));
// Commit state changes: update chain tips and store block data
rollupStore.tips = tips;
rollupStore.archives[blockNumber] = _args.archive;
STFLib.addTempBlockLog(
TempBlockLog({
headerHash: v.headerHash,
blobCommitmentsHash: blobCommitmentsHash,
attestationsHash: v.attestationsHash,
payloadDigest: v.payloadDigest,
slotNumber: v.header.slotNumber,
feeHeader: feeHeader
})
);
// Handle L1<->L2 message processing (only when transactions are enabled)
if (v.isTxsEnabled) {
// Since ignition will have no transactions there will be no method to consume or output message.
// Therefore we can ignore it as long as mana target is zero.
// Since the inbox is async, it must enforce its own check to not try to insert if ignition.
// Consume pending L1->L2 messages and validate against header commitment
// @note The block number here will always be >=1 as the genesis block is at 0
v.inHash = rollupStore.config.inbox.consume(blockNumber);
require(
v.header.contentCommitment.inHash == v.inHash,
Errors.Rollup__InvalidInHash(v.inHash, v.header.contentCommitment.inHash)
);
// Insert L2->L1 messages into outbox for later consumption
rollupStore.config.outbox.insert(blockNumber, v.header.contentCommitment.outHash);
}
// Emit event for external listeners. Nodes rely on this event to update their state.
emit IRollupCore.L2BlockProposed(blockNumber, _args.archive, v.blobHashes);
}
/**
* @notice Validates a proposed block header against chain state and constraints
* @dev Called internally from propose() and externally from RollupCore.validateHeaderWithAttestations()
* for proposers to check header validity before submitting transactions
*
* Header validations performed:
* - Coinbase address is non-zero: Errors.Rollup__InvalidCoinbase
* - Mana usage within limits: Errors.Rollup__ManaLimitExceeded
* - Builds on correct parent block (archive root check): Errors.Rollup__InvalidArchive
* - Slot number greater than last block's slot: Errors.Rollup__SlotAlreadyInChain
* - Slot number matches current timestamp slot: Errors.HeaderLib__InvalidSlotNumber
* - Timestamp matches slot-derived timestamp: Errors.Rollup__InvalidTimestamp
* - Timestamp not in future: Errors.Rollup__TimestampInFuture
* - Blob hashes match commitment (unless DA checks ignored): Errors.Rollup__UnavailableTxs
* - DA fee is zero: Errors.Rollup__NonZeroDaFee
* - L2 gas fee matches computed mana base fee: Errors.Rollup__InvalidManaBaseFee
*
* @param _args Validation arguments including header, digest, mana base fee, and flags
*/
function validateHeader(ValidateHeaderArgs memory _args) internal view {
require(_args.header.coinbase != address(0), Errors.Rollup__InvalidCoinbase());
require(_args.header.totalManaUsed <= FeeLib.getManaLimit(), Errors.Rollup__ManaLimitExceeded());
Timestamp currentTime = Timestamp.wrap(block.timestamp);
RollupStore storage rollupStore = STFLib.getStorage();
uint256 pendingBlockNumber = STFLib.getEffectivePendingBlockNumber(currentTime);
bytes32 tipArchive = rollupStore.archives[pendingBlockNumber];
require(
tipArchive == _args.header.lastArchiveRoot,
Errors.Rollup__InvalidArchive(tipArchive, _args.header.lastArchiveRoot)
);
Slot slot = _args.header.slotNumber;
Slot lastSlot = STFLib.getSlotNumber(pendingBlockNumber);
require(slot > lastSlot, Errors.Rollup__SlotAlreadyInChain(lastSlot, slot));
Slot currentSlot = currentTime.slotFromTimestamp();
require(slot == currentSlot, Errors.HeaderLib__InvalidSlotNumber(currentSlot, slot));
Timestamp timestamp = TimeLib.toTimestamp(slot);
require(_args.header.timestamp == timestamp, Errors.Rollup__InvalidTimestamp(timestamp, _args.header.timestamp));
require(timestamp <= currentTime, Errors.Rollup__TimestampInFuture(currentTime, timestamp));
require(
_args.flags.ignoreDA || _args.header.contentCommitment.blobsHash == _args.blobsHashesCommitment,
Errors.Rollup__UnavailableTxs(_args.header.contentCommitment.blobsHash)
);
require(_args.header.gasFees.feePerDaGas == 0, Errors.Rollup__NonZeroDaFee());
require(
_args.header.gasFees.feePerL2Gas == _args.manaBaseFee,
Errors.Rollup__InvalidManaBaseFee(_args.manaBaseFee, _args.header.gasFees.feePerL2Gas)
);
}
/**
* @notice Gets the mana base fee components
* For more context, consult:
* https://github.com/AztecProtocol/engineering-designs/blob/main/in-progress/8757-fees/design.md
*
* @param _timestamp - The timestamp of the block
* @param _inFeeAsset - Whether to return the fee in the fee asset or ETH
*
* @return The mana base fee components
*/
function getManaBaseFeeComponentsAt(Timestamp _timestamp, bool _inFeeAsset)
internal
view
returns (ManaBaseFeeComponents memory)
{
uint256 blockOfInterest = STFLib.getEffectivePendingBlockNumber(_timestamp);
return FeeLib.getManaBaseFeeComponentsAt(blockOfInterest, _timestamp, _inFeeAsset);
}
function digest(ProposePayload memory _args) internal pure returns (bytes32) {
return keccak256(abi.encode(SignatureDomainSeparator.blockAttestation, _args));
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {RollupStore, SubmitEpochRootProofArgs} from "@aztec/core/interfaces/IRollup.sol";
import {Errors} from "@aztec/core/libraries/Errors.sol";
import {CompressedFeeHeader, FeeHeaderLib, FeeLib} from "@aztec/core/libraries/rollup/FeeLib.sol";
import {STFLib} from "@aztec/core/libraries/rollup/STFLib.sol";
import {Epoch, Timestamp, TimeLib} from "@aztec/core/libraries/TimeLib.sol";
import {IBoosterCore} from "@aztec/core/reward-boost/RewardBooster.sol";
import {IRewardDistributor} from "@aztec/governance/interfaces/IRewardDistributor.sol";
import {CompressedTimeMath, CompressedTimestamp} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@oz/utils/math/Math.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {BitMaps} from "@oz/utils/structs/BitMaps.sol";
type Bps is uint32;
library BpsLib {
function mul(uint256 _a, Bps _b) internal pure returns (uint256) {
return _a * uint256(Bps.unwrap(_b)) / 10_000;
}
}
struct SubEpochRewards {
uint256 summedShares;
mapping(address prover => uint256 shares) shares;
}
struct EpochRewards {
uint128 longestProvenLength;
uint128 rewards;
mapping(uint256 length => SubEpochRewards) subEpoch;
}
struct RewardConfig {
IRewardDistributor rewardDistributor;
Bps sequencerBps;
IBoosterCore booster;
uint96 blockReward;
}
struct RewardStorage {
mapping(address => uint256) sequencerRewards;
mapping(Epoch => EpochRewards) epochRewards;
mapping(address prover => BitMaps.BitMap claimed) proverClaimed;
RewardConfig config;
CompressedTimestamp earliestRewardsClaimableTimestamp;
bool isRewardsClaimable;
}
struct Values {
address sequencer;
uint256 proverFee;
uint256 sequencerFee;
uint256 sequencerBlockReward;
uint256 manaUsed;
}
struct Totals {
uint256 feesToClaim;
uint256 totalBurn;
}
library RewardLib {
using SafeERC20 for IERC20;
using BitMaps for BitMaps.BitMap;
using CompressedTimeMath for CompressedTimestamp;
using CompressedTimeMath for Timestamp;
using TimeLib for Timestamp;
using TimeLib for Epoch;
using FeeHeaderLib for CompressedFeeHeader;
using SafeCast for uint256;
bytes32 private constant REWARD_STORAGE_POSITION = keccak256("aztec.reward.storage");
// A Cuauhxicalli [kʷaːʍʃiˈkalːi] ("eagle gourd bowl") is a ceremonial Aztec vessel or altar used to hold offerings,
// such as sacrificial hearts, during rituals performed within temples.
address public constant BURN_ADDRESS = address(bytes20("CUAUHXICALLI"));
function initialize(Timestamp _earliestRewardsClaimableTimestamp) internal {
RewardStorage storage rewardStorage = getStorage();
rewardStorage.earliestRewardsClaimableTimestamp = _earliestRewardsClaimableTimestamp.compress();
rewardStorage.isRewardsClaimable = false;
}
function setConfig(RewardConfig memory _config) internal {
require(Bps.unwrap(_config.sequencerBps) <= 10_000, Errors.RewardLib__InvalidSequencerBps());
RewardStorage storage rewardStorage = getStorage();
rewardStorage.config = _config;
}
function setIsRewardsClaimable(bool _isRewardsClaimable) internal {
RewardStorage storage rewardStorage = getStorage();
uint256 earliestRewardsClaimableTimestamp =
Timestamp.unwrap(rewardStorage.earliestRewardsClaimableTimestamp.decompress());
require(
block.timestamp >= earliestRewardsClaimableTimestamp,
Errors.Rollup__TooSoonToSetRewardsClaimable(earliestRewardsClaimableTimestamp, block.timestamp)
);
rewardStorage.isRewardsClaimable = _isRewardsClaimable;
}
function claimSequencerRewards(address _sequencer) internal returns (uint256) {
RewardStorage storage rewardStorage = getStorage();
require(rewardStorage.isRewardsClaimable, Errors.Rollup__RewardsNotClaimable());
RollupStore storage rollupStore = STFLib.getStorage();
uint256 amount = rewardStorage.sequencerRewards[_sequencer];
if (amount > 0) {
rewardStorage.sequencerRewards[_sequencer] = 0;
rollupStore.config.feeAsset.safeTransfer(_sequencer, amount);
}
return amount;
}
function claimProverRewards(address _prover, Epoch[] memory _epochs) internal returns (uint256) {
Epoch currentEpoch = Timestamp.wrap(block.timestamp).epochFromTimestamp();
RollupStore storage rollupStore = STFLib.getStorage();
RewardStorage storage rewardStorage = getStorage();
require(rewardStorage.isRewardsClaimable, Errors.Rollup__RewardsNotClaimable());
uint256 accumulatedRewards = 0;
for (uint256 i = 0; i < _epochs.length; i++) {
require(
!_epochs[i].isAcceptingProofsAtEpoch(currentEpoch),
Errors.Rollup__NotPastDeadline(_epochs[i].toDeadlineEpoch(), currentEpoch)
);
if (rewardStorage.proverClaimed[_prover].get(Epoch.unwrap(_epochs[i]))) {
continue;
}
rewardStorage.proverClaimed[_prover].set(Epoch.unwrap(_epochs[i]));
EpochRewards storage e = rewardStorage.epochRewards[_epochs[i]];
SubEpochRewards storage se = e.subEpoch[e.longestProvenLength];
uint256 shares = se.shares[_prover];
if (shares > 0) {
accumulatedRewards += (shares * e.rewards / se.summedShares);
}
}
if (accumulatedRewards > 0) {
rollupStore.config.feeAsset.safeTransfer(_prover, accumulatedRewards);
}
return accumulatedRewards;
}
function handleRewardsAndFees(SubmitEpochRootProofArgs memory _args, Epoch _endEpoch) internal {
RollupStore storage rollupStore = STFLib.getStorage();
RewardStorage storage rewardStorage = getStorage();
// Determine if this rollup is canonical according to its RewardDistributor.
uint256 length = _args.end - _args.start + 1;
EpochRewards storage $er = rewardStorage.epochRewards[_endEpoch];
{
SubEpochRewards storage $sr = $er.subEpoch[length];
address prover = _args.args.proverId;
require($sr.shares[prover] == 0, Errors.Rollup__ProverHaveAlreadySubmitted(prover, _endEpoch));
// Beware that it is possible to get marked active in an epoch even if you did not provide the longest
// proof. This is acceptable, as they were actually active. And boosting this way is not the most
// efficient way to do it, so this is fine.
uint256 shares = rewardStorage.config.booster.updateAndGetShares(prover);
$sr.shares[prover] = shares;
$sr.summedShares += shares;
}
if (length > $er.longestProvenLength) {
Values memory v;
Totals memory t;
{
uint256 added = length - $er.longestProvenLength;
uint256 blockRewardsDesired = added * getBlockReward();
uint256 blockRewardsAvailable = 0;
// Only if we require block rewards and are canonical will we claim.
if (blockRewardsDesired > 0) {
// Cache the reward distributor contract
IRewardDistributor distributor = rewardStorage.config.rewardDistributor;
if (address(this) == distributor.canonicalRollup()) {
uint256 amountToClaim =
Math.min(blockRewardsDesired, rollupStore.config.feeAsset.balanceOf(address(distributor)));
if (amountToClaim > 0) {
distributor.claim(address(this), amountToClaim);
blockRewardsAvailable = amountToClaim;
}
}
}
uint256 sequenceBlockRewards = BpsLib.mul(blockRewardsAvailable, rewardStorage.config.sequencerBps);
v.sequencerBlockReward = sequenceBlockRewards / added;
$er.rewards += (blockRewardsAvailable - sequenceBlockRewards).toUint128();
}
bool isTxsEnabled = FeeLib.isTxsEnabled();
for (uint256 i = $er.longestProvenLength; i < length; i++) {
if (isTxsEnabled) {
// During ignition there can be no txs, so there can be no fees either
// so we can skip the fee calculation
CompressedFeeHeader feeHeader = STFLib.getFeeHeader(_args.start + i);
v.manaUsed = feeHeader.getManaUsed();
uint256 fee = uint256(_args.fees[1 + i * 2]);
uint256 burn = feeHeader.getCongestionCost() * v.manaUsed;
t.feesToClaim += fee;
t.totalBurn += burn;
// Compute the proving fee in the fee asset
v.proverFee = Math.min(v.manaUsed * feeHeader.getProverCost(), fee - burn);
$er.rewards += v.proverFee.toUint128();
v.sequencerFee = fee - burn - v.proverFee;
}
{
v.sequencer = fieldToAddress(_args.fees[i * 2]);
rewardStorage.sequencerRewards[v.sequencer] += (v.sequencerBlockReward + v.sequencerFee);
}
}
$er.longestProvenLength = length.toUint128();
if (t.feesToClaim > 0) {
rollupStore.config.feeAssetPortal.distributeFees(address(this), t.feesToClaim);
}
if (t.totalBurn > 0) {
rollupStore.config.feeAsset.safeTransfer(BURN_ADDRESS, t.totalBurn);
}
}
}
function getSharesFor(address _prover) internal view returns (uint256) {
return getStorage().config.booster.getSharesFor(_prover);
}
function getSequencerRewards(address _sequencer) internal view returns (uint256) {
return getStorage().sequencerRewards[_sequencer];
}
function getCollectiveProverRewardsForEpoch(Epoch _epoch) internal view returns (uint256) {
return getStorage().epochRewards[_epoch].rewards;
}
function getHasSubmitted(Epoch _epoch, uint256 _length, address _prover) internal view returns (bool) {
return getStorage().epochRewards[_epoch].subEpoch[_length].shares[_prover] > 0;
}
function getHasClaimed(address _prover, Epoch _epoch) internal view returns (bool) {
return getStorage().proverClaimed[_prover].get(Epoch.unwrap(_epoch));
}
function getBlockReward() internal view returns (uint256) {
return getStorage().config.blockReward;
}
function getSpecificProverRewardsForEpoch(Epoch _epoch, address _prover) internal view returns (uint256) {
RewardStorage storage rewardStorage = getStorage();
if (rewardStorage.proverClaimed[_prover].get(Epoch.unwrap(_epoch))) {
return 0;
}
EpochRewards storage er = rewardStorage.epochRewards[_epoch];
SubEpochRewards storage se = er.subEpoch[er.longestProvenLength];
// Only if prover has shares will he get a reward. Also avoid a 0-div
// in case of no shares at all.
if (se.shares[_prover] == 0) {
return 0;
}
return (se.shares[_prover] * er.rewards / se.summedShares);
}
function isRewardsClaimable() internal view returns (bool) {
return getStorage().isRewardsClaimable;
}
function getEarliestRewardsClaimableTimestamp() internal view returns (Timestamp) {
return getStorage().earliestRewardsClaimableTimestamp.decompress();
}
function getStorage() internal pure returns (RewardStorage storage storageStruct) {
bytes32 position = REWARD_STORAGE_POSITION;
assembly {
storageStruct.slot := position
}
}
function fieldToAddress(bytes32 _f) private pure returns (address) {
return address(uint160(uint256(_f)));
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IValidatorSelection} from "@aztec/core/interfaces/IValidatorSelection.sol";
import {Errors} from "@aztec/core/libraries/Errors.sol";
import {CompressedEpoch, CompressedTimeMath} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {Epoch} from "@aztec/shared/libraries/TimeMath.sol";
import {Math} from "@oz/utils/math/Math.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
struct RewardBoostConfig {
uint32 increment;
uint32 maxScore;
uint32 a; // a
uint32 minimum; // m
uint32 k; // k
}
struct ActivityScore {
Epoch time;
uint32 value;
}
struct CompressedActivityScore {
CompressedEpoch time;
uint32 value;
}
interface IBoosterCore {
function updateAndGetShares(address _prover) external returns (uint256);
function getSharesFor(address _prover) external view returns (uint256);
}
interface IBooster is IBoosterCore {
function getConfig() external view returns (RewardBoostConfig memory);
function getActivityScore(address _prover) external view returns (ActivityScore memory);
}
/**
* @title RewardBooster
*
* @notice Abstracts the accounting related to rewards boosting from the POV of the rollup.
*/
contract RewardBooster is IBooster {
using SafeCast for uint256;
using CompressedTimeMath for Epoch;
using CompressedTimeMath for CompressedEpoch;
IValidatorSelection public immutable ROLLUP;
uint256 private immutable CONFIG_INCREMENT;
uint256 private immutable CONFIG_MAX_SCORE;
uint256 private immutable CONFIG_A;
uint256 private immutable CONFIG_MINIMUM;
uint256 private immutable CONFIG_K;
mapping(address prover => CompressedActivityScore) internal activityScores;
modifier onlyRollup() {
require(msg.sender == address(ROLLUP), Errors.RewardBooster__OnlyRollup(msg.sender));
_;
}
constructor(IValidatorSelection _rollup, RewardBoostConfig memory _config) {
ROLLUP = _rollup;
CONFIG_INCREMENT = _config.increment;
CONFIG_MAX_SCORE = _config.maxScore;
CONFIG_A = _config.a;
CONFIG_MINIMUM = _config.minimum;
CONFIG_K = _config.k;
}
function updateAndGetShares(address _prover) external override(IBoosterCore) onlyRollup returns (uint256) {
Epoch currentEpoch = ROLLUP.getCurrentEpoch();
CompressedActivityScore storage store = activityScores[_prover];
ActivityScore memory curr = _activityScoreAt(store, currentEpoch);
// If the score was already marked active in this epoch, ignore the addition.
if (curr.time != store.time.decompress()) {
store.value = Math.min(curr.value + CONFIG_INCREMENT, CONFIG_MAX_SCORE).toUint32();
store.time = curr.time.compress();
}
return _toShares(store.value);
}
function getConfig() external view override(IBooster) returns (RewardBoostConfig memory) {
return RewardBoostConfig({
increment: CONFIG_INCREMENT.toUint32(),
maxScore: CONFIG_MAX_SCORE.toUint32(),
a: CONFIG_A.toUint32(),
minimum: CONFIG_MINIMUM.toUint32(),
k: CONFIG_K.toUint32()
});
}
function getSharesFor(address _prover) external view override(IBoosterCore) returns (uint256) {
return _toShares(getActivityScore(_prover).value);
}
function getActivityScore(address _prover) public view override(IBooster) returns (ActivityScore memory) {
return _activityScoreAt(activityScores[_prover], ROLLUP.getCurrentEpoch());
}
function _activityScoreAt(CompressedActivityScore storage _score, Epoch _epoch)
internal
view
returns (ActivityScore memory)
{
uint256 decrease = (Epoch.unwrap(_epoch) - Epoch.unwrap(_score.time.decompress())) * 1e5;
return
ActivityScore({value: decrease > uint256(_score.value) ? 0 : _score.value - decrease.toUint32(), time: _epoch});
}
function _toShares(uint256 _value) internal view returns (uint256) {
if (_value >= CONFIG_MAX_SCORE) {
return CONFIG_K;
}
uint256 t = (CONFIG_MAX_SCORE - _value);
uint256 rhs = CONFIG_A * t * t / 1e10;
// Sub would move us below 0
if (CONFIG_K < rhs) {
return CONFIG_MINIMUM;
}
return Math.max(CONFIG_K - rhs, CONFIG_MINIMUM);
}
}// SPDX-License-Identifier: Apache-2.0
pragma solidity >=0.8.27;
import {IRewardDistributor} from "@aztec/governance/interfaces/IRewardDistributor.sol";
interface IHaveVersion {
function getVersion() external view returns (uint256);
}
interface IRegistry {
event CanonicalRollupUpdated(address indexed instance, uint256 indexed version);
event RewardDistributorUpdated(address indexed rewardDistributor);
function addRollup(IHaveVersion _rollup) external;
function updateRewardDistributor(address _rewardDistributor) external;
// docs:start:registry_get_canonical_rollup
function getCanonicalRollup() external view returns (IHaveVersion);
// docs:end:registry_get_canonical_rollup
// docs:start:registry_get_rollup
function getRollup(uint256 _chainId) external view returns (IHaveVersion);
// docs:end:registry_get_rollup
// docs:start:registry_number_of_versions
function numberOfVersions() external view returns (uint256);
// docs:end:registry_number_of_versions
function getGovernance() external view returns (address);
function getRewardDistributor() external view returns (IRewardDistributor);
function getVersion(uint256 _index) external view returns (uint256);
}// SPDX-License-Identifier: Apache-2.0
pragma solidity >=0.8.27;
interface IRewardDistributor {
function claim(address _to, uint256 _amount) external;
function recover(address _asset, address _to, uint256 _amount) external;
function canonicalRollup() external view returns (address);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity ^0.8.27;
import {ECDSA} from "@oz/utils/cryptography/ECDSA.sol";
// Signature
struct Signature {
uint8 v;
bytes32 r;
bytes32 s;
}
error SignatureLib__InvalidSignature(address, address);
library SignatureLib {
/**
* @notice Verifies a signature, throws if the signature is invalid or empty
*
* @param _signature - The signature to verify
* @param _signer - The expected signer of the signature
* @param _digest - The digest that was signed
*/
function verify(Signature memory _signature, address _signer, bytes32 _digest) internal pure returns (bool) {
address recovered = ECDSA.recover(_digest, _signature.v, _signature.r, _signature.s);
require(_signer == recovered, SignatureLib__InvalidSignature(_signer, recovered));
return true;
}
function isEmpty(Signature memory _signature) internal pure returns (bool) {
return _signature.v == 0;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
type Timestamp is uint256;
type Slot is uint256;
type Epoch is uint256;
function addTimestamp(Timestamp _a, Timestamp _b) pure returns (Timestamp) {
return Timestamp.wrap(Timestamp.unwrap(_a) + Timestamp.unwrap(_b));
}
function subTimestamp(Timestamp _a, Timestamp _b) pure returns (Timestamp) {
return Timestamp.wrap(Timestamp.unwrap(_a) - Timestamp.unwrap(_b));
}
function ltTimestamp(Timestamp _a, Timestamp _b) pure returns (bool) {
return Timestamp.unwrap(_a) < Timestamp.unwrap(_b);
}
function lteTimestamp(Timestamp _a, Timestamp _b) pure returns (bool) {
return Timestamp.unwrap(_a) <= Timestamp.unwrap(_b);
}
function gtTimestamp(Timestamp _a, Timestamp _b) pure returns (bool) {
return Timestamp.unwrap(_a) > Timestamp.unwrap(_b);
}
function gteTimestamp(Timestamp _a, Timestamp _b) pure returns (bool) {
return Timestamp.unwrap(_a) >= Timestamp.unwrap(_b);
}
function neqTimestamp(Timestamp _a, Timestamp _b) pure returns (bool) {
return Timestamp.unwrap(_a) != Timestamp.unwrap(_b);
}
function eqTimestamp(Timestamp _a, Timestamp _b) pure returns (bool) {
return Timestamp.unwrap(_a) == Timestamp.unwrap(_b);
}
// Slot
function addSlot(Slot _a, Slot _b) pure returns (Slot) {
return Slot.wrap(Slot.unwrap(_a) + Slot.unwrap(_b));
}
function subSlot(Slot _a, Slot _b) pure returns (Slot) {
return Slot.wrap(Slot.unwrap(_a) - Slot.unwrap(_b));
}
function eqSlot(Slot _a, Slot _b) pure returns (bool) {
return Slot.unwrap(_a) == Slot.unwrap(_b);
}
function neqSlot(Slot _a, Slot _b) pure returns (bool) {
return Slot.unwrap(_a) != Slot.unwrap(_b);
}
function ltSlot(Slot _a, Slot _b) pure returns (bool) {
return Slot.unwrap(_a) < Slot.unwrap(_b);
}
function lteSlot(Slot _a, Slot _b) pure returns (bool) {
return Slot.unwrap(_a) <= Slot.unwrap(_b);
}
function gtSlot(Slot _a, Slot _b) pure returns (bool) {
return Slot.unwrap(_a) > Slot.unwrap(_b);
}
function gteSlot(Slot _a, Slot _b) pure returns (bool) {
return Slot.unwrap(_a) >= Slot.unwrap(_b);
}
// Epoch
function eqEpoch(Epoch _a, Epoch _b) pure returns (bool) {
return Epoch.unwrap(_a) == Epoch.unwrap(_b);
}
function neqEpoch(Epoch _a, Epoch _b) pure returns (bool) {
return Epoch.unwrap(_a) != Epoch.unwrap(_b);
}
function subEpoch(Epoch _a, Epoch _b) pure returns (Epoch) {
return Epoch.wrap(Epoch.unwrap(_a) - Epoch.unwrap(_b));
}
function addEpoch(Epoch _a, Epoch _b) pure returns (Epoch) {
return Epoch.wrap(Epoch.unwrap(_a) + Epoch.unwrap(_b));
}
function gteEpoch(Epoch _a, Epoch _b) pure returns (bool) {
return Epoch.unwrap(_a) >= Epoch.unwrap(_b);
}
function gtEpoch(Epoch _a, Epoch _b) pure returns (bool) {
return Epoch.unwrap(_a) > Epoch.unwrap(_b);
}
function lteEpoch(Epoch _a, Epoch _b) pure returns (bool) {
return Epoch.unwrap(_a) <= Epoch.unwrap(_b);
}
function ltEpoch(Epoch _a, Epoch _b) pure returns (bool) {
return Epoch.unwrap(_a) < Epoch.unwrap(_b);
}
using {
addTimestamp as +,
subTimestamp as -,
ltTimestamp as <,
gtTimestamp as >,
lteTimestamp as <=,
gteTimestamp as >=,
neqTimestamp as !=,
eqTimestamp as ==
} for Timestamp global;
using {
addEpoch as +,
subEpoch as -,
eqEpoch as ==,
neqEpoch as !=,
gteEpoch as >=,
gtEpoch as >,
lteEpoch as <=,
ltEpoch as <
} for Epoch global;
using {
eqSlot as ==,
neqSlot as !=,
gteSlot as >=,
gtSlot as >,
lteSlot as <=,
ltSlot as <,
addSlot as +,
subSlot as -
} for Slot global;// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
type SlashRound is uint256;
function addSlashRound(SlashRound _a, SlashRound _b) pure returns (SlashRound) {
return SlashRound.wrap(SlashRound.unwrap(_a) + SlashRound.unwrap(_b));
}
function subSlashRound(SlashRound _a, SlashRound _b) pure returns (SlashRound) {
return SlashRound.wrap(SlashRound.unwrap(_a) - SlashRound.unwrap(_b));
}
function eqSlashRound(SlashRound _a, SlashRound _b) pure returns (bool) {
return SlashRound.unwrap(_a) == SlashRound.unwrap(_b);
}
function neqSlashRound(SlashRound _a, SlashRound _b) pure returns (bool) {
return SlashRound.unwrap(_a) != SlashRound.unwrap(_b);
}
function ltSlashRound(SlashRound _a, SlashRound _b) pure returns (bool) {
return SlashRound.unwrap(_a) < SlashRound.unwrap(_b);
}
function lteSlashRound(SlashRound _a, SlashRound _b) pure returns (bool) {
return SlashRound.unwrap(_a) <= SlashRound.unwrap(_b);
}
function gtSlashRound(SlashRound _a, SlashRound _b) pure returns (bool) {
return SlashRound.unwrap(_a) > SlashRound.unwrap(_b);
}
function gteSlashRound(SlashRound _a, SlashRound _b) pure returns (bool) {
return SlashRound.unwrap(_a) >= SlashRound.unwrap(_b);
}
using {
addSlashRound as +,
subSlashRound as -,
eqSlashRound as ==,
neqSlashRound as !=,
ltSlashRound as <,
lteSlashRound as <=,
gtSlashRound as >,
gteSlashRound as >=
} for SlashRound global;
type CompressedSlashRound is uint32;
library CompressedSlashRoundMath {
function compress(SlashRound _round) internal pure returns (CompressedSlashRound) {
return CompressedSlashRound.wrap(SafeCast.toUint32(SlashRound.unwrap(_round)));
}
function decompress(CompressedSlashRound _round) internal pure returns (SlashRound) {
return SlashRound.wrap(uint256(CompressedSlashRound.unwrap(_round)));
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
// solhint-disable-next-line no-unused-import
import {Timestamp, Slot, Epoch} from "@aztec/shared/libraries/TimeMath.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
struct TimeStorage {
uint128 genesisTime;
uint32 slotDuration; // Number of seconds in a slot
uint32 epochDuration; // Number of slots in an epoch
/**
* @notice Number of epochs after the end of a given epoch that proofs are still accepted. For example, a value of 1
* means that after epoch n ends, the proofs must land *before* epoch n+1 ends. A value of 0 would mean that the
* proofs for epoch n must land while the epoch is ongoing.
*/
uint32 proofSubmissionEpochs;
}
library TimeLib {
using SafeCast for uint256;
bytes32 private constant TIME_STORAGE_POSITION = keccak256("aztec.time.storage");
function initialize(
uint256 _genesisTime,
uint256 _slotDuration,
uint256 _epochDuration,
uint256 _proofSubmissionEpochs
) internal {
TimeStorage storage store = getStorage();
store.genesisTime = _genesisTime.toUint128();
store.slotDuration = _slotDuration.toUint32();
store.epochDuration = _epochDuration.toUint32();
store.proofSubmissionEpochs = _proofSubmissionEpochs.toUint32();
}
function toTimestamp(Slot _a) internal view returns (Timestamp) {
TimeStorage storage store = getStorage();
return Timestamp.wrap(store.genesisTime) + Timestamp.wrap(Slot.unwrap(_a) * store.slotDuration);
}
function slotFromTimestamp(Timestamp _a) internal view returns (Slot) {
TimeStorage storage store = getStorage();
return Slot.wrap((Timestamp.unwrap(_a) - store.genesisTime) / store.slotDuration);
}
function toSlots(Epoch _a) internal view returns (Slot) {
return Slot.wrap(Epoch.unwrap(_a) * getStorage().epochDuration);
}
function toTimestamp(Epoch _a) internal view returns (Timestamp) {
return toTimestamp(toSlots(_a));
}
/**
* @notice An epoch deadline is the epoch at which:
* - proofs are no longer accepted
* - which we may prune if no proof has landed
* - rewards may be claimed
*
* @param _a - The epoch to compute the deadline for
*
* @return The computed epoch
*/
function toDeadlineEpoch(Epoch _a) internal view returns (Epoch) {
TimeStorage storage store = getStorage();
// We add one to the proof submission epochs to account for the current epoch.
// This is because toSlots will return the first slot of the epoch, and in the event
// that proofSubmissionEpochs is 0, we would wait until the end of the current epoch.
return _a + Epoch.wrap(store.proofSubmissionEpochs + 1);
}
/**
* @notice Calculates the maximum number of blocks that can be pruned from the pending chain
* @dev The maximum prunable blocks is determined by:
* - epochDuration: number of slots in an epoch
* - proofSubmissionEpochs: number of epochs allowed for proof submission
*
* The formula is: epochDuration * (proofSubmissionEpochs + 1)
*
* The +1 accounts for blocks in the current epoch, ensuring they are included
* in the prunable window along with blocks from previous epochs within the
* proof submission window.
*
* This value is used to:
* 1. Size the circular storage buffer (roundaboutSize = maxPrunableBlocks + 1)
* 2. Determine when blocks become stale and can be overwritten
*
* @return The maximum number of blocks that can be pruned.
*/
function maxPrunableBlocks() internal view returns (uint256) {
TimeStorage storage store = getStorage();
return uint256(store.epochDuration) * (uint256(store.proofSubmissionEpochs) + 1);
}
/**
* @notice Checks if proofs are being accepted for epoch _a during epoch _b
*
* @param _a - The epoch that may be accepting proofs
* @param _b - The epoch we would like to submit the proof for
*
* @return True if proofs would be accepted for epoch _a during epoch _b
*/
function isAcceptingProofsAtEpoch(Epoch _a, Epoch _b) internal view returns (bool) {
return _b < toDeadlineEpoch(_a);
}
function epochFromTimestamp(Timestamp _a) internal view returns (Epoch) {
TimeStorage storage store = getStorage();
return Epoch.wrap((Timestamp.unwrap(_a) - store.genesisTime) / (store.epochDuration * store.slotDuration));
}
function epochFromSlot(Slot _a) internal view returns (Epoch) {
return Epoch.wrap(Slot.unwrap(_a) / getStorage().epochDuration);
}
function getEpochDurationInSeconds() internal view returns (uint256) {
TimeStorage storage store = getStorage();
return store.epochDuration * store.slotDuration;
}
function getStorage() internal pure returns (TimeStorage storage storageStruct) {
bytes32 position = TIME_STORAGE_POSITION;
assembly {
storageStruct.slot := position
}
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
interface IPayload {
struct Action {
address target;
bytes data;
}
/**
* @notice A URI that can be used to refer to where a non-coder human readable description
* of the payload can be found.
*
* @dev Not used in the contracts, so could be any string really
*
* @return - Ideally a useful URI for the payload description
*/
function getURI() external view returns (string memory);
function getActions() external view returns (Action[] memory);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {CompressedSlot} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
// We are using a type instead of a struct as we don't want to throw away a full 8 bits
// for the bool.
/*struct CompressedFeeHeader {
uint1 preHeat;
uint63 proverCost; Max value: 9.2233720369E18
uint64 congestionCost;
uint48 feeAssetPriceNumerator;
uint48 excessMana;
uint32 manaUsed;
}*/
type CompressedFeeHeader is uint256;
struct FeeHeader {
uint256 excessMana;
uint256 manaUsed;
uint256 feeAssetPriceNumerator;
uint256 congestionCost;
uint256 proverCost;
}
struct L1FeeData {
uint256 baseFee;
uint256 blobFee;
}
// We compress the L1 fee data heavily, capping out at `2**56-1` (7.2057594038E16)
// If the costs rose to this point an eth transfer (21000 gas) would be
// 21000 * 2**56-1 = 1.5132094748E21 wei / 1,513 eth in fees.
type CompressedL1FeeData is uint112;
// (56 + 56) * 2 + 32 = 256
struct L1GasOracleValues {
CompressedL1FeeData pre;
CompressedL1FeeData post;
CompressedSlot slotOfChange;
}
library FeeStructsLib {
using SafeCast for uint256;
uint256 internal constant MASK_56_BITS = 0xFFFFFFFFFFFFFF;
function getBlobFee(CompressedL1FeeData _compressedL1FeeData) internal pure returns (uint256) {
return CompressedL1FeeData.unwrap(_compressedL1FeeData) & MASK_56_BITS;
}
function getBaseFee(CompressedL1FeeData _compressedL1FeeData) internal pure returns (uint256) {
return (CompressedL1FeeData.unwrap(_compressedL1FeeData) >> 56) & MASK_56_BITS;
}
function compress(L1FeeData memory _data) internal pure returns (CompressedL1FeeData) {
uint256 value = 0;
value |= uint256(_data.blobFee.toUint56()) << 0;
value |= uint256(_data.baseFee.toUint56()) << 56;
return CompressedL1FeeData.wrap(value.toUint112());
}
function decompress(CompressedL1FeeData _data) internal pure returns (L1FeeData memory) {
uint256 value = CompressedL1FeeData.unwrap(_data);
uint256 blobFee = value & MASK_56_BITS;
uint256 baseFee = (value >> 56) & MASK_56_BITS;
return L1FeeData({baseFee: uint256(baseFee), blobFee: uint256(blobFee)});
}
}
library FeeHeaderLib {
using SafeCast for uint256;
uint256 internal constant MASK_32_BITS = 0xFFFFFFFF;
uint256 internal constant MASK_48_BITS = 0xFFFFFFFFFFFF;
uint256 internal constant MASK_63_BITS = 0x7FFFFFFFFFFFFFFF;
uint256 internal constant MASK_64_BITS = 0xFFFFFFFFFFFFFFFF;
function getManaUsed(CompressedFeeHeader _compressedFeeHeader) internal pure returns (uint256) {
return CompressedFeeHeader.unwrap(_compressedFeeHeader) & MASK_32_BITS;
}
function getExcessMana(CompressedFeeHeader _compressedFeeHeader) internal pure returns (uint256) {
return (CompressedFeeHeader.unwrap(_compressedFeeHeader) >> 32) & MASK_48_BITS;
}
function getFeeAssetPriceNumerator(CompressedFeeHeader _compressedFeeHeader) internal pure returns (uint256) {
return (CompressedFeeHeader.unwrap(_compressedFeeHeader) >> 80) & MASK_48_BITS;
}
function getCongestionCost(CompressedFeeHeader _compressedFeeHeader) internal pure returns (uint256) {
return (CompressedFeeHeader.unwrap(_compressedFeeHeader) >> 128) & MASK_64_BITS;
}
function getProverCost(CompressedFeeHeader _compressedFeeHeader) internal pure returns (uint256) {
// The prover cost is only 63 bits so use mask to remove first bit
return (CompressedFeeHeader.unwrap(_compressedFeeHeader) >> 192) & MASK_63_BITS;
}
function compress(FeeHeader memory _feeHeader) internal pure returns (CompressedFeeHeader) {
uint256 value = 0;
value |= uint256(_feeHeader.manaUsed.toUint32());
value |= uint256(_feeHeader.excessMana.toUint48()) << 32;
value |= uint256(_feeHeader.feeAssetPriceNumerator.toUint48()) << 80;
value |= uint256(_feeHeader.congestionCost.toUint64()) << 128;
uint256 proverCost = uint256(_feeHeader.proverCost.toUint64());
require(proverCost == proverCost & MASK_63_BITS);
value |= proverCost << 192;
// Preheat
value |= 1 << 255;
return CompressedFeeHeader.wrap(value);
}
function decompress(CompressedFeeHeader _compressedFeeHeader) internal pure returns (FeeHeader memory) {
uint256 value = CompressedFeeHeader.unwrap(_compressedFeeHeader);
uint256 manaUsed = value & MASK_32_BITS;
value >>= 32;
uint256 excessMana = value & MASK_48_BITS;
value >>= 48;
uint256 feeAssetPriceNumerator = value & MASK_48_BITS;
value >>= 48;
uint256 congestionCost = value & MASK_64_BITS;
value >>= 64;
uint256 proverCost = value & MASK_63_BITS;
return FeeHeader({
manaUsed: uint256(manaUsed),
excessMana: uint256(excessMana),
feeAssetPriceNumerator: uint256(feeAssetPriceNumerator),
congestionCost: uint256(congestionCost),
proverCost: uint256(proverCost)
});
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {Timestamp, Slot, Epoch} from "./TimeMath.sol";
type CompressedTimestamp is uint32;
type CompressedSlot is uint32;
type CompressedEpoch is uint32;
library CompressedTimeMath {
function compress(Timestamp _timestamp) internal pure returns (CompressedTimestamp) {
return CompressedTimestamp.wrap(SafeCast.toUint32(Timestamp.unwrap(_timestamp)));
}
function compress(Slot _slot) internal pure returns (CompressedSlot) {
return CompressedSlot.wrap(SafeCast.toUint32(Slot.unwrap(_slot)));
}
function compress(Epoch _epoch) internal pure returns (CompressedEpoch) {
return CompressedEpoch.wrap(SafeCast.toUint32(Epoch.unwrap(_epoch)));
}
function decompress(CompressedTimestamp _ts) internal pure returns (Timestamp) {
return Timestamp.wrap(uint256(CompressedTimestamp.unwrap(_ts)));
}
function decompress(CompressedSlot _slot) internal pure returns (Slot) {
return Slot.wrap(uint256(CompressedSlot.unwrap(_slot)));
}
function decompress(CompressedEpoch _epoch) internal pure returns (Epoch) {
return Epoch.wrap(uint256(CompressedEpoch.unwrap(_epoch)));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Constants} from "@aztec/core/libraries/ConstantsGen.sol";
import {Hash} from "@aztec/core/libraries/crypto/Hash.sol";
import {Errors} from "@aztec/core/libraries/Errors.sol";
/**
* @title BlobLib - Blob Management and Validation Library
* @author Aztec Labs
* @notice Core library for handling blob operations, validation, and commitment management in the Aztec rollup.
*
* @dev This library provides functionality for managing blobs:
* - Blob hash retrieval and validation against EIP-4844 specifications
* - Blob commitment verification and batched blob proof validation
* - Blob base fee retrieval for transaction cost calculations
* - Accumulated blob commitments hash calculation for epoch proofs
*
* VM_ADDRESS:
* The VM_ADDRESS (0x7109709ECfa91a80626fF3989D68f67F5b1DD12D) is a special address used to detect
* when the contract is running in a Foundry test environment. This address is derived from
* keccak256("hevm cheat code") and corresponds to Foundry's VM contract that provides testing utilities.
* When block.chainid == 31337 && VM_ADDRESS.code.length > 0, it indicates we're in a test environment,
* allowing the library to:
* - Use Foundry's getBlobBaseFee() cheatcode instead of block.blobbasefee
* - Use Foundry's getBlobhashes() cheatcode instead of the blobhash() opcode
* This enables comprehensive testing of blob functionality without requiring actual blob transactions.
*
* Blob Validation Flow:
* 1. validateBlobs() processes L2 block blob data, extracting commitments and validating against real blobs
* 2. calculateBlobCommitmentsHash() accumulates commitments across an epoch for rollup circuit validation
* 3. validateBatchedBlob() verifies batched blob proofs using the EIP-4844 point evaluation precompile
* 4. calculateBlobHash() computes versioned hashes from commitments following EIP-4844 specification
*/
library BlobLib {
uint256 internal constant VERSIONED_HASH_VERSION_KZG =
0x0100000000000000000000000000000000000000000000000000000000000000; // 0x01 << 248 to be used in blobHashCheck
/**
* @notice Get the blob base fee
*
* @return uint256 - The blob base fee
*/
function getBlobBaseFee() internal view returns (uint256) {
return block.blobbasefee;
}
/**
* @notice Get the blob hash
*
* @return blobHash - The blob hash
*/
function getBlobHash(uint256 _index) internal view returns (bytes32 blobHash) {
assembly {
blobHash := blobhash(_index)
}
}
/**
* @notice Validate an L2 block's blobs and return the blobHashes, the hashed blobHashes, and blob commitments.
*
* We assume that the Aztec related blobs will be first in the propose transaction, additional blobs can be
* at the end.
*
* Input bytes:
* input[0] - num blobs in block
* input[1:] - blob commitments (48 bytes * num blobs in block)
* @param _blobsInput - The above bytes to verify our input blob commitments match real blobs
* @param _checkBlob - Whether to skip blob related checks. Hardcoded to true (See RollupCore.sol -> checkBlob),
* exists only to be overridden in tests.
*
* Returns for proposal:
* @return blobHashes - All of the blob hashes included in this block, to be emitted in L2BlockProposed event.
* @return blobsHashesCommitment - A hash of all blob hashes in this block, to be included in the block header. See
* comment at the end of this fn for more info.
* @return blobCommitments - All of the blob commitments included in this block, to be stored then validated against
* those used in the rollup in epoch proof verification.
*/
function validateBlobs(bytes calldata _blobsInput, bool _checkBlob)
internal
view
returns (bytes32[] memory blobHashes, bytes32 blobsHashesCommitment, bytes[] memory blobCommitments)
{
// We cannot input the incorrect number of blobs below, as the blobsHash
// and epoch proof verification will fail.
uint8 numBlobs = uint8(_blobsInput[0]);
require(numBlobs > 0, Errors.Rollup__NoBlobsInBlock());
blobHashes = new bytes32[](numBlobs);
blobCommitments = new bytes[](numBlobs);
bytes32 blobHash;
// Add 1 for the numBlobs prefix
uint256 blobInputStart = 1;
for (uint256 i = 0; i < numBlobs; i++) {
// Commitments = arrays of bytes48 compressed points
blobCommitments[i] =
abi.encodePacked(_blobsInput[blobInputStart:blobInputStart + Constants.BLS12_POINT_COMPRESSED_BYTES]);
blobInputStart += Constants.BLS12_POINT_COMPRESSED_BYTES;
bytes32 blobHashCheck = calculateBlobHash(blobCommitments[i]);
if (_checkBlob) {
blobHash = getBlobHash(i);
// The below check ensures that our injected blobCommitments indeed match the real
// blobs submitted with this block. They are then used in the blobCommitmentsHash (see below).
require(blobHash == blobHashCheck, Errors.Rollup__InvalidBlobHash(blobHash, blobHashCheck));
} else {
blobHash = blobHashCheck;
}
blobHashes[i] = blobHash;
}
// Hash the EVM blob hashes for the block header
// TODO(#13430): The below blobsHashesCommitment known as blobsHash elsewhere in the code. The name
// blobsHashesCommitment is confusingly similar to blobCommitmentsHash
// which are different values:
// - blobsHash := sha256([blobhash_0, ..., blobhash_m]) = a hash of all blob hashes in a block with m+1 blobs
// inserted into the header, exists so a user can cross check blobs.
// - blobCommitmentsHash := sha256( ...sha256(sha256(C_0), C_1) ... C_n) = iteratively calculated hash of all blob
// commitments in an epoch with n+1 blobs (see calculateBlobCommitmentsHash()),
// exists so we can validate injected commitments to the rollup circuits correspond to the correct real blobs.
// We may be able to combine these values e.g. blobCommitmentsHash := sha256( ...sha256(sha256(blobshash_0),
// blobshash_1) ... blobshash_l) for an epoch with l+1 blocks.
blobsHashesCommitment = Hash.sha256ToField(abi.encodePacked(blobHashes));
}
/**
* @notice Validate a batched blob.
* Input bytes:
* input[:32] - versioned_hash - NB for a batched blob, this is simply the versioned hash of the batched
* commitment
* input[32:64] - z = poseidon2( ...poseidon2(poseidon2(z_0, z_1), z_2) ... z_n)
* input[64:96] - y = y_0 + gamma * y_1 + gamma^2 * y_2 + ... + gamma^n * y_n
* input[96:144] - commitment C = C_0 + gamma * C_1 + gamma^2 * C_2 + ... + gamma^n * C_n
* input[144:192] - proof (a commitment to the quotient polynomial q(X)) = Q_0 + gamma * Q_1 + gamma^2 * Q_2 + ... +
* gamma^n * Q_n
* @param _blobInput - The above bytes to verify a batched blob
*
* If this function passes where the values of z, y, and C are valid public inputs to the final epoch root proof, then
* we know that the data in each blob of the epoch corresponds to the tx effects of all our proven txs in the epoch.
*
* The rollup circuits calculate each z_i and y_i as above, so if this function passes but they do not match the
* values from the circuit, then proof verification will fail.
*
* Each commitment C_i is injected into the circuits and their correctness is validated using the blobCommitmentsHash,
* as explained below in calculateBlobCommitmentsHash().
*
*/
function validateBatchedBlob(bytes calldata _blobInput) internal view returns (bool success) {
// Staticcall the point eval precompile https://eips.ethereum.org/EIPS/eip-4844#point-evaluation-precompile :
(success,) = address(0x0a).staticcall(_blobInput);
require(success, Errors.Rollup__InvalidBlobProof(bytes32(_blobInput[0:32])));
}
/**
* @notice Calculate the current state of the blobCommitmentsHash. Called for each new proposed block.
* @param _previousBlobCommitmentsHash - The previous block's blobCommitmentsHash.
* @param _blobCommitments - The commitments corresponding to this block's blobs.
* @param _isFirstBlockOfEpoch - Whether this block is the first of an epoch (see below).
*
* The blobCommitmentsHash is an accumulated value calculated in the rollup circuits as:
* blobCommitmentsHash_i := sha256(blobCommitmentsHash_(i - 1), C_i)
* for each blob commitment C_i in an epoch. For the first blob in the epoch (i = 0):
* blobCommitmentsHash_i := sha256(C_0)
* which is why we require _isFirstBlockOfEpoch here.
*
* Each blob commitment is injected into the rollup circuits and we rely on the L1 contracts to validate
* these commitments correspond to real blobs. The input _blobCommitments below come from validateBlobs()
* so we know they are valid commitments here.
*
* We recalculate the same blobCommitmentsHash (which encompasses all claimed blobs in the epoch)
* as in the rollup circuits, then use the final value as a public input to the root rollup proof
* verification in EpochProofLib.sol.
*
* If the proof verifies, we know that the injected commitments used in the rollup circuits match
* the real commitments to L1 blobs.
*
*/
function calculateBlobCommitmentsHash(
bytes32 _previousBlobCommitmentsHash,
bytes[] memory _blobCommitments,
bool _isFirstBlockOfEpoch
) internal pure returns (bytes32 currentBlobCommitmentsHash) {
uint256 i = 0;
currentBlobCommitmentsHash = _previousBlobCommitmentsHash;
// If we are at the first block of an epoch, we reinitialize the blobCommitmentsHash.
// Blob commitments are collected and proven per root rollup proof => per epoch.
if (_isFirstBlockOfEpoch) {
// Initialize the blobCommitmentsHash
currentBlobCommitmentsHash = Hash.sha256ToField(abi.encodePacked(_blobCommitments[i++]));
}
for (i; i < _blobCommitments.length; i++) {
currentBlobCommitmentsHash = Hash.sha256ToField(abi.encodePacked(currentBlobCommitmentsHash, _blobCommitments[i]));
}
}
/**
* @notice Calculate the expected blob hash given a blob commitment
* @dev TODO(#14646): Use kzg_to_versioned_hash & VERSIONED_HASH_VERSION_KZG
* Until we use an external kzg_to_versioned_hash(), calculating it here:
* EIP-4844 spec blobhash is 32 bytes: [version, ...sha256(commitment)[1:32]]
* The version = VERSIONED_HASH_VERSION_KZG, currently 0x01.
* @param _blobCommitment - The 48 byte blob commitment
* @return bytes32 - The blob hash
*/
function calculateBlobHash(bytes memory _blobCommitment) internal pure returns (bytes32) {
return bytes32(
(uint256(sha256(_blobCommitment)) & 0x00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
| VERSIONED_HASH_VERSION_KZG
);
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Math} from "@oz/utils/math/Math.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
type EthValue is uint256;
type FeeAssetValue is uint256;
// Precision of 1e9
type FeeAssetPerEthE9 is uint256;
function addEthValue(EthValue _a, EthValue _b) pure returns (EthValue) {
return EthValue.wrap(EthValue.unwrap(_a) + EthValue.unwrap(_b));
}
function subEthValue(EthValue _a, EthValue _b) pure returns (EthValue) {
return EthValue.wrap(EthValue.unwrap(_a) - EthValue.unwrap(_b));
}
using {addEthValue as +, subEthValue as -} for EthValue global;
// 64 bit manaTarget, 128 bit congestionUpdateFraction, 64 bit provingCostPerMana
type CompressedFeeConfig is uint256;
struct FeeConfig {
uint256 manaTarget;
uint256 congestionUpdateFraction;
EthValue provingCostPerMana;
}
library PriceLib {
function toEth(FeeAssetValue _feeAssetValue, FeeAssetPerEthE9 _feeAssetPerEth) internal pure returns (EthValue) {
return EthValue.wrap(
Math.mulDiv(
FeeAssetValue.unwrap(_feeAssetValue), 1e9, FeeAssetPerEthE9.unwrap(_feeAssetPerEth), Math.Rounding.Ceil
)
);
}
function toFeeAsset(EthValue _ethValue, FeeAssetPerEthE9 _feeAssetPerEth) internal pure returns (FeeAssetValue) {
return FeeAssetValue.wrap(
Math.mulDiv(EthValue.unwrap(_ethValue), FeeAssetPerEthE9.unwrap(_feeAssetPerEth), 1e9, Math.Rounding.Ceil)
);
}
}
library FeeConfigLib {
using SafeCast for uint256;
uint256 private constant MASK_64_BITS = 0xFFFFFFFFFFFFFFFF;
uint256 private constant MASK_128_BITS = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
function getManaTarget(CompressedFeeConfig _compressedFeeConfig) internal pure returns (uint256) {
return (CompressedFeeConfig.unwrap(_compressedFeeConfig) >> 192) & MASK_64_BITS;
}
function getCongestionUpdateFraction(CompressedFeeConfig _compressedFeeConfig) internal pure returns (uint256) {
return (CompressedFeeConfig.unwrap(_compressedFeeConfig) >> 64) & MASK_128_BITS;
}
function getProvingCostPerMana(CompressedFeeConfig _compressedFeeConfig) internal pure returns (EthValue) {
return EthValue.wrap(CompressedFeeConfig.unwrap(_compressedFeeConfig) & MASK_64_BITS);
}
function compress(FeeConfig memory _config) internal pure returns (CompressedFeeConfig) {
uint256 value = 0;
value |= uint256(EthValue.unwrap(_config.provingCostPerMana).toUint64());
value |= uint256(_config.congestionUpdateFraction.toUint128()) << 64;
value |= uint256(_config.manaTarget.toUint64()) << 192;
return CompressedFeeConfig.wrap(value);
}
function decompress(CompressedFeeConfig _compressedFeeConfig) internal pure returns (FeeConfig memory) {
return FeeConfig({
provingCostPerMana: getProvingCostPerMana(_compressedFeeConfig),
congestionUpdateFraction: getCongestionUpdateFraction(_compressedFeeConfig),
manaTarget: getManaTarget(_compressedFeeConfig)
});
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {RollupStore, IRollupCore, GenesisState} from "@aztec/core/interfaces/IRollup.sol";
import {
CompressedTempBlockLog,
TempBlockLog,
CompressedTempBlockLogLib
} from "@aztec/core/libraries/compressed-data/BlockLog.sol";
import {CompressedFeeHeader, FeeHeaderLib} from "@aztec/core/libraries/compressed-data/fees/FeeStructs.sol";
import {ChainTipsLib, CompressedChainTips} from "@aztec/core/libraries/compressed-data/Tips.sol";
import {Errors} from "@aztec/core/libraries/Errors.sol";
import {Timestamp, Slot, Epoch, TimeLib} from "@aztec/core/libraries/TimeLib.sol";
import {CompressedSlot, CompressedTimeMath} from "@aztec/shared/libraries/CompressedTimeMath.sol";
/**
* @title STFLib - State Transition Function Library
* @author Aztec Labs
* @notice Core library responsible for managing the rollup state transition function and block storage.
*
* @dev This library implements the essential state management functionality for the Aztec rollup, including:
* - Archive root storage indexed by block number for permanent state history
* - Circular storage for temporary block logs
* - Block pruning mechanism to remove unproven blocks after proof submission window expires
* - Namespaced storage pattern following EIP-7201 for secure storage isolation
*
* Storage Architecture:
* - Uses EIP-7201 namespaced storage
* - Archives mapping: permanent storage of proven block archive roots
* - TempBlockLogs: circular buffer storing temporary block data (gets overwritten after N blocks)
* - Tips: tracks both pending (latest proposed) and proven (latest with valid proof) block numbers
*
* Circular Storage ("Roundabout") Pattern:
* - The temporary block logs use a circular storage pattern where blocks are stored at index (blockNumber %
* roundaboutSize).
* This reuses storage slots for old blocks that have been proven or pruned.
* The roundabout size is calculated as maxPrunableBlocks() + 1 to ensure at least the last proven block
* remains accessible even after pruning operations. This saves gas costs by minimizing storage writes to fresh
* slots.
*
* Pruning Mechanism:
* - Blocks become eligible for pruning when their proof submission window expires. The proof submission
* window is defined as a configurable number of epochs after the epoch containing the block.
* When pruning occurs, all unproven blocks are removed from the pending chain, and the chain
* resumes from the last proven block.
* - Rationale for pruning is that an epoch may contain a block that provers cannot prove. Pruning allows us to
* trade a large reorg for chain liveness, by removing potential unprovable blocks so we can continue.
* - A prover may not be able to prove a block if the transaction data for that block is not available. Transaction
* data is NOT posted to DA since transactions (along with their ClientIVC proofs) are big, and it would be too
* costly to submit everything to blocks. So we count on the committee to attest to the availability of that
* data, but if for some reason the data does not reach provers via p2p, then provers will not be able to prove.
*
* Security Considerations:
* - Archive roots provide immutable history of proven state transitions
* - Circular storage saves gas while maintaining necessary data
* - Proof submission windows ensure liveness by preventing indefinite stalling
* - EIP-7201 namespaced storage prevents accidental storage collisions with other contracts
*
* @dev TempBlockLog Structure
*
* The TempBlockLog struct represents temporary block data stored in the circular buffer
* until blocks overwritten. It contains:
*
* Fields:
* - headerHash: Hash of the complete block header containing all block metadata
* - blobCommitmentsHash: Hash of all blob commitments used for data availability verification
* - attestationsHash: Hash of committee member attestations validating the block
* - payloadDigest: Digest of the proposal payload that committee members attested to
* - slotNumber: The specific slot when this block was proposed (determines epoch assignment)
* - feeHeader: Compressed fee information including base fees and mana pricing
*
* Storage Optimization:
* The struct is stored in compressed format (CompressedTempBlockLog) to minimize gas costs.
* Compression primarily affects the slotNumber (reduced from 256-bit to smaller representation)
* and feeHeader (packed fee components). Other fields remain as 32-byte hashes.
*/
library STFLib {
using TimeLib for Slot;
using TimeLib for Epoch;
using TimeLib for Timestamp;
using CompressedTimeMath for CompressedSlot;
using ChainTipsLib for CompressedChainTips;
using CompressedTempBlockLogLib for CompressedTempBlockLog;
using CompressedTempBlockLogLib for TempBlockLog;
using CompressedTimeMath for Slot;
using CompressedTimeMath for CompressedSlot;
using FeeHeaderLib for CompressedFeeHeader;
// @note This is also used in the cheatcodes, so if updating, please also update the cheatcode.
bytes32 private constant STF_STORAGE_POSITION = keccak256("aztec.stf.storage");
/**
* @notice Initializes the rollup state with genesis configuration
* @dev Sets up the initial state of the rollup including verification keys and the genesis archive root.
* This function should only be called once during rollup deployment.
*
* @param _genesisState The initial state configuration containing:
* - vkTreeRoot: Root of the verification key tree for circuit verification
* - protocolContractTreeRoot: Root containing protocol contract addresses and configurations
* - genesisArchiveRoot: Initial archive root representing the genesis state
*/
function initialize(GenesisState memory _genesisState) internal {
RollupStore storage rollupStore = STFLib.getStorage();
rollupStore.config.vkTreeRoot = _genesisState.vkTreeRoot;
rollupStore.config.protocolContractTreeRoot = _genesisState.protocolContractTreeRoot;
rollupStore.archives[0] = _genesisState.genesisArchiveRoot;
}
/**
* @notice Stores a temporary block log in the circular storage buffer
* @dev Compresses and stores block data at the appropriate index in the circular buffer.
* The storage index is calculated as (pending block % roundaboutSize) to implement
* the circular storage pattern.
* Don't need to check if storage is stale as always writing to freshest.
*
* @param _tempBlockLog The temporary block log containing header hash, attestations,
* blob commitments, payload digest, slot number, and fee information
*/
function addTempBlockLog(TempBlockLog memory _tempBlockLog) internal {
uint256 blockNumber = STFLib.getStorage().tips.getPendingBlockNumber();
uint256 size = roundaboutSize();
getStorage().tempBlockLogs[blockNumber % size] = _tempBlockLog.compress();
}
/**
* @notice Removes unproven blocks from the pending chain when proof submission window expires
* @dev This function implements the pruning mechanism that maintains rollup liveness by removing
* blocks that cannot be proven within the configured time window. When called:
*
* 1. Identifies the gap between pending and proven block numbers
* 2. Resets the pending chain tip to match the last proven block
* 3. Effectively removes all unproven blocks from the pending chain
*
* The pruning does not delete block data from storage but makes it inaccessible by
* updating the chain tips.
*
* Pruning should only occur when the proof submission window has expired for pending
* blocks, which is validated by the calling function (typically through canPruneAtTime).
*
* Emits PrunedPending event with the proven and previously pending block numbers.
*/
function prune() internal {
RollupStore storage rollupStore = STFLib.getStorage();
CompressedChainTips tips = rollupStore.tips;
uint256 pending = tips.getPendingBlockNumber();
// @note We are not deleting the blocks, but we are "winding back" the pendingTip to the last block that was
// proven.
// We can do because any new block proposed will overwrite a previous block in the block log,
// so no values should "survive".
// People must therefore read the chain using the pendingTip as a boundary.
uint256 proven = tips.getProvenBlockNumber();
rollupStore.tips = tips.updatePendingBlockNumber(proven);
emit IRollupCore.PrunedPending(proven, pending);
}
/**
* @notice Calculates the size of the circular storage buffer for temporary block logs
* @dev The roundabout size determines how many blocks can be stored in the circular buffer
* before older entries are overwritten. The size is calculated as:
*
* roundaboutSize = maxPrunableBlocks() + 1
*
* Where maxPrunableBlocks() = epochDuration * (proofSubmissionEpochs + 1)
*
* This ensures that:
* - All blocks within the proof submission window remain accessible
* - At least the last proven block is available as a trusted anchor
*
* @return The number of slots in the circular storage buffer
*/
function roundaboutSize() internal view returns (uint256) {
// Must be ensured to contain at least the last proven block even after a prune.
return TimeLib.maxPrunableBlocks() + 1;
}
/**
* @notice Returns a storage reference to a compressed temporary block log
* @dev Provides direct access to the compressed block log in storage without decompression.
* Reverts if the block number is stale (no longer accessible in circular storage) or if
* the block have not happened yet.
*
* @dev A temporary block log is stale if it can no longer be accessed in the circular storage buffer.
* The staleness is determined by the relationship between the block number, current pending
* block, and the buffer size.
*
* Example with roundabout size 5 and pending block 7:
* Circular buffer state: [block5, block6, block7, block3, block4]
*
* A block is available if:
* - blockNumber <= pending (it is not in the future)
* - pending < blockNumber + size (the override is in the future)
* Together as a span:
* - blockNumber <= pending < blockNumber + size
*
* For example, block 2 is unavailable since the override has happened:
* - 2 <= 7 (true) && 7 < 2 + 5 (false)
* But block 3 is available as it in the past, but not overridden yet
* - 3 <= 7 (true) && 7 < 3 + 5 (true)
*
* This ensures that only blocks within the current "window" of the circular buffer
* are considered valid and accessible.
*
* @param _blockNumber The block number to get the storage reference for
* @return A storage reference to the compressed temporary block log
*/
function getStorageTempBlockLog(uint256 _blockNumber) internal view returns (CompressedTempBlockLog storage) {
uint256 pending = getStorage().tips.getPendingBlockNumber();
uint256 size = roundaboutSize();
uint256 upperLimit = _blockNumber + size;
bool available = _blockNumber <= pending && pending < upperLimit;
require(available, Errors.Rollup__UnavailableTempBlockLog(_blockNumber, pending, upperLimit));
return getStorage().tempBlockLogs[_blockNumber % size];
}
/**
* @notice Retrieves and decompresses a temporary block log from circular storage
* @dev Fetches the compressed block log from the circular buffer and decompresses it.
* Reverts if the block number is stale and no longer accessible.
* @param _blockNumber The block number to retrieve the log for
* @return The decompressed temporary block log containing all block metadata
*/
function getTempBlockLog(uint256 _blockNumber) internal view returns (TempBlockLog memory) {
return getStorageTempBlockLog(_blockNumber).decompress();
}
/**
* @notice Retrieves the header hash for a specific block number
* @dev Gas-efficient accessor that returns only the header hash without decompressing
* the entire block log. Reverts if the block number is stale.
* @param _blockNumber The block number to get the header hash for
* @return The header hash of the specified block
*/
function getHeaderHash(uint256 _blockNumber) internal view returns (bytes32) {
return getStorageTempBlockLog(_blockNumber).headerHash;
}
/**
* @notice Retrieves the compressed fee header for a specific block number
* @dev Returns the fee information including base fee components and mana costs.
* The data remains in compressed format for gas efficiency. Reverts if the block is stale.
* @param _blockNumber The block number to get the fee header for
* @return The compressed fee header containing fee-related data
*/
function getFeeHeader(uint256 _blockNumber) internal view returns (CompressedFeeHeader) {
return getStorageTempBlockLog(_blockNumber).feeHeader;
}
/**
* @notice Retrieves the blob commitments hash for a specific block number
* @dev Returns the hash of all blob commitments for the block, used for data availability
* verification. Reverts if the block number is stale.
* @param _blockNumber The block number to get the blob commitments hash for
* @return The hash of blob commitments for the specified block
*/
function getBlobCommitmentsHash(uint256 _blockNumber) internal view returns (bytes32) {
return getStorageTempBlockLog(_blockNumber).blobCommitmentsHash;
}
/**
* @notice Retrieves the slot number for a specific block number
* @dev Returns the decompressed slot number indicating when the block was proposed.
* Reverts if the block number is stale.
* @param _blockNumber The block number to get the slot number for
* @return The slot number when the block was proposed
*/
function getSlotNumber(uint256 _blockNumber) internal view returns (Slot) {
return getStorageTempBlockLog(_blockNumber).slotNumber.decompress();
}
/**
* @notice Gets the effective pending block number based on pruning eligibility
* @dev Returns either the pending block number or proven block number depending on
* whether pruning is allowed at the given timestamp. This is used to determine
* the effective chain tip for operations that should respect pruning windows.
*
* If pruning is allowed: returns proven block number (chain should be pruned)
* If pruning is not allowed: returns pending block number (normal operation)
* @param _timestamp The timestamp to evaluate pruning eligibility against
* @return The effective block number that should be considered as the chain tip
*/
function getEffectivePendingBlockNumber(Timestamp _timestamp) internal view returns (uint256) {
RollupStore storage rollupStore = STFLib.getStorage();
CompressedChainTips tips = rollupStore.tips;
return STFLib.canPruneAtTime(_timestamp) ? tips.getProvenBlockNumber() : tips.getPendingBlockNumber();
}
/**
* @notice Determines which epoch a block belongs to
* @dev Calculates the epoch for a given block number by retrieving the block's slot
* and converting it to an epoch. Reverts if the block number exceeds the pending tip.
* @param _blockNumber The block number to get the epoch for
* @return The epoch containing the specified block
*/
function getEpochForBlock(uint256 _blockNumber) internal view returns (Epoch) {
RollupStore storage rollupStore = STFLib.getStorage();
require(
_blockNumber <= rollupStore.tips.getPendingBlockNumber(),
Errors.Rollup__InvalidBlockNumber(rollupStore.tips.getPendingBlockNumber(), _blockNumber)
);
return getSlotNumber(_blockNumber).epochFromSlot();
}
/**
* @notice Determines if the chain can be pruned at a given timestamp
* @dev Checks whether the proof submission window has expired for the oldest pending blocks.
* Pruning is allowed when:
*
* 1. There are unproven blocks (pending > proven)
* 2. The oldest pending epoch is no longer accepting proofs at the epoch at _ts
*
* The proof submission window is defined by the aztecProofSubmissionEpochs configuration,
* which specifies how many epochs after an epoch ends that proofs are still accepted.
*
* Example timeline:
* - Block proposed in epoch N
* - Proof submission window = 1 epochs
* - Proof deadline epoch = N + Proof submission window + 1
* The deadline is the point in time where it is no longer acceptable, (if you touch the line you die)
* - If epoch(_ts) >= epoch N + Proof submission window + 1, pruning is allowed
*
* This mechanism ensures rollup liveness by preventing indefinite stalling on unprovable blocks (e.g due to
* the committee failing to disseminate the data) while providing sufficient time for proof generation and
* submission.
*
* @param _ts The current timestamp to check against
* @return True if pruning is allowed at the given timestamp, false otherwise
*/
function canPruneAtTime(Timestamp _ts) internal view returns (bool) {
RollupStore storage rollupStore = STFLib.getStorage();
CompressedChainTips tips = rollupStore.tips;
if (tips.getPendingBlockNumber() == tips.getProvenBlockNumber()) {
return false;
}
Epoch oldestPendingEpoch = getEpochForBlock(tips.getProvenBlockNumber() + 1);
Epoch currentEpoch = _ts.epochFromTimestamp();
return !oldestPendingEpoch.isAcceptingProofsAtEpoch(currentEpoch);
}
/**
* @notice Retrieves the namespaced storage for the STFLib using EIP-7201 pattern
* @dev Uses inline assembly to access storage at a specific slot calculated from the
* keccak256 hash of "aztec.stf.storage". This ensures storage isolation and
* prevents collisions with other contracts or libraries.
*
* The storage contains:
* - Chain tips (pending and proven block numbers)
* - Archives mapping (permanent block archive storage)
* - TempBlockLogs mapping (circular buffer for temporary block data)
* - Rollup configuration
* @return storageStruct A storage pointer to the RollupStore struct
*/
function getStorage() internal pure returns (RollupStore storage storageStruct) {
bytes32 position = STF_STORAGE_POSITION;
assembly {
storageStruct.slot := position
}
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {RollupStore} from "@aztec/core/interfaces/IRollup.sol";
import {ValidatorSelectionStorage} from "@aztec/core/interfaces/IValidatorSelection.sol";
import {SampleLib} from "@aztec/core/libraries/crypto/SampleLib.sol";
import {Errors} from "@aztec/core/libraries/Errors.sol";
import {AttestationLib, CommitteeAttestations} from "@aztec/core/libraries/rollup/AttestationLib.sol";
import {StakingLib} from "@aztec/core/libraries/rollup/StakingLib.sol";
import {STFLib} from "@aztec/core/libraries/rollup/STFLib.sol";
import {Timestamp, Slot, Epoch, TimeLib} from "@aztec/core/libraries/TimeLib.sol";
import {SignatureLib, Signature} from "@aztec/shared/libraries/SignatureLib.sol";
import {ECDSA} from "@oz/utils/cryptography/ECDSA.sol";
import {MessageHashUtils} from "@oz/utils/cryptography/MessageHashUtils.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {SlotDerivation} from "@oz/utils/SlotDerivation.sol";
import {Checkpoints} from "@oz/utils/structs/Checkpoints.sol";
import {EnumerableSet} from "@oz/utils/structs/EnumerableSet.sol";
import {TransientSlot} from "@oz/utils/TransientSlot.sol";
/**
* @title ValidatorSelectionLib
* @author Aztec Labs
* @notice Core library responsible for validator selection, committee management, and proposer verification in the
* Aztec rollup.
*
* @dev This library implements the validator selection system:
* - Epoch-based committee sampling
* - Slot-based proposer selection within committee members
* - Signature verification for block proposals and attestations
* - Committee commitment validation and caching mechanisms
* - Randomness seed management for unpredictable but deterministic selection
*
* Key Components:
*
* 1. Committee Selection:
* - At the start of each epoch, a committee is sampled from the active validator set
* - Committee size is configurable at deployment (targetCommitteeSize), and must be met
* - Selection uses cryptographic randomness (prevrandao + epoch)
* - Committee remains stable throughout the entire epoch for consistency
* - Committee commitment is stored on-chain and validated against reconstructed committees
*
* 2. Proposer Selection:
* - For each slot within an epoch, one committee member is selected as the proposer (this may change)
* - Selection is deterministic based on epoch, slot, and the epoch's sample seed
* - Proposers have exclusive rights to propose blocks during their assigned slot
* - Proposer verification ensures only the correct validator can submit blocks
*
* 3. Attestation System:
* - Committee members attest to blocks by providing signatures
* - Attestations serve dual purpose: data availability and state validation
* - Blocks require >2/3 committee signatures to be considered valid
* - Signatures are verified against expected committee members using ECDSA recovery
* - Mixed signature/address format allows optimization (addresses included only for non-signing members,
* addresses for signing members can be recovered from the signatures and hence are not needed for DA
* purposes)
* - Signature verification is delayed until proof submission to save gas
*
* 4. Seed Management:
* - Sample seeds determine committee and proposer selection for each epoch
* - Seeds use prevrandao from L1 blocks combined with epoch number for unpredictability
* - Prevrandao are set 2 epochs in advance to prevent last-minute manipulation and provide L1-reorg resistance
* - First two epochs use randao values (type(uint224).max) for bootstrap (this results in the committee
* being predictable in the first 2 epochs which is considered acceptable when bootstrapping the network)
*
* 5. Caching and Optimization:
* - Transient storage caches proposer computations within the same transaction
* - This is used when signaling for a governance or slashing payload after a block proposal
* - Committee commitments are stored to avoid recomputation during verification
* - Validator indices are sampled once and reused for address resolution
*
* Integration with Rollup System:
* - Called from RollupCore.setupEpoch() to initialize epoch committees
* - Used in ProposeLib.propose() for proposer verification during block submission
* - Integrates with StakingLib to resolve validator addresses from staking indices
* - Works with InvalidateLib for committee verification during invalidation
*
* Security Model:
* - Randomness comes from L1 prevrandao
* - Committee selection happens before epoch start, preventing manipulation
* - Signature verification ensures only legitimate committee members can attest
* - Committee commitments prevent committee substitution attacks
* - Two-epoch delay in seed setting prevents last-minute influence and provides L1-reorg resistance
*
* Time-based Architecture:
* - Epochs define committee boundaries (committee stable within epoch)
* - Slots define proposer assignments (one proposer per slot)
* - Sampling uses a lagging time for the epoch to ensure validator set stability
* - Validator set snapshots taken at deterministic timestamps for consistency
*/
library ValidatorSelectionLib {
using EnumerableSet for EnumerableSet.AddressSet;
using MessageHashUtils for bytes32;
using SignatureLib for Signature;
using TimeLib for Timestamp;
using TimeLib for Epoch;
using TimeLib for Slot;
using Checkpoints for Checkpoints.Trace224;
using SafeCast for *;
using TransientSlot for *;
using SlotDerivation for string;
using SlotDerivation for bytes32;
using AttestationLib for CommitteeAttestations;
/**
* @dev Stack struct used in verifyAttestations to avoid stack too deep errors
* Used when reconstructing the committee commitment from the attestations
* @param proposerIndex Index of the proposer within the committee
* @param index Working index for iteration (unused in current implementation)
* @param needed Number of signatures required (2/3 + 1 of committee size)
* @param signaturesRecovered Number of valid signatures found
* @param reconstructedCommittee Array of committee member addresses reconstructed from attestations
*/
struct VerifyStack {
uint256 proposerIndex;
uint256 index;
uint256 needed;
uint256 signaturesRecovered;
address[] reconstructedCommittee;
}
bytes32 private constant VALIDATOR_SELECTION_STORAGE_POSITION = keccak256("aztec.validator_selection.storage");
// Namespace for cached proposer computations
string private constant PROPOSER_NAMESPACE = "aztec.validator_selection.transient.proposer";
/**
* @notice Initializes the validator selection system with target committee size
* @dev Sets up the initial configuration and bootstrap seeds for the first two epochs.
* The first two epochs use maximum seed values for startup.
* @param _targetCommitteeSize The desired number of validators in each epoch's committee
*/
function initialize(uint256 _targetCommitteeSize, uint256 _lagInEpochs) internal {
ValidatorSelectionStorage storage store = getStorage();
store.targetCommitteeSize = _targetCommitteeSize.toUint32();
store.lagInEpochs = _lagInEpochs.toUint32();
checkpointRandao(Epoch.wrap(0));
}
/**
* @notice Performs epoch setup by sampling the committee and setting future seeds
* @dev This function handles the epoch transition by:
* 1. Retrieving the sample seed for the current epoch
* 2. Setting the sample seed for the next epoch (if not already set)
* 3. Sampling and storing the committee for the current epoch (if not already done)
*
* This setup ensures that each epoch has a stable committee and that future epochs
* have their randomness seeds prepared in advance.
* @param _epochNumber The epoch number to set up
*/
function setupEpoch(Epoch _epochNumber) internal {
ValidatorSelectionStorage storage store = getStorage();
bytes32 committeeCommitment = store.committeeCommitments[_epochNumber];
if (committeeCommitment != bytes32(0)) {
// We already have the commitment stored for the epoch meaning the epoch has already been setup.
return;
}
//################ Seeds ################
// Get the sample seed for this current epoch.
uint256 sampleSeed = getSampleSeed(_epochNumber);
// Checkpoint randao for future sampling if required
// function handles the case where it is already set
checkpointRandao(_epochNumber);
//################ Committee ################
// If the committee is not set for this epoch, we need to sample it
address[] memory committee = sampleValidators(_epochNumber, sampleSeed);
store.committeeCommitments[_epochNumber] = computeCommitteeCommitment(committee);
}
/**
* @notice Verifies that the block proposal has been signed by the correct proposer
* @dev Validates proposer eligibility and signature for block proposals by:
* 1. Attempting to load cached proposer from transient storage
* 2. If not cached, reconstructing committee from attestations and verifying against stored commitment
* 3. Computing proposer index using epoch, slot, and sample seed
* 4. Verifying the proposer has provided a valid signature in the attestations
*
* The attestation is checked by reconstructing the committee commitment from the attestations and signers,
* and then ensuring it matches the stored commitment for the epoch.
*
* Uses transient storage caching to avoid recomputation within the same transaction. (This caching mechanism is
* commonly used when a proposer signals in governance and submits a proposal within the same transaction - then
* `getProposerAt` function is called).
* @param _slot The slot of the block being proposed
* @param _epochNumber The epoch number of the block
* @param _attestations The committee attestations for the block proposal
* @param _signers The addresses of the committee members that signed the attestations. Provided in order to not have
* to recover them from their attestations' signatures (and hence save gas). The addresses of the non-signing
* committee members are directly included in the attestations.
* @param _digest The digest of the block being proposed
* @param _updateCache Flag to identify that the proposer should be written to transient cache.
* @custom:reverts Errors.ValidatorSelection__InvalidCommitteeCommitment if reconstructed committee doesn't match
* stored commitment
* @custom:reverts Errors.ValidatorSelection__MissingProposerSignature if proposer hasn't signed their attestation
* @custom:reverts SignatureLib verification errors if proposer signature is invalid
*/
function verifyProposer(
Slot _slot,
Epoch _epochNumber,
CommitteeAttestations memory _attestations,
address[] memory _signers,
bytes32 _digest,
Signature memory _attestationsAndSignersSignature,
bool _updateCache
) internal {
uint256 proposerIndex;
address proposer;
{
// Load the committee commitment for the epoch
(bytes32 committeeCommitment, uint256 committeeSize) = getCommitteeCommitmentAt(_epochNumber);
// If the rollup is *deployed* with a target committee size of 0, we skip the validation.
// Note: This generally only happens in test setups; In production, the target committee is non-zero,
// and one can see in `sampleValidators` that we will revert if the target committee size is not met.
if (committeeSize == 0) {
return;
}
// Reconstruct the committee from the attestations and signers
address[] memory committee = _attestations.reconstructCommitteeFromSigners(_signers, committeeSize);
// Check reconstructed committee commitment matches the expected one for the epoch
bytes32 reconstructedCommitment = computeCommitteeCommitment(committee);
if (reconstructedCommitment != committeeCommitment) {
revert Errors.ValidatorSelection__InvalidCommitteeCommitment(reconstructedCommitment, committeeCommitment);
}
// Get the proposer from the committee based on the epoch, slot, and sample seed
uint256 sampleSeed = getSampleSeed(_epochNumber);
proposerIndex = computeProposerIndex(_epochNumber, _slot, sampleSeed, committeeSize);
proposer = committee[proposerIndex];
}
// We check that the proposer agrees with the proposal by checking that he attested to it. If we fail to get
// the proposer's attestation signature or if we fail to verify it, we revert.
bool hasProposerSignature = _attestations.isSignature(proposerIndex);
if (!hasProposerSignature) {
revert Errors.ValidatorSelection__MissingProposerSignature(proposer, proposerIndex);
}
// Check if the signature is correct
bytes32 digest = _digest.toEthSignedMessageHash();
Signature memory signature = _attestations.getSignature(proposerIndex);
SignatureLib.verify(signature, proposer, digest);
// Check that the proposer have signed the `_attestations|_signers` data such that invalid `_attestations|_signers`
// data can be attributed to the `proposer` specifically.
bytes32 attestationsAndSignersDigest =
_attestations.getAttestationsAndSignersDigest(_signers).toEthSignedMessageHash();
SignatureLib.verify(_attestationsAndSignersSignature, proposer, attestationsAndSignersDigest);
if (_updateCache) {
setCachedProposer(_slot, proposer, proposerIndex);
}
}
/**
* @notice Verifies committee attestations meet the required threshold and signature validity
* @dev Performs attestation validation by:
* 1. Retrieving stored committee commitment and target committee size
* 2. Computing proposer index for signature verification optimization
* 3. Extracting and verifying signatures from packed attestation data
* 4. Reconstructing committee addresses from signatures and provided addresses
* 5. Validating reconstructed committee matches stored commitment
* 6. Ensuring at least 2/3 + 1 committee members provided signatures
*
* Each committee attestation is either their:
* - Signature (65 bytes: v, r, s) for attestation
* - Address (20 bytes) for non-signing members
*
* Note that providing the addresses of non-signing members allows for reconstructing the committee commitment
* directly from calldata.
*
* Skips validation entirely if target committee size is 0 (test configurations).
* @param _slot The slot of the block
* @param _epochNumber The epoch of the block
* @param _attestations The packed signatures and addresses of committee members
* @param _digest The digest of the block that attestations are signed over
* @custom:reverts Errors.ValidatorSelection__InsufficientAttestations if less than 2/3 + 1 signatures provided
* @custom:reverts Errors.ValidatorSelection__InvalidCommitteeCommitment if reconstructed committee doesn't match
* stored commitment
*/
function verifyAttestations(
Slot _slot,
Epoch _epochNumber,
CommitteeAttestations memory _attestations,
bytes32 _digest
) internal {
(bytes32 committeeCommitment, uint256 targetCommitteeSize) = getCommitteeCommitmentAt(_epochNumber);
// If the rollup is *deployed* with a target committee size of 0, we skip the validation.
// Note: This generally only happens in test setups; In production, the target committee is non-zero,
// and one can see in `sampleValidators` that we will revert if the target committee size is not met.
if (targetCommitteeSize == 0) {
return;
}
VerifyStack memory stack = VerifyStack({
proposerIndex: computeProposerIndex(_epochNumber, _slot, getSampleSeed(_epochNumber), targetCommitteeSize),
needed: (targetCommitteeSize << 1) / 3 + 1, // targetCommitteeSize * 2 / 3 + 1, but cheaper
index: 0,
signaturesRecovered: 0,
reconstructedCommittee: new address[](targetCommitteeSize)
});
bytes32 digest = _digest.toEthSignedMessageHash();
bytes memory signaturesOrAddresses = _attestations.signaturesOrAddresses;
uint256 dataPtr;
assembly {
dataPtr := add(signaturesOrAddresses, 0x20) // Skip length, cache pointer
}
unchecked {
for (uint256 i = 0; i < targetCommitteeSize; ++i) {
bool isSignature = _attestations.isSignature(i);
if (isSignature) {
uint8 v;
bytes32 r;
bytes32 s;
assembly {
v := byte(0, mload(dataPtr))
dataPtr := add(dataPtr, 1)
r := mload(dataPtr)
dataPtr := add(dataPtr, 32)
s := mload(dataPtr)
dataPtr := add(dataPtr, 32)
}
++stack.signaturesRecovered;
stack.reconstructedCommittee[i] = ECDSA.recover(digest, v, r, s);
} else {
address addr;
assembly {
addr := shr(96, mload(dataPtr))
dataPtr := add(dataPtr, 20)
}
stack.reconstructedCommittee[i] = addr;
}
}
}
require(
stack.signaturesRecovered >= stack.needed,
Errors.ValidatorSelection__InsufficientAttestations(stack.needed, stack.signaturesRecovered)
);
// Check the committee commitment
bytes32 reconstructedCommitment = computeCommitteeCommitment(stack.reconstructedCommittee);
if (reconstructedCommitment != committeeCommitment) {
revert Errors.ValidatorSelection__InvalidCommitteeCommitment(reconstructedCommitment, committeeCommitment);
}
}
/**
* @notice Caches proposer information in transient storage for the current transaction
* @dev Uses EIP-1153 transient storage to cache proposer data, avoiding recomputation within the same transaction.
* Packs proposer address (160 bits) and index (96 bits) into a single 32-byte slot for efficiency.
* @param _slot The slot to cache the proposer for
* @param _proposer The proposer's address
* @param _proposerIndex The proposer's index within the committee
* @custom:reverts Errors.ValidatorSelection__ProposerIndexTooLarge if proposer index exceeds uint96 max
*/
function setCachedProposer(Slot _slot, address _proposer, uint256 _proposerIndex) internal {
require(_proposerIndex <= type(uint96).max, Errors.ValidatorSelection__ProposerIndexTooLarge(_proposerIndex));
bytes32 packed = bytes32(uint256(uint160(_proposer))) | (bytes32(_proposerIndex) << 160);
PROPOSER_NAMESPACE.erc7201Slot().deriveMapping(Slot.unwrap(_slot)).asBytes32().tstore(packed);
}
/**
* @notice Gets the proposer for a specific slot, using cache or computing if necessary
* @dev First checks transient storage cache, then computes proposer if not cached.
* Computation involves sampling validator indices and selecting based on slot.
* @param _slot The slot to get the proposer for
* @return proposer The address of the proposer for the slot
* @return proposerIndex The index of the proposer within the committee, zero address and index if committee size is
* 0 (ie test configuration).
*/
function getProposerAt(Slot _slot) internal returns (address, uint256) {
(address cachedProposer, uint256 cachedProposerIndex) = getCachedProposer(_slot);
if (cachedProposer != address(0)) {
return (cachedProposer, cachedProposerIndex);
}
Epoch epochNumber = _slot.epochFromSlot();
uint256 sampleSeed = getSampleSeed(epochNumber);
(uint32 ts, uint256[] memory indices) = sampleValidatorsIndices(epochNumber, sampleSeed);
uint256 committeeSize = indices.length;
if (committeeSize == 0) {
return (address(0), 0);
}
uint256 proposerIndex = computeProposerIndex(epochNumber, _slot, sampleSeed, committeeSize);
return (StakingLib.getAttesterFromIndexAtTime(indices[proposerIndex], Timestamp.wrap(ts)), proposerIndex);
}
/**
* @notice Samples validator addresses for a specific epoch using cryptographic randomness
* @dev Samples validator indices first, then resolves to addresses at the appropriate timestamp.
* Only used internally for epoch setup - should never be called for past or distant future epochs.
* @param _epoch The epoch to sample validators for
* @param _seed The cryptographic seed for sampling randomness
* @return The array of validator addresses selected for the committee
*/
function sampleValidators(Epoch _epoch, uint256 _seed) internal returns (address[] memory) {
(uint32 ts, uint256[] memory indices) = sampleValidatorsIndices(_epoch, _seed);
return StakingLib.getAttestersFromIndicesAtTime(Timestamp.wrap(ts), indices);
}
/**
* @notice Gets the committee addresses for a specific epoch
* @dev Retrieves the sample seed for the epoch and uses it to sample the validator committee.
* This function will trigger committee sampling if not already done for the epoch.
* @param _epochNumber The epoch to get the committee for
* @return The array of committee member addresses for the epoch
*/
function getCommitteeAt(Epoch _epochNumber) internal returns (address[] memory) {
uint256 seed = getSampleSeed(_epochNumber);
return sampleValidators(_epochNumber, seed);
}
/**
* @notice Gets the committee commitment and size for an epoch
* @dev Retrieves the stored committee commitment, or computes it if not yet stored.
* The commitment is a keccak256 hash of the committee member addresses array.
* @param _epochNumber The epoch to get the committee commitment for
* @return committeeCommitment The keccak256 hash of the committee member addresses
* @return committeeSize The target committee size (same for all epochs)
*/
function getCommitteeCommitmentAt(Epoch _epochNumber)
internal
returns (bytes32 committeeCommitment, uint256 committeeSize)
{
ValidatorSelectionStorage storage store = getStorage();
committeeCommitment = store.committeeCommitments[_epochNumber];
if (committeeCommitment == 0) {
// This is an edge case that can happen if `setupEpoch` has not been called (see documentation of
// `RollupCore.setupEpoch` for details), so we compute the commitment again to guarantee that we get a real value.
committeeCommitment = computeCommitteeCommitment(sampleValidators(_epochNumber, getSampleSeed(_epochNumber)));
}
return (committeeCommitment, store.targetCommitteeSize);
}
/**
* @notice Checkpoints randao value for future usage
* @dev Checks if already stored before storing the randao value.
* @param _epoch The current epoch
*/
function checkpointRandao(Epoch _epoch) internal {
ValidatorSelectionStorage storage store = getStorage();
// Check if the latest checkpoint is for the next epoch
// It should be impossible that zero epoch snapshots exist, as in the genesis state we push the first values
// into the store
(, uint32 mostRecentTs,) = store.randaos.latestCheckpoint();
uint32 ts = Timestamp.unwrap(_epoch.toTimestamp()).toUint32();
// If the most recently stored epoch is less than the epoch we are querying, then we need to store randao for
// later use. We truncate to save storage costs.
if (mostRecentTs < ts) {
store.randaos.push(ts, uint224(block.prevrandao));
}
}
/**
* @notice Validates if a specific validator can propose a block at a given time and chain state
* @dev Performs comprehensive validation including:
* - Slot timing (must be after the last block's slot)
* - Archive consistency (must build on current chain tip)
* - Proposer authorization (must be the designated proposer for the slot)
* @param _ts The timestamp of the proposed block
* @param _archive The archive root the block claims to build on
* @param _who The address attempting to propose the block
* @return slot The slot number derived from the timestamp
* @return blockNumber The next block number that will be assigned
* @custom:reverts Errors.Rollup__SlotAlreadyInChain if trying to propose for a past slot
* @custom:reverts Errors.Rollup__InvalidArchive if archive doesn't match current chain tip
* @custom:reverts Errors.ValidatorSelection__InvalidProposer if _who is not the designated proposer
*/
function canProposeAtTime(Timestamp _ts, bytes32 _archive, address _who) internal returns (Slot, uint256) {
Slot slot = _ts.slotFromTimestamp();
RollupStore storage rollupStore = STFLib.getStorage();
// Pending chain tip
uint256 pendingBlockNumber = STFLib.getEffectivePendingBlockNumber(_ts);
Slot lastSlot = STFLib.getSlotNumber(pendingBlockNumber);
require(slot > lastSlot, Errors.Rollup__SlotAlreadyInChain(lastSlot, slot));
// Make sure that the proposer is up to date and on the right chain (ie no reorgs)
bytes32 tipArchive = rollupStore.archives[pendingBlockNumber];
require(tipArchive == _archive, Errors.Rollup__InvalidArchive(tipArchive, _archive));
(address proposer,) = getProposerAt(slot);
require(proposer == _who, Errors.ValidatorSelection__InvalidProposer(proposer, _who));
return (slot, pendingBlockNumber + 1);
}
/**
* @notice Retrieves cached proposer information from transient storage
* @dev Reads packed proposer data (address + index) from EIP-1153 transient storage.
* Returns zero values if no proposer is cached for the slot.
* @param _slot The slot to check for cached proposer
* @return proposer The cached proposer address (address(0) if not cached)
* @return proposerIndex The cached proposer index (0 if not cached)
*/
function getCachedProposer(Slot _slot) internal view returns (address proposer, uint256 proposerIndex) {
bytes32 packed = PROPOSER_NAMESPACE.erc7201Slot().deriveMapping(Slot.unwrap(_slot)).asBytes32().tload();
// Extract address from lower 160 bits
proposer = address(uint160(uint256(packed)));
// Extract uint96 from upper 96 bits
proposerIndex = uint256(packed >> 160);
}
/**
* @notice Converts an epoch number to the timestamp used for validator set sampling
* @dev Calculates the sampling timestamp by:
* 1. Taking the epoch start timestamp
* 2. Subtracting `lagInEpochs` full epoch duration to ensure stability
*
* This ensures validator set sampling uses stable historical data that won't be
* affected by last-minute changes or L1 reorgs during synchronization.
* @param _epoch The epoch to calculate sampling time for
* @return The Unix timestamp (uint32) to use for validator set sampling
*/
function epochToSampleTime(Epoch _epoch) internal view returns (uint32) {
uint32 sub = getStorage().lagInEpochs * TimeLib.getEpochDurationInSeconds().toUint32();
return Timestamp.unwrap(_epoch.toTimestamp()).toUint32() - sub;
}
/**
* @notice Gets the cryptographic sample seed for an epoch
* @dev Retrieves the randao from the checkpointed randaos mapping using upperLookup.
* Then computes the sample seed using keccak256(epoch, randao)
* @param _epoch The epoch to get the sample seed for
* @return The sample seed used for validator selection randomness
*/
function getSampleSeed(Epoch _epoch) internal view returns (uint256) {
ValidatorSelectionStorage storage store = getStorage();
uint32 ts = epochToSampleTime(_epoch);
return uint256(keccak256(abi.encode(_epoch, store.randaos.upperLookup(ts))));
}
function getSamplingSize(Epoch _epoch) internal view returns (uint256) {
uint32 ts = epochToSampleTime(_epoch);
return StakingLib.getAttesterCountAtTime(Timestamp.wrap(ts));
}
function getLagInEpochs() internal view returns (uint256) {
return getStorage().lagInEpochs;
}
/**
* @notice Gets the validator selection storage struct using EIP-7201 namespaced storage
* @dev Uses assembly to access storage at the predetermined slot to avoid collisions.
* @return storageStruct The validator selection storage struct
*/
function getStorage() internal pure returns (ValidatorSelectionStorage storage storageStruct) {
bytes32 position = VALIDATOR_SELECTION_STORAGE_POSITION;
assembly {
storageStruct.slot := position
}
}
/**
* @notice Computes the committee index of the proposer for a specific slot
* @dev Uses keccak256 hash of epoch, slot, and seed to deterministically select a committee member.
* The result is modulo committee size to ensure valid index.
* The result being modulo biased is not a problem here as the validators in the committee were chosen randomly
* and are not ordered.
* @param _epoch The epoch containing the slot
* @param _slot The specific slot to compute proposer for
* @param _seed The epoch's sample seed for randomness
* @param _size The size of the committee
* @return The index (0 to _size-1) of the committee member who should propose for this slot
*/
function computeProposerIndex(Epoch _epoch, Slot _slot, uint256 _seed, uint256 _size) internal pure returns (uint256) {
return uint256(keccak256(abi.encode(_epoch, _slot, _seed))) % _size;
}
/**
* @notice Samples validator indices for a specific epoch using cryptographic randomness
* @dev Determines sample timestamp, gets validator set size, and uses SampleLib to select committee indices.
* Validates that enough validators are available to meet target committee size.
* @param _epoch The epoch to sample validators for
* @param _seed The cryptographic seed for sampling randomness
* @return sampleTime The timestamp used for validator set sampling
* @return indices Array of validator indices selected for the committee
* @custom:reverts Errors.ValidatorSelection__InsufficientValidatorSetSize if not enough validators available
*/
function sampleValidatorsIndices(Epoch _epoch, uint256 _seed) private returns (uint32, uint256[] memory) {
ValidatorSelectionStorage storage store = getStorage();
uint32 ts = epochToSampleTime(_epoch);
uint256 validatorSetSize = StakingLib.getAttesterCountAtTime(Timestamp.wrap(ts));
uint256 targetCommitteeSize = store.targetCommitteeSize;
require(
validatorSetSize >= targetCommitteeSize,
Errors.ValidatorSelection__InsufficientValidatorSetSize(validatorSetSize, targetCommitteeSize)
);
if (targetCommitteeSize == 0) {
return (ts, new uint256[](0));
}
return (ts, SampleLib.computeCommittee(targetCommitteeSize, validatorSetSize, _seed));
}
/**
* @notice Computes the keccak256 commitment hash for a committee member array
* @dev Creates a cryptographic commitment to the committee composition that can be verified later.
* Used to prevent committee substitution attacks during attestation verification.
* @param _committee The array of committee member addresses
* @return The keccak256 hash of the ABI-encoded committee array
*/
function computeCommitteeCommitment(address[] memory _committee) private pure returns (bytes32) {
return keccak256(abi.encode(_committee));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IEmperor} from "@aztec/governance/interfaces/IEmpire.sol";
import {Timestamp, Slot, Epoch} from "@aztec/shared/libraries/TimeMath.sol";
import {Checkpoints} from "@oz/utils/structs/Checkpoints.sol";
struct ValidatorSelectionStorage {
// A mapping to snapshots of the validator set
mapping(Epoch => bytes32 committeeCommitment) committeeCommitments;
// Checkpointed map of epoch -> randao value
Checkpoints.Trace224 randaos;
uint32 targetCommitteeSize;
uint32 lagInEpochs;
}
interface IValidatorSelectionCore {
function setupEpoch() external;
function checkpointRandao() external;
}
interface IValidatorSelection is IValidatorSelectionCore, IEmperor {
function getProposerAt(Timestamp _ts) external returns (address);
// Non view as uses transient storage
function getCurrentEpochCommittee() external returns (address[] memory);
function getCommitteeAt(Timestamp _ts) external returns (address[] memory);
function getCommitteeCommitmentAt(Timestamp _ts) external returns (bytes32, uint256);
function getEpochCommittee(Epoch _epoch) external returns (address[] memory);
function getEpochCommitteeCommitment(Epoch _epoch) external returns (bytes32, uint256);
// Stable
function getCurrentEpoch() external view returns (Epoch);
// Consider removing below this point
function getTimestampForSlot(Slot _slotNumber) external view returns (Timestamp);
function getSampleSeedAt(Timestamp _ts) external view returns (uint256);
function getSamplingSizeAt(Timestamp _ts) external view returns (uint256);
function getLagInEpochs() external view returns (uint256);
function getCurrentSampleSeed() external view returns (uint256);
function getEpochAt(Timestamp _ts) external view returns (Epoch);
function getSlotAt(Timestamp _ts) external view returns (Slot);
function getEpochAtSlot(Slot _slotNumber) external view returns (Epoch);
function getGenesisTime() external view returns (Timestamp);
function getSlotDuration() external view returns (uint256);
function getEpochDuration() external view returns (uint256);
function getTargetCommitteeSize() external view returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// GENERATED FILE - DO NOT EDIT, RUN yarn remake-constants in yarn-project/constants
// SPDX-License-Identifier: Apache-2.0
// Copyright 2023 Aztec Labs.
pragma solidity >=0.8.27;
/**
* @title Constants Library
* @author Aztec Labs
* @notice Library that contains constants used throughout the Aztec protocol
*/
library Constants {
// Prime field modulus
uint256 internal constant P =
21_888_242_871_839_275_222_246_405_745_257_275_088_548_364_400_416_034_343_698_204_186_575_808_495_617;
uint256 internal constant MAX_FIELD_VALUE =
21_888_242_871_839_275_222_246_405_745_257_275_088_548_364_400_416_034_343_698_204_186_575_808_495_616;
uint256 internal constant L1_TO_L2_MSG_SUBTREE_HEIGHT = 4;
uint256 internal constant MAX_L2_TO_L1_MSGS_PER_TX = 8;
uint256 internal constant INITIAL_L2_BLOCK_NUM = 1;
uint256 internal constant BLOBS_PER_BLOCK = 3;
uint256 internal constant AZTEC_MAX_EPOCH_DURATION = 48;
uint256 internal constant GENESIS_ARCHIVE_ROOT =
14_298_165_331_316_638_916_453_567_345_577_793_920_283_466_066_305_521_584_041_971_978_819_102_601_406;
uint256 internal constant FEE_JUICE_ADDRESS = 5;
uint256 internal constant BLS12_POINT_COMPRESSED_BYTES = 48;
uint256 internal constant PROPOSED_BLOCK_HEADER_LENGTH_BYTES = 284;
uint256 internal constant ROOT_ROLLUP_PUBLIC_INPUTS_LENGTH = 158;
uint256 internal constant NUM_MSGS_PER_BASE_PARITY = 4;
uint256 internal constant NUM_BASE_PARITY_PER_ROOT_PARITY = 4;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Errors} from "@aztec/core/libraries/Errors.sol";
import {SlotDerivation} from "@oz/utils/SlotDerivation.sol";
import {TransientSlot} from "@oz/utils/TransientSlot.sol";
/**
* @title SampleLib
* @author Anaxandridas II
* @notice A tiny library to draw committee indices using a sample without replacement algorithm.
*/
library SampleLib {
using SlotDerivation for string;
using SlotDerivation for bytes32;
using TransientSlot for *;
// Namespace for transient storage keys used within this library
string private constant OVERRIDE_NAMESPACE = "Aztec.SampleLib.Override";
/**
* Compute Committee
*
* @param _committeeSize - The size of the committee
* @param _indexCount - The total number of indices
* @param _seed - The seed to use for shuffling
*
* @dev assumption, _committeeSize <= _indexCount
*
* @return indices - The indices of the committee
*/
function computeCommittee(uint256 _committeeSize, uint256 _indexCount, uint256 _seed)
internal
returns (uint256[] memory)
{
require(_committeeSize <= _indexCount, Errors.SampleLib__SampleLargerThanIndex(_committeeSize, _indexCount));
if (_committeeSize == 0) {
return new uint256[](0);
}
uint256[] memory sampledIndices = new uint256[](_committeeSize);
uint256 upperLimit = _indexCount - 1;
for (uint256 index = 0; index < _committeeSize; index++) {
uint256 sampledIndex = computeSampleIndex(index, upperLimit + 1, _seed);
// Get index, or its swapped override
sampledIndices[index] = getValue(sampledIndex);
if (upperLimit > 0) {
// Swap with the last index
setOverrideValue(sampledIndex, getValue(upperLimit));
// Decrement the upper limit
upperLimit--;
}
}
// Clear transient storage.
// Note that we are clearing the `sampleIndices` and do not keep track of a separate list of
// `sampleIndex` values that were written to. The reasoning is that we only overwrite values for
// duplicate cases, so `sampleIndices` is a superset of the `sampleIndex` values that have been drawn
// (to account for duplicates). Therefore, clearing `sampleIndices` clears everything.
// Due to the cost of `tstore` and `tload` operations, it is cheaper to overwrite all values
// rather than checking if there is anything to override.
for (uint256 i = 0; i < _committeeSize; i++) {
setOverrideValue(sampledIndices[i], 0);
}
return sampledIndices;
}
function setOverrideValue(uint256 _index, uint256 _value) internal {
OVERRIDE_NAMESPACE.erc7201Slot().deriveMapping(_index).asUint256().tstore(_value);
}
function getValue(uint256 _index) internal view returns (uint256) {
uint256 overrideValue = getOverrideValue(_index);
if (overrideValue != 0) {
return overrideValue;
}
return _index;
}
function getOverrideValue(uint256 _index) internal view returns (uint256) {
return OVERRIDE_NAMESPACE.erc7201Slot().deriveMapping(_index).asUint256().tload();
}
/**
* @notice Compute the sample index for a given index, seed and index count.
*
* @param _index - The index to shuffle
* @param _indexCount - The total number of indices
* @param _seed - The seed to use for shuffling
*
* @return shuffledIndex - The shuffled index
*/
function computeSampleIndex(uint256 _index, uint256 _indexCount, uint256 _seed) internal pure returns (uint256) {
// Cannot modulo by 0 and if 1, then only acceptable value is 0
if (_indexCount <= 1) {
return 0;
}
return uint256(keccak256(abi.encodePacked(_seed, _index))) % _indexCount;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IStakingCore} from "@aztec/core/interfaces/IStaking.sol";
import {
StakingQueueConfig,
CompressedStakingQueueConfig,
StakingQueueConfigLib
} from "@aztec/core/libraries/compressed-data/StakingQueueConfig.sol";
import {Errors} from "@aztec/core/libraries/Errors.sol";
import {StakingQueueLib, StakingQueue, DepositArgs} from "@aztec/core/libraries/StakingQueue.sol";
import {TimeLib, Timestamp, Epoch} from "@aztec/core/libraries/TimeLib.sol";
import {Governance} from "@aztec/governance/Governance.sol";
import {GSE, AttesterConfig, IGSECore} from "@aztec/governance/GSE.sol";
import {Proposal} from "@aztec/governance/interfaces/IGovernance.sol";
import {ProposalLib} from "@aztec/governance/libraries/ProposalLib.sol";
import {GovernanceProposer} from "@aztec/governance/proposer/GovernanceProposer.sol";
import {G1Point, G2Point} from "@aztec/shared/libraries/BN254Lib.sol";
import {
CompressedTimeMath, CompressedTimestamp, CompressedEpoch
} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@oz/utils/math/Math.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
// None -> Does not exist in our setup
// Validating -> Participating as validator
// Zombie -> Not participating as validator, but have funds in setup,
// hit if slashes and going below the minimum
// Exiting -> In the process of exiting the system
enum Status {
NONE,
VALIDATING,
ZOMBIE,
EXITING
}
/**
* @notice Represents a validator's exit from the staking system
* @dev Used to track withdrawal details and timing for validators leaving the system.
* The exit can be created in two scenarios:
* 1. Voluntary withdrawal: Validator calls initiateWithdraw() -> recipientOrWithdrawer is the final recipient
* 2. Slashing-induced exit: Validator gets slashed -> recipientOrWithdrawer is the withdrawer who must later
* call initiateWithdraw() to specify a recipient
*
* The recipientOrWithdrawer field serves dual purposes:
* - When isRecipient=true: This address will receive the withdrawn funds
* - When isRecipient=false: This address (the withdrawer) can call initiateWithdraw() to set a recipient
*
* Workflow for slashing-induced exits:
* 1. Slashing occurs -> Exit created with recipientOrWithdrawer=withdrawer, isRecipient=false
* 2. Withdrawer calls initiateWithdraw() -> Updates to recipientOrWithdrawer=recipient, isRecipient=true
* 3. After delay period -> finalizeWithdraw() can transfer funds to the recipient
* @param withdrawalId Unique identifier for this withdrawal from the GSE contract
* @param amount The amount of stake being withdrawn
* @param exitableAt Timestamp when the stake becomes withdrawable after delay period
* @param recipientOrWithdrawer Address that can either receive funds (if isRecipient) or initiate withdrawal (if
* !isRecipient)
* @param isRecipient True if recipientOrWithdrawer is the recipient, false if it's the withdrawer
* @param exists True if this exit record exists, false if not yet created
*/
struct Exit {
uint256 withdrawalId;
uint256 amount;
Timestamp exitableAt;
address recipientOrWithdrawer;
bool isRecipient;
bool exists;
}
struct AttesterView {
Status status;
uint256 effectiveBalance;
Exit exit;
AttesterConfig config;
}
struct StakingStorage {
IERC20 stakingAsset;
address slasher;
uint96 localEjectionThreshold;
GSE gse;
CompressedTimestamp exitDelay;
mapping(address attester => Exit) exits;
CompressedStakingQueueConfig queueConfig;
StakingQueue entryQueue;
CompressedEpoch nextFlushableEpoch;
uint32 availableValidatorFlushes;
bool isBootstrapped;
}
library StakingLib {
using SafeCast for uint256;
using SafeERC20 for IERC20;
using StakingQueueLib for StakingQueue;
using ProposalLib for Proposal;
using StakingQueueConfigLib for CompressedStakingQueueConfig;
using StakingQueueConfigLib for StakingQueueConfig;
using CompressedTimeMath for CompressedTimestamp;
using CompressedTimeMath for Timestamp;
using CompressedTimeMath for CompressedEpoch;
using CompressedTimeMath for Epoch;
bytes32 private constant STAKING_SLOT = keccak256("aztec.core.staking.storage");
function initialize(
IERC20 _stakingAsset,
GSE _gse,
Timestamp _exitDelay,
address _slasher,
StakingQueueConfig memory _config,
uint256 _localEjectionThreshold
) internal {
StakingStorage storage store = getStorage();
store.stakingAsset = _stakingAsset;
store.gse = _gse;
store.exitDelay = _exitDelay.compress();
store.slasher = _slasher;
store.queueConfig = _config.compress();
store.entryQueue.init();
store.localEjectionThreshold = _localEjectionThreshold.toUint96();
}
function setSlasher(address _slasher) internal {
StakingStorage storage store = getStorage();
address oldSlasher = store.slasher;
store.slasher = _slasher;
emit IStakingCore.SlasherUpdated(oldSlasher, _slasher);
}
function setLocalEjectionThreshold(uint256 _localEjectionThreshold) internal {
StakingStorage storage store = getStorage();
uint256 oldLocalEjectionThreshold = store.localEjectionThreshold;
store.localEjectionThreshold = _localEjectionThreshold.toUint96();
emit IStakingCore.LocalEjectionThresholdUpdated(oldLocalEjectionThreshold, _localEjectionThreshold);
}
/**
* @notice Vote on a governance proposal with the rollup's voting power
* @dev Only votes if:
* 1. This rollup is the current canonical instance according to governance proposer
* 2. This rollup was canonical when the proposal was created
* 3. The proposal was created by the governance proposer
* @param _proposalId The ID of the proposal to vote on
*/
function vote(uint256 _proposalId) internal {
StakingStorage storage store = getStorage();
Governance gov = store.gse.getGovernance();
GovernanceProposer govProposer = GovernanceProposer(gov.governanceProposer());
// We only vote if we are the canonical instance
require(address(this) == govProposer.getInstance(), Errors.Staking__NotCanonical(address(this)));
address proposalProposer = govProposer.getProposalProposer(_proposalId);
// We only vote if we were canonical when the proposal was created
require(
address(this) == proposalProposer, Errors.Staking__NotOurProposal(_proposalId, address(this), proposalProposer)
);
// We only vote if the proposal was created by the governance proposer
Proposal memory proposal = gov.getProposal(_proposalId);
require(proposal.proposer == address(govProposer), Errors.Staking__IncorrectGovProposer(_proposalId));
Timestamp ts = proposal.creation + proposal.config.votingDelay;
// Cast votes with all our power
uint256 vp = store.gse.getVotingPowerAt(address(this), ts);
store.gse.vote(_proposalId, vp, true);
// If we are the canonical at the time of the proposal we also cast those votes.
if (store.gse.getLatestRollupAt(ts) == address(this)) {
address bonusInstance = store.gse.getBonusInstanceAddress();
vp = store.gse.getVotingPowerAt(bonusInstance, ts);
store.gse.voteWithBonus(_proposalId, vp, true);
}
}
/**
* @notice Completes a validator's withdrawal after the exit delay period
* @param _attester The address of the validator completing withdrawal
* @dev Reverts if the attester has no valid exit request (Staking__NotExiting) or if the exit delay period has not
* elapsed (Staking__WithdrawalNotUnlockedYet)
*/
function finalizeWithdraw(address _attester) internal {
StakingStorage storage store = getStorage();
// We load it into memory to cache it, as we will delete it before we use it.
Exit memory exit = store.exits[_attester];
require(exit.exists, Errors.Staking__NotExiting(_attester));
require(exit.isRecipient, Errors.Staking__InitiateWithdrawNeeded(_attester));
require(
exit.exitableAt <= Timestamp.wrap(block.timestamp),
Errors.Staking__WithdrawalNotUnlockedYet(Timestamp.wrap(block.timestamp), exit.exitableAt)
);
delete store.exits[_attester];
store.gse.finalizeWithdraw(exit.withdrawalId);
store.stakingAsset.safeTransfer(exit.recipientOrWithdrawer, exit.amount);
emit IStakingCore.WithdrawFinalized(_attester, exit.recipientOrWithdrawer, exit.amount);
}
function trySlash(address _attester, uint256 _amount) internal returns (bool) {
if (!isSlashable(_attester)) {
return false;
}
slash(_attester, _amount);
return true;
}
/**
* @notice Slashes a validator's stake as punishment for misbehavior
* @dev Only callable by the authorized slasher contract. Handles slashing for both exiting and active validators.
* For exiting validators, reduces their exit amount. For active validators, the balance will be reduced and
* an exit will be created if the remaining stake falls below the ejection threshold.
* @param _attester The address of the validator to slash
* @param _amount The amount of stake to slash
*/
function slash(address _attester, uint256 _amount) internal {
StakingStorage storage store = getStorage();
require(msg.sender == store.slasher, Errors.Staking__NotSlasher(store.slasher, msg.sender));
Exit storage exit = store.exits[_attester];
if (exit.exists) {
require(exit.exitableAt > Timestamp.wrap(block.timestamp), Errors.Staking__CannotSlashExitedStake(_attester));
// If the slash amount is greater than the exit amount, bound it to the exit amount
uint256 slashAmount = Math.min(_amount, exit.amount);
if (exit.amount == slashAmount) {
// If we slash the entire thing, nuke it entirely
delete store.exits[_attester];
} else {
exit.amount -= slashAmount;
}
emit IStakingCore.Slashed(_attester, slashAmount);
} else {
// Get the effective balance of the attester
uint256 effectiveBalance = store.gse.effectiveBalanceOf(address(this), _attester);
require(effectiveBalance > 0, Errors.Staking__NoOneToSlash(_attester));
address withdrawer = store.gse.getWithdrawer(_attester);
// If the slash amount is greater than the effective balance, bound it to the effective balance
uint256 slashAmount = Math.min(_amount, effectiveBalance);
// The `localEjectionThreshold` might be stricter (larger) than the global (gse ejection threshold)
uint256 toWithdraw =
effectiveBalance - slashAmount < store.localEjectionThreshold ? effectiveBalance : slashAmount;
(uint256 amountWithdrawn, bool isRemoved, uint256 withdrawalId) = store.gse.withdraw(_attester, toWithdraw);
// The slashed amount remains in the contract permanently, effectively burning those tokens.
uint256 toUser = amountWithdrawn - slashAmount;
if (isRemoved && toUser > 0) {
// Only if we remove the attester AND there is something left will we create an exit
store.exits[_attester] = Exit({
withdrawalId: withdrawalId,
amount: toUser,
exitableAt: Timestamp.wrap(block.timestamp) + store.exitDelay.decompress(),
recipientOrWithdrawer: withdrawer,
isRecipient: false,
exists: true
});
}
emit IStakingCore.Slashed(_attester, slashAmount);
}
}
/**
* @notice Deposits stake to add a new validator to the entry queue
* @dev Transfers stake from the caller and adds the validator to the entry queue.
* The validator must not already be exiting. The attester and withdrawer addresses
* must be non-zero. The stake amount is fixed at the activation threshold.
* The validator will be processed from the queue in a future flushEntryQueue call.
*
* @param _attester The address that will act as the validator (sign attestations)
* @param _withdrawer The address that can withdraw the stake
* @param _publicKeyInG1 The G1 point for the BLS public key (used for efficient signature verification in GSE)
* @param _publicKeyInG2 The G2 point for the BLS public key (used for BLS aggregation and pairing operations in GSE)
* @param _proofOfPossession The proof of possession to show that the keys in G1 and G2 share the same secret key
* @param _moveWithLatestRollup Whether to automatically stake on a new rollup instance after an upgrade
*/
function deposit(
address _attester,
address _withdrawer,
G1Point memory _publicKeyInG1,
G2Point memory _publicKeyInG2,
G1Point memory _proofOfPossession,
bool _moveWithLatestRollup
) internal {
require(
_attester != address(0) && _withdrawer != address(0), Errors.Staking__InvalidDeposit(_attester, _withdrawer)
);
StakingStorage storage store = getStorage();
// We don't allow deposits, if we are currently exiting.
require(!store.exits[_attester].exists, Errors.Staking__AlreadyExiting(_attester));
uint256 amount = store.gse.ACTIVATION_THRESHOLD();
store.stakingAsset.safeTransferFrom(msg.sender, address(this), amount);
store.entryQueue.enqueue(
_attester, _withdrawer, _publicKeyInG1, _publicKeyInG2, _proofOfPossession, _moveWithLatestRollup
);
emit IStakingCore.ValidatorQueued(_attester, _withdrawer);
}
function updateAndGetAvailableFlushes() internal returns (uint256) {
(uint256 flushes, Epoch currentEpoch, bool shouldUpdateState) = _calculateAvailableFlushes();
if (shouldUpdateState) {
StakingStorage storage store = getStorage();
store.nextFlushableEpoch = (currentEpoch + Epoch.wrap(1)).compress();
store.availableValidatorFlushes = flushes.toUint32();
}
return flushes;
}
/**
* @notice Processes the validator entry queue to add new validators to the active set
* @dev Processes up to min(maxAddableValidators, _toAdd) entries from the queue,
* attempting to deposit each validator into the Governance Staking Escrow (GSE).
*
* For each validator:
* - Dequeues their entry from the queue
* - Attempts to deposit them into the GSE contract
* - On success: emits Deposit event
* - On failure: refunds their stake and emits FailedDeposit event
*
* The function will revert if:
* - A deposit fails due to out of gas (to prevent queue draining attacks)
*
* The function approves the GSE contract to spend the total stake amount needed for all deposits,
* then revokes the approval after processing is complete.
* It also updates the available validator flushes
*
* @param _toAdd - The max number the caller will try to add
*/
function flushEntryQueue(uint256 _toAdd) internal {
uint256 maxAddableValidators = updateAndGetAvailableFlushes();
if (maxAddableValidators == 0) {
return;
}
StakingStorage storage store = getStorage();
uint256 queueLength = store.entryQueue.length();
uint256 numToDequeue = Math.min(Math.min(maxAddableValidators, queueLength), _toAdd);
if (numToDequeue == 0) {
return;
}
// Approve the GSE to spend the total stake amount needed for all deposits.
uint256 amount = store.gse.ACTIVATION_THRESHOLD();
store.stakingAsset.approve(address(store.gse), amount * numToDequeue);
uint256 depositCount = 0;
for (uint256 i = 0; i < numToDequeue; i++) {
DepositArgs memory args = store.entryQueue.dequeue();
(bool success, bytes memory data) = address(store.gse).call(
abi.encodeWithSelector(
IGSECore.deposit.selector,
args.attester,
args.withdrawer,
args.publicKeyInG1,
args.publicKeyInG2,
args.proofOfPossession,
args.moveWithLatestRollup
)
);
if (success) {
depositCount++;
emit IStakingCore.Deposit(
args.attester, args.withdrawer, args.publicKeyInG1, args.publicKeyInG2, args.proofOfPossession, amount
);
} else {
// If the deposit fails, we need to handle two cases:
// 1. Normal failure (data.length > 0): We return the funds to the withdrawer and continue processing
// the queue. This prevents a single failed deposit from blocking the entire queue.
// 2. Out of gas failure (data.length == 0): We revert the entire transaction. This prevents an attack
// where someone could drain the queue without making any deposits.
// We can safely assume data.length == 0 means out of gas since we only call trusted GSE contract.
require(data.length > 0, Errors.Staking__DepositOutOfGas());
store.stakingAsset.safeTransfer(args.withdrawer, amount);
emit IStakingCore.FailedDeposit(
args.attester, args.withdrawer, args.publicKeyInG1, args.publicKeyInG2, args.proofOfPossession
);
}
}
store.stakingAsset.approve(address(store.gse), 0);
store.availableValidatorFlushes -= depositCount.toUint32();
// If we have reached the bootstrap size, mark it as bootstrapped such that we don't re-enter it.
if (
!store.isBootstrapped
&& getAttesterCountAtTime(Timestamp.wrap(block.timestamp))
>= store.queueConfig.decompress().bootstrapValidatorSetSize
) {
store.isBootstrapped = true;
}
}
/**
* @notice Initiates withdrawal of a validator's stake
* @dev Can be called by the registered withdrawer to start the exit process for a validator.
* Handles two cases:
* 1. If an exit already exists (e.g. from slashing):
* - Only allows updating recipient if caller is withdrawer
* - Does not update the exit delay timer
* 2. If no exit exists:
* - Requires validator has non-zero balance
* - Only allows registered withdrawer to initiate
* - Withdraws stake from GSE contract
* - Creates new exit with delay timer
* @param _attester The validator address to withdraw stake for
* @param _recipient The address that will receive the withdrawn stake
* @return True if withdrawal was successfully initiated
*/
function initiateWithdraw(address _attester, address _recipient) internal returns (bool) {
require(_recipient != address(0), Errors.Staking__InvalidRecipient(_recipient));
StakingStorage storage store = getStorage();
if (store.exits[_attester].exists) {
// If there is already an exit, we either started it and should revert
// or it is because of a slash and we should update the recipient
// Still only if we are the withdrawer
// We DO NOT update the exitableAt
require(!store.exits[_attester].isRecipient, Errors.Staking__NothingToExit(_attester));
require(
store.exits[_attester].recipientOrWithdrawer == msg.sender,
Errors.Staking__NotWithdrawer(store.exits[_attester].recipientOrWithdrawer, msg.sender)
);
store.exits[_attester].recipientOrWithdrawer = _recipient;
store.exits[_attester].isRecipient = true;
emit IStakingCore.WithdrawInitiated(_attester, _recipient, store.exits[_attester].amount);
} else {
uint256 effectiveBalance = store.gse.effectiveBalanceOf(address(this), _attester);
require(effectiveBalance > 0, Errors.Staking__NothingToExit(_attester));
address withdrawer = store.gse.getWithdrawer(_attester);
require(msg.sender == withdrawer, Errors.Staking__NotWithdrawer(withdrawer, msg.sender));
(uint256 actualAmount, bool removed, uint256 withdrawalId) = store.gse.withdraw(_attester, effectiveBalance);
require(removed, Errors.Staking__WithdrawFailed(_attester));
store.exits[_attester] = Exit({
withdrawalId: withdrawalId,
amount: actualAmount,
exitableAt: Timestamp.wrap(block.timestamp) + store.exitDelay.decompress(),
recipientOrWithdrawer: _recipient,
isRecipient: true,
exists: true
});
emit IStakingCore.WithdrawInitiated(_attester, _recipient, actualAmount);
}
return true;
}
function updateStakingQueueConfig(StakingQueueConfig memory _config) internal {
getStorage().queueConfig = _config.compress();
emit IStakingCore.StakingQueueConfigUpdated(_config);
}
function getNextFlushableEpoch() internal view returns (Epoch) {
return getStorage().nextFlushableEpoch.decompress();
}
function getEntryQueueLength() internal view returns (uint256) {
return getStorage().entryQueue.length();
}
function isSlashable(address _attester) internal view returns (bool) {
StakingStorage storage store = getStorage();
Exit storage exit = store.exits[_attester];
if (exit.exists) {
return exit.exitableAt > Timestamp.wrap(block.timestamp);
}
uint256 effectiveBalance = store.gse.effectiveBalanceOf(address(this), _attester);
return effectiveBalance > 0;
}
function getAttesterCountAtTime(Timestamp _timestamp) internal view returns (uint256) {
return getStorage().gse.getAttesterCountAtTime(address(this), _timestamp);
}
function getAttesterAtIndex(uint256 _index) internal view returns (address) {
return getStorage().gse.getAttesterFromIndexAtTime(address(this), _index, Timestamp.wrap(block.timestamp));
}
function getEntryQueueAt(uint256 _index) internal view returns (DepositArgs memory) {
return getStorage().entryQueue.at(_index);
}
function getAttesterFromIndexAtTime(uint256 _index, Timestamp _timestamp) internal view returns (address) {
return getStorage().gse.getAttesterFromIndexAtTime(address(this), _index, _timestamp);
}
function getAttestersFromIndicesAtTime(Timestamp _timestamp, uint256[] memory _indices)
internal
view
returns (address[] memory)
{
return getStorage().gse.getAttestersFromIndicesAtTime(address(this), _timestamp, _indices);
}
function getExit(address _attester) internal view returns (Exit memory) {
return getStorage().exits[_attester];
}
function getConfig(address _attester) internal view returns (AttesterConfig memory) {
return getStorage().gse.getConfig(_attester);
}
function getAttesterView(address _attester) internal view returns (AttesterView memory) {
return AttesterView({
status: getStatus(_attester),
effectiveBalance: getStorage().gse.effectiveBalanceOf(address(this), _attester),
exit: getExit(_attester),
config: getConfig(_attester)
});
}
function getStatus(address _attester) internal view returns (Status) {
Exit memory exit = getExit(_attester);
uint256 effectiveBalance = getStorage().gse.effectiveBalanceOf(address(this), _attester);
Status status;
if (exit.exists) {
status = exit.isRecipient ? Status.EXITING : Status.ZOMBIE;
} else {
status = effectiveBalance > 0 ? Status.VALIDATING : Status.NONE;
}
return status;
}
/**
* @notice Determines the maximum number of validators that could be flushed from the entry queue if there were
* an unlimited number of validators in the queue - this function provides a theoretical limit.
* @dev Implements three-phase validator set management to control initial validator onboarding (called floodgates):
* 1. Bootstrap phase: When no active validators exist, the queue must grow to the bootstrap validator set size
* constant from config before any validators can be flushed. This creates an initial "floodgate" that
* prevents small numbers of validators from activating before reaching the desired bootstrap size.
* 2. Growth phase: Once the bootstrap size is reached, allows a large fixed batch size (bootstrapFlushSize) to
* be flushed at once. This enables the initial large cohort of validators to activate together.
* 3. Normal phase: After the initial bootstrap and growth phases, returns a number proportional to the current
* set size for conservative steady-state growth, unless constrained by configuration (`normalFlushSizeMin`).
*
* All phases are subject to a hard cap of `maxQueueFlushSize`.
*
* The motivation for floodgates is that the whole system starts producing blocks with what is considered
* a sufficiently decentralized set of validators.
*
* Note that Governance has the ability to close the validator set for this instance by setting
* `normalFlushSizeMin` to zero and `normalFlushSizeQuotient` to a very high value. If this is done, this
* function will always return zero and no new validator can enter.
*
* @param _activeAttesterCount - The number of active attesters
* @return - The maximum number of validators that could be flushed from the entry queue.
*/
function getEntryQueueFlushSize(uint256 _activeAttesterCount) internal view returns (uint256) {
StakingStorage storage store = getStorage();
StakingQueueConfig memory config = store.queueConfig.decompress();
uint256 queueSize = store.entryQueue.length();
// Only if there is bootstrap values configured will we look into bootstrap or growth phases.
if (config.bootstrapValidatorSetSize > 0 && !store.isBootstrapped) {
// If bootstrap:
if (_activeAttesterCount == 0 && queueSize < config.bootstrapValidatorSetSize) {
return 0;
}
// If growth:
if (_activeAttesterCount < config.bootstrapValidatorSetSize) {
return config.bootstrapFlushSize;
}
}
// If normal:
return Math.min(
Math.max(_activeAttesterCount / config.normalFlushSizeQuotient, config.normalFlushSizeMin),
config.maxQueueFlushSize
);
}
function getAvailableValidatorFlushes() internal view returns (uint256) {
(uint256 flushes,,) = _calculateAvailableFlushes();
return flushes;
}
function getCachedAvailableValidatorFlushes() internal view returns (uint256) {
return getStorage().availableValidatorFlushes;
}
function getStorage() internal pure returns (StakingStorage storage storageStruct) {
bytes32 position = STAKING_SLOT;
assembly {
storageStruct.slot := position
}
}
function _calculateAvailableFlushes()
private
view
returns (uint256 flushes, Epoch currentEpoch, bool shouldUpdateState)
{
StakingStorage storage store = getStorage();
currentEpoch = TimeLib.epochFromTimestamp(Timestamp.wrap(block.timestamp));
if (store.nextFlushableEpoch.decompress() > currentEpoch) {
return (store.availableValidatorFlushes, currentEpoch, false);
}
uint256 activeAttesterCount = getAttesterCountAtTime(Timestamp.wrap(block.timestamp));
uint256 newFlushes = getEntryQueueFlushSize(activeAttesterCount);
return (newFlushes, currentEpoch, true);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.
pragma solidity ^0.8.20;
/**
* @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
* corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
* the solidity language / compiler.
*
* See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
*
* Example usage:
* ```solidity
* contract Example {
* // Add the library methods
* using StorageSlot for bytes32;
* using SlotDerivation for bytes32;
*
* // Declare a namespace
* string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
*
* function setValueInNamespace(uint256 key, address newValue) internal {
* _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
* }
*
* function getValueInNamespace(uint256 key) internal view returns (address) {
* return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
* }
* }
* ```
*
* TIP: Consider using this library along with {StorageSlot}.
*
* NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
* upgrade safety will ignore the slots accessed through this library.
*
* _Available since v5.1._
*/
library SlotDerivation {
/**
* @dev Derive an ERC-7201 slot from a string (namespace).
*/
function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
assembly ("memory-safe") {
mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
slot := and(keccak256(0x00, 0x20), not(0xff))
}
}
/**
* @dev Add an offset to a slot to get the n-th element of a structure or an array.
*/
function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
unchecked {
return bytes32(uint256(slot) + pos);
}
}
/**
* @dev Derive the location of the first element in an array from the slot where the length is stored.
*/
function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, slot)
result := keccak256(0x00, 0x20)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, and(key, shr(96, not(0))))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, iszero(iszero(key)))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/structs/Checkpoints.sol)
// This file was procedurally generated from scripts/generate/templates/Checkpoints.js.
pragma solidity ^0.8.20;
import {Math} from "../math/Math.sol";
/**
* @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
* time, and later looking up past values by block number. See {Votes} as an example.
*
* To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
* checkpoint for the current transaction block using the {push} function.
*/
library Checkpoints {
/**
* @dev A value was attempted to be inserted on a past checkpoint.
*/
error CheckpointUnorderedInsertion();
struct Trace224 {
Checkpoint224[] _checkpoints;
}
struct Checkpoint224 {
uint32 _key;
uint224 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
* library.
*/
function push(
Trace224 storage self,
uint32 key,
uint224 value
) internal returns (uint224 oldValue, uint224 newValue) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace224 storage self) internal view returns (uint224) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint224 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoints.
*/
function length(Trace224 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint224[] storage self,
uint32 key,
uint224 value
) private returns (uint224 oldValue, uint224 newValue) {
uint256 pos = self.length;
if (pos > 0) {
Checkpoint224 storage last = _unsafeAccess(self, pos - 1);
uint32 lastKey = last._key;
uint224 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint224({_key: key, _value: value}));
}
return (lastValue, value);
} else {
self.push(Checkpoint224({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint224[] storage self,
uint32 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint224[] storage self,
uint32 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint224[] storage self,
uint256 pos
) private pure returns (Checkpoint224 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
struct Trace208 {
Checkpoint208[] _checkpoints;
}
struct Checkpoint208 {
uint48 _key;
uint208 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
* library.
*/
function push(
Trace208 storage self,
uint48 key,
uint208 value
) internal returns (uint208 oldValue, uint208 newValue) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace208 storage self) internal view returns (uint208) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint208 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoints.
*/
function length(Trace208 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint208[] storage self,
uint48 key,
uint208 value
) private returns (uint208 oldValue, uint208 newValue) {
uint256 pos = self.length;
if (pos > 0) {
Checkpoint208 storage last = _unsafeAccess(self, pos - 1);
uint48 lastKey = last._key;
uint208 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint208({_key: key, _value: value}));
}
return (lastValue, value);
} else {
self.push(Checkpoint208({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint208[] storage self,
uint48 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint208[] storage self,
uint48 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint208[] storage self,
uint256 pos
) private pure returns (Checkpoint208 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
struct Trace160 {
Checkpoint160[] _checkpoints;
}
struct Checkpoint160 {
uint96 _key;
uint160 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
* library.
*/
function push(
Trace160 storage self,
uint96 key,
uint160 value
) internal returns (uint160 oldValue, uint160 newValue) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace160 storage self) internal view returns (uint160) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint160 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoints.
*/
function length(Trace160 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint160[] storage self,
uint96 key,
uint160 value
) private returns (uint160 oldValue, uint160 newValue) {
uint256 pos = self.length;
if (pos > 0) {
Checkpoint160 storage last = _unsafeAccess(self, pos - 1);
uint96 lastKey = last._key;
uint160 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint160({_key: key, _value: value}));
}
return (lastValue, value);
} else {
self.push(Checkpoint160({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint160[] storage self,
uint96 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint160[] storage self,
uint96 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint160[] storage self,
uint256 pos
) private pure returns (Checkpoint160 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.20;
import {Arrays} from "../Arrays.sol";
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
* - Set can be cleared (all elements removed) in O(n).
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the set.
mapping(bytes32 value => uint256) _positions;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._positions[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
uint256 position = set._positions[value];
if (position != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = set._values.length - 1;
if (valueIndex != lastIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the lastValue to the index where the value to delete is
set._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
set._positions[lastValue] = position;
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the tracked position for the deleted slot
delete set._positions[value];
return true;
} else {
return false;
}
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function _clear(Set storage set) private {
uint256 len = _length(set);
for (uint256 i = 0; i < len; ++i) {
delete set._positions[set._values[i]];
}
Arrays.unsafeSetLength(set._values, 0);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._positions[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(Bytes32Set storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(AddressSet storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(UintSet storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/TransientSlot.sol)
// This file was procedurally generated from scripts/generate/templates/TransientSlot.js.
pragma solidity ^0.8.24;
/**
* @dev Library for reading and writing value-types to specific transient storage slots.
*
* Transient slots are often used to store temporary values that are removed after the current transaction.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* * Example reading and writing values using transient storage:
* ```solidity
* contract Lock {
* using TransientSlot for *;
*
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _LOCK_SLOT = 0xf4678858b2b588224636b8522b729e7722d32fc491da849ed75b3fdf3c84f542;
*
* modifier locked() {
* require(!_LOCK_SLOT.asBoolean().tload());
*
* _LOCK_SLOT.asBoolean().tstore(true);
* _;
* _LOCK_SLOT.asBoolean().tstore(false);
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library TransientSlot {
/**
* @dev UDVT that represents a slot holding an address.
*/
type AddressSlot is bytes32;
/**
* @dev Cast an arbitrary slot to a AddressSlot.
*/
function asAddress(bytes32 slot) internal pure returns (AddressSlot) {
return AddressSlot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a bool.
*/
type BooleanSlot is bytes32;
/**
* @dev Cast an arbitrary slot to a BooleanSlot.
*/
function asBoolean(bytes32 slot) internal pure returns (BooleanSlot) {
return BooleanSlot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a bytes32.
*/
type Bytes32Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Bytes32Slot.
*/
function asBytes32(bytes32 slot) internal pure returns (Bytes32Slot) {
return Bytes32Slot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a uint256.
*/
type Uint256Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Uint256Slot.
*/
function asUint256(bytes32 slot) internal pure returns (Uint256Slot) {
return Uint256Slot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a int256.
*/
type Int256Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Int256Slot.
*/
function asInt256(bytes32 slot) internal pure returns (Int256Slot) {
return Int256Slot.wrap(slot);
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(AddressSlot slot) internal view returns (address value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(AddressSlot slot, address value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(BooleanSlot slot) internal view returns (bool value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(BooleanSlot slot, bool value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Bytes32Slot slot) internal view returns (bytes32 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Bytes32Slot slot, bytes32 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Uint256Slot slot) internal view returns (uint256 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Uint256Slot slot, uint256 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Int256Slot slot) internal view returns (int256 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Int256Slot slot, int256 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
// solhint-disable imports-order
pragma solidity >=0.8.27;
import {Slot} from "@aztec/shared/libraries/TimeMath.sol";
import {Signature} from "@aztec/shared/libraries/SignatureLib.sol";
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
interface IEmperor {
// Not view because it might rely on transient storage.
// Calls are essentially trusted
function getCurrentProposer() external returns (address);
function getCurrentSlot() external view returns (Slot);
}
interface IEmpire {
event SignalCast(IPayload indexed payload, uint256 indexed round, address indexed signaler);
event PayloadSubmittable(IPayload indexed payload, uint256 indexed round);
event PayloadSubmitted(IPayload indexed payload, uint256 indexed round);
function signal(IPayload _payload) external returns (bool);
function signalWithSig(IPayload _payload, Signature memory _sig) external returns (bool);
function submitRoundWinner(uint256 _roundNumber) external returns (bool);
function signalCount(address _instance, uint256 _round, IPayload _payload) external view returns (uint256);
function computeRound(Slot _slot) external view returns (uint256);
function getInstance() external view returns (address);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {StakingQueueConfig} from "@aztec/core/libraries/compressed-data/StakingQueueConfig.sol";
import {Exit, Status, AttesterView} from "@aztec/core/libraries/rollup/StakingLib.sol";
import {DepositArgs} from "@aztec/core/libraries/StakingQueue.sol";
import {AttesterConfig, GSE} from "@aztec/governance/GSE.sol";
import {G1Point, G2Point} from "@aztec/shared/libraries/BN254Lib.sol";
import {Timestamp, Epoch} from "@aztec/shared/libraries/TimeMath.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
interface IStakingCore {
event SlasherUpdated(address indexed oldSlasher, address indexed newSlasher);
event LocalEjectionThresholdUpdated(
uint256 indexed oldLocalEjectionThreshold, uint256 indexed newLocalEjectionThreshold
);
event ValidatorQueued(address indexed attester, address indexed withdrawer);
event Deposit(
address indexed attester,
address indexed withdrawer,
G1Point publicKeyInG1,
G2Point publicKeyInG2,
G1Point proofOfPossession,
uint256 amount
);
event FailedDeposit(
address indexed attester,
address indexed withdrawer,
G1Point publicKeyInG1,
G2Point publicKeyInG2,
G1Point proofOfPossession
);
event WithdrawInitiated(address indexed attester, address indexed recipient, uint256 amount);
event WithdrawFinalized(address indexed attester, address indexed recipient, uint256 amount);
event Slashed(address indexed attester, uint256 amount);
event StakingQueueConfigUpdated(StakingQueueConfig config);
function setSlasher(address _slasher) external;
function setLocalEjectionThreshold(uint256 _localEjectionThreshold) external;
function deposit(
address _attester,
address _withdrawer,
G1Point memory _publicKeyInG1,
G2Point memory _publicKeyInG2,
G1Point memory _proofOfPossession,
bool _moveWithLatestRollup
) external;
function flushEntryQueue() external;
function flushEntryQueue(uint256 _toAdd) external;
function initiateWithdraw(address _attester, address _recipient) external returns (bool);
function finalizeWithdraw(address _attester) external;
function slash(address _attester, uint256 _amount) external returns (bool);
function vote(uint256 _proposalId) external;
function updateStakingQueueConfig(StakingQueueConfig memory _config) external;
function getEntryQueueFlushSize() external view returns (uint256);
function getActiveAttesterCount() external view returns (uint256);
}
interface IStaking is IStakingCore {
function getConfig(address _attester) external view returns (AttesterConfig memory);
function getExit(address _attester) external view returns (Exit memory);
function getAttesterAtIndex(uint256 _index) external view returns (address);
function getSlasher() external view returns (address);
function getLocalEjectionThreshold() external view returns (uint256);
function getStakingAsset() external view returns (IERC20);
function getActivationThreshold() external view returns (uint256);
function getEjectionThreshold() external view returns (uint256);
function getExitDelay() external view returns (Timestamp);
function getGSE() external view returns (GSE);
function getAttesterView(address _attester) external view returns (AttesterView memory);
function getStatus(address _attester) external view returns (Status);
function getNextFlushableEpoch() external view returns (Epoch);
function getEntryQueueLength() external view returns (uint256);
function getEntryQueueAt(uint256 _index) external view returns (DepositArgs memory);
function getAvailableValidatorFlushes() external view returns (uint256);
function getIsBootstrapped() external view returns (bool);
}// SPDX-License-Identifier: Apache-2.0
pragma solidity >=0.8.27;
import {G1Point, G2Point} from "@aztec/shared/libraries/BN254Lib.sol";
import {Errors} from "./Errors.sol";
/**
* @notice A struct containing the arguments needed for GSE.deposit(...) function
* @dev Used to store validator information in the entry queue before they are processed
*/
struct DepositArgs {
address attester;
address withdrawer;
G1Point publicKeyInG1;
G2Point publicKeyInG2;
G1Point proofOfPossession;
bool moveWithLatestRollup;
}
/**
* @notice A queue data structure for managing validator deposits
* @dev Implements a FIFO queue using a mapping and two pointers
* @param validators Mapping from queue index to validator deposit arguments
* @param first Index of the first element in the queue (head)
* @param last Index of the next available slot in the queue (tail)
*/
struct StakingQueue {
mapping(uint256 index => DepositArgs validator) validators;
uint128 first;
uint128 last;
}
library StakingQueueLib {
function init(StakingQueue storage self) internal {
self.first = 1;
self.last = 1;
}
function enqueue(
StakingQueue storage self,
address _attester,
address _withdrawer,
G1Point memory _publicKeyInG1,
G2Point memory _publicKeyInG2,
G1Point memory _proofOfPossession,
bool _moveWithLatestRollup
) internal returns (uint256) {
uint128 queueLocation = self.last;
self.validators[queueLocation] = DepositArgs({
attester: _attester,
withdrawer: _withdrawer,
publicKeyInG1: _publicKeyInG1,
publicKeyInG2: _publicKeyInG2,
proofOfPossession: _proofOfPossession,
moveWithLatestRollup: _moveWithLatestRollup
});
self.last = queueLocation + 1;
return queueLocation;
}
function dequeue(StakingQueue storage self) internal returns (DepositArgs memory validator) {
require(self.last > self.first, Errors.Staking__QueueEmpty());
validator = self.validators[self.first];
self.first += 1;
}
function length(StakingQueue storage self) internal view returns (uint256 len) {
len = self.last - self.first;
}
function at(StakingQueue storage self, uint256 index) internal view returns (DepositArgs memory validator) {
validator = self.validators[self.first + index];
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {
IGovernance,
Proposal,
ProposalState,
Configuration,
ProposeWithLockConfiguration,
Withdrawal
} from "@aztec/governance/interfaces/IGovernance.sol";
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
import {Checkpoints, CheckpointedUintLib} from "@aztec/governance/libraries/CheckpointedUintLib.sol";
import {Ballot, CompressedBallot, BallotLib} from "@aztec/governance/libraries/compressed-data/Ballot.sol";
import {
CompressedConfiguration,
CompressedConfigurationLib
} from "@aztec/governance/libraries/compressed-data/Configuration.sol";
import {CompressedProposal, CompressedProposalLib} from "@aztec/governance/libraries/compressed-data/Proposal.sol";
import {ConfigurationLib} from "@aztec/governance/libraries/ConfigurationLib.sol";
import {Errors} from "@aztec/governance/libraries/Errors.sol";
import {ProposalLib, VoteTabulationReturn} from "@aztec/governance/libraries/ProposalLib.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
/**
* @dev a whitelist, controlling who may have power in the governance contract.
* That is, an address must be an approved beneficiary to receive power via `deposit`.
*
* The caveat is that the owner of the contract may open the floodgates, allowing all addresses to hold power.
* This is currently a "one-way-valve", since if it were reopened after being shut,
* the contract is in an odd state where entities are holding power, but not allowed to receive more;
* the whitelist is enabled, but does not reflect the functional entities in the system.
* As an aside, it is unlikely that in the event Governance were opened up to all addresses,
* those same addresses would subsequently vote to close it again.
*
* In practice, it is expected that the only authorized beneficiary will be the GSE.
* This is because all rollup instances deposit their stake into the GSE, which in turn deposits it into the governance
* contract. In turn, it is the GSE that votes on proposals.
*/
struct DepositControl {
mapping(address beneficiary => bool allowed) isAllowed;
bool allBeneficiariesAllowed;
}
/**
* @title Governance
* @author Aztec Labs
* @notice A contract that implements governance logic for proposal creation, voting, and execution.
* Uses a snapshot-based voting model with partial vote support to enable aggregated voting.
*
* Partial vote support: Allows voters to split their voting power across multiple proposals
* or options, rather than using all their votes on a single choice.
*
* Aggregated voting: The contract collects and sums votes from multiple sources or over time,
* combining them to determine the final outcome of each proposal.
*
* @dev KEY CONCEPTS:
*
* **Power**: Funds received via `deposit` are held by Governance and tracked 1:1 as "power" for the beneficiary.
*
* **Proposals**: Payloads containing actions to be executed by governance (excluding calls to the governance ASSET).
*
* **Deposit Control**: A whitelist system controlling who can hold power in governance.
* - Initially restricted to approved beneficiaries (expected to be only the GSE)
* - Can be opened to all addresses via `openFloodgates` (one-way valve)
* - The GSE aggregates stake from all rollup instances and votes on their behalf
*
* **Voting Power**: Based on checkpointed deposit history, calculated per proposal.
*
* @dev PROPOSAL LIFECYCLE: (see `getProposalState` for details)
*
* The current state of a proposal may be retrieved via `getProposalState`.
*
* 1. **Pending** (creation → creation + votingDelay)
* - Proposal exists but voting hasn't started
* - Power snapshot taken at end of this phase
*
* 2. **Active** (pendingThrough + 1 → pendingThrough + votingDuration)
* - Voting open using power from snapshot
* - Multiple partial votes allowed per user
*
* 3. **Vote Evaluation** → Rejected if criteria not met:
* - Minimum quorum (% of total power)
* - Required yea margin (yea votes minus nay votes)
*
* 4. **Queued** (activeThrough + 1 → activeThrough + executionDelay)
* - Timelock period before execution
*
* 5. **Executable** (queuedThrough + 1 → queuedThrough + gracePeriod)
* - Anyone can execute during this window
*
* 6. **Other States**:
* - Executed: Successfully completed
* - Expired: Execution window passed
* - Rejected: Failed voting criteria
* - Droppable: Proposer changed
* - Dropped: Proposal dropped via `dropProposal`
*
* @dev USER FLOW:
*
* 1. **Deposit**: Transfer ASSET to governance for voting power
* - Only whitelisted beneficiaries can hold power
* - Power is checkpointed for historical lookups
*
* 2. **Vote**: Use power from proposal's snapshot timestamp
* - Support partial voting (multiple votes allowed, both yea and nay)
* - A user's total votes may not exceed their power snapshot for the proposal
*
* 3. **Withdraw**: Two-step process with delay
* - Initiate: Reduce power
* - Finalize: Transfer funds after delay expires
* - Standard delay: votingDelay/5 + votingDuration + executionDelay
*
* @dev PROPOSAL CREATION:
*
* - **Standard**: `governanceProposer` calls `propose`
* - **Emergency**: Anyone with sufficient power calls `proposeWithLock`
* - Requires withdrawing `lockAmount` of power with a finalization delay of `lockDelay`
* - Proposal proposer becomes governance itself (cannot be dropped)
*
* @dev CONFIGURATION:
* All timing parameters are controlled by the governance configuration:
* - votingDelay: Buffer before voting opens
* - votingDuration: Voting period length
* - executionDelay: Timelock after voting before the proposal may be executed
* - gracePeriod: Execution window
* - minimumVotes: Absolute minimum voting power in system
* - quorum: Minimum acceptable participation as a percentage of total power
* - requiredYeaMargin: Required difference between yea and nay votes as a percentage of the votes cast
* - lockAmount: The amount of power to withdraw when `proposeWithLock` is called
* - lockDelay: The delay before a withdrawal created by `proposeWithLock` is finalized
*/
contract Governance is IGovernance {
using SafeERC20 for IERC20;
using ProposalLib for CompressedProposal;
using CheckpointedUintLib for Checkpoints.Trace224;
using ConfigurationLib for Configuration;
using ConfigurationLib for CompressedConfiguration;
using CompressedConfigurationLib for CompressedConfiguration;
using CompressedProposalLib for CompressedProposal;
using BallotLib for CompressedBallot;
IERC20 public immutable ASSET;
/**
* @dev The address that is allowed to `propose` new proposals.
*
* This address can only be updated by the governance itself through a proposal.
*/
address public governanceProposer;
/**
* @dev The whitelist of beneficiaries that are allowed to hold power via `deposit`,
* and the flag to allow all beneficiaries to hold power.
*/
DepositControl internal depositControl;
/**
* @dev The proposals that have been made.
*
* The proposal ID is the current count of proposals (see `proposalCount`).
* New proposals are created by calling `_propose`, via `propose` or `proposeWithLock`.
* The storage of a proposal may be modified by calling `vote`, `execute`, or `dropProposal`.
*/
mapping(uint256 proposalId => CompressedProposal proposal) internal proposals;
/**
* @dev The ballots that have been cast for each proposal.
*
* `CompressedBallot`s contain a compressed `yea` and `nay` count (uint128 each packed into uint256),
* which are the number of votes for and against the proposal.
* `ballots` is only updated during `vote`.
*/
mapping(uint256 proposalId => mapping(address user => CompressedBallot ballot)) internal ballots;
/**
* @dev Checkpointed deposit amounts for an address.
*
* `users` is only updated during `deposit`, `initiateWithdraw`, and `proposeWithLock`.
*/
mapping(address userAddress => Checkpoints.Trace224 user) internal users;
/**
* @dev Withdrawals that have been initiated.
*
* `withdrawals` is only updated during `initiateWithdraw`, `proposeWithLock`, and `finalizeWithdraw`.
*/
mapping(uint256 withdrawalId => Withdrawal withdrawal) internal withdrawals;
/**
* @dev The configuration of the governance contract.
*
* `configuration` is set in the constructor, and is only updated during `updateConfiguration`,
* which must be done via a proposal.
*/
CompressedConfiguration internal configuration;
/**
* @dev The total power of the governance contract.
*
* `total` is only updated during `deposit`, `initiateWithdraw`, and `proposeWithLock`.
*/
Checkpoints.Trace224 internal total;
/**
* @dev The count of proposals that have been made.
*
* `proposalCount` is only updated during `_propose`.
*/
uint256 public proposalCount;
/**
* @dev The count of withdrawals that have been initiated.
*
* `withdrawalCount` is only updated during `initiateWithdraw` and `proposeWithLock`.
*/
uint256 public withdrawalCount;
/**
* @dev Modifier to ensure that the caller is the governance contract itself.
*
* The caller will only be the governance itself if executed via a proposal.
*/
modifier onlySelf() {
require(msg.sender == address(this), Errors.Governance__CallerNotSelf(msg.sender, address(this)));
_;
}
/**
* @dev Modifier to ensure that the beneficiary is allowed to hold power in Governance.
*/
modifier isDepositAllowed(address _beneficiary) {
require(msg.sender != address(this), Errors.Governance__CallerCannotBeSelf());
require(
depositControl.allBeneficiariesAllowed || depositControl.isAllowed[_beneficiary],
Errors.Governance__DepositNotAllowed()
);
_;
}
/**
* @dev the initial _beneficiary is expected to be the GSE or address(0) for anyone
*/
constructor(IERC20 _asset, address _governanceProposer, address _beneficiary, Configuration memory _configuration) {
ASSET = _asset;
governanceProposer = _governanceProposer;
_configuration.assertValid();
configuration = CompressedConfigurationLib.compress(_configuration);
if (_beneficiary == address(0)) {
depositControl.allBeneficiariesAllowed = true;
emit FloodGatesOpened();
} else {
depositControl.allBeneficiariesAllowed = false;
depositControl.isAllowed[_beneficiary] = true;
emit BeneficiaryAdded(_beneficiary);
}
}
/**
* @notice Add a beneficiary to the whitelist.
* @dev The beneficiary may hold power in the governance contract after this call.
* only callable by the governance contract itself.
*
* @param _beneficiary The address to add to the whitelist.
*/
function addBeneficiary(address _beneficiary) external override(IGovernance) onlySelf {
depositControl.isAllowed[_beneficiary] = true;
emit BeneficiaryAdded(_beneficiary);
}
/**
* @notice Allow all addresses to hold power in the governance contract.
* @dev This is a one-way valve.
* only callable by the governance contract itself.
*/
function openFloodgates() external override(IGovernance) onlySelf {
depositControl.allBeneficiariesAllowed = true;
emit FloodGatesOpened();
}
/**
* @notice Update the governance proposer.
* @dev The governance proposer is the address that is allowed to use `propose`.
*
* @dev only callable by the governance contract itself.
*
* @dev causes all proposals proposed by the previous governance proposer to be `Droppable`.
*
* @dev prevents the governance proposer from being set to the governance contract itself.
*
* @param _governanceProposer The new governance proposer.
*/
function updateGovernanceProposer(address _governanceProposer) external override(IGovernance) onlySelf {
require(_governanceProposer != address(this), Errors.Governance__GovernanceProposerCannotBeSelf());
governanceProposer = _governanceProposer;
emit GovernanceProposerUpdated(_governanceProposer);
}
/**
* @notice Update the governance configuration.
* only callable by the governance contract itself.
*
* @dev all existing proposals will use the configuration they were created with.
*/
function updateConfiguration(Configuration memory _configuration) external override(IGovernance) onlySelf {
// This following MUST revert if the configuration is invalid
_configuration.assertValid();
configuration = CompressedConfigurationLib.compress(_configuration);
emit ConfigurationUpdated(Timestamp.wrap(block.timestamp));
}
/**
* @notice Deposit funds into the governance contract, transferring ASSET from msg.sender to the governance contract,
* increasing the power 1:1 of the beneficiary within the governance contract.
*
* @dev The beneficiary must be allowed to hold power in the governance contract,
* according to `depositControl`.
*
* Increments the checkpointed power of the specified beneficiary, and the total power of the governance contract.
*
* Note that anyone may deposit funds into the governance contract, and the only restriction is that
* the beneficiary must be allowed to hold power in the governance contract, according to `depositControl`.
*
* It is worth pointing out that someone could attempt to spam the deposit function, and increase the cost to vote
* as a result of creating many checkpoints. In reality though, as the checkpoints are using time as a key it would
* take ~36 years of continuous spamming to increase the cost to vote by ~66K gas with 12 second block times.
*
* @param _beneficiary The beneficiary to increase the power of.
* @param _amount The amount of funds to deposit, which is converted to power 1:1.
*/
function deposit(address _beneficiary, uint256 _amount) external override(IGovernance) isDepositAllowed(_beneficiary) {
ASSET.safeTransferFrom(msg.sender, address(this), _amount);
users[_beneficiary].add(_amount);
total.add(_amount);
emit Deposit(msg.sender, _beneficiary, _amount);
}
/**
* @notice Initiate a withdrawal of funds from the governance contract,
* decreasing the power of the beneficiary within the governance contract.
*
* @dev the withdraw may be finalized by anyone after configuration.getWithdrawalDelay() has passed.
*
* @param _to The address that will receive the funds when the withdrawal is finalized.
* @param _amount The amount of power to reduce, and thus funds to withdraw.
* @return The id of the withdrawal, passed to `finalizeWithdraw`.
*/
function initiateWithdraw(address _to, uint256 _amount) external override(IGovernance) returns (uint256) {
return _initiateWithdraw(msg.sender, _to, _amount, configuration.getWithdrawalDelay());
}
/**
* @notice Finalize a withdrawal of funds from the governance contract,
* transferring ASSET from the governance contract to the recipient specified in the withdrawal.
*
* @dev The withdrawal must not have been claimed, and the delay specified on the withdrawal must have passed.
*
* @param _withdrawalId The id of the withdrawal to finalize.
*/
function finalizeWithdraw(uint256 _withdrawalId) external override(IGovernance) {
Withdrawal storage withdrawal = withdrawals[_withdrawalId];
// This is a sanity check, the `recipient` will only be zero for a non-existent withdrawal, so this avoids
// `finalize`ing non-existent withdrawals. Note, that `_initiateWithdraw` will fail if `_to` is `address(0)`
require(withdrawal.recipient != address(0), Errors.Governance__WithdrawalNotInitiated());
require(!withdrawal.claimed, Errors.Governance__WithdrawalAlreadyClaimed());
require(
Timestamp.wrap(block.timestamp) >= withdrawal.unlocksAt,
Errors.Governance__WithdrawalNotUnlockedYet(Timestamp.wrap(block.timestamp), withdrawal.unlocksAt)
);
withdrawal.claimed = true;
emit WithdrawFinalized(_withdrawalId);
ASSET.safeTransfer(withdrawal.recipient, withdrawal.amount);
}
/**
* @notice Propose a new proposal as the governanceProposer
*
* @dev the state of the proposal may be retrieved via `getProposalState`.
*
* Note that the `proposer` of the proposal is the *current* governanceProposer; if the governanceProposer
* no longer matches the one stored in the proposal, the state of the proposal will be `Droppable`.
*
* @param _proposal The IPayload address, which is a contract that contains the proposed actions to be executed by the
* governance.
* @return The id of the proposal.
*/
function propose(IPayload _proposal) external override(IGovernance) returns (uint256) {
require(
msg.sender == governanceProposer, Errors.Governance__CallerNotGovernanceProposer(msg.sender, governanceProposer)
);
return _propose(_proposal, governanceProposer);
}
/**
* @notice Propose a new proposal by withdrawing an existing amount of power from Governance with a longer delay.
*
* @dev proposals made in this way are identical to those made by the governanceProposer, with the exception
* that the "proposer" stored in the proposal is the address of the governance contract itself,
* which means it will not transition to a "Droppable" state if the governanceProposer changes.
*
* @dev this is intended to only be used in an emergency, where the governanceProposer is compromised.
*
* @dev We don't actually need to check available power here, since if the msg.sender does not have
* sufficient balance, the `_initiateWithdraw` would revert with an underflow.
*
* @param _proposal The IPayload address, which is a contract that contains the proposed actions to be executed by
* the governance.
* @param _to The address that will receive the withdrawn funds when the withdrawal is finalized (see
* `finalizeWithdraw`)
* @return The id of the proposal
*/
function proposeWithLock(IPayload _proposal, address _to) external override(IGovernance) returns (uint256) {
ProposeWithLockConfiguration memory proposeConfig = configuration.getProposeConfig();
_initiateWithdraw(msg.sender, _to, proposeConfig.lockAmount, proposeConfig.lockDelay);
return _propose(_proposal, address(this));
}
/**
* @notice Vote on a proposal.
* @dev The proposal must be `Active` to vote on it.
*
* NOTE: The amount of power to vote is equal to the power of msg.sender at the time
* just before the proposal became active.
*
* The same caller (e.g. the GSE) may `vote` multiple times, voting different ways,
* so long as their total votes are less than or equal to their available power;
* each vote is tracked per proposal, per caller within the `ballots` mapping.
*
* We keep track of the total yea and nay votes as a `summedBallot` on the proposal in storage.
*
* @param _proposalId The id of the proposal to vote on.
* @param _amount The amount of power to vote with, which must be less than the available power.
* @param _support The support of the vote.
*/
function vote(uint256 _proposalId, uint256 _amount, bool _support) external override(IGovernance) {
ProposalState state = getProposalState(_proposalId);
require(state == ProposalState.Active, Errors.Governance__ProposalNotActive());
// Compute the power at the time the proposals goes from pending to active.
// This is the last second before active, and NOT the first second active, because it would then be possible to
// alter the power while the proposal is active since all txs in a block have the same timestamp.
uint256 userPower = users[msg.sender].valueAt(proposals[_proposalId].pendingThrough());
CompressedBallot userBallot = ballots[_proposalId][msg.sender];
uint256 availablePower = userPower - (userBallot.getNay() + userBallot.getYea());
require(_amount <= availablePower, Errors.Governance__InsufficientPower(msg.sender, availablePower, _amount));
CompressedProposal storage proposal = proposals[_proposalId];
if (_support) {
ballots[_proposalId][msg.sender] = userBallot.addYea(_amount);
proposal.addYea(_amount);
} else {
ballots[_proposalId][msg.sender] = userBallot.addNay(_amount);
proposal.addNay(_amount);
}
emit VoteCast(_proposalId, msg.sender, _support, _amount);
}
/**
* @notice Execute a proposal.
* @dev The proposal must be `Executable` to execute it.
* If it is, we mark the proposal as `Executed` and execute the actions,
* simply looping through and calling them.
*
* As far as the individual calls, there are 2 safety measures:
* - The call cannot target the ASSET which underlies the governance contract
* - The call must succeed
*
* @param _proposalId The id of the proposal to execute.
*/
function execute(uint256 _proposalId) external override(IGovernance) {
ProposalState state = getProposalState(_proposalId);
require(state == ProposalState.Executable, Errors.Governance__ProposalNotExecutable());
CompressedProposal storage proposal = proposals[_proposalId];
proposal.cachedState = ProposalState.Executed;
IPayload.Action[] memory actions = proposal.payload.getActions();
for (uint256 i = 0; i < actions.length; i++) {
require(actions[i].target != address(ASSET), Errors.Governance__CannotCallAsset());
// We allow calls to EOAs. If you really want be my guest.
// solhint-disable-next-line avoid-low-level-calls
(bool success,) = actions[i].target.call(actions[i].data);
require(success, Errors.Governance__CallFailed(actions[i].target));
}
emit ProposalExecuted(_proposalId);
}
/**
* @notice Update a proposal to be `Dropped`.
* @dev The proposal must be `Droppable` to mark it permanently as `Dropped`.
* See `getProposalState` for more details.
*
* @param _proposalId The id of the proposal to mark as `Dropped`.
*/
function dropProposal(uint256 _proposalId) external override(IGovernance) {
CompressedProposal storage self = proposals[_proposalId];
require(self.cachedState != ProposalState.Dropped, Errors.Governance__ProposalAlreadyDropped());
require(getProposalState(_proposalId) == ProposalState.Droppable, Errors.Governance__ProposalCannotBeDropped());
self.cachedState = ProposalState.Dropped;
emit ProposalDropped(_proposalId);
}
/**
* @notice Get the power of an address at a given timestamp.
*
* @param _owner The address to get the power of.
* @param _ts The timestamp to get the power at.
* @return The power of the address at the given timestamp.
*/
function powerAt(address _owner, Timestamp _ts) external view override(IGovernance) returns (uint256) {
return users[_owner].valueAt(_ts);
}
/**
* @notice Get the power of an address at the current block timestamp.
*
* Note that `powerNow` with the current block timestamp is NOT STABLE.
*
* For example, imagine a transaction that performs the following:
* 1. deposit
* 2. powerNow
* 3. deposit
* 4. powerNow
*
* The powerNow at 4 will be different from the powerNow at 2.
*
* @param _owner The address to get the power of.
* @return The power of the address at the current block timestamp.
*/
function powerNow(address _owner) external view override(IGovernance) returns (uint256) {
return users[_owner].valueNow();
}
/**
* @notice Get the total power in Governance at a given timestamp.
*
* @param _ts The timestamp to get the power at.
* @return The total power at the given timestamp.
*/
function totalPowerAt(Timestamp _ts) external view override(IGovernance) returns (uint256) {
return total.valueAt(_ts);
}
/**
* @notice Get the total power in Governance at the current block timestamp.
* Note that `powerNow` with the current block timestamp is NOT STABLE.
*
* @return The total power at the current block timestamp.
*/
function totalPowerNow() external view override(IGovernance) returns (uint256) {
return total.valueNow();
}
/**
* @notice Check if an address is permitted to hold power in Governance.
*
* @param _beneficiary The address to check.
* @return True if the address is permitted to hold power in Governance.
*/
function isPermittedInGovernance(address _beneficiary) external view override(IGovernance) returns (bool) {
return depositControl.isAllowed[_beneficiary];
}
/**
* @notice Check if everyone is permitted to hold power in Governance.
*
* @return True if everyone is permitted to hold power in Governance.
*/
function isAllBeneficiariesAllowed() external view override(IGovernance) returns (bool) {
return depositControl.allBeneficiariesAllowed;
}
function getConfiguration() external view override(IGovernance) returns (Configuration memory) {
return configuration.decompress();
}
/**
* @notice Get a proposal by its id.
*
* @dev Will return default values (0) for non-existing proposals
*
* @param _proposalId The id of the proposal to get.
* @return The proposal.
*/
function getProposal(uint256 _proposalId) external view override(IGovernance) returns (Proposal memory) {
return proposals[_proposalId].decompress();
}
/**
* @notice Get a withdrawal by its id.
*
* @dev Will return default values (0) for non-existing withdrawals
*
* @param _withdrawalId The id of the withdrawal to get.
* @return The withdrawal.
*/
function getWithdrawal(uint256 _withdrawalId) external view override(IGovernance) returns (Withdrawal memory) {
return withdrawals[_withdrawalId];
}
/**
* @notice Get a user's ballot for a specific proposal.
*
* @dev Returns the uncompressed Ballot struct for external callers.
*
* @param _proposalId The id of the proposal.
* @param _user The address of the user.
* @return The user's ballot with yea and nay votes.
*/
function getBallot(uint256 _proposalId, address _user) external view override(IGovernance) returns (Ballot memory) {
return ballots[_proposalId][_user].decompress();
}
/**
* @notice Get the state of a proposal in the governance system
*
* @dev Determine the current state of a proposal based on timestamps, vote results, and governance configuration.
*
* @dev NB: the state returned here is LOGICAL, and is the "true state" of the proposal:
* it need not match the state of the proposal in storage, which is effectively just a cache.
*
* Flow Logic:
* 1. Check if proposal exists (revert if not)
* 2. If the cached state of the proposal is "stable" (Executed/Dropped), return that state
* 3. Check if governance proposer changed (→ Droppable, unless proposed via lock)
* 4. Time-based state transitions:
* - currentTime ≤ pendingThrough() → Pending
* - currentTime ≤ activeThrough() → Active
* - Vote tabulation check → Rejected if not accepted
* - currentTime ≤ queuedThrough() → Queued
* - currentTime ≤ executableThrough() → Executable
* - Otherwise → Expired
*
* @dev State Descriptions:
* - Pending: Proposal created but voting hasn't started yet
* - Active: Voting is currently open
* - Rejected: Voting closed but proposal didn't meet acceptance criteria
* - Queued: Proposal accepted and waiting for execution window
* - Executable: Proposal can be executed
* - Expired: Execution window has passed
* - Droppable: Proposer changed
* - Dropped: Proposal dropped by calling `dropProposal`
* - Executed: Proposal has been successfully executed
*
* @dev edge case: it is possible that a proposal be "Droppable" according to the logic here,
* but no one called `dropProposal`, and then be in a different state later.
* This can happen if, for whatever reason, the governance proposer stored by this contract changes
* from the one the proposal is made via, (which would cause this function to return `Droppable`),
* but then a separate proposal is executed which restores the original governance proposer.
* So, `Dropped` is permanent, but `Droppable` is not.
*
* @param _proposalId The ID of the proposal to check
* @return The current state of the proposal
*/
function getProposalState(uint256 _proposalId) public view override(IGovernance) returns (ProposalState) {
require(_proposalId < proposalCount, Errors.Governance__ProposalDoesNotExists(_proposalId));
CompressedProposal storage self = proposals[_proposalId];
// A proposal's state is "stable" after `execute` or `dropProposal` has been called on it.
// In this case, the state of the proposal as returned by `getProposalState` is the same as the cached state,
// and the state will not change.
if (self.cachedState == ProposalState.Executed || self.cachedState == ProposalState.Dropped) {
return self.cachedState;
}
// If the governanceProposer has changed, and the proposal did not come through `proposeWithLock`,
// the state of the proposal is `Droppable`.
if (governanceProposer != self.proposer && address(this) != self.proposer) {
return ProposalState.Droppable;
}
Timestamp currentTime = Timestamp.wrap(block.timestamp);
if (currentTime <= self.pendingThrough()) {
return ProposalState.Pending;
}
if (currentTime <= self.activeThrough()) {
return ProposalState.Active;
}
uint256 totalPower = total.valueAt(self.pendingThrough());
(VoteTabulationReturn vtr,) = self.voteTabulation(totalPower);
if (vtr != VoteTabulationReturn.Accepted) {
return ProposalState.Rejected;
}
if (currentTime <= self.queuedThrough()) {
return ProposalState.Queued;
}
if (currentTime <= self.executableThrough()) {
return ProposalState.Executable;
}
return ProposalState.Expired;
}
/**
* @dev reduce the user's power, the total power, and insert a new withdrawal.
*
* The reason for a configurable delay is that `proposeWithLock` creates a withdrawal,
* which has a (presumably) very long delay, whereas `initiateWithdraw` has a much shorter delay.
*
* @param _from The address to reduce the power of.
* @param _to The address to send the funds to.
* @param _amount The amount of power to reduce, and thus funds to withdraw.
* @param _delay The delay before the funds can be withdrawn.
* @return The id of the withdrawal.
*/
function _initiateWithdraw(address _from, address _to, uint256 _amount, Timestamp _delay) internal returns (uint256) {
require(_to != address(0), Errors.Governance__CannotWithdrawToAddressZero());
users[_from].sub(_amount);
total.sub(_amount);
uint256 withdrawalId = withdrawalCount++;
withdrawals[withdrawalId] =
Withdrawal({amount: _amount, unlocksAt: Timestamp.wrap(block.timestamp) + _delay, recipient: _to, claimed: false});
emit WithdrawInitiated(withdrawalId, _to, _amount);
return withdrawalId;
}
/**
* @dev create a new proposal. In it we store:
*
* - a copy of the current governance configuration, effectively "freezing" the config for the proposal.
* This is done to ensure that in progress proposals that alter the delays etc won't take effect on existing
* proposals.
* - the summed ballots
* - the proposer, which can be:
* - the current governanceProposer (which can be updated on the Governance contract), if created via `propose`
* - the governance contract itself, if created via `proposeWithLock`
*
* @param _proposal The proposal to propose.
* @param _proposer The address that is proposing the proposal.
* @return The id of the proposal, which is one less than the current count of proposals.
*/
function _propose(IPayload _proposal, address _proposer) internal returns (uint256) {
uint256 proposalId = proposalCount++;
proposals[proposalId] =
CompressedProposalLib.create(_proposer, _proposal, Timestamp.wrap(block.timestamp), configuration);
emit Proposed(proposalId, address(_proposal));
return proposalId;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Bn254LibWrapper} from "@aztec/governance/Bn254LibWrapper.sol";
import {Governance} from "@aztec/governance/Governance.sol";
import {Proposal} from "@aztec/governance/interfaces/IGovernance.sol";
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
import {AddressSnapshotLib, SnapshottedAddressSet} from "@aztec/governance/libraries/AddressSnapshotLib.sol";
import {
DepositDelegationLib, DepositAndDelegationAccounting
} from "@aztec/governance/libraries/DepositDelegationLib.sol";
import {Errors} from "@aztec/governance/libraries/Errors.sol";
import {G1Point, G2Point} from "@aztec/shared/libraries/BN254Lib.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
import {Ownable} from "@oz/access/Ownable.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {Checkpoints} from "@oz/utils/structs/Checkpoints.sol";
// Struct to store configuration of an attester (block producer)
// Keep track of the actor who can initiate and control withdraws for the attester.
// Keep track of the public key in G1 of BN254 that has registered on the instance
struct AttesterConfig {
G1Point publicKey;
address withdrawer;
}
// Struct to track the attesters (block producers) on a particular rollup instance
// throughout time, along with each attester's current config.
// Finally a flag to track if the instance exists.
struct InstanceAttesterRegistry {
SnapshottedAddressSet attesters;
bool exists;
}
interface IGSECore {
event Deposit(address indexed instance, address indexed attester, address withdrawer);
function setGovernance(Governance _governance) external;
function setProofOfPossessionGasLimit(uint64 _proofOfPossessionGasLimit) external;
function addRollup(address _rollup) external;
function deposit(
address _attester,
address _withdrawer,
G1Point memory _publicKeyInG1,
G2Point memory _publicKeyInG2,
G1Point memory _proofOfPossession,
bool _moveWithLatestRollup
) external;
function withdraw(address _attester, uint256 _amount) external returns (uint256, bool, uint256);
function delegate(address _instance, address _attester, address _delegatee) external;
function vote(uint256 _proposalId, uint256 _amount, bool _support) external;
function voteWithBonus(uint256 _proposalId, uint256 _amount, bool _support) external;
function finalizeWithdraw(uint256 _withdrawalId) external;
function proposeWithLock(IPayload _proposal, address _to) external returns (uint256);
function isRegistered(address _instance, address _attester) external view returns (bool);
function isRollupRegistered(address _instance) external view returns (bool);
function getLatestRollup() external view returns (address);
function getLatestRollupAt(Timestamp _timestamp) external view returns (address);
function getGovernance() external view returns (Governance);
}
interface IGSE is IGSECore {
function getRegistrationDigest(G1Point memory _publicKey) external view returns (G1Point memory);
function getDelegatee(address _instance, address _attester) external view returns (address);
function getVotingPower(address _attester) external view returns (uint256);
function getVotingPowerAt(address _attester, Timestamp _timestamp) external view returns (uint256);
function getWithdrawer(address _attester) external view returns (address);
function balanceOf(address _instance, address _attester) external view returns (uint256);
function effectiveBalanceOf(address _instance, address _attester) external view returns (uint256);
function supplyOf(address _instance) external view returns (uint256);
function totalSupply() external view returns (uint256);
function getConfig(address _attester) external view returns (AttesterConfig memory);
function getAttesterCountAtTime(address _instance, Timestamp _timestamp) external view returns (uint256);
function getAttestersFromIndicesAtTime(address _instance, Timestamp _timestamp, uint256[] memory _indices)
external
view
returns (address[] memory);
function getG1PublicKeysFromAddresses(address[] memory _attesters) external view returns (G1Point[] memory);
function getAttesterFromIndexAtTime(address _instance, uint256 _index, Timestamp _timestamp)
external
view
returns (address);
function getPowerUsed(address _delegatee, uint256 _proposalId) external view returns (uint256);
function getBonusInstanceAddress() external view returns (address);
}
/**
* @title GSECore
* @author Aztec Labs
* @notice The core Governance Staking Escrow contract that handles the deposits of attesters on rollup instances.
* It is responsible for:
* - depositing/withdrawing attesters on rollup instances
* - providing rollup instances with historical views of their attesters
* - allowing depositors to delegate their voting power
* - allowing delegatees to vote at governance
* - maintaining a set of "bonus" attesters which are always deposited on behalf of the latest rollup
*
* NB: The "bonus" attesters are thus automatically "moved along" whenever the latest rollup changes.
* That is, at the point of the rollup getting added, the bonus is immediately available.
* This allows the latest rollup to start with a set of attesters, rather than requiring them to exit
* the old rollup and deposit in the new one.
*
* NB: The "latest" rollup in this contract does not technically need to be the "canonical" rollup
* according to the Registry, but in practice, it will be unless the new rollup does not use the GSE.
* Proposals which add rollups that DO want to use the GSE MUST call addRollup to both the Registry and the GSE.
* See RegisterNewRollupVersionPayload.sol for an example.
*
* NB: The "owner" of the GSE is intended to be the Governance contract, but there is a circular
* dependency in that we also want the GSE to be registered as the first beneficiary of the governance
* contract so that we don't need to go through a governance proposal to add it. To that end,
* this contract's view of `governance` needs to be set. So the current flow is to deploy the GSE with the owner
* set to the deployer, then deploy Governance, passing the GSE as the initial/sole authorized beneficiary,
* then have the deployer `setGovernance`, and then `transferOwnership` to Governance.
*/
contract GSECore is IGSECore, Ownable {
using AddressSnapshotLib for SnapshottedAddressSet;
using SafeCast for uint256;
using SafeCast for uint224;
using Checkpoints for Checkpoints.Trace224;
using DepositDelegationLib for DepositAndDelegationAccounting;
using SafeERC20 for IERC20;
/**
* Create a special "bonus" address for use by the latest rollup.
* This is a convenience mechanism to allow attesters to always be staked on the latest rollup.
*
* As far as terminology, the GSE tracks deposits and voting/delegation data for "instances",
* and an "instance" is either the address of a "true" rollup contract which was added via `addRollup`,
* or (ONLY IN THIS CONTRACT) this special "bonus" address, which has its own accounting.
*
* NB: in every other context, "instance" refers broadly to a specific instance of an aztec rollup contract
* (possibly inclusive of its family of related contracts e.g. Inbox, Outbox, etc.)
*
* Thus, this bonus address appears in `delegation` and `instances`, and from the perspective of the GSE,
* it is an instance (though it can never be in the list of rollups).
*
* Lower in the code, we use "rollup" if we know we're talking about a rollup (often msg.sender),
* and "instance" if we are talking about about either a rollup instance or the bonus instance.
*
* The latest rollup according to `rollups` may use the attesters and voting power
* from the BONUS_INSTANCE_ADDRESS as a "bonus" to their own.
*
* One invariant of the GSE is that the attesters available to any rollup instance must form a set.
* i.e. there must be no duplicates.
*
* Thus, for the latest rollup, there are two "buckets" of attesters available:
* - the attesters that are associated with the rollup's address
* - the attesters that are associated with the BONUS_INSTANCE_ADDRESS
*
* The GSE ensures that:
* - each bucket individually is a set
* - when you add these two buckets together, it is a set.
*
* For a rollup that is no longer the latest, the attesters available to it are the attesters that are
* associated with the rollup's address. In effect, when a rollup goes from being the latest to not being
* the latest, it loses all attesters that were associated with the bonus instance.
*
* In this way, the "effective" attesters/balance/etc for a rollup (at a point in time) is:
* - the rollup's bucket and the bonus bucket if the rollup was the latest at that point in time
* - only the rollup's bucket if the rollup was not the latest at that point in time
*
* Note further, that operations like deposit and withdraw are initiated by a rollup,
* but the "affected instance" address will be either the rollup's address or the BONUS_INSTANCE_ADDRESS;
* we will typically need to look at both instances to know what to do.
*
* NB: in a large way, the BONUS_INSTANCE_ADDRESS is the entire point of the GSE,
* otherwise the rollups would've managed their own attesters/delegation/etc.
*/
address public constant BONUS_INSTANCE_ADDRESS = address(uint160(uint256(keccak256("bonus-instance"))));
// External wrapper of the BN254 library to more easily allow gas limits.
Bn254LibWrapper internal immutable BN254_LIB_WRAPPER = new Bn254LibWrapper();
// The amount of ASSET needed to add an attester to the set
uint256 public immutable ACTIVATION_THRESHOLD;
// The amount of ASSET needed to keep an attester in the set, if the attester balance fall below this threshold
// the attester will be ejected from the set.
uint256 public immutable EJECTION_THRESHOLD;
// The asset used for sybil resistance and power in governance. Must match the ASSET in `Governance` to work as
// intended.
IERC20 public immutable ASSET;
// The GSE's history of rollups.
Checkpoints.Trace224 internal rollups;
// Mapping from instance address to its historical attester information.
mapping(address instanceAddress => InstanceAttesterRegistry instance) internal instances;
// Global attester information
mapping(address attester => AttesterConfig config) internal configOf;
// Mapping from the hashed public key in G1 of BN254 to the keys are registered.
mapping(bytes32 hashedPK1 => bool isRegistered) public ownedPKs;
/**
* Contains state for:
* checkpointed total supply
* instance => {
* checkpointed supply
* attester => { balance, delegatee }
* }
* delegatee => {
* checkpointed voting power
* proposal ID => { power used }
* }
*/
DepositAndDelegationAccounting internal delegation;
Governance internal governance;
// Gas limit for proof of possession validation.
//
// Must exceed the happy path gas consumption to ensure deposits succeed.
// Acts as a cap on unhappy path gas usage to prevent excessive consumption.
//
// - Happy path average: 150K gas
// - Buffer for loop: 50K gas
// - Buffer for opcode cost changes: 50K gas
//
// WARNING: If set below happy path requirements, all deposits will fail.
// Governance can adjust this value via proposal.
uint64 public proofOfPossessionGasLimit = 250_000;
/**
* @dev enforces that the caller is a registered rollup.
*/
modifier onlyRollup() {
require(isRollupRegistered(msg.sender), Errors.GSE__NotRollup(msg.sender));
_;
}
/**
* @param __owner - The owner of the GSE.
* Initially a deployer to allow adding an initial rollup, then handed over to governance.
* @param _asset - The ERC20 token asset used in governance and for sybil resistance.
* This token is deposited by attesters to gain voting power in governance
* (ratio of voting power to staked amount is 1:1).
* @param _activationThreshold - The amount of asset required to deposit an attester on the rollup.
* @param _ejectionThreshold - The minimum amount of asset required to be in the set to be considered an attester.
* If the balance falls below this threshold, the attester is ejected from the set.
*/
constructor(address __owner, IERC20 _asset, uint256 _activationThreshold, uint256 _ejectionThreshold)
Ownable(__owner)
{
ASSET = _asset;
ACTIVATION_THRESHOLD = _activationThreshold;
EJECTION_THRESHOLD = _ejectionThreshold;
instances[BONUS_INSTANCE_ADDRESS].exists = true;
}
function setGovernance(Governance _governance) external override(IGSECore) onlyOwner {
require(address(governance) == address(0), Errors.GSE__GovernanceAlreadySet());
governance = _governance;
}
function setProofOfPossessionGasLimit(uint64 _proofOfPossessionGasLimit) external override(IGSECore) onlyOwner {
proofOfPossessionGasLimit = _proofOfPossessionGasLimit;
}
/**
* @notice Adds another rollup to the instances, which is the new latest rollup.
* Only callable by the owner (usually governance) and only when the rollup is not already in the set
*
* @dev rollups only have access to the "bonus instance" while they are the most recent rollup.
*
* @dev The GSE only supports adding rollups, not removing them. If a rollup becomes compromised, governance can
* simply add a new rollup and the bonus instance mechanism ensures a smooth transition by allowing the new rollup
* to immediately inherit attesters.
*
* @dev Beware that multiple calls to `addRollup` at the same `block.timestamp` will override each other and only
* the last will be in the `rollups`.
*
* @param _rollup - The address of the rollup to add
*/
function addRollup(address _rollup) external override(IGSECore) onlyOwner {
require(_rollup != address(0), Errors.GSE__InvalidRollupAddress(_rollup));
require(!instances[_rollup].exists, Errors.GSE__RollupAlreadyRegistered(_rollup));
instances[_rollup].exists = true;
rollups.push(block.timestamp.toUint32(), uint224(uint160(_rollup)));
}
/**
* @notice Deposits a new attester
*
* @dev msg.sender must be a registered rollup.
*
* @dev Transfers ASSET from msg.sender to the GSE, and then into Governance.
*
* @dev if _moveWithLatestRollup is true, then msg.sender must be the latest rollup.
*
* @dev An attester configuration is registered globally to avoid BLS troubles when moving stake.
*
* Suppose the registered rollups are A, then B, then C, so C's effective attesters are
* those associated with C and the bonus address.
*
* Alice may come along now and deposit on A or B, with _moveWithLatestRollup=false in either case.
*
* For depositing into C, she can deposit *either* with _moveWithLatestRollup = true OR false.
* If she deposits with _moveWithLatestRollup = false, then she is associated with C's address.
* If she deposits with _moveWithLatestRollup = true, then she is associated with the bonus address.
*
* Suppose she deposits with _moveWithLatestRollup = true, and a new rollup D is added to the rollups.
* Then her stake moves to D, and she is in the effective attesters of D.
*
* @param _attester - The attester address on behalf of which the deposit is made.
* @param _withdrawer - Address which the user wish to use to initiate a withdraw for the `_attester` and
* to update delegation with. The withdrawals are enforced by the rollup to which it is
* controlled, so it is practically a value for the rollup to use, meaning dishonest rollup
* can reject withdrawal attempts.
* @param _publicKeyInG1 - BLS public key for the attester in G1
* @param _publicKeyInG2 - BLS public key for the attester in G2
* @param _proofOfPossession - A proof of possessions for the private key corresponding _publicKey in G1 and G2
* @param _moveWithLatestRollup - Whether to deposit into the specific instance, or the bonus instance
*/
function deposit(
address _attester,
address _withdrawer,
G1Point memory _publicKeyInG1,
G2Point memory _publicKeyInG2,
G1Point memory _proofOfPossession,
bool _moveWithLatestRollup
) external override(IGSECore) onlyRollup {
bool isMsgSenderLatestRollup = getLatestRollup() == msg.sender;
// If _moveWithLatestRollup is true, then msg.sender must be the latest rollup.
if (_moveWithLatestRollup) {
require(isMsgSenderLatestRollup, Errors.GSE__NotLatestRollup(msg.sender));
}
// Ensure that we are not already attesting on the rollup
require(!isRegistered(msg.sender, _attester), Errors.GSE__AlreadyRegistered(msg.sender, _attester));
// Ensure that if we are the latest rollup, we are not already attesting on the bonus instance.
if (isMsgSenderLatestRollup) {
require(
!isRegistered(BONUS_INSTANCE_ADDRESS, _attester),
Errors.GSE__AlreadyRegistered(BONUS_INSTANCE_ADDRESS, _attester)
);
}
// Set the recipient instance address, i.e. the one that will receive the attester.
// From above, we know that if we are here, and _moveWithLatestRollup is true,
// then msg.sender is the latest instance,
// but the user is targeting the bonus address.
// Otherwise, we use the msg.sender, which we know is a registered rollup
// thanks to the modifier.
address recipientInstance = _moveWithLatestRollup ? BONUS_INSTANCE_ADDRESS : msg.sender;
// Add the attester to the instance's checkpointed set of attesters.
require(
instances[recipientInstance].attesters.add(_attester), Errors.GSE__AlreadyRegistered(recipientInstance, _attester)
);
_checkProofOfPossession(_attester, _publicKeyInG1, _publicKeyInG2, _proofOfPossession);
// This is the ONLY place where we set the configuration for an attester.
// This means that their withdrawer and public keys are set once, globally.
// If they exit, they must re-deposit with a new key.
configOf[_attester] = AttesterConfig({withdrawer: _withdrawer, publicKey: _publicKeyInG1});
delegation.delegate(recipientInstance, _attester, recipientInstance);
delegation.increaseBalance(recipientInstance, _attester, ACTIVATION_THRESHOLD);
ASSET.safeTransferFrom(msg.sender, address(this), ACTIVATION_THRESHOLD);
Governance gov = getGovernance();
ASSET.approve(address(gov), ACTIVATION_THRESHOLD);
gov.deposit(address(this), ACTIVATION_THRESHOLD);
emit Deposit(recipientInstance, _attester, _withdrawer);
}
/**
* @notice Withdraws at least the amount specified.
* If the leftover balance is less than the minimum deposit, the entire balance is withdrawn.
*
* @dev To be used by a rollup to withdraw funds from the GSE. For example if slashing or
* just withdrawing events happen, a rollup can use this function to withdraw the funds.
* It looks in both the rollup instance and the bonus address for the attester.
*
* @dev Note that all funds are returned to the rollup, so for slashing the rollup itself must
* address the problem of "what to do" with the funds. And it must look at the returned amount
* withdrawn and the bool.
*
* @param _attester - The attester to withdraw from.
* @param _amount - The amount of staking asset to withdraw. Has 1:1 ratio with voting power.
*
* @return The actual amount withdrawn.
* @return True if attester is removed from set, false otherwise
* @return The id of the withdrawal at the governance
*/
function withdraw(address _attester, uint256 _amount)
external
override(IGSECore)
onlyRollup
returns (uint256, bool, uint256)
{
// We need to figure out where the attester is effectively located
// we start by looking at the instance that is withdrawing the attester
address withdrawingInstance = msg.sender;
InstanceAttesterRegistry storage attesterRegistry = instances[msg.sender];
bool foundAttester = attesterRegistry.attesters.contains(_attester);
// If we haven't found the attester in the rollup instance, and we are latest rollup, go look in the "bonus"
// instance.
if (
!foundAttester && getLatestRollup() == msg.sender
&& instances[BONUS_INSTANCE_ADDRESS].attesters.contains(_attester)
) {
withdrawingInstance = BONUS_INSTANCE_ADDRESS;
attesterRegistry = instances[BONUS_INSTANCE_ADDRESS];
foundAttester = true;
}
require(foundAttester, Errors.GSE__NothingToExit(_attester));
uint256 balance = delegation.getBalanceOf(withdrawingInstance, _attester);
require(balance >= _amount, Errors.GSE__InsufficientBalance(balance, _amount));
// First assume we are only withdrawing the amount specified.
uint256 amountWithdrawn = _amount;
// If the balance after withdrawal is less than the ejection threshold,
// we will remove the attester from the instance.
bool isRemoved = balance - _amount < EJECTION_THRESHOLD;
// Note that the current implementation of the rollup does not allow for partial withdrawals,
// via `initiateWithdraw`, so a "normal" withdrawal will always remove the attester from the instance.
// However, if the attester is slashed, we might just reduce the balance.
if (isRemoved) {
require(attesterRegistry.attesters.remove(_attester), Errors.GSE__FailedToRemove(_attester));
amountWithdrawn = balance;
// When removing the user, remove the delegating as well.
delegation.undelegate(withdrawingInstance, _attester);
// NOTE
// We intentionally did not remove the attester config.
// Attester config is set ONCE when the attester is first seen by the GSE,
// and is shared across all instances.
}
// Decrease the balance of the attester in the instance.
// Move voting power from the attester's delegatee to address(0) (unless the delegatee is already address(0))
// Reduce the supply of the instance and the total supply.
delegation.decreaseBalance(withdrawingInstance, _attester, amountWithdrawn);
// The withdrawal contains a pending amount that may be claimed using the withdrawal ID when a delay enforced by
// the Governance contract has passed.
// Note that the rollup is the one that receives the funds when the withdrawal is claimed.
uint256 withdrawalId = getGovernance().initiateWithdraw(msg.sender, amountWithdrawn);
return (amountWithdrawn, isRemoved, withdrawalId);
}
/**
* @notice A helper function to make it easy for users of the GSE to finalize
* a pending exit in the governance.
*
* Kept in here since it is already connected to Governance:
* we don't want the rollup to have to deal with links to gov etc.
*
* @dev Will be a no operation if the withdrawal is already collected.
*
* @param _withdrawalId - The id of the withdrawal
*/
function finalizeWithdraw(uint256 _withdrawalId) external override(IGSECore) {
Governance gov = getGovernance();
if (!gov.getWithdrawal(_withdrawalId).claimed) {
gov.finalizeWithdraw(_withdrawalId);
}
}
/**
* @notice Make a proposal to Governance via `Governance.proposeWithLock`
*
* @dev It is required to expose this on the GSE, since it is assumed that only the GSE can hold
* power in Governance (see the comment at the top of Governance.sol).
*
* @dev Transfers governance's configured `lockAmount` of ASSET from msg.sender to the GSE,
* and then into Governance.
*
* @dev Immediately creates a withdrawal from Governance for the `lockAmount`.
*
* @dev The delay until the withdrawal may be finalized is equal to the current `lockDelay` in Governance.
*
* @param _payload - The IPayload address, which is a contract that contains the proposed actions to be executed by
* the governance.
* @param _to - The address that will receive the withdrawn funds when the withdrawal is finalized (see
* `finalizeWithdraw`)
*
* @return The id of the proposal
*/
function proposeWithLock(IPayload _payload, address _to) external override(IGSECore) returns (uint256) {
Governance gov = getGovernance();
uint256 amount = gov.getConfiguration().proposeConfig.lockAmount;
ASSET.safeTransferFrom(msg.sender, address(this), amount);
ASSET.approve(address(gov), amount);
gov.deposit(address(this), amount);
return gov.proposeWithLock(_payload, _to);
}
/**
* @notice Delegates the voting power of `_attester` at `_instance` to `_delegatee`
*
* Only callable by the `withdrawer` for the given `_attester` at the given
* `_instance`. This is to ensure that the depositor in poor mans delegation;
* listing another entity as the `attester`, still controls his voting power,
* even if someone else is running the node. Separately, it makes it simpler
* to use cold-storage for more impactful actions.
*
* @dev The delegatee may use this voting power to vote on proposals in Governance.
*
* Note that voting power for a delegatee is timestamped. The delegatee must have this
* power before a proposal becomes "active" in order to use it.
* See `Governance.getProposalState` for more details.
*
* @param _instance - The address of the rollup instance (or bonus instance address)
* to which the `_attester` deposit is pledged.
* @param _attester - The address of the attester to delegate on behalf of
* @param _delegatee - The delegatee that should receive the power
*/
function delegate(address _instance, address _attester, address _delegatee) external override(IGSECore) {
require(isRollupRegistered(_instance), Errors.GSE__InstanceDoesNotExist(_instance));
address withdrawer = configOf[_attester].withdrawer;
require(msg.sender == withdrawer, Errors.GSE__NotWithdrawer(withdrawer, msg.sender));
delegation.delegate(_instance, _attester, _delegatee);
}
/**
* @notice Votes at the governance using the power delegated to `msg.sender`
*
* @param _proposalId - The id of the proposal in the governance to vote on
* @param _amount - The amount of voting power to use in the vote
* In the gov, it is possible to do a vote with partial power
* @param _support - True if supporting the proposal, false otherwise.
*/
function vote(uint256 _proposalId, uint256 _amount, bool _support) external override(IGSECore) {
_vote(msg.sender, _proposalId, _amount, _support);
}
/**
* @notice Votes at the governance using the power delegated to the bonus instance.
* Only callable by the rollup that was the latest rollup at the time of the proposal.
*
* @param _proposalId - The id of the proposal in the governance to vote on
* @param _amount - The amount of voting power to use in the vote
* In the gov, it is possible to do a vote with partial power
*/
function voteWithBonus(uint256 _proposalId, uint256 _amount, bool _support) external override(IGSECore) {
Timestamp ts = _pendingThrough(_proposalId);
require(msg.sender == getLatestRollupAt(ts), Errors.GSE__NotLatestRollup(msg.sender));
_vote(BONUS_INSTANCE_ADDRESS, _proposalId, _amount, _support);
}
function isRollupRegistered(address _instance) public view override(IGSECore) returns (bool) {
return instances[_instance].exists;
}
/**
* @notice Lookup if the `_attester` is in the `_instance` attester set
*
* @param _instance - The instance to look at
* @param _attester - The attester to lookup
*
* @return True if the `_attester` is in the set of `_instance`, false otherwise
*/
function isRegistered(address _instance, address _attester) public view override(IGSECore) returns (bool) {
return instances[_instance].attesters.contains(_attester);
}
/**
* @notice Get the address of latest instance
*
* @return The address of the latest instance
*/
function getLatestRollup() public view override(IGSECore) returns (address) {
return address(rollups.latest().toUint160());
}
/**
* @notice Get the address of the instance that was latest at time `_timestamp`
*
* @param _timestamp - The timestamp to lookup
*
* @return The address of the latest instance at the time of lookup
*/
function getLatestRollupAt(Timestamp _timestamp) public view override(IGSECore) returns (address) {
return address(rollups.upperLookup(Timestamp.unwrap(_timestamp).toUint32()).toUint160());
}
function getGovernance() public view override(IGSECore) returns (Governance) {
return governance;
}
/**
* @notice Inner logic for the vote
*
* @dev Fetches the timestamp where proposal becomes active, and use it for the voting power
* of the `_voter`
*
* @param _voter - The voter
* @param _proposalId - The proposal to vote on
* @param _amount - The amount of power to use
* @param _support - True to support the proposal, false otherwise
*/
function _vote(address _voter, uint256 _proposalId, uint256 _amount, bool _support) internal {
Timestamp ts = _pendingThrough(_proposalId);
// Mark the power as spent within our delegation accounting.
delegation.usePower(_voter, _proposalId, ts, _amount);
// Vote on the proposal
getGovernance().vote(_proposalId, _amount, _support);
}
function _checkProofOfPossession(
address _attester,
G1Point memory _publicKeyInG1,
G2Point memory _publicKeyInG2,
G1Point memory _proofOfPossession
) internal virtual {
// Make sure the attester has not registered before
G1Point memory previouslyRegisteredPoint = configOf[_attester].publicKey;
require(
(previouslyRegisteredPoint.x == 0 && previouslyRegisteredPoint.y == 0),
Errors.GSE__CannotChangePublicKeys(previouslyRegisteredPoint.x, previouslyRegisteredPoint.y)
);
// Make sure the incoming point has not been seen before
// NOTE: we only need to check for the existence of Pk1, and not also for Pk2,
// as the Pk2 will be constrained to have the same underlying secret key as part of the proofOfPossession,
// so existence/correctness of Pk2 is implied by existence/correctness of Pk1.
bytes32 hashedIncomingPoint = keccak256(abi.encodePacked(_publicKeyInG1.x, _publicKeyInG1.y));
require((!ownedPKs[hashedIncomingPoint]), Errors.GSE__ProofOfPossessionAlreadySeen(hashedIncomingPoint));
ownedPKs[hashedIncomingPoint] = true;
// We validate the proof of possession using an external contract to limit gas potentially "sacrificed"
// in case of failure.
require(
BN254_LIB_WRAPPER.proofOfPossession{gas: proofOfPossessionGasLimit}(
_publicKeyInG1, _publicKeyInG2, _proofOfPossession
),
Errors.GSE__InvalidProofOfPossession()
);
}
function _pendingThrough(uint256 _proposalId) internal view returns (Timestamp) {
// Directly compute pendingThrough for memory proposal
Proposal memory proposal = getGovernance().getProposal(_proposalId);
return proposal.creation + proposal.config.votingDelay;
}
}
contract GSE is IGSE, GSECore {
using AddressSnapshotLib for SnapshottedAddressSet;
using SafeCast for uint256;
using SafeCast for uint224;
using Checkpoints for Checkpoints.Trace224;
using DepositDelegationLib for DepositAndDelegationAccounting;
constructor(address __owner, IERC20 _asset, uint256 _activationThreshold, uint256 _ejectionThreshold)
GSECore(__owner, _asset, _activationThreshold, _ejectionThreshold)
{}
/**
* @notice Get the registration digest of a public key
* by hashing the the public key to a point on the curve which may subsequently
* be signed by the corresponding private key.
*
* @param _publicKey - The public key to get the registration digest of
*
* @return The registration digest of the public key. Sign and submit as a proof of possession.
*/
function getRegistrationDigest(G1Point memory _publicKey) external view override(IGSE) returns (G1Point memory) {
return BN254_LIB_WRAPPER.g1ToDigestPoint(_publicKey);
}
function getConfig(address _attester) external view override(IGSE) returns (AttesterConfig memory) {
return configOf[_attester];
}
function getWithdrawer(address _attester) external view override(IGSE) returns (address withdrawer) {
AttesterConfig memory config = configOf[_attester];
return config.withdrawer;
}
function balanceOf(address _instance, address _attester) external view override(IGSE) returns (uint256) {
return delegation.getBalanceOf(_instance, _attester);
}
/**
* @notice Get the effective balance of the attester at the instance.
*
* The effective balance is the balance of the attester at the specific instance or at the bonus if the
* instance is the latest rollup and he was not at the specific. We can do this as an `or` since the
* attester may only be active at one of them.
*
* @param _instance - The instance to look at
* @param _attester - The attester to look at
*
* @return The effective balance of the attester at the instance
*/
function effectiveBalanceOf(address _instance, address _attester) external view override(IGSE) returns (uint256) {
uint256 balance = delegation.getBalanceOf(_instance, _attester);
if (balance == 0 && getLatestRollup() == _instance) {
return delegation.getBalanceOf(BONUS_INSTANCE_ADDRESS, _attester);
}
return balance;
}
function supplyOf(address _instance) external view override(IGSE) returns (uint256) {
return delegation.getSupplyOf(_instance);
}
function totalSupply() external view override(IGSE) returns (uint256) {
return delegation.getSupply();
}
function getDelegatee(address _instance, address _attester) external view override(IGSE) returns (address) {
return delegation.getDelegatee(_instance, _attester);
}
function getVotingPower(address _delegatee) external view override(IGSE) returns (uint256) {
return delegation.getVotingPower(_delegatee);
}
function getAttestersFromIndicesAtTime(address _instance, Timestamp _timestamp, uint256[] memory _indices)
external
view
override(IGSE)
returns (address[] memory)
{
return _getAddressFromIndicesAtTimestamp(_instance, _indices, _timestamp);
}
/**
* @notice Get the G1 public keys of the attesters
*
* NOTE: this function does NOT check if the attesters are CURRENTLY ACTIVE.
*
* @param _attesters - The attesters to lookup
*
* @return The G1 public keys of the attesters
*/
function getG1PublicKeysFromAddresses(address[] memory _attesters)
external
view
override(IGSE)
returns (G1Point[] memory)
{
G1Point[] memory keys = new G1Point[](_attesters.length);
for (uint256 i = 0; i < _attesters.length; i++) {
keys[i] = configOf[_attesters[i]].publicKey;
}
return keys;
}
function getAttesterFromIndexAtTime(address _instance, uint256 _index, Timestamp _timestamp)
external
view
override(IGSE)
returns (address)
{
uint256[] memory indices = new uint256[](1);
indices[0] = _index;
return _getAddressFromIndicesAtTimestamp(_instance, indices, _timestamp)[0];
}
function getPowerUsed(address _delegatee, uint256 _proposalId) external view override(IGSE) returns (uint256) {
return delegation.getPowerUsed(_delegatee, _proposalId);
}
function getBonusInstanceAddress() external pure override(IGSE) returns (address) {
return BONUS_INSTANCE_ADDRESS;
}
function getVotingPowerAt(address _delegatee, Timestamp _timestamp) public view override(IGSE) returns (uint256) {
return delegation.getVotingPowerAt(_delegatee, _timestamp);
}
/**
* @notice Get the number of effective attesters at the instance at the time of `_timestamp`
* (including the bonus instance)
*
* @param _instance - The instance to look at
* @param _timestamp - The timestamp to lookup
*
* @return The number of effective attesters at the instance at the time of `_timestamp`
*/
function getAttesterCountAtTime(address _instance, Timestamp _timestamp) public view override(IGSE) returns (uint256) {
InstanceAttesterRegistry storage store = instances[_instance];
uint32 timestamp = Timestamp.unwrap(_timestamp).toUint32();
uint256 count = store.attesters.lengthAtTimestamp(timestamp);
if (getLatestRollupAt(_timestamp) == _instance) {
count += instances[BONUS_INSTANCE_ADDRESS].attesters.lengthAtTimestamp(timestamp);
}
return count;
}
/**
* @notice Get the addresses of the attesters at the instance at the time of `_timestamp`
*
* @dev
*
* @param _instance - The instance to look at
* @param _indices - The indices of the attesters to lookup
* @param _timestamp - The timestamp to lookup
*
* @return The addresses of the attesters at the instance at the time of `_timestamp`
*/
function _getAddressFromIndicesAtTimestamp(address _instance, uint256[] memory _indices, Timestamp _timestamp)
internal
view
returns (address[] memory)
{
address[] memory attesters = new address[](_indices.length);
// Note: This function could get called where _instance is the bonus instance.
// This is okay, because we know that in this case, `isLatestRollup` will be false.
// So we won't double count.
InstanceAttesterRegistry storage instanceStore = instances[_instance];
InstanceAttesterRegistry storage bonusStore = instances[BONUS_INSTANCE_ADDRESS];
bool isLatestRollup = getLatestRollupAt(_timestamp) == _instance;
uint32 ts = Timestamp.unwrap(_timestamp).toUint32();
// The effective size of the set will be the size of the instance attesters, plus the size of the bonus attesters
// if the instance is the latest rollup. This will effectively work as one long list with [...instance, ...bonus]
uint256 storeSize = instanceStore.attesters.lengthAtTimestamp(ts);
uint256 canonicalSize = isLatestRollup ? bonusStore.attesters.lengthAtTimestamp(ts) : 0;
uint256 totalSize = storeSize + canonicalSize;
// We loop through the indices, and for each index we get the attester from the instance or bonus instance
// depending on value in the collective list [...instance, ...bonus]
for (uint256 i = 0; i < _indices.length; i++) {
uint256 index = _indices[i];
require(index < totalSize, Errors.GSE__OutOfBounds(index, totalSize));
// since we have ensured that the index is not out of bounds, we can use the unsafe function in
// `AddressSnapshotLib` to fetch if. We use the `recent` variant as we expect the attesters to
// mainly be from recent history when fetched during tx execution.
if (index < storeSize) {
attesters[i] = instanceStore.attesters.unsafeGetRecentAddressFromIndexAtTimestamp(index, ts);
} else if (isLatestRollup) {
attesters[i] = bonusStore.attesters.unsafeGetRecentAddressFromIndexAtTimestamp(index - storeSize, ts);
} else {
revert Errors.GSE__FatalError("SHOULD NEVER HAPPEN");
}
}
return attesters;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
import {Ballot} from "@aztec/governance/libraries/compressed-data/Ballot.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
// @notice if this changes, please update the enum in governance.ts
enum ProposalState {
Pending,
Active,
Queued,
Executable,
Rejected,
Executed,
Droppable,
Dropped,
Expired
}
struct ProposeWithLockConfiguration {
Timestamp lockDelay;
uint256 lockAmount;
}
struct Configuration {
ProposeWithLockConfiguration proposeConfig;
Timestamp votingDelay;
Timestamp votingDuration;
Timestamp executionDelay;
Timestamp gracePeriod;
uint256 quorum;
uint256 requiredYeaMargin;
uint256 minimumVotes;
}
// Configuration for proposals - same as Configuration but without proposeConfig
// since proposeConfig is only used for proposeWithLock, not for the proposal itself
struct ProposalConfiguration {
Timestamp votingDelay;
Timestamp votingDuration;
Timestamp executionDelay;
Timestamp gracePeriod;
uint256 quorum;
uint256 requiredYeaMargin;
uint256 minimumVotes;
}
struct Proposal {
ProposalConfiguration config;
ProposalState cachedState;
IPayload payload;
address proposer;
Timestamp creation;
Ballot summedBallot;
}
struct Withdrawal {
uint256 amount;
Timestamp unlocksAt;
address recipient;
bool claimed;
}
interface IGovernance {
event BeneficiaryAdded(address beneficiary);
event FloodGatesOpened();
event Proposed(uint256 indexed proposalId, address indexed proposal);
event VoteCast(uint256 indexed proposalId, address indexed voter, bool support, uint256 amount);
event ProposalExecuted(uint256 indexed proposalId);
event ProposalDropped(uint256 indexed proposalId);
event GovernanceProposerUpdated(address indexed governanceProposer);
event ConfigurationUpdated(Timestamp indexed time);
event Deposit(address indexed depositor, address indexed onBehalfOf, uint256 amount);
event WithdrawInitiated(uint256 indexed withdrawalId, address indexed recipient, uint256 amount);
event WithdrawFinalized(uint256 indexed withdrawalId);
function addBeneficiary(address _beneficiary) external;
function openFloodgates() external;
function updateGovernanceProposer(address _governanceProposer) external;
function updateConfiguration(Configuration memory _configuration) external;
function deposit(address _onBehalfOf, uint256 _amount) external;
function initiateWithdraw(address _to, uint256 _amount) external returns (uint256);
function finalizeWithdraw(uint256 _withdrawalId) external;
function propose(IPayload _proposal) external returns (uint256);
function proposeWithLock(IPayload _proposal, address _to) external returns (uint256);
function vote(uint256 _proposalId, uint256 _amount, bool _support) external;
function execute(uint256 _proposalId) external;
function dropProposal(uint256 _proposalId) external;
function isPermittedInGovernance(address _caller) external view returns (bool);
function isAllBeneficiariesAllowed() external view returns (bool);
function powerAt(address _owner, Timestamp _ts) external view returns (uint256);
function powerNow(address _owner) external view returns (uint256);
function totalPowerAt(Timestamp _ts) external view returns (uint256);
function totalPowerNow() external view returns (uint256);
function getProposalState(uint256 _proposalId) external view returns (ProposalState);
function getConfiguration() external view returns (Configuration memory);
function getProposal(uint256 _proposalId) external view returns (Proposal memory);
function getWithdrawal(uint256 _withdrawalId) external view returns (Withdrawal memory);
function getBallot(uint256 _proposalId, address _user) external view returns (Ballot memory);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {CompressedProposal, CompressedProposalLib} from "@aztec/governance/libraries/compressed-data/Proposal.sol";
import {CompressedTimestamp, CompressedTimeMath} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
import {Math} from "@oz/utils/math/Math.sol";
enum VoteTabulationReturn {
Accepted,
Rejected,
Invalid
}
enum VoteTabulationInfo {
TotalPowerLtMinimum,
VotesNeededEqZero,
VotesNeededGtTotalPower,
VotesCastLtVotesNeeded,
YeaLimitEqZero,
YeaLimitGtVotesCast,
YeaLimitEqVotesCast,
YeaVotesEqVotesCast,
YeaVotesLeYeaLimit,
YeaVotesGtYeaLimit
}
/**
* @notice Library for governance proposal evaluation and lifecycle management
*
* This library implements the core vote tabulation logic, and has helpers for getting timestamps
* for the proposal lifecycle.
*
* @dev VOTING MECHANICS:
*
* The voting system uses three key parameters that interact to determine proposal outcomes:
*
* 1. **minimumVotes**: Absolute minimum voting power required in the system
* - Prevents proposals when total power is too low for meaningful governance
* - Must be > 0 and <= totalPower for valid proposals
*
* 2. **quorum**: Percentage of total power that must participate (in 1e18 precision)
* - votesNeeded = ceil(totalPower * quorum / 1e18)
* - Ensures sufficient community participation before decisions are made
* - Example: 30% quorum (0.3e18) with 1000 total power requires ≥300 votes
*
* 3. **requiredYeaMargin**: the required minimum difference between the percentage of yea votes,
* and the percentage of nay votes, in 1e18 precision
* - requiredYeaVotesFraction = ceil((1e18 + requiredYeaMargin) / 2)
* - requiredYeaVotes = ceil(votesCast * requiredYeaVotesFraction / 1e18)
* - Yea votes must be > requiredYeaVotes to pass (strict inequality to avoid ties)
* - Example: 20% requiredYeaMargin (0.2e18) means yea needs >60% of cast votes
* - Example: 0% requiredYeaMargin means yea needs >50% of cast votes
*
* To see why this is the case, let `y` be the percentage of yea votes,
* and `n` be the percentage of nay votes, and `m` be the requiredYeaMargin.
*
* The condition for the proposal to pass is `y - n > m`.
* Thus, `y > m + n`, which is equivalent to `y > m + (1 - y)` => `2y > m + 1` => `y > (m + 1) / 2`.
*
* These parameters are included on the proposal itself, which are copied from Governance at the
* time the proposal is created.
*
* @dev EXAMPLE SCENARIO:
* - Total power: 1000 tokens
* - Minimum votes: 100 tokens
* - Quorum: 40% (0.4e18)
* - Required yea margin: 10% (0.1e18)
*
* For a proposal to pass:
* 1. Total power (1000) must be ≥ minimum votes (100) ✓
* 2. Votes needed = ceil(1000 * 0.4) = 400 votes minimum
* 3. If 500 votes cast (300 yea, 200 nay):
* - Quorum met: 500 ≥ 400 ✓
* - Required yea votes = ceil(500 * ceil(1.1e18/2) / 1e18) = ceil(500 * 0.55) = 275
* - Proposal passes: 300 yea > 275 required yea votes ✓
*
* @dev ROUNDING STRATEGY:
* All calculations use ceiling rounding to ensure the protocol is never "underpaid"
* in terms of required votes. This prevents edge cases where fractional vote
* requirements could round down to zero or insufficient thresholds.
*
* @dev PROPOSAL LIFECYCLE:
* The library also manages proposal timing through four phases:
* 1. Pending: creation → creation + votingDelay
* 2. Active: pending end → pending end + votingDuration
* 3. Queued: active end → active end + executionDelay
* 4. Executable: queued end → queued end + gracePeriod
*/
library ProposalLib {
using CompressedTimeMath for CompressedTimestamp;
using CompressedProposalLib for CompressedProposal;
/**
* @notice Tabulate the votes for a proposal.
* @dev This function is used to determine if a proposal has met the acceptance criteria.
*
* @param _self The proposal to tabulate the votes for.
* @param _totalPower The total power (in Governance) at proposal.pendingThrough().
* @return The vote tabulation result, and additional information.
*/
function voteTabulation(CompressedProposal storage _self, uint256 _totalPower)
internal
view
returns (VoteTabulationReturn, VoteTabulationInfo)
{
if (_totalPower < _self.minimumVotes) {
return (VoteTabulationReturn.Rejected, VoteTabulationInfo.TotalPowerLtMinimum);
}
uint256 votesNeeded = Math.mulDiv(_totalPower, _self.quorum, 1e18, Math.Rounding.Ceil);
if (votesNeeded == 0) {
return (VoteTabulationReturn.Invalid, VoteTabulationInfo.VotesNeededEqZero);
}
if (votesNeeded > _totalPower) {
return (VoteTabulationReturn.Invalid, VoteTabulationInfo.VotesNeededGtTotalPower);
}
(uint256 yea, uint256 nay) = _self.getVotes();
uint256 votesCast = nay + yea;
if (votesCast < votesNeeded) {
return (VoteTabulationReturn.Rejected, VoteTabulationInfo.VotesCastLtVotesNeeded);
}
// Edge case where all the votes are yea, no need to compute requiredApprovalVotes.
// ConfigurationLib enforces that requiredYeaMargin is <= 1e18,
// i.e. we cannot require more votes to be yes than total votes.
if (yea == votesCast) {
return (VoteTabulationReturn.Accepted, VoteTabulationInfo.YeaVotesEqVotesCast);
}
uint256 requiredApprovalVotesFraction = Math.ceilDiv(1e18 + _self.requiredYeaMargin, 2);
uint256 requiredApprovalVotes = Math.mulDiv(votesCast, requiredApprovalVotesFraction, 1e18, Math.Rounding.Ceil);
/*if (requiredApprovalVotes == 0) {
// It should be impossible to hit this case as `requiredApprovalVotesFraction` cannot be 0,
// and due to rounding up, only way to hit this would be if `votesCast = 0`,
// which is already handled as `votesCast >= votesNeeded` and `votesNeeded > 0`.
return (VoteTabulationReturn.Invalid, VoteTabulationInfo.YeaLimitEqZero);
}*/
if (requiredApprovalVotes > votesCast) {
return (VoteTabulationReturn.Invalid, VoteTabulationInfo.YeaLimitGtVotesCast);
}
// We want to see that there are MORE votes on yea than needed
// We explicitly need MORE to ensure we don't "tie".
// If we need as many yea as there are votes, we know it is impossible already.
// due to the check earlier, that summedBallot.yea == votesCast.
if (yea <= requiredApprovalVotes) {
return (VoteTabulationReturn.Rejected, VoteTabulationInfo.YeaVotesLeYeaLimit);
}
return (VoteTabulationReturn.Accepted, VoteTabulationInfo.YeaVotesGtYeaLimit);
}
/**
* @notice Get when the pending phase ends
* @param _compressed Storage pointer to compressed proposal
* @return The timestamp when pending phase ends
*/
function pendingThrough(CompressedProposal storage _compressed) internal view returns (Timestamp) {
return _compressed.creation.decompress() + _compressed.votingDelay.decompress();
}
/**
* @notice Get when the active phase ends
* @param _compressed Storage pointer to compressed proposal
* @return The timestamp when active phase ends
*/
function activeThrough(CompressedProposal storage _compressed) internal view returns (Timestamp) {
return pendingThrough(_compressed) + _compressed.votingDuration.decompress();
}
/**
* @notice Get when the queued phase ends
* @param _compressed Storage pointer to compressed proposal
* @return The timestamp when queued phase ends
*/
function queuedThrough(CompressedProposal storage _compressed) internal view returns (Timestamp) {
return activeThrough(_compressed) + _compressed.executionDelay.decompress();
}
/**
* @notice Get when the executable phase ends
* @param _compressed Storage pointer to compressed proposal
* @return The timestamp when executable phase ends
*/
function executableThrough(CompressedProposal storage _compressed) internal view returns (Timestamp) {
return queuedThrough(_compressed) + _compressed.gracePeriod.decompress();
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IGSE} from "@aztec/governance/GSE.sol";
import {GSEPayload} from "@aztec/governance/GSEPayload.sol";
import {IEmpire} from "@aztec/governance/interfaces/IEmpire.sol";
import {IGovernance} from "@aztec/governance/interfaces/IGovernance.sol";
import {IGovernanceProposer} from "@aztec/governance/interfaces/IGovernanceProposer.sol";
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
import {IRegistry} from "@aztec/governance/interfaces/IRegistry.sol";
import {EmpireBase} from "./EmpireBase.sol";
/**
* @title GovernanceProposer
* An implementation of EmpireBase, used to propose payloads to governance from sequencers on the canonical rollup.
*
* Note: any payload which passes through this contract will have a call to GSEPayload.amIValid appended to the
* list of actions before it is proposed to Governance.
* This will cause the proposal to revert if >2/3 of all stake in the GSE are not staked on the latest rollup after
* the *original* payload is executed by Governance. Unless the latest and canonical rollup diverge, as that indicates
* a misconfiguration issue (see GSEPayload for more details).
*/
contract GovernanceProposer is IGovernanceProposer, EmpireBase {
IRegistry public immutable REGISTRY;
IGSE public immutable GSE;
/**
* @dev Mapping of proposal ID to the proposer address.
* This allows instances to see if they were the proposer of a proposal
* after the payload is `propose`ed to Governance.
* Instances that *did* propose a proposal are willing to vote on it in Governance.
* See `StakingLib.vote` for more details.
*/
mapping(uint256 proposalId => address proposer) internal proposalProposer;
/**
* @notice Constructor for the GovernanceProposer contract.
*
* @dev The _executionDelayInRounds are set to 0, as there already is a delay in the governance contract.
* If this was not the case, the delay could be applied here.
*
* @param _registry The registry contract address.
* @param _gse The GSE contract address.
* @param _quorumSize The number of signals needed in a round for a payload to pass.
* @param _roundSize The number of signals that can be cast in a round.
*/
constructor(IRegistry _registry, IGSE _gse, uint256 _quorumSize, uint256 _roundSize)
EmpireBase(_quorumSize, _roundSize, 5, 0)
{
REGISTRY = _registry;
GSE = _gse;
}
function getProposalProposer(uint256 _proposalId) external view override(IGovernanceProposer) returns (address) {
return proposalProposer[_proposalId];
}
/**
* @dev Returns the address of the Governance contract, i.e. the contract at which
* we will `propose` a winning proposal.
*/
function getGovernance() public view override(IGovernanceProposer) returns (address) {
return REGISTRY.getGovernance();
}
/**
* @dev A hook used by the EmpireBase to determine who is the current block builder (block "proposer"),
* and thus may signal.
*
* This contract only respects the canonical rollup.
*/
function getInstance() public view override(EmpireBase, IEmpire) returns (address) {
return address(REGISTRY.getCanonicalRollup());
}
/**
* @dev Called by the EmpireBase contract in `submitRoundWinner`, which asserts that the payload
* has enough support to be proposed to Governance.
*
* Note that it wraps the original payload in a GSEPayload before pushing into the Governance contract.
*
* This creates additional checks, namely that *after* the original payload is executed,
* the canonical rollup (both the instance and the "magical address") has at least 2/3 of the total stake.
*
* @param _payload The payload to propose to the governance contract.
* @return true if the proposal was proposed successfully, reverts otherwise.
*/
function _handleRoundWinner(IPayload _payload) internal override(EmpireBase) returns (bool) {
GSEPayload extendedPayload = new GSEPayload(_payload, GSE, REGISTRY);
uint256 proposalId = IGovernance(getGovernance()).propose(IPayload(address(extendedPayload)));
proposalProposer[proposalId] = getInstance();
return true;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
struct G1Point {
uint256 x;
uint256 y;
}
struct G2Point {
uint256 x0;
uint256 x1;
uint256 y0;
uint256 y1;
}
/**
* Credit:
* Primary inspiration from https://hackmd.io/7B4nfNShSY2Cjln-9ViQrA, which points out the
* optimization of linking/using a G1 and G2 key and provides an implementation for
* the hashToPoint and sqrt functions.
*/
/**
* Library for registering public keys and computing BLS signatures over the BN254 curve.
* The BN254 curve has been chosen over the BLS12-381 curve for gas efficiency, and
* because the Aztec rollup's security is already reliant on BN254.
*/
library BN254Lib {
/**
* We use uint256[2] for G1 points and uint256[4] for G2 points.
* For G1 points, the expected order is (x, y).
* For G2 points, the expected order is (x_imaginary, x_real, y_imaginary, y_real)
* Using structs would be more readable, but it would be more expensive to use them, particularly
* when aggregating the public keys, since we need to convert to uint256[2] and uint256[4] anyway.
*/
// See bn254_registration.test.ts and BLSKey.t.sol for tests which validate these constants.
uint256 public constant BASE_FIELD_ORDER =
21_888_242_871_839_275_222_246_405_745_257_275_088_696_311_157_297_823_662_689_037_894_645_226_208_583;
uint256 public constant GROUP_ORDER =
21_888_242_871_839_275_222_246_405_745_257_275_088_548_364_400_416_034_343_698_204_186_575_808_495_617;
bytes32 public constant STAKING_DOMAIN_SEPARATOR = bytes32("AZTEC_BLS_POP_BN254_V1");
error AddPointFail();
error MulPointFail();
error GammaZero();
error SqrtFail();
error PairingFail();
error NoPointFound();
error InfinityNotAllowed();
/**
* @notice Prove possession of a secret for a point in G1 and G2.
*
* Ultimately, we want to check:
* - That the caller knows the secret key of pk2 (to prevent rogue-key attacks)
* - That pk1 and pk2 have the same secret key (as an optimization)
*
* Registering two public keys is an optimization: It means we can do G1-only operations
* at the time of verifying a signature, which is much cheaper than G2 operations.
*
* In this function, we check:
* e(signature + gamma * pk1, -G2) * e(hashToPoint(pk1) + gamma * G1, pk2) == 1
*
* Which is effectively a check that:
* e(signature, G2) == e(hashToPoint(pk1), pk2) // a BLS signature over msg = pk1, to prove knowledge of the sk.
* e(pk1, G2) == e(G1, pk2) // a demonstration that pk1 and pk2 have the same sk.
*
* @param pk1 The G1 point of the BLS public key (x, y coordinates)
* @param pk2 The G2 point of the BLS public key (x_1, x_0, y_1, y_0 coordinates)
* @param signature The G1 point that acts as a proof of possession of the private keys corresponding to pk1 and pk2
*/
function proofOfPossession(G1Point memory pk1, G2Point memory pk2, G1Point memory signature)
internal
view
returns (bool)
{
// Ensure that provided points are not infinity
require(!isZero(pk1), InfinityNotAllowed());
require(!isZero(pk2), InfinityNotAllowed());
require(!isZero(signature), InfinityNotAllowed());
// Compute the point "digest" of the pk1 that sigma is a signature over
G1Point memory pk1DigestPoint = g1ToDigestPoint(pk1);
// Random challenge:
// gamma = keccak(pk1, pk2, signature) mod |Fr|
uint256 gamma = gammaOf(pk1, pk2, signature);
require(gamma != 0, GammaZero());
// Build G1 L = signature + gamma * pk1
G1Point memory left = g1Add(signature, g1Mul(pk1, gamma));
// Build G1 R = pk1DigestPoint + gamma * G1
G1Point memory right = g1Add(pk1DigestPoint, g1Mul(g1Generator(), gamma));
// Pairing: e(L, -G2) * e(R, pk2) == 1
return bn254Pairing(left, g2NegatedGenerator(), right, pk2);
}
/// @notice Convert a G1 point (public key) to the digest point that must be signed to prove possession.
/// @dev exposed as public to allow clients not to have implemented the hashToPoint function.
function g1ToDigestPoint(G1Point memory pk1) internal view returns (G1Point memory) {
bytes memory pk1Bytes = abi.encodePacked(pk1.x, pk1.y);
return hashToPoint(STAKING_DOMAIN_SEPARATOR, pk1Bytes);
}
/// @dev Add two points on BN254 G1 (affine coords).
/// Reverts if the inputs are not on‐curve.
function g1Add(G1Point memory p1, G1Point memory p2) internal view returns (G1Point memory output) {
uint256[4] memory input;
input[0] = p1.x;
input[1] = p1.y;
input[2] = p2.x;
input[3] = p2.y;
bool success;
assembly {
// call(gas, to, value, in, insize, out, outsize)
// STATICCALL is 40 gas vs 700 gas for CALL
success :=
staticcall(
sub(gas(), 2000),
0x06, // precompile address
input,
0x80, // input size = 4 × 32 bytes
output,
0x40 // output size = 2 × 32 bytes
)
}
if (!success) revert AddPointFail();
return output;
}
/// @dev Multiply a point by a scalar (little‑endian 256‑bit integer).
/// Reverts if the point is not on‐curve or the scalar ≥ p.
function g1Mul(G1Point memory p, uint256 s) internal view returns (G1Point memory output) {
uint256[3] memory input;
input[0] = p.x;
input[1] = p.y;
input[2] = s;
bool success;
assembly {
success :=
staticcall(
sub(gas(), 2000),
0x07, // precompile address
input,
0x60, // input size = 3 × 32 bytes
output,
0x40 // output size = 2 × 32 bytes
)
}
if (!success) revert MulPointFail();
return output;
}
function bn254Pairing(G1Point memory g1a, G2Point memory g2a, G1Point memory g1b, G2Point memory g2b)
internal
view
returns (bool)
{
uint256[12] memory input;
input[0] = g1a.x;
input[1] = g1a.y;
input[2] = g2a.x1;
input[3] = g2a.x0;
input[4] = g2a.y1;
input[5] = g2a.y0;
input[6] = g1b.x;
input[7] = g1b.y;
input[8] = g2b.x1;
input[9] = g2b.x0;
input[10] = g2b.y1;
input[11] = g2b.y0;
uint256[1] memory result;
bool didCallSucceed;
assembly {
didCallSucceed :=
staticcall(
sub(gas(), 2000),
8,
input,
0x180, // input size = 12 * 32 bytes
result,
0x20 // output size = 32 bytes
)
}
require(didCallSucceed, PairingFail());
return result[0] == 1;
}
// The hash to point is based on the "mapToPoint" function in https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
function hashToPoint(bytes32 domain, bytes memory message) internal view returns (G1Point memory output) {
bool found = false;
uint256 attempts = 0;
while (true) {
uint256 x = uint256(keccak256(abi.encode(domain, message, attempts)));
attempts++;
if (x >= BASE_FIELD_ORDER) {
continue;
}
uint256 y = mulmod(x, x, BASE_FIELD_ORDER);
y = mulmod(y, x, BASE_FIELD_ORDER);
y = addmod(y, 3, BASE_FIELD_ORDER);
(y, found) = sqrt(y);
if (found) {
uint256 y0 = y;
uint256 y1 = BASE_FIELD_ORDER - y;
// Ensure that y1 > y0, flip em if necessary
if (y0 > y1) {
(y0, y1) = (y1, y0);
}
uint256 b = uint256(keccak256(abi.encode(domain, message, type(uint256).max)));
if (b & 1 == 0) {
output = G1Point({x: x, y: y0});
} else {
output = G1Point({x: x, y: y1});
}
break;
}
}
require(found, NoPointFound());
return output;
}
function sqrt(uint256 xx) internal view returns (uint256 x, bool hasRoot) {
bool callSuccess;
assembly {
let freeMem := mload(0x40)
mstore(freeMem, 0x20)
mstore(add(freeMem, 0x20), 0x20)
mstore(add(freeMem, 0x40), 0x20)
mstore(add(freeMem, 0x60), xx)
// (N + 1) / 4 = 0xc19139cb84c680a6e14116da060561765e05aa45a1c72a34f082305b61f3f52
mstore(add(freeMem, 0x80), 0xc19139cb84c680a6e14116da060561765e05aa45a1c72a34f082305b61f3f52)
// N = BASE_FIELD_ORDER
mstore(add(freeMem, 0xA0), BASE_FIELD_ORDER)
callSuccess := staticcall(sub(gas(), 2000), 5, freeMem, 0xC0, freeMem, 0x20)
x := mload(freeMem)
hasRoot := eq(xx, mulmod(x, x, BASE_FIELD_ORDER))
}
require(callSuccess, SqrtFail());
}
/// @notice γ = keccak(PK1, PK2, σ_init) mod Fr
function gammaOf(G1Point memory pk1, G2Point memory pk2, G1Point memory sigmaInit) internal pure returns (uint256) {
return uint256(keccak256(abi.encode(pk1.x, pk1.y, pk2.x0, pk2.x1, pk2.y0, pk2.y1, sigmaInit.x, sigmaInit.y)))
% GROUP_ORDER;
}
function g1Negate(G1Point memory p) internal pure returns (G1Point memory) {
if (p.x == 0 && p.y == 0) {
// Point at infinity remains unchanged
return p;
}
// For a point (x, y), its negation is (x, -y mod p)
// Since we're working in the field Fp, -y mod p = p - y
return G1Point({x: p.x, y: BASE_FIELD_ORDER - p.y});
}
function g1Zero() internal pure returns (G1Point memory) {
return G1Point({x: 0, y: 0});
}
function isZero(G1Point memory p) internal pure returns (bool) {
return p.x == 0 && p.y == 0;
}
function g1Generator() internal pure returns (G1Point memory) {
return G1Point({x: 1, y: 2});
}
function g2Zero() internal pure returns (G2Point memory) {
return G2Point({x0: 0, x1: 0, y0: 0, y1: 0});
}
function isZero(G2Point memory p) internal pure returns (bool) {
return p.x0 == 0 && p.x1 == 0 && p.y0 == 0 && p.y1 == 0;
}
function g2NegatedGenerator() internal pure returns (G2Point memory) {
return G2Point({
x0: 10_857_046_999_023_057_135_944_570_762_232_829_481_370_756_359_578_518_086_990_519_993_285_655_852_781,
x1: 11_559_732_032_986_387_107_991_004_021_392_285_783_925_812_861_821_192_530_917_403_151_452_391_805_634,
y0: 13_392_588_948_715_843_804_641_432_497_768_002_650_278_120_570_034_223_513_918_757_245_338_268_106_653,
y1: 17_805_874_995_975_841_540_914_202_342_111_839_520_379_459_829_704_422_454_583_296_818_431_106_115_052
});
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.
pragma solidity ^0.8.20;
import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";
/**
* @dev Collection of functions related to array types.
*/
library Arrays {
using SlotDerivation for bytes32;
using StorageSlot for bytes32;
/**
* @dev Sort an array of uint256 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
uint256[] memory array,
function(uint256, uint256) pure returns (bool) comp
) internal pure returns (uint256[] memory) {
_quickSort(_begin(array), _end(array), comp);
return array;
}
/**
* @dev Variant of {sort} that sorts an array of uint256 in increasing order.
*/
function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
sort(array, Comparators.lt);
return array;
}
/**
* @dev Sort an array of address (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
address[] memory array,
function(address, address) pure returns (bool) comp
) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of address in increasing order.
*/
function sort(address[] memory array) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Sort an array of bytes32 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
bytes32[] memory array,
function(bytes32, bytes32) pure returns (bool) comp
) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
*/
function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
* at end (exclusive). Sorting follows the `comp` comparator.
*
* Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
*
* IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
* be used only if the limits are within a memory array.
*/
function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
unchecked {
if (end - begin < 0x40) return;
// Use first element as pivot
uint256 pivot = _mload(begin);
// Position where the pivot should be at the end of the loop
uint256 pos = begin;
for (uint256 it = begin + 0x20; it < end; it += 0x20) {
if (comp(_mload(it), pivot)) {
// If the value stored at the iterator's position comes before the pivot, we increment the
// position of the pivot and move the value there.
pos += 0x20;
_swap(pos, it);
}
}
_swap(begin, pos); // Swap pivot into place
_quickSort(begin, pos, comp); // Sort the left side of the pivot
_quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
}
}
/**
* @dev Pointer to the memory location of the first element of `array`.
*/
function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
assembly ("memory-safe") {
ptr := add(array, 0x20)
}
}
/**
* @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
* that comes just after the last element of the array.
*/
function _end(uint256[] memory array) private pure returns (uint256 ptr) {
unchecked {
return _begin(array) + array.length * 0x20;
}
}
/**
* @dev Load memory word (as a uint256) at location `ptr`.
*/
function _mload(uint256 ptr) private pure returns (uint256 value) {
assembly {
value := mload(ptr)
}
}
/**
* @dev Swaps the elements memory location `ptr1` and `ptr2`.
*/
function _swap(uint256 ptr1, uint256 ptr2) private pure {
assembly {
let value1 := mload(ptr1)
let value2 := mload(ptr2)
mstore(ptr1, value2)
mstore(ptr2, value1)
}
}
/// @dev Helper: low level cast address memory array to uint256 memory array
function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 memory array to uint256 memory array
function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast address comp function to uint256 comp function
function _castToUint256Comp(
function(address, address) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 comp function to uint256 comp function
function _castToUint256Comp(
function(bytes32, bytes32) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/**
* @dev Searches a sorted `array` and returns the first index that contains
* a value greater or equal to `element`. If no such index exists (i.e. all
* values in the array are strictly less than `element`), the array length is
* returned. Time complexity O(log n).
*
* NOTE: The `array` is expected to be sorted in ascending order, and to
* contain no repeated elements.
*
* IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
* support for repeated elements in the array. The {lowerBound} function should
* be used instead.
*/
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
low = mid + 1;
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && unsafeAccess(array, low - 1).value == element) {
return low - 1;
} else {
return low;
}
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value greater or equal than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
*/
function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value strictly greater than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
*/
function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Same as {lowerBound}, but with an array in memory.
*/
function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Same as {upperBound}, but with an array in memory.
*/
function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getAddressSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getBytes32Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getUint256Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(address[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(uint256[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Errors} from "@aztec/governance/libraries/Errors.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {Checkpoints} from "@oz/utils/structs/Checkpoints.sol";
/**
* @title CheckpointedUintLib
* @notice Library for managing Trace224 using a timestamp as key,
* Provides helper functions to `add` to or `sub` from the current value.
*/
library CheckpointedUintLib {
using Checkpoints for Checkpoints.Trace224;
using SafeCast for uint256;
/**
* @notice Add `_amount` to the current value
*
* @dev The amounts are cast to uint224 before storing such that the (key: value) fits in a single slot
*
* @param _self - The Trace224 to add to
* @param _amount - The amount to add
*
* @return - The current value and the new value
*/
function add(Checkpoints.Trace224 storage _self, uint256 _amount) internal returns (uint256, uint256) {
uint224 current = _self.latest();
if (_amount == 0) {
return (current, current);
}
uint224 amount = _amount.toUint224();
_self.push(block.timestamp.toUint32(), current + amount);
return (current, current + amount);
}
/**
* @notice Subtract `_amount` from the current value
*
* @param _self - The Trace224 to subtract from
* @param _amount - The amount to subtract
* @return - The current value and the new value
*/
function sub(Checkpoints.Trace224 storage _self, uint256 _amount) internal returns (uint256, uint256) {
uint224 current = _self.latest();
if (_amount == 0) {
return (current, current);
}
uint224 amount = _amount.toUint224();
require(current >= amount, Errors.Governance__CheckpointedUintLib__InsufficientValue(msg.sender, current, amount));
_self.push(block.timestamp.toUint32(), current - amount);
return (current, current - amount);
}
/**
* @notice Get the current value
*
* @param _self - The Trace224 to get the value of
* @return - The current value
*/
function valueNow(Checkpoints.Trace224 storage _self) internal view returns (uint256) {
return _self.latest();
}
/**
* @notice Get the value at a given timestamp
* The timestamp MUST be in the past to guarantee it is stable
*
* @dev Uses `upperLookupRecent` instead of just `upperLookup` as it will most
* likely be a recent value when looked up as part of governance.
*
* @param _self - The Trace224 to get the value of
* @param _time - The timestamp to get the value at
* @return - The value at the given timestamp
*/
function valueAt(Checkpoints.Trace224 storage _self, Timestamp _time) internal view returns (uint256) {
require(_time < Timestamp.wrap(block.timestamp), Errors.Governance__CheckpointedUintLib__NotInPast());
return _self.upperLookupRecent(Timestamp.unwrap(_time).toUint32());
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
struct Ballot {
uint256 yea;
uint256 nay;
}
type CompressedBallot is uint256;
library BallotLib {
using SafeCast for uint256;
uint256 internal constant YEA_MASK = 0xffffffffffffffffffffffffffffffff00000000000000000000000000000000;
uint256 internal constant NAY_MASK = 0xffffffffffffffffffffffffffffffff;
function getYea(CompressedBallot _compressedBallot) internal pure returns (uint256) {
return CompressedBallot.unwrap(_compressedBallot) >> 128;
}
function getNay(CompressedBallot _compressedBallot) internal pure returns (uint256) {
return CompressedBallot.unwrap(_compressedBallot) & NAY_MASK;
}
function updateYea(CompressedBallot _compressedBallot, uint256 _yea) internal pure returns (CompressedBallot) {
uint256 value = CompressedBallot.unwrap(_compressedBallot) & ~YEA_MASK;
return CompressedBallot.wrap(value | (_yea << 128));
}
function updateNay(CompressedBallot _compressedBallot, uint256 _nay) internal pure returns (CompressedBallot) {
uint256 value = CompressedBallot.unwrap(_compressedBallot) & ~NAY_MASK;
return CompressedBallot.wrap(value | _nay);
}
function addYea(CompressedBallot _compressedBallot, uint256 _amount) internal pure returns (CompressedBallot) {
uint256 currentYea = getYea(_compressedBallot);
uint256 newYea = currentYea + _amount;
return updateYea(_compressedBallot, newYea.toUint128());
}
function addNay(CompressedBallot _compressedBallot, uint256 _amount) internal pure returns (CompressedBallot) {
uint256 currentNay = getNay(_compressedBallot);
uint256 newNay = currentNay + _amount;
return updateNay(_compressedBallot, newNay.toUint128());
}
function compress(Ballot memory _ballot) internal pure returns (CompressedBallot) {
// We are doing cast to uint128 but inside a uint256 to not wreck the shifting.
uint256 yea = _ballot.yea.toUint128();
uint256 nay = _ballot.nay.toUint128();
return CompressedBallot.wrap((yea << 128) | nay);
}
function decompress(CompressedBallot _compressedBallot) internal pure returns (Ballot memory) {
return Ballot({yea: getYea(_compressedBallot), nay: getNay(_compressedBallot)});
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Configuration, ProposeWithLockConfiguration} from "@aztec/governance/interfaces/IGovernance.sol";
import {CompressedTimestamp, CompressedTimeMath} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
/**
* @title CompressedConfiguration
* @notice Compressed storage representation of governance configuration
* @dev Packs configuration into minimal storage slots:
* Slot 1: Timing & percentages - votingDelay (32), votingDuration (32), executionDelay (32), gracePeriod (32),
* quorum (64), requiredYeaMargin (64)
* Slot 2: Amounts & proposeConfig - minimumVotes (96), lockAmount (96), lockDelay (32), unused (32)
*
* This packing reduces storage from ~8 slots to 2 slots.
* All timestamps use CompressedTimestamp (uint32, valid until year 2106).
* Percentages (quorum, requiredYeaMargin) use uint64 (max 1e18).
* Amounts use uint96 for realistic token amounts.
* ProposeConfig fields are kept together in Slot 2.
*/
struct CompressedConfiguration {
// Slot 1: Timing and percentages - 32*4 + 64*2 = 256 bits
CompressedTimestamp votingDelay;
CompressedTimestamp votingDuration;
CompressedTimestamp executionDelay;
CompressedTimestamp gracePeriod;
uint64 quorum;
uint64 requiredYeaMargin;
// Slot 2: Amounts and proposeConfig - 96 + 96 + 32 = 224 bits (32 bits unused)
uint96 minimumVotes;
uint96 lockAmount;
CompressedTimestamp lockDelay;
}
library CompressedConfigurationLib {
using SafeCast for uint256;
using CompressedTimeMath for Timestamp;
using CompressedTimeMath for CompressedTimestamp;
/**
* @notice Get the propose configuration directly from storage
* @param _compressed Storage pointer to compressed configuration
* @return The propose configuration
*/
function getProposeConfig(CompressedConfiguration storage _compressed)
internal
view
returns (ProposeWithLockConfiguration memory)
{
return
ProposeWithLockConfiguration({lockDelay: _compressed.lockDelay.decompress(), lockAmount: _compressed.lockAmount});
}
/**
* @notice Compress a Configuration struct into CompressedConfiguration
* @param _config The uncompressed configuration
* @return The compressed configuration
* @dev Values that exceed the compressed type limits will cause a revert.
* This is intentional to prevent storing invalid configurations.
*/
function compress(Configuration memory _config) internal pure returns (CompressedConfiguration memory) {
// Validate that amounts fit in their compressed types
require(_config.proposeConfig.lockAmount <= type(uint96).max, "lockAmount exceeds uint96");
require(_config.minimumVotes <= type(uint96).max, "minimumVotes exceeds uint96");
require(_config.quorum <= type(uint64).max, "quorum exceeds uint64");
require(_config.requiredYeaMargin <= type(uint64).max, "requiredYeaMargin exceeds uint64");
return CompressedConfiguration({
votingDelay: _config.votingDelay.compress(),
votingDuration: _config.votingDuration.compress(),
executionDelay: _config.executionDelay.compress(),
gracePeriod: _config.gracePeriod.compress(),
quorum: _config.quorum.toUint64(),
requiredYeaMargin: _config.requiredYeaMargin.toUint64(),
minimumVotes: _config.minimumVotes.toUint96(),
lockAmount: _config.proposeConfig.lockAmount.toUint96(),
lockDelay: _config.proposeConfig.lockDelay.compress()
});
}
/**
* @notice Decompress a CompressedConfiguration into Configuration
* @param _compressed The compressed configuration
* @return The uncompressed configuration
*/
function decompress(CompressedConfiguration memory _compressed) internal pure returns (Configuration memory) {
return Configuration({
proposeConfig: ProposeWithLockConfiguration({
lockDelay: _compressed.lockDelay.decompress(),
lockAmount: _compressed.lockAmount
}),
votingDelay: _compressed.votingDelay.decompress(),
votingDuration: _compressed.votingDuration.decompress(),
executionDelay: _compressed.executionDelay.decompress(),
gracePeriod: _compressed.gracePeriod.decompress(),
quorum: _compressed.quorum,
requiredYeaMargin: _compressed.requiredYeaMargin,
minimumVotes: _compressed.minimumVotes
});
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Proposal, ProposalState, ProposalConfiguration} from "@aztec/governance/interfaces/IGovernance.sol";
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
import {CompressedBallot, BallotLib} from "@aztec/governance/libraries/compressed-data/Ballot.sol";
import {CompressedConfiguration} from "@aztec/governance/libraries/compressed-data/Configuration.sol";
import {CompressedTimestamp, CompressedTimeMath} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
/**
* @title CompressedProposal
* @notice Compressed storage representation of governance proposals
* @dev Packs proposal data with embedded config values into 4 storage slots:
* Slot 1: proposer (160) + minimumVotes (96) = 256 bits
* Slot 2: cachedState (8) + creation (32) + timing fields (32*4) + quorum (64) = 232 bits
* Slot 3: summedBallot (256 bits as CompressedBallot)
* Slot 4: payload (160) + requiredYeaMargin (64) = 224 bits
*
* This packing reduces storage from ~10 slots to 4 slots by embedding config values
* directly instead of storing the entire configuration struct.
*/
struct CompressedProposal {
// Slot 1: Core Identity (256 bits)
address proposer; // 160 bits
uint96 minimumVotes; // 96 bits - from config
// Slot 2: Timing (232 bits used, 24 bits padding)
ProposalState cachedState; // 8 bits
CompressedTimestamp creation; // 32 bits
CompressedTimestamp votingDelay; // 32 bits - from config
CompressedTimestamp votingDuration; // 32 bits - from config
CompressedTimestamp executionDelay; // 32 bits - from config
CompressedTimestamp gracePeriod; // 32 bits - from config
uint64 quorum; // 64 bits - from config
// Slot 3: Votes (256 bits)
CompressedBallot summedBallot; // 256 bits (128 yea + 128 nay)
// Slot 4: References (224 bits used, 32 bits padding)
IPayload payload; // 160 bits
uint64 requiredYeaMargin; // 64 bits - from config
}
library CompressedProposalLib {
using SafeCast for uint256;
using CompressedTimeMath for Timestamp;
using CompressedTimeMath for CompressedTimestamp;
using BallotLib for CompressedBallot;
/**
* @notice Add yea votes to the proposal
* @param _compressed Storage pointer to compressed proposal
* @param _amount The amount of yea votes to add
*/
function addYea(CompressedProposal storage _compressed, uint256 _amount) internal {
_compressed.summedBallot = _compressed.summedBallot.addYea(_amount);
}
/**
* @notice Add nay votes to the proposal
* @param _compressed Storage pointer to compressed proposal
* @param _amount The amount of nay votes to add
*/
function addNay(CompressedProposal storage _compressed, uint256 _amount) internal {
_compressed.summedBallot = _compressed.summedBallot.addNay(_amount);
}
/**
* @notice Get yea and nay votes
* @param _compressed Storage pointer to compressed proposal
* @return yea The yea votes
* @return nay The nay votes
*/
function getVotes(CompressedProposal storage _compressed) internal view returns (uint256 yea, uint256 nay) {
yea = _compressed.summedBallot.getYea();
nay = _compressed.summedBallot.getNay();
}
/**
* @notice Create a compressed proposal from uncompressed data and config
* @param _proposer The proposal creator
* @param _payload The payload to execute
* @param _creation The creation timestamp
* @param _config The compressed configuration to embed
* @return The compressed proposal
*/
function create(address _proposer, IPayload _payload, Timestamp _creation, CompressedConfiguration memory _config)
internal
pure
returns (CompressedProposal memory)
{
return CompressedProposal({
proposer: _proposer,
minimumVotes: _config.minimumVotes,
cachedState: ProposalState.Pending,
creation: _creation.compress(),
votingDelay: _config.votingDelay,
votingDuration: _config.votingDuration,
executionDelay: _config.executionDelay,
gracePeriod: _config.gracePeriod,
quorum: _config.quorum,
summedBallot: CompressedBallot.wrap(0),
payload: _payload,
requiredYeaMargin: _config.requiredYeaMargin
});
}
/**
* @notice Compress an uncompressed Proposal into a CompressedProposal
* @param _proposal The uncompressed proposal to compress
* @return The compressed proposal
*/
function compress(Proposal memory _proposal) internal pure returns (CompressedProposal memory) {
return CompressedProposal({
proposer: _proposal.proposer,
minimumVotes: _proposal.config.minimumVotes.toUint96(),
cachedState: _proposal.cachedState,
creation: _proposal.creation.compress(),
votingDelay: _proposal.config.votingDelay.compress(),
votingDuration: _proposal.config.votingDuration.compress(),
executionDelay: _proposal.config.executionDelay.compress(),
gracePeriod: _proposal.config.gracePeriod.compress(),
quorum: _proposal.config.quorum.toUint64(),
summedBallot: BallotLib.compress(_proposal.summedBallot),
payload: _proposal.payload,
requiredYeaMargin: _proposal.config.requiredYeaMargin.toUint64()
});
}
/**
* @notice Decompress a CompressedProposal into a standard Proposal
* @param _compressed The compressed proposal
* @return The uncompressed proposal
*/
function decompress(CompressedProposal memory _compressed) internal pure returns (Proposal memory) {
return Proposal({
config: ProposalConfiguration({
votingDelay: _compressed.votingDelay.decompress(),
votingDuration: _compressed.votingDuration.decompress(),
executionDelay: _compressed.executionDelay.decompress(),
gracePeriod: _compressed.gracePeriod.decompress(),
quorum: _compressed.quorum,
requiredYeaMargin: _compressed.requiredYeaMargin,
minimumVotes: _compressed.minimumVotes
}),
cachedState: _compressed.cachedState,
payload: _compressed.payload,
proposer: _compressed.proposer,
creation: _compressed.creation.decompress(),
summedBallot: _compressed.summedBallot.decompress()
});
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Configuration} from "@aztec/governance/interfaces/IGovernance.sol";
import {CompressedConfiguration} from "@aztec/governance/libraries/compressed-data/Configuration.sol";
import {Errors} from "@aztec/governance/libraries/Errors.sol";
import {CompressedTimeMath, CompressedTimestamp} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
library ConfigurationLib {
using CompressedTimeMath for CompressedTimestamp;
uint256 internal constant QUORUM_LOWER = 1;
uint256 internal constant QUORUM_UPPER = 1e18;
uint256 internal constant REQUIRED_YEA_MARGIN_UPPER = 1e18;
uint256 internal constant VOTES_LOWER = 1;
uint256 internal constant VOTES_UPPER = type(uint96).max; // Maximum for compressed storage (uint96)
uint256 internal constant LOCK_AMOUNT_LOWER = 2;
uint256 internal constant LOCK_AMOUNT_UPPER = type(uint96).max; // Maximum for compressed storage (uint96)
Timestamp internal constant TIME_LOWER = Timestamp.wrap(60);
Timestamp internal constant TIME_UPPER = Timestamp.wrap(90 * 24 * 3600);
/**
* @notice The delay after which a withdrawal can be finalized.
* @dev This applies to the "normal" withdrawal, not one induced by proposeWithLock.
* @dev Making the delay equal to the voting duration + execution delay + a "small buffer"
* ensures that if you were able to vote on a proposal, someone may execute it before you can exit.
*
* The "small buffer" is somewhat arbitrarily set to the votingDelay / 5.
*/
function getWithdrawalDelay(CompressedConfiguration storage _self) internal view returns (Timestamp) {
Timestamp votingDelay = _self.votingDelay.decompress();
Timestamp votingDuration = _self.votingDuration.decompress();
Timestamp executionDelay = _self.executionDelay.decompress();
return Timestamp.wrap(Timestamp.unwrap(votingDelay) / 5) + votingDuration + executionDelay;
}
/**
* @notice
* @dev We specify `memory` here since it is called on outside import for validation
* before writing it to state.
*/
function assertValid(Configuration memory _self) internal pure {
require(_self.quorum >= QUORUM_LOWER, Errors.Governance__ConfigurationLib__QuorumTooSmall());
require(_self.quorum <= QUORUM_UPPER, Errors.Governance__ConfigurationLib__QuorumTooBig());
require(
_self.requiredYeaMargin <= REQUIRED_YEA_MARGIN_UPPER,
Errors.Governance__ConfigurationLib__RequiredYeaMarginTooBig()
);
require(_self.minimumVotes >= VOTES_LOWER, Errors.Governance__ConfigurationLib__InvalidMinimumVotes());
require(_self.minimumVotes <= VOTES_UPPER, Errors.Governance__ConfigurationLib__InvalidMinimumVotes());
require(
_self.proposeConfig.lockAmount >= LOCK_AMOUNT_LOWER, Errors.Governance__ConfigurationLib__LockAmountTooSmall()
);
require(
_self.proposeConfig.lockAmount <= LOCK_AMOUNT_UPPER, Errors.Governance__ConfigurationLib__LockAmountTooBig()
);
// Beyond checking the bounds like this, it might be useful to ensure that the value is larger than the withdrawal
// delay. this, can be useful if one want to ensure that the "locker" cannot himself vote in the proposal, but as
// it is unclear if this is a useful property, it is not enforced.
require(_self.proposeConfig.lockDelay >= TIME_LOWER, Errors.Governance__ConfigurationLib__TimeTooSmall("LockDelay"));
require(
_self.proposeConfig.lockDelay <= Timestamp.wrap(type(uint32).max),
Errors.Governance__ConfigurationLib__TimeTooBig("LockDelay")
);
require(_self.votingDelay >= TIME_LOWER, Errors.Governance__ConfigurationLib__TimeTooSmall("VotingDelay"));
require(_self.votingDelay <= TIME_UPPER, Errors.Governance__ConfigurationLib__TimeTooBig("VotingDelay"));
require(_self.votingDuration >= TIME_LOWER, Errors.Governance__ConfigurationLib__TimeTooSmall("VotingDuration"));
require(_self.votingDuration <= TIME_UPPER, Errors.Governance__ConfigurationLib__TimeTooBig("VotingDuration"));
require(_self.executionDelay >= TIME_LOWER, Errors.Governance__ConfigurationLib__TimeTooSmall("ExecutionDelay"));
require(_self.executionDelay <= TIME_UPPER, Errors.Governance__ConfigurationLib__TimeTooBig("ExecutionDelay"));
require(_self.gracePeriod >= TIME_LOWER, Errors.Governance__ConfigurationLib__TimeTooSmall("GracePeriod"));
require(_self.gracePeriod <= TIME_UPPER, Errors.Governance__ConfigurationLib__TimeTooBig("GracePeriod"));
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
import {Slot, Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
/**
* @title Errors Library
* @author Aztec Labs
* @notice Library that contains errors used throughout the Aztec governance
* Errors are prefixed with the contract name to make it easy to identify where the error originated
* when there are multiple contracts that could have thrown the error.
*/
library Errors {
error Governance__CallerNotGovernanceProposer(address caller, address governanceProposer);
error Governance__GovernanceProposerCannotBeSelf();
error Governance__CallerNotSelf(address caller, address self);
error Governance__CallerCannotBeSelf();
error Governance__InsufficientPower(address voter, uint256 have, uint256 required);
error Governance__CannotWithdrawToAddressZero();
error Governance__WithdrawalNotInitiated();
error Governance__WithdrawalAlreadyClaimed();
error Governance__WithdrawalNotUnlockedYet(Timestamp currentTime, Timestamp unlocksAt);
error Governance__ProposalNotActive();
error Governance__ProposalNotExecutable();
error Governance__CannotCallAsset();
error Governance__CallFailed(address target);
error Governance__ProposalDoesNotExists(uint256 proposalId);
error Governance__ProposalAlreadyDropped();
error Governance__ProposalCannotBeDropped();
error Governance__DepositNotAllowed();
error Governance__CheckpointedUintLib__InsufficientValue(address owner, uint256 have, uint256 required);
error Governance__CheckpointedUintLib__NotInPast();
error Governance__ConfigurationLib__InvalidMinimumVotes();
error Governance__ConfigurationLib__LockAmountTooSmall();
error Governance__ConfigurationLib__LockAmountTooBig();
error Governance__ConfigurationLib__QuorumTooSmall();
error Governance__ConfigurationLib__QuorumTooBig();
error Governance__ConfigurationLib__RequiredYeaMarginTooBig();
error Governance__ConfigurationLib__TimeTooSmall(string name);
error Governance__ConfigurationLib__TimeTooBig(string name);
error EmpireBase__FailedToSubmitRoundWinner(IPayload payload);
error EmpireBase__InstanceHaveNoCode(address instance);
error EmpireBase__InsufficientSignals(uint256 signalsCast, uint256 signalsNeeded);
error EmpireBase__InvalidQuorumAndRoundSize(uint256 quorumSize, uint256 roundSize);
error EmpireBase__QuorumCannotBeLargerThanRoundSize(uint256 quorumSize, uint256 roundSize);
error EmpireBase__InvalidLifetimeAndExecutionDelay(uint256 lifetimeInRounds, uint256 executionDelayInRounds);
error EmpireBase__OnlyProposerCanSignal(address caller, address proposer);
error EmpireBase__PayloadAlreadySubmitted(uint256 roundNumber);
error EmpireBase__PayloadCannotBeAddressZero();
error EmpireBase__RoundTooOld(uint256 roundNumber, uint256 currentRoundNumber);
error EmpireBase__RoundTooNew(uint256 roundNumber, uint256 currentRoundNumber);
error EmpireBase__SignalAlreadyCastForSlot(Slot slot);
error GovernanceProposer__GSEPayloadInvalid();
error CoinIssuer__InsufficientMintAvailable(uint256 available, uint256 needed); // 0xa1cc8799
error CoinIssuer__InvalidConfiguration();
error Registry__RollupAlreadyRegistered(address rollup); // 0x3c34eabf
error Registry__RollupNotRegistered(uint256 version);
error Registry__NoRollupsRegistered();
error RewardDistributor__InvalidCaller(address caller, address canonical); // 0xb95e39f6
error GSE__NotRollup(address);
error GSE__GovernanceAlreadySet();
error GSE__InvalidRollupAddress(address);
error GSE__RollupAlreadyRegistered(address);
error GSE__NotLatestRollup(address);
error GSE__AlreadyRegistered(address, address);
error GSE__NothingToExit(address);
error GSE__InsufficientBalance(uint256, uint256);
error GSE__FailedToRemove(address);
error GSE__InstanceDoesNotExist(address);
error GSE__NotWithdrawer(address, address);
error GSE__OutOfBounds(uint256, uint256);
error GSE__FatalError(string);
error GSE__InvalidProofOfPossession();
error GSE__CannotChangePublicKeys(uint256 existingPk1x, uint256 existingPk1y);
error GSE__ProofOfPossessionAlreadySeen(bytes32 hashedPK1);
error Delegation__InsufficientPower(address, uint256, uint256);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {BN254Lib, G1Point, G2Point} from "@aztec/shared/libraries/BN254Lib.sol";
import {IBn254LibWrapper} from "./interfaces/IBn254LibWrapper.sol";
contract Bn254LibWrapper is IBn254LibWrapper {
function proofOfPossession(
G1Point memory _publicKeyInG1,
G2Point memory _publicKeyInG2,
G1Point memory _proofOfPossession
) external view override(IBn254LibWrapper) returns (bool) {
return BN254Lib.proofOfPossession(_publicKeyInG1, _publicKeyInG2, _proofOfPossession);
}
function g1ToDigestPoint(G1Point memory pk1) external view override(IBn254LibWrapper) returns (G1Point memory) {
return BN254Lib.g1ToDigestPoint(pk1);
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2025 Aztec Labs.
pragma solidity >=0.8.27;
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {Checkpoints} from "@oz/utils/structs/Checkpoints.sol";
/**
* @notice Structure to store a set of addresses with their historical snapshots
* @param size The timestamped history of the number of addresses in the set
* @param indexToAddressHistory Mapping of index to array of timestamped address history
* @param addressToCurrentIndex Mapping of address to its current index in the set
*/
struct SnapshottedAddressSet {
// This size must also be snapshotted
Checkpoints.Trace224 size;
// For each index, store the timestamped history of addresses
mapping(uint256 index => Checkpoints.Trace224) indexToAddressHistory;
// For each address, store its current index in the set
mapping(address addr => Index index) addressToCurrentIndex;
}
struct Index {
bool exists;
uint224 index;
}
// AddressSnapshotLib
error AddressSnapshotLib__IndexOutOfBounds(uint256 index, uint256 size); // 0xd789b71a
error AddressSnapshotLib__CannotAddAddressZero();
/**
* @title AddressSnapshotLib
* @notice A library for managing a set of addresses with historical snapshots
* @dev This library provides functionality similar to EnumerableSet but can track addresses across time
* and allows querying the state of addresses at any point in time. This is used to track the
* list of stakers on a particular rollup instance in the GSE throughout time.
*
* The SnapshottedAddressSet is maintained such that the you can take a timestamp, and from it:
* 1. Get the `size` of the set at that timestamp
* 2. Query the first `size` indices in `indexToAddressHistory` at that timestamp to get a set of addresses of size
* `size`
*/
library AddressSnapshotLib {
using SafeCast for *;
using Checkpoints for Checkpoints.Trace224;
/**
* @notice Adds a validator to the set
* @param _self The storage reference to the set
* @param _address The address to add
* @return bool True if the address was added, false if it was already present
*/
function add(SnapshottedAddressSet storage _self, address _address) internal returns (bool) {
require(_address != address(0), AddressSnapshotLib__CannotAddAddressZero());
// Prevent against double insertion
if (_self.addressToCurrentIndex[_address].exists) {
return false;
}
uint224 index = _self.size.latest();
_self.addressToCurrentIndex[_address] = Index({exists: true, index: index});
uint32 key = block.timestamp.toUint32();
_self.indexToAddressHistory[index].push(key, uint160(_address).toUint224());
_self.size.push(key, (index + 1).toUint224());
return true;
}
/**
* @notice Removes a address from the set by address
*
* @param _self The storage reference to the set
* @param _address The address of the address to remove
* @return bool True if the address was removed, false if it wasn't found
*/
function remove(SnapshottedAddressSet storage _self, address _address) internal returns (bool) {
Index memory index = _self.addressToCurrentIndex[_address];
if (!index.exists) {
return false;
}
return _remove(_self, index.index, _address);
}
/**
* @notice Removes a validator from the set by index
* @param _self The storage reference to the set
* @param _index The index of the validator to remove
* @return bool True if the validator was removed, reverts otherwise
*/
function remove(SnapshottedAddressSet storage _self, uint224 _index) internal returns (bool) {
address _address = address(_self.indexToAddressHistory[_index].latest().toUint160());
return _remove(_self, _index, _address);
}
/**
* @notice Removes a validator from the set
* @param _self The storage reference to the set
* @param _index The index of the validator to remove
* @param _address The address to remove
* @return bool True if the validator was removed, reverts otherwise
*/
function _remove(SnapshottedAddressSet storage _self, uint224 _index, address _address) internal returns (bool) {
uint224 currentSize = _self.size.latest();
if (_index >= currentSize) {
revert AddressSnapshotLib__IndexOutOfBounds(_index, currentSize);
}
// Mark the address to remove as not existing
_self.addressToCurrentIndex[_address] = Index({exists: false, index: 0});
// Now we need to update the indexToAddressHistory.
// Suppose the current size is 3, and we are removing Bob from index 1, and Charlie is at index 2.
// We effectively push Charlie into the snapshot at index 1,
// then update Charlie in addressToCurrentIndex to reflect the new index of 1.
uint224 lastIndex = currentSize - 1;
uint32 key = block.timestamp.toUint32();
// If not removing the last item, swap the value of the last item into the `_index` to remove
if (lastIndex != _index) {
address lastValidator = address(_self.indexToAddressHistory[lastIndex].latest().toUint160());
_self.addressToCurrentIndex[lastValidator] = Index({exists: true, index: _index.toUint224()});
_self.indexToAddressHistory[_index].push(key, uint160(lastValidator).toUint224());
}
// Then "pop" the last index by setting the value to `address(0)`
_self.indexToAddressHistory[lastIndex].push(key, uint224(0));
// Finally, we update the size to reflect the new size of the set.
_self.size.push(key, (lastIndex).toUint224());
return true;
}
/**
* @notice Gets the current address at a specific index at the time right now
* @param _self The storage reference to the set
* @param _index The index to query
* @return address The current address at the given index
*/
function at(SnapshottedAddressSet storage _self, uint256 _index) internal view returns (address) {
return getAddressFromIndexAtTimestamp(_self, _index, block.timestamp.toUint32());
}
/**
* @notice Gets the address at a specific index and timestamp
* @param _self The storage reference to the set
* @param _index The index to query
* @param _timestamp The timestamp to query
* @return address The address at the given index and timestamp
*/
function getAddressFromIndexAtTimestamp(SnapshottedAddressSet storage _self, uint256 _index, uint32 _timestamp)
internal
view
returns (address)
{
uint256 size = lengthAtTimestamp(_self, _timestamp);
require(_index < size, AddressSnapshotLib__IndexOutOfBounds(_index, size));
// Since the _index is less than the size, we know that the address at _index
// exists at/before _timestamp.
uint224 addr = _self.indexToAddressHistory[_index].upperLookup(_timestamp);
return address(addr.toUint160());
}
/**
* @notice Gets the address at a specific index and timestamp
*
* @dev The caller MUST have ensure that `_index` < `size`
* at the `_timestamp` provided.
* @dev Primed for recent checkpoints in the address history.
*
* @param _self The storage reference to the set
* @param _index The index to query
* @param _timestamp The timestamp to query
* @return address The address at the given index and timestamp
*/
function unsafeGetRecentAddressFromIndexAtTimestamp(
SnapshottedAddressSet storage _self,
uint256 _index,
uint32 _timestamp
) internal view returns (address) {
uint224 addr = _self.indexToAddressHistory[_index].upperLookupRecent(_timestamp);
return address(addr.toUint160());
}
/**
* @notice Gets the current size of the set
* @param _self The storage reference to the set
* @return uint256 The number of addresses in the set
*/
function length(SnapshottedAddressSet storage _self) internal view returns (uint256) {
return lengthAtTimestamp(_self, block.timestamp.toUint32());
}
/**
* @notice Gets the size of the set at a specific timestamp
* @param _self The storage reference to the set
* @param _timestamp The timestamp to query
* @return uint256 The number of addresses in the set at the given timestamp
*
* @dev Note, the values returned from this function are in flux if the timestamp is in the future.
*/
function lengthAtTimestamp(SnapshottedAddressSet storage _self, uint32 _timestamp) internal view returns (uint256) {
return _self.size.upperLookup(_timestamp);
}
/**
* @notice Gets all current addresses in the set
*
* @dev This function is only used in tests.
*
* @param _self The storage reference to the set
* @return address[] Array of all current addresses in the set
*/
function values(SnapshottedAddressSet storage _self) internal view returns (address[] memory) {
return valuesAtTimestamp(_self, block.timestamp.toUint32());
}
/**
* @notice Gets all addresses in the set at a specific timestamp
*
* @dev This function is only used in tests.
*
* @param _self The storage reference to the set
* @param _timestamp The timestamp to query
* @return address[] Array of all addresses in the set at the given timestamp
*
* @dev Note, the values returned from this function are in flux if the timestamp is in the future.
*
*/
function valuesAtTimestamp(SnapshottedAddressSet storage _self, uint32 _timestamp)
internal
view
returns (address[] memory)
{
uint256 size = lengthAtTimestamp(_self, _timestamp);
address[] memory vals = new address[](size);
for (uint256 i; i < size;) {
vals[i] = getAddressFromIndexAtTimestamp(_self, i, _timestamp);
unchecked {
++i;
}
}
return vals;
}
function contains(SnapshottedAddressSet storage _self, address _address) internal view returns (bool) {
return _self.addressToCurrentIndex[_address].exists;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Checkpoints, CheckpointedUintLib} from "@aztec/governance/libraries/CheckpointedUintLib.sol";
import {Errors} from "@aztec/governance/libraries/Errors.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
// A struct storing balance and delegatee for an attester
struct DepositPosition {
uint256 balance;
address delegatee;
}
// A struct storing all the positions for an instance along with a supply
struct DepositLedger {
mapping(address attester => DepositPosition position) positions;
Checkpoints.Trace224 supply;
}
// A struct storing the voting power used for each proposal for a delegatee
// as well as their checkpointed voting power
struct VotingAccount {
mapping(uint256 proposalId => uint256 powerUsed) powerUsed;
Checkpoints.Trace224 votingPower;
}
// A struct storing the ledgers for the individual rollup instances, the voting
// account for delegatees and the total supply.
struct DepositAndDelegationAccounting {
mapping(address instance => DepositLedger ledger) ledgers;
mapping(address delegatee => VotingAccount votingAccount) votingAccounts;
Checkpoints.Trace224 supply;
}
// This library have a lot of overlap with `Votes.sol` from Openzeppelin,
// It mainly differs as it is a library to allow us having many accountings in the same contract
// the unit of time and allowing multiple uses of power.
library DepositDelegationLib {
using CheckpointedUintLib for Checkpoints.Trace224;
event DelegateChanged(address indexed attester, address oldDelegatee, address newDelegatee);
event DelegateVotesChanged(address indexed delegatee, uint256 oldValue, uint256 newValue);
/**
* @notice Increase the balance of an `_attester` on `_instance` by `_amount`,
* increases the voting power of the delegatee equally.
*
* @param _self The DepositAndDelegationAccounting struct to modify in storage
* @param _instance The instance that the attester is on
* @param _attester The attester to increase the balance of
* @param _amount The amount to increase by
*/
function increaseBalance(
DepositAndDelegationAccounting storage _self,
address _instance,
address _attester,
uint256 _amount
) internal {
if (_amount == 0) {
return;
}
DepositLedger storage instance = _self.ledgers[_instance];
instance.positions[_attester].balance += _amount;
moveVotingPower(_self, address(0), instance.positions[_attester].delegatee, _amount);
instance.supply.add(_amount);
_self.supply.add(_amount);
}
/**
* @notice Decrease the balance of an `_attester` on `_instance` by `_amount`,
* decrease the voting power of the delegatee equally
*
* @param _self The DepositAndDelegationAccounting struct to modify in storage
* @param _instance The instance that the attester is on
* @param _attester The attester to decrease the balance of
* @param _amount The amount to decrease by
*/
function decreaseBalance(
DepositAndDelegationAccounting storage _self,
address _instance,
address _attester,
uint256 _amount
) internal {
if (_amount == 0) {
return;
}
DepositLedger storage instance = _self.ledgers[_instance];
instance.positions[_attester].balance -= _amount;
moveVotingPower(_self, instance.positions[_attester].delegatee, address(0), _amount);
instance.supply.sub(_amount);
_self.supply.sub(_amount);
}
/**
* @notice Use `_amount` of `_delegatee`'s voting power on `_proposalId`
* The `_delegatee`'s voting power based on the snapshot at `_timestamp`
*
* @dev If different timestamps are passed, it can cause mismatch in the amount of
* power that can be voted with, so it is very important that it is stable for
* a given `_proposalId`
*
* @param _self - The DelegationDate struct to modify in storage
* @param _delegatee - The delegatee using their power
* @param _proposalId - The id to use for accounting
* @param _timestamp - The timestamp for voting power of the specific `_proposalId`
* @param _amount - The amount of power to use
*/
function usePower(
DepositAndDelegationAccounting storage _self,
address _delegatee,
uint256 _proposalId,
Timestamp _timestamp,
uint256 _amount
) internal {
uint256 powerAt = getVotingPowerAt(_self, _delegatee, _timestamp);
uint256 powerUsed = getPowerUsed(_self, _delegatee, _proposalId);
require(
powerAt >= powerUsed + _amount, Errors.Delegation__InsufficientPower(_delegatee, powerAt, powerUsed + _amount)
);
_self.votingAccounts[_delegatee].powerUsed[_proposalId] += _amount;
}
/**
* @notice Delegate the voting power of an `_attester` on a specific `_instance` to a `_delegatee`
*
* @param _self The DepositAndDelegationAccounting struct to modify in storage
* @param _instance The instance the attester is on
* @param _attester The attester to delegate the voting power of
* @param _delegatee The delegatee to delegate the voting power to
*/
function delegate(
DepositAndDelegationAccounting storage _self,
address _instance,
address _attester,
address _delegatee
) internal {
address oldDelegate = getDelegatee(_self, _instance, _attester);
if (oldDelegate == _delegatee) {
return;
}
_self.ledgers[_instance].positions[_attester].delegatee = _delegatee;
emit DelegateChanged(_attester, oldDelegate, _delegatee);
moveVotingPower(_self, oldDelegate, _delegatee, getBalanceOf(_self, _instance, _attester));
}
/**
* @notice Convenience function to remove delegation from `_attester` at `_instance`
*
* @dev Similar as calling `delegate` with `_delegatee = address(0)`
*
* @param _self The DepositAndDelegationAccounting struct to modify in storage
* @param _instance The instance that the attester is on
* @param _attester The attester to undelegate the voting power of
*/
function undelegate(DepositAndDelegationAccounting storage _self, address _instance, address _attester) internal {
delegate(_self, _instance, _attester, address(0));
}
/**
* @notice Get the balance of an `_attester` on `_instance`
*
* @param _self The DepositAndDelegationAccounting struct to read from
* @param _instance The instance that the attester is on
* @param _attester The attester to get the balance of
*
* @return The balance of the attester
*/
function getBalanceOf(DepositAndDelegationAccounting storage _self, address _instance, address _attester)
internal
view
returns (uint256)
{
return _self.ledgers[_instance].positions[_attester].balance;
}
/**
* @notice Get the supply of an `_instance`
*
* @param _self The DepositAndDelegationAccounting struct to read from
* @param _instance The instance to get the supply of
*
* @return The supply of the instance
*/
function getSupplyOf(DepositAndDelegationAccounting storage _self, address _instance) internal view returns (uint256) {
return _self.ledgers[_instance].supply.valueNow();
}
/**
* @notice Get the total supply of all instances
*
* @param _self The DepositAndDelegationAccounting struct to read from
*
* @return The total supply of all instances
*/
function getSupply(DepositAndDelegationAccounting storage _self) internal view returns (uint256) {
return _self.supply.valueNow();
}
/**
* @notice Get the delegatee of an `_attester` on `_instance`
*
* @param _self The DepositAndDelegationAccounting struct to read from
* @param _instance The instance that the attester is on
* @param _attester The attester to get the delegatee of
*
* @return The delegatee of the attester
*/
function getDelegatee(DepositAndDelegationAccounting storage _self, address _instance, address _attester)
internal
view
returns (address)
{
return _self.ledgers[_instance].positions[_attester].delegatee;
}
/**
* @notice Get the voting power of a `_delegatee`
*
* @param _self The DepositAndDelegationAccounting struct to read from
* @param _delegatee The delegatee to get the voting power of
*
* @return The voting power of the delegatee
*/
function getVotingPower(DepositAndDelegationAccounting storage _self, address _delegatee)
internal
view
returns (uint256)
{
return _self.votingAccounts[_delegatee].votingPower.valueNow();
}
/**
* @notice Get the voting power of a `_delegatee` at a specific `_timestamp`
*
* @param _self The DepositAndDelegationAccounting struct to read from
* @param _delegatee The delegatee to get the voting power of
* @param _timestamp The timestamp to get the voting power at
*
* @return The voting power of the delegatee at the specific `_timestamp`
*/
function getVotingPowerAt(DepositAndDelegationAccounting storage _self, address _delegatee, Timestamp _timestamp)
internal
view
returns (uint256)
{
return _self.votingAccounts[_delegatee].votingPower.valueAt(_timestamp);
}
/**
* @notice Get the power used by a `_delegatee` on a specific `_proposalId`
*
* @param _self The DepositAndDelegationAccounting struct to read from
* @param _delegatee The delegatee to get the power used by
* @param _proposalId The proposal to get the power used on
*
* @return The voting power used by the `_delegatee` at `_proposalId`
*/
function getPowerUsed(DepositAndDelegationAccounting storage _self, address _delegatee, uint256 _proposalId)
internal
view
returns (uint256)
{
return _self.votingAccounts[_delegatee].powerUsed[_proposalId];
}
/**
* @notice Move `_amount` of voting power from the delegatee of `_from` to the delegatee of `_to`
*
* @dev If the `_from` is `address(0)` the decrease is skipped, and it is effectively a mint
* @dev If the `_to` is `address(0)` the increase is skipped, and it is effectively a burn
*
* @param _self The DepositAndDelegationAccounting struct to modify in storage
* @param _from The address to move the voting power from
* @param _to The address to move the voting power to
* @param _amount The amount of voting power to move
*/
function moveVotingPower(DepositAndDelegationAccounting storage _self, address _from, address _to, uint256 _amount)
private
{
if (_from == _to || _amount == 0) {
return;
}
if (_from != address(0)) {
(uint256 oldValue, uint256 newValue) = _self.votingAccounts[_from].votingPower.sub(_amount);
emit DelegateVotesChanged(_from, oldValue, newValue);
}
if (_to != address(0)) {
(uint256 oldValue, uint256 newValue) = _self.votingAccounts[_to].votingPower.add(_amount);
emit DelegateVotesChanged(_to, oldValue, newValue);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IGSE} from "@aztec/governance/GSE.sol";
import {IRegistry} from "@aztec/governance/interfaces/IRegistry.sol";
import {Errors} from "@aztec/governance/libraries/Errors.sol";
import {IPayload} from "./interfaces/IPayload.sol";
import {IProposerPayload} from "./interfaces/IProposerPayload.sol";
/**
* @title GSEPayload
*
* @notice This contract is used by the GovernanceProposer to enforce checks on an existing payload.
*
* In the GovernanceProposer, support for payloads may be signalled by the current block proposer of the
* current canonical rollup according to the Registry. Once a payload receives enough support,
* it may be submitted by the GovernanceProposer.
*
* Instead of proposing the original payload to Governance, the GovernanceProposer creates a new GSEPayload,
* referencing the original payload. It is this new GSEPayload which is proposed via Governance.propose.
* If/when the GSE payload is executed, Governance calls `getActions`, which copies the actions of the original
* payload, and appends a call to `amIValid` to it.
*
* NB `amIValid` will fail if the 2/3 of the total stake is not "following latest", irrespective
* of what the original proposal does.
* Note that the GSE is used to perform these checks, hence the name.
* Note this check is skipped if the canonical rollup does not match the latest to avoid livelock cases.
*
* For example, if the original proposal is just to update a configuration parameter, but in the meantime
* half of the stake has exited the latest rollup in the GSE, `amIValid` will fail.
*
* In such an event, your recourse is either:
* - wait for the latest rollup to have at least 2/3 of the total stake
* - `GSE.proposeWithLock`, which bypasses the GovernanceProposer
*/
contract GSEPayload is IProposerPayload {
IPayload public immutable ORIGINAL;
IGSE public immutable GSE;
IRegistry public immutable REGISTRY;
constructor(IPayload _originalPayloadProposal, IGSE _gse, IRegistry _registry) {
ORIGINAL = _originalPayloadProposal;
GSE = _gse;
REGISTRY = _registry;
}
function getOriginalPayload() external view override(IProposerPayload) returns (IPayload) {
return ORIGINAL;
}
function getURI() external view override(IPayload) returns (string memory) {
return ORIGINAL.getURI();
}
/**
* @notice called by the Governance contract when executing the proposal.
*
* Note that this contract simply appends a call to `amIValid` to the original actions.
*/
function getActions() external view override(IPayload) returns (IPayload.Action[] memory) {
IPayload.Action[] memory originalActions = ORIGINAL.getActions();
IPayload.Action[] memory actions = new IPayload.Action[](originalActions.length + 1);
for (uint256 i = 0; i < originalActions.length; i++) {
actions[i] = originalActions[i];
}
actions[originalActions.length] =
IPayload.Action({target: address(this), data: abi.encodeWithSelector(GSEPayload.amIValid.selector)});
return actions;
}
/**
* @notice Validates that the proposal maintains governance system integrity by ensuring
* sufficient stake remains on the active rollup after execution.
*
* The validation passes when EITHER:
* 1. The latest rollup (plus bonus instance) has >2/3 of total stake, OR
* 2. A Registry/GSE mismatch is detected (fail-open to prevent governance livelock)
*
* @dev Beware that the >2/3 support means that 1/3 of the stake can be used to reject proposals.
*
* @dev The "bonus instance" is a special GSE mechanism where attesters automatically
* follow the latest rollup without re-depositing. Their stake counts toward
* the latest rollup's total for this validation.
*
* @dev LIVELOCK PREVENTION: When canonical != latest, we intentionally return true
* to bypass validation. This mismatch typically indicates the GovernanceProposer
* is still pointing to a stale GSE contract after a rollup upgrade.
*
* Why this creates a livelock:
* - The stale GSE tracks an outdated rollup as "latest"
* - The Registry correctly identifies the new rollup as canonical
* - Economic incentives drive attesters to follow the canonical (where rewards are)
* - The stale GSE's "latest" gradually bleeds stake as rational actors exit
* - While theoretically possible to maintain >2/3 stake, it becomes increasingly
* unlikely as only inattentive or non-reward-seeking attesters remain
* - Proposals keep failing validation, creating a probabilistic livelock where
* progress is technically possible but economically improbable
*
* By returning true, we provide an escape hatch that allows governance to
* continue functioning despite the misconfiguration, enabling corrective
* proposals to update the GovernanceProposer's GSE reference.
*
* @dev This function executes as the final action of the proposal (see getActions).
* It either reverts with an error (proposal invalid) or returns true (proposal valid).
* The boolean return value is effectively ceremonial - only the revert matters.
*
* @return Always returns true if the proposal is valid; reverts otherwise
*/
function amIValid() external view override(IProposerPayload) returns (bool) {
address canonicalRollup = address(REGISTRY.getCanonicalRollup());
address latestRollup = GSE.getLatestRollup();
// Bypass validation on mismatch to prevent economically-driven livelock
// In theory, >2/3 stake could remain on the stale rollup, but economic
// incentives make this highly unlikely
if (canonicalRollup != latestRollup) {
return true;
}
// Standard validation: ensure >2/3 of stake remains with the latest rollup
uint256 totalSupply = GSE.totalSupply();
address bonusInstance = GSE.getBonusInstanceAddress();
uint256 effectiveSupplyOfLatestRollup = GSE.supplyOf(latestRollup) + GSE.supplyOf(bonusInstance);
require(effectiveSupplyOfLatestRollup > totalSupply * 2 / 3, Errors.GovernanceProposer__GSEPayloadInvalid());
return true;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
// solhint-disable imports-order
pragma solidity >=0.8.27;
import {IEmpire} from "./IEmpire.sol";
interface IGovernanceProposer is IEmpire {
function getProposalProposer(uint256 _proposalId) external view returns (address);
function getGovernance() external view returns (address);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
// solhint-disable imports-order
pragma solidity >=0.8.27;
import {SignatureLib, Signature} from "@aztec/shared/libraries/SignatureLib.sol";
import {IEmpire, IEmperor} from "@aztec/governance/interfaces/IEmpire.sol";
import {Slot} from "@aztec/shared/libraries/TimeMath.sol";
import {Errors} from "@aztec/governance/libraries/Errors.sol";
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
import {EIP712} from "@oz/utils/cryptography/EIP712.sol";
import {CompressedTimeMath, CompressedSlot} from "@aztec/shared/libraries/CompressedTimeMath.sol";
struct RoundAccounting {
Slot lastSignalSlot;
IPayload payloadWithMostSignals;
bool executed;
}
struct CompressedRoundAccounting {
CompressedSlot lastSignalSlot;
IPayload payloadWithMostSignals;
bool executed;
mapping(IPayload payload => uint256 count) signalCount;
}
/**
* @title EmpireBase
* @author Aztec Labs
* @notice Abstract base contract for a round-based signaling system where designated entities
* signal support for payloads before they are submitted elsewhere.
* Works with an IEmperor (i.e. a Rollup) contract to determine the entity that may signal for a given slot.
*
* @dev PURPOSE:
* This contract allows validators to signal their support for payloads.
*
* There are two primary implementations of this contract:
* - The GovernanceProposer
* - The EmpireSlashingProposer
*
* The GovernanceProposer is used to signal support for payloads before they are submitted to the main Governance
* contract,
* resulting in a two-stage governance process:
* 1. Signal gathering (GovernanceProposer contract) - validators indicate support
* 2. Formal governance (Governance contract) - actual voting and execution
*
* The EmpireSlashingProposer is used to signal support for payloads before they are submitted to a Rollup instance's
* Slasher,
* resulting in a one-stage slashing process:
* 1. Signal gathering (EmpireSlashingProposer contract) - validators indicate support
*
* @dev KEY CONCEPTS:
* **Payload**: A contract with a list of actions (contract calls) to perform.
*
* **Rounds**: Time is divided into rounds of ROUND_SIZE slots. Payloads compete for support
* within a round.
*
* **Instances**: Refers to an instance of the rollup contract, which in this case is exposed via a simplified IEmperor
* interface.
* This contract only needs the instance to determine the current slot (to compute the round), and the current block
* proposer.
*
* **Signalers**: Each slot has a designated signaler (determined by IEmperor).
* Only the current slot's signaler can signal support, either directly or via signature.
* In the current implementation, the entity that may propose a block (i.e. the "proposer") is the signaler.
*
* **Signaling**
* - One signal per slot (enforced by tracking lastSignalSlot)
* - Signals accumulate for payloads within a round
* - First payload to reach QUORUM_SIZE becomes submittable
*
* **Submission**
* - Payloads can be submitted after their round ends with `submitRoundWinner(uint256 _roundNumber)`
* - Round winner must have received at least QUORUM_SIZE signals
* - Submission window: LIFETIME_IN_ROUNDS (5 rounds)
* - Each round's leading payload can only be submitted once
* - `_handleRoundWinner(IPayload _payload)` on the implementing contract is called to handle the winner
*
* @dev SYSTEM PARAMETERS:
* - QUORUM_SIZE: Minimum signals needed for submission
* - ROUND_SIZE: Slots per round
* - Constraint: QUORUM_SIZE > ROUND_SIZE/2 and QUORUM_SIZE ≤ ROUND_SIZE
* Note that it it possible to have QUORUM_SIZE = 1 for ROUND_SIZE = 1, which effectively give all the
* power to the first signal.
*
* @dev SIGNALING METHODS:
* 1. Direct signal: Current signaler calls `signal()`
* 2. Delegated signal: Anyone submits with signaler's signature via `signalWithSig()`
* - Uses EIP-712 for signature verification
* - Includes slot and instance to prevent replay attacks
*
* @dev ABSTRACT FUNCTIONS:
* Implementing contracts must provide:
* - `getInstance()`: Returns the IEmperor instance for slot/signaler info
* - `_handleRoundWinner(IPayload _payload)`: Called during `submitRoundWinner`
*
* Note this contract can support multiple instances/rollups. This is because the instance is retrieved dynamically from
* the
* underlying implementation. For example, when the GovernanceProposer is used, the instance is the canonical rollup,
* which will change whenever there is a new canonical rollup.
*
* This also means that if the new canonical rollup does not support the IEmperor interface, this contract will not
* work,
* and a different implementation will need to be specified as part of the payload which deploys the new canonical
* instance.
*/
abstract contract EmpireBase is EIP712, IEmpire {
using SignatureLib for Signature;
using CompressedTimeMath for Slot;
using CompressedTimeMath for CompressedSlot;
// EIP-712 type hash for the Signal struct
bytes32 public constant SIGNAL_TYPEHASH = keccak256("Signal(address payload,uint256 slot,address instance)");
// The number of signals needed for a payload to be considered submittable.
uint256 public immutable QUORUM_SIZE;
// The number of slots per round.
uint256 public immutable ROUND_SIZE;
// The number of rounds that a round winner may be submitted for, after it have passed.
uint256 public immutable LIFETIME_IN_ROUNDS;
// The number of rounds that must elapse before a round winner may be submitted.
uint256 public immutable EXECUTION_DELAY_IN_ROUNDS;
// Mapping of instance to round number to round accounting.
mapping(address instance => mapping(uint256 roundNumber => CompressedRoundAccounting)) internal rounds;
constructor(uint256 _quorumSize, uint256 _roundSize, uint256 _lifetimeInRounds, uint256 _executionDelayInRounds)
EIP712("EmpireBase", "1")
{
QUORUM_SIZE = _quorumSize;
ROUND_SIZE = _roundSize;
LIFETIME_IN_ROUNDS = _lifetimeInRounds;
EXECUTION_DELAY_IN_ROUNDS = _executionDelayInRounds;
require(QUORUM_SIZE > ROUND_SIZE / 2, Errors.EmpireBase__InvalidQuorumAndRoundSize(QUORUM_SIZE, ROUND_SIZE));
require(QUORUM_SIZE <= ROUND_SIZE, Errors.EmpireBase__QuorumCannotBeLargerThanRoundSize(QUORUM_SIZE, ROUND_SIZE));
require(
LIFETIME_IN_ROUNDS > EXECUTION_DELAY_IN_ROUNDS,
Errors.EmpireBase__InvalidLifetimeAndExecutionDelay(LIFETIME_IN_ROUNDS, EXECUTION_DELAY_IN_ROUNDS)
);
}
/**
* @notice Signal support for a payload
*
* @dev this only works if msg.sender is the current signaler
*
* @param _payload - The address of the IPayload to signal support for
*
* @return True if executed successfully, false otherwise
*/
function signal(IPayload _payload) external override(IEmpire) returns (bool) {
return _internalSignal(_payload, Signature({v: 0, r: bytes32(0), s: bytes32(0)}));
}
/**
* @notice Signal support for a payload with a signature from the current signaler
*
* @param _payload - The payload to signal support for
* @param _sig - A signature from the signaler
*
* @return True if executed successfully, false otherwise
*/
function signalWithSig(IPayload _payload, Signature memory _sig) external override(IEmpire) returns (bool) {
return _internalSignal(_payload, _sig);
}
/**
* @notice Submit the round winner to the implementation's `_handleRoundWinner` function
*
* @dev calls `_handleRoundWinner` on the implementing contract with the winning payload, if applicable.
*
* @param _roundNumber - The round number to execute
*
* @return True if executed successfully, false otherwise
*/
function submitRoundWinner(uint256 _roundNumber) external override(IEmpire) returns (bool) {
// Need to ensure that the round is not active.
address instance = getInstance();
require(instance.code.length > 0, Errors.EmpireBase__InstanceHaveNoCode(instance));
IEmperor selection = IEmperor(instance);
Slot currentSlot = selection.getCurrentSlot();
uint256 currentRound = computeRound(currentSlot);
require(
currentRound > _roundNumber + EXECUTION_DELAY_IN_ROUNDS,
Errors.EmpireBase__RoundTooNew(_roundNumber, currentRound)
);
require(
currentRound <= _roundNumber + LIFETIME_IN_ROUNDS, Errors.EmpireBase__RoundTooOld(_roundNumber, currentRound)
);
CompressedRoundAccounting storage round = rounds[instance][_roundNumber];
require(!round.executed, Errors.EmpireBase__PayloadAlreadySubmitted(_roundNumber));
// If the payload with the most signals is address(0) there are nothing to execute and it is a no-op.
// This will be the case if no signals have been cast during a round, or if people have simple signalled
// for nothing to happen (the same as not signalling).
require(round.payloadWithMostSignals != IPayload(address(0)), Errors.EmpireBase__PayloadCannotBeAddressZero());
uint256 signalsCast = round.signalCount[round.payloadWithMostSignals];
require(signalsCast >= QUORUM_SIZE, Errors.EmpireBase__InsufficientSignals(signalsCast, QUORUM_SIZE));
round.executed = true;
emit PayloadSubmitted(round.payloadWithMostSignals, _roundNumber);
require(
_handleRoundWinner(round.payloadWithMostSignals),
Errors.EmpireBase__FailedToSubmitRoundWinner(round.payloadWithMostSignals)
);
return true;
}
/**
* @notice Fetch the signal count for a specific payload in a specific round on a specific instance
*
* @param _instance - The address of the instance
* @param _round - The round to lookup
* @param _payload - The payload to lookup
*
* @return The number of signals
*/
function signalCount(address _instance, uint256 _round, IPayload _payload)
external
view
override(IEmpire)
returns (uint256)
{
return rounds[_instance][_round].signalCount[_payload];
}
/**
* @notice Computes the round at the current slot
*
* @return The round number
*/
function getCurrentRound() external view returns (uint256) {
IEmperor selection = IEmperor(getInstance());
Slot currentSlot = selection.getCurrentSlot();
return computeRound(currentSlot);
}
function getRoundData(address _instance, uint256 _round) external view returns (RoundAccounting memory) {
CompressedRoundAccounting storage compressedRound = rounds[_instance][_round];
return RoundAccounting({
lastSignalSlot: compressedRound.lastSignalSlot.decompress(),
payloadWithMostSignals: compressedRound.payloadWithMostSignals,
executed: compressedRound.executed
});
}
/**
* @notice Computes the round at the given slot
*
* @param _slot - The slot to compute round for
*
* @return The round number
*/
function computeRound(Slot _slot) public view override(IEmpire) returns (uint256) {
return Slot.unwrap(_slot) / ROUND_SIZE;
}
function getSignalSignatureDigest(IPayload _payload, Slot _slot) public view returns (bytes32) {
return _hashTypedDataV4(keccak256(abi.encode(SIGNAL_TYPEHASH, _payload, _slot, getInstance())));
}
// Virtual functions
function getInstance() public view virtual override(IEmpire) returns (address);
function _handleRoundWinner(IPayload _payload) internal virtual returns (bool);
function _internalSignal(IPayload _payload, Signature memory _sig) internal returns (bool) {
address instance = getInstance();
require(instance.code.length > 0, Errors.EmpireBase__InstanceHaveNoCode(instance));
IEmperor selection = IEmperor(instance);
Slot currentSlot = selection.getCurrentSlot();
uint256 roundNumber = computeRound(currentSlot);
CompressedRoundAccounting storage round = rounds[instance][roundNumber];
// Ensure that time have progressed since the last slot. If not, the current proposer might send multiple signals
require(currentSlot > round.lastSignalSlot.decompress(), Errors.EmpireBase__SignalAlreadyCastForSlot(currentSlot));
round.lastSignalSlot = currentSlot.compress();
address signaler = selection.getCurrentProposer();
if (_sig.isEmpty()) {
require(msg.sender == signaler, Errors.EmpireBase__OnlyProposerCanSignal(msg.sender, signaler));
} else {
bytes32 digest = getSignalSignatureDigest(_payload, currentSlot);
// _sig.verify will throw if invalid, it is more my sanity that I am doing this for.
require(_sig.verify(signaler, digest), Errors.EmpireBase__OnlyProposerCanSignal(msg.sender, signaler));
}
round.signalCount[_payload] += 1;
if (
round.payloadWithMostSignals != _payload
&& round.signalCount[_payload] > round.signalCount[round.payloadWithMostSignals]
) {
round.payloadWithMostSignals = _payload;
}
emit SignalCast(_payload, roundNumber, signaler);
if (round.signalCount[_payload] == QUORUM_SIZE) {
emit PayloadSubmittable(_payload, roundNumber);
}
return true;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides a set of functions to compare values.
*
* _Available since v5.1._
*/
library Comparators {
function lt(uint256 a, uint256 b) internal pure returns (bool) {
return a < b;
}
function gt(uint256 a, uint256 b) internal pure returns (bool) {
return a > b;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {G1Point, G2Point} from "@aztec/shared/libraries/BN254Lib.sol";
interface IBn254LibWrapper {
function proofOfPossession(
G1Point memory _publicKeyInG1,
G2Point memory _publicKeyInG2,
G1Point memory _proofOfPossession
) external view returns (bool);
function g1ToDigestPoint(G1Point memory pk1) external view returns (G1Point memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
interface IProposerPayload is IPayload {
function getOriginalPayload() external view returns (IPayload);
function amIValid() external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
// slither-disable-next-line constable-states
string private _nameFallback;
// slither-disable-next-line constable-states
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @inheritdoc IERC5267
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {toShortStringWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}{
"remappings": [
"src/=src/",
"test/=test/",
"@aztec/=lib/l1-contracts/src/",
"@aztec-test/=lib/l1-contracts/test/",
"@openzeppelin/=lib/openzeppelin-contracts/",
"@oz/=lib/openzeppelin-contracts/contracts/",
"forge-std/=lib/forge-std/src/",
"@atp/=lib/teegeeee/src/",
"@atp-mock/=lib/teegeeee/src/test/mocks/",
"@zkpassport/=lib/circuits/src/solidity/src/",
"@splits/=lib/splits-contracts-monorepo/packages/splits-v2/src/",
"@predicate/=lib/predicate-contracts/src/",
"@teegeeee/=lib/teegeeee/src/",
"@twap-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/src/",
"@twap-auction-test/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/",
"@launcher/=lib/liquidity-launcher/src/",
"@v4c/=lib/liquidity-launcher/lib/v4-core/src/",
"@v4p/=lib/liquidity-launcher/lib/v4-periphery/src/",
"@aztec-blob-lib/=lib/l1-contracts/src/core/libraries/rollup/",
"@ensdomains/=lib/liquidity-launcher/lib/v4-core/node_modules/@ensdomains/",
"@openzeppelin-latest/=lib/liquidity-launcher/lib/openzeppelin-contracts/",
"@openzeppelin-upgrades-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
"@openzeppelin-upgrades/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable/",
"@openzeppelin-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
"@optimism/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/",
"@solady/=lib/liquidity-launcher/lib/solady/",
"@test/=lib/l1-contracts/test/",
"@uniswap/v4-core/=lib/liquidity-launcher/lib/v4-core/",
"@uniswap/v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
"@zkpassport-test/=lib/l1-contracts/lib/circuits/src/solidity/test/",
"btt/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/btt/",
"circuits/=lib/circuits/src/",
"continuous-clearing-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/",
"ds-test/=lib/predicate-contracts/lib/forge-std/lib/ds-test/src/",
"eigenlayer-contracts/=lib/predicate-contracts/lib/eigenlayer-contracts/",
"eigenlayer-middleware/=lib/predicate-contracts/lib/eigenlayer-middleware/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-gas-snapshot/=lib/liquidity-launcher/lib/continuous-clearing-auction/lib/forge-gas-snapshot/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"hardhat/=lib/liquidity-launcher/lib/v4-core/node_modules/hardhat/",
"kontrol-cheatcodes/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/kontrol-cheatcodes/src/",
"l1-contracts/=lib/l1-contracts/src/",
"lib-keccak/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/lib-keccak/contracts/",
"liquidity-launcher/=lib/liquidity-launcher/",
"merkle-distributor/=lib/liquidity-launcher/lib/merkle-distributor/",
"openzeppelin-contracts-4.7/=lib/liquidity-launcher/lib/openzeppelin-contracts-4.7/",
"openzeppelin-contracts-upgradeable-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
"openzeppelin-contracts-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
"openzeppelin-contracts-v5/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/openzeppelin-contracts-v5/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"openzeppelin-foundry-upgrades/=lib/predicate-contracts/lib/openzeppelin-foundry-upgrades/src/",
"openzeppelin-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/contracts/",
"openzeppelin/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/contracts/",
"optimism/=lib/liquidity-launcher/lib/optimism/",
"permit2/=lib/liquidity-launcher/lib/permit2/",
"predicate-contracts/=lib/predicate-contracts/src/",
"safe-contracts/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/safe-contracts/contracts/",
"solady-v0.0.245/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/solady-v0.0.245/src/",
"solady/=lib/liquidity-launcher/lib/solady/src/",
"solmate/=lib/predicate-contracts/lib/solmate/src/",
"splits-contracts-monorepo/=lib/splits-contracts-monorepo/",
"teegeeee/=lib/teegeeee/src/",
"utils/=lib/predicate-contracts/lib/utils/",
"v4-core/=lib/liquidity-launcher/lib/v4-core/src/",
"v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
"zkpassport-packages/=lib/zkpassport-packages/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "prague",
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_rollup","type":"address"},{"internalType":"uint256","name":"_version","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"MerkleLib__InvalidIndexForPathLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"expected","type":"bytes32"},{"internalType":"bytes32","name":"actual","type":"bytes32"},{"internalType":"bytes32","name":"leaf","type":"bytes32"},{"internalType":"uint256","name":"leafIndex","type":"uint256"}],"name":"MerkleLib__InvalidRoot","type":"error"},{"inputs":[{"internalType":"uint256","name":"l2BlockNumber","type":"uint256"},{"internalType":"uint256","name":"leafIndex","type":"uint256"}],"name":"Outbox__AlreadyNullified","type":"error"},{"inputs":[{"internalType":"uint256","name":"l2BlockNumber","type":"uint256"}],"name":"Outbox__BlockAlreadyProven","type":"error"},{"inputs":[{"internalType":"uint256","name":"l2BlockNumber","type":"uint256"}],"name":"Outbox__BlockNotProven","type":"error"},{"inputs":[],"name":"Outbox__InvalidChainId","type":"error"},{"inputs":[{"internalType":"address","name":"expected","type":"address"},{"internalType":"address","name":"actual","type":"address"}],"name":"Outbox__InvalidRecipient","type":"error"},{"inputs":[{"internalType":"uint256","name":"leafIndex","type":"uint256"},{"internalType":"uint256","name":"pathLength","type":"uint256"}],"name":"Outbox__LeafIndexOutOfBounds","type":"error"},{"inputs":[{"internalType":"uint256","name":"l2BlockNumber","type":"uint256"}],"name":"Outbox__NothingToConsumeAtBlock","type":"error"},{"inputs":[],"name":"Outbox__PathTooLong","type":"error"},{"inputs":[],"name":"Outbox__Unauthorized","type":"error"},{"inputs":[{"internalType":"uint256","name":"expected","type":"uint256"},{"internalType":"uint256","name":"actual","type":"uint256"}],"name":"Outbox__VersionMismatch","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"l2BlockNumber","type":"uint256"},{"indexed":true,"internalType":"bytes32","name":"root","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"messageHash","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"leafId","type":"uint256"}],"name":"MessageConsumed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"l2BlockNumber","type":"uint256"},{"indexed":true,"internalType":"bytes32","name":"root","type":"bytes32"}],"name":"RootAdded","type":"event"},{"inputs":[],"name":"ROLLUP","outputs":[{"internalType":"contract IRollup","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"bytes32","name":"actor","type":"bytes32"},{"internalType":"uint256","name":"version","type":"uint256"}],"internalType":"struct DataStructures.L2Actor","name":"sender","type":"tuple"},{"components":[{"internalType":"address","name":"actor","type":"address"},{"internalType":"uint256","name":"chainId","type":"uint256"}],"internalType":"struct DataStructures.L1Actor","name":"recipient","type":"tuple"},{"internalType":"bytes32","name":"content","type":"bytes32"}],"internalType":"struct DataStructures.L2ToL1Msg","name":"_message","type":"tuple"},{"internalType":"uint256","name":"_l2BlockNumber","type":"uint256"},{"internalType":"uint256","name":"_leafIndex","type":"uint256"},{"internalType":"bytes32[]","name":"_path","type":"bytes32[]"}],"name":"consume","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_l2BlockNumber","type":"uint256"}],"name":"getRootData","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_l2BlockNumber","type":"uint256"},{"internalType":"uint256","name":"_leafId","type":"uint256"}],"name":"hasMessageBeenConsumedAtBlock","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_l2BlockNumber","type":"uint256"},{"internalType":"bytes32","name":"_root","type":"bytes32"}],"name":"insert","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
60c060405234801561000f575f5ffd5b50604051610bc9380380610bc983398101604081905261002e91610044565b6001600160a01b0390911660805260a05261007b565b5f5f60408385031215610055575f5ffd5b82516001600160a01b038116811461006b575f5ffd5b6020939093015192949293505050565b60805160a051610b0b6100be5f395f8181610119015261031501525f818160da0152818161013e0152818161026a0152818161051001526105500152610b0b5ff3fe608060405234801561000f575f5ffd5b5060043610610060575f3560e01c80632249f6531461006457806369d2854e1461008a5780637fb34967146100ad57806394596433146100c25780639611c5c2146100d5578063ffa1ad7414610114575b5f5ffd5b61007761007236600461082f565b61013b565b6040519081526020015b60405180910390f35b61009d610098366004610846565b6101dc565b6040519015158152602001610081565b6100c06100bb366004610866565b610211565b005b6100c06100d0366004610846565b610505565b6100fc7f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610081565b6100777f000000000000000000000000000000000000000000000000000000000000000081565b5f7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663b67d057b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610198573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101bc91906108ff565b8211156101ca57505f919050565b505f9081526020819052604090205490565b5f82815260208181526040808320600885901c8452600190810190925282205460ff84169190911b1615155b90505b92915050565b61010081106102335760405163879f16c160e01b815260040160405180910390fd5b82816001811b82106102665760405163d49140f560e01b8152600481019290925260248201526044015b60405180910390fd5b50507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663b67d057b6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156102c4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102e891906108ff565b841115849061030d57604051630e194a6d60e01b815260040161025d91815260200190565b5060208501357f000000000000000000000000000000000000000000000000000000000000000081811461035d5760405163deae896760e01b81526004810192909252602482015260440161025d565b5061037090506060860160408701610931565b6001600160a01b0316331461038b6060870160408801610931565b3390916103be576040516357aad58160e01b81526001600160a01b0392831660048201529116602482015260440161025d565b5050466060860135146103e4576040516315dfb1f160e21b815260040160405180910390fd5b5f8481526020819052604090208054858161041557604051635228479160e11b815260040161025d91815260200190565b505f610424866001861b61094a565b600881901c5f90815260018581016020526040909120549192508891839160ff83161b161561046f57604051633f5c70b560e21b81526004810192909252602482015260440161025d565b505f905061048a610485368b90038b018b6109cd565b610631565b90506104998686838a8761069a565b600882901c5f90815260018581016020526040909120805460ff85169290921b90911790558083897f34bc3301c4660a5642d2246e175e7fea498c94258d39dcaa555a52464dbb083d856040516104f291815260200190565b60405180910390a4505050505050505050565b336001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161461054e5760405163164a486160e11b815260040160405180910390fd5b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663b67d057b6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105aa573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105ce91906108ff565b821182906105f257604051633374167360e21b815260040161025d91815260200190565b505f8281526020819052604080822083905551829184917f47e13ec4cc37e31e3a4f25115640068ffbe4bee53b32f0953fa593388e69fc0f9190a35050565b80518051602091820151828401518051908401516040808701518151968701959095528501929092526bffffffffffffffffffffffff19606091821b1690840152607483015260948201525f9061020b9060b4015b60405160208183030381529060405261079a565b82825f5b8681101561073357600180831614806106ed576106e8848a8a858181106106c7576106c7610a5b565b90506020020135604051602001610686929190918252602082015260400190565b610724565b61072489898481811061070257610702610a5b565b9050602002013585604051602001610686929190918252602082015260400190565b935050600191821c910161069e565b508015610753576040516398e37ec960e01b815260040160405180910390fd5b8282868682841461078d57604051635f216bf160e01b8152600481019490945260248401929092526044830152606482015260840161025d565b5050505050505050505050565b6040805160018082528183019092525f91602082018180368337019050506002836040516107c89190610a86565b602060405180830381855afa1580156107e3573d5f5f3e3d5ffd5b5050506040513d601f19601f8201168201806040525081019061080691906108ff565b604051602001610817929190610a91565b60405160208183030381529060405261020b90610aaf565b5f6020828403121561083f575f5ffd5b5035919050565b5f5f60408385031215610857575f5ffd5b50508035926020909101359150565b5f5f5f5f5f85870361010081121561087c575f5ffd5b60a0811215610889575f5ffd5b5085945060a0850135935060c0850135925060e085013567ffffffffffffffff8111156108b4575f5ffd5b8601601f810188136108c4575f5ffd5b803567ffffffffffffffff8111156108da575f5ffd5b8860208260051b84010111156108ee575f5ffd5b959894975092955050506020019190565b5f6020828403121561090f575f5ffd5b5051919050565b80356001600160a01b038116811461092c575f5ffd5b919050565b5f60208284031215610941575f5ffd5b61020882610916565b8082018082111561020b57634e487b7160e01b5f52601160045260245ffd5b6040516060810167ffffffffffffffff8111828210171561099857634e487b7160e01b5f52604160045260245ffd5b60405290565b6040805190810167ffffffffffffffff8111828210171561099857634e487b7160e01b5f52604160045260245ffd5b5f81830360a0811280156109df575f5ffd5b506109e8610969565b60408212156109f5575f5ffd5b6109fd61099e565b843581526020808601359082015281526040603f1983011215610a1e575f5ffd5b610a2661099e565b9150610a3460408501610916565b82526060840135602080840191909152810191909152608090920135604083015250919050565b634e487b7160e01b5f52603260045260245ffd5b5f81518060208401855e5f93019283525090919050565b5f6102088284610a6f565b5f610a9c8285610a6f565b60ff199390931683525050601f01919050565b80516020808301519190811015610acf575f198160200360031b1b821691505b5091905056fea2646970667358221220197fd3a9fb1a0256994492f1f3c0d2e7ed8f2a83360a36431806c733206e27d564736f6c634300081e0033000000000000000000000000603bb2c05d474794ea97805e8de69bccfb3bca120000000000000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x608060405234801561000f575f5ffd5b5060043610610060575f3560e01c80632249f6531461006457806369d2854e1461008a5780637fb34967146100ad57806394596433146100c25780639611c5c2146100d5578063ffa1ad7414610114575b5f5ffd5b61007761007236600461082f565b61013b565b6040519081526020015b60405180910390f35b61009d610098366004610846565b6101dc565b6040519015158152602001610081565b6100c06100bb366004610866565b610211565b005b6100c06100d0366004610846565b610505565b6100fc7f000000000000000000000000603bb2c05d474794ea97805e8de69bccfb3bca1281565b6040516001600160a01b039091168152602001610081565b6100777f000000000000000000000000000000000000000000000000000000000000000081565b5f7f000000000000000000000000603bb2c05d474794ea97805e8de69bccfb3bca126001600160a01b031663b67d057b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610198573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101bc91906108ff565b8211156101ca57505f919050565b505f9081526020819052604090205490565b5f82815260208181526040808320600885901c8452600190810190925282205460ff84169190911b1615155b90505b92915050565b61010081106102335760405163879f16c160e01b815260040160405180910390fd5b82816001811b82106102665760405163d49140f560e01b8152600481019290925260248201526044015b60405180910390fd5b50507f000000000000000000000000603bb2c05d474794ea97805e8de69bccfb3bca126001600160a01b031663b67d057b6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156102c4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102e891906108ff565b841115849061030d57604051630e194a6d60e01b815260040161025d91815260200190565b5060208501357f000000000000000000000000000000000000000000000000000000000000000081811461035d5760405163deae896760e01b81526004810192909252602482015260440161025d565b5061037090506060860160408701610931565b6001600160a01b0316331461038b6060870160408801610931565b3390916103be576040516357aad58160e01b81526001600160a01b0392831660048201529116602482015260440161025d565b5050466060860135146103e4576040516315dfb1f160e21b815260040160405180910390fd5b5f8481526020819052604090208054858161041557604051635228479160e11b815260040161025d91815260200190565b505f610424866001861b61094a565b600881901c5f90815260018581016020526040909120549192508891839160ff83161b161561046f57604051633f5c70b560e21b81526004810192909252602482015260440161025d565b505f905061048a610485368b90038b018b6109cd565b610631565b90506104998686838a8761069a565b600882901c5f90815260018581016020526040909120805460ff85169290921b90911790558083897f34bc3301c4660a5642d2246e175e7fea498c94258d39dcaa555a52464dbb083d856040516104f291815260200190565b60405180910390a4505050505050505050565b336001600160a01b037f000000000000000000000000603bb2c05d474794ea97805e8de69bccfb3bca12161461054e5760405163164a486160e11b815260040160405180910390fd5b7f000000000000000000000000603bb2c05d474794ea97805e8de69bccfb3bca126001600160a01b031663b67d057b6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105aa573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105ce91906108ff565b821182906105f257604051633374167360e21b815260040161025d91815260200190565b505f8281526020819052604080822083905551829184917f47e13ec4cc37e31e3a4f25115640068ffbe4bee53b32f0953fa593388e69fc0f9190a35050565b80518051602091820151828401518051908401516040808701518151968701959095528501929092526bffffffffffffffffffffffff19606091821b1690840152607483015260948201525f9061020b9060b4015b60405160208183030381529060405261079a565b82825f5b8681101561073357600180831614806106ed576106e8848a8a858181106106c7576106c7610a5b565b90506020020135604051602001610686929190918252602082015260400190565b610724565b61072489898481811061070257610702610a5b565b9050602002013585604051602001610686929190918252602082015260400190565b935050600191821c910161069e565b508015610753576040516398e37ec960e01b815260040160405180910390fd5b8282868682841461078d57604051635f216bf160e01b8152600481019490945260248401929092526044830152606482015260840161025d565b5050505050505050505050565b6040805160018082528183019092525f91602082018180368337019050506002836040516107c89190610a86565b602060405180830381855afa1580156107e3573d5f5f3e3d5ffd5b5050506040513d601f19601f8201168201806040525081019061080691906108ff565b604051602001610817929190610a91565b60405160208183030381529060405261020b90610aaf565b5f6020828403121561083f575f5ffd5b5035919050565b5f5f60408385031215610857575f5ffd5b50508035926020909101359150565b5f5f5f5f5f85870361010081121561087c575f5ffd5b60a0811215610889575f5ffd5b5085945060a0850135935060c0850135925060e085013567ffffffffffffffff8111156108b4575f5ffd5b8601601f810188136108c4575f5ffd5b803567ffffffffffffffff8111156108da575f5ffd5b8860208260051b84010111156108ee575f5ffd5b959894975092955050506020019190565b5f6020828403121561090f575f5ffd5b5051919050565b80356001600160a01b038116811461092c575f5ffd5b919050565b5f60208284031215610941575f5ffd5b61020882610916565b8082018082111561020b57634e487b7160e01b5f52601160045260245ffd5b6040516060810167ffffffffffffffff8111828210171561099857634e487b7160e01b5f52604160045260245ffd5b60405290565b6040805190810167ffffffffffffffff8111828210171561099857634e487b7160e01b5f52604160045260245ffd5b5f81830360a0811280156109df575f5ffd5b506109e8610969565b60408212156109f5575f5ffd5b6109fd61099e565b843581526020808601359082015281526040603f1983011215610a1e575f5ffd5b610a2661099e565b9150610a3460408501610916565b82526060840135602080840191909152810191909152608090920135604083015250919050565b634e487b7160e01b5f52603260045260245ffd5b5f81518060208401855e5f93019283525090919050565b5f6102088284610a6f565b5f610a9c8285610a6f565b60ff199390931683525050601f01919050565b80516020808301519190811015610acf575f198160200360031b1b821691505b5091905056fea2646970667358221220197fd3a9fb1a0256994492f1f3c0d2e7ed8f2a83360a36431806c733206e27d564736f6c634300081e0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000603bb2c05d474794ea97805e8de69bccfb3bca120000000000000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : _rollup (address): 0x603bb2c05D474794ea97805e8De69bCcFb3bCA12
Arg [1] : _version (uint256): 0
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000603bb2c05d474794ea97805e8de69bccfb3bca12
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 33 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.