Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 25 from a total of 83 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Withdraw | 23576015 | 17 hrs ago | IN | 0 ETH | 0.00045231 | ||||
Withdraw | 23558493 | 3 days ago | IN | 0 ETH | 0.00015276 | ||||
Withdraw | 23557269 | 3 days ago | IN | 0 ETH | 0.00063639 | ||||
Withdraw | 23551108 | 4 days ago | IN | 0 ETH | 0.00667429 | ||||
Withdraw | 23549021 | 4 days ago | IN | 0 ETH | 0.00104406 | ||||
Deposit | 23538503 | 5 days ago | IN | 0 ETH | 0.00009068 | ||||
Deposit | 23536072 | 6 days ago | IN | 0 ETH | 0.00012624 | ||||
Withdraw | 23534895 | 6 days ago | IN | 0 ETH | 0.00039763 | ||||
Deposit | 23531611 | 6 days ago | IN | 0 ETH | 0.00009095 | ||||
Deposit | 23531163 | 6 days ago | IN | 0 ETH | 0.00011311 | ||||
Deposit | 23522233 | 8 days ago | IN | 0 ETH | 0.00014903 | ||||
Withdraw | 23518476 | 8 days ago | IN | 0 ETH | 0.00119576 | ||||
Withdraw | 23518473 | 8 days ago | IN | 0 ETH | 0.00093651 | ||||
Deposit | 23512383 | 9 days ago | IN | 0 ETH | 0.00014971 | ||||
Deposit | 23511250 | 9 days ago | IN | 0 ETH | 0.00011782 | ||||
Deposit | 23510337 | 9 days ago | IN | 0 ETH | 0.00014034 | ||||
Deposit | 23505146 | 10 days ago | IN | 0 ETH | 0.00021007 | ||||
Deposit | 23504146 | 10 days ago | IN | 0 ETH | 0.00011345 | ||||
Withdraw | 23498497 | 11 days ago | IN | 0 ETH | 0.00369519 | ||||
Deposit | 23495955 | 11 days ago | IN | 0 ETH | 0.00011926 | ||||
Deposit | 23495352 | 11 days ago | IN | 0 ETH | 0.00010832 | ||||
Deposit | 23495294 | 11 days ago | IN | 0 ETH | 0.00009396 | ||||
Withdraw | 23472559 | 15 days ago | IN | 0 ETH | 0.00025551 | ||||
Withdraw | 23450381 | 18 days ago | IN | 0 ETH | 0.00012256 | ||||
Withdraw | 23447053 | 18 days ago | IN | 0 ETH | 0.00034711 |
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Method | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|---|
0x6100553d | 23276530 | 42 days ago | Contract Creation | 0 ETH |
Cross-Chain Transactions
Loading...
Loading
Minimal Proxy Contract for 0x74d8dd40118b13b210d0a1639141ce4458cae0c0
Contract Name:
RewardVault
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {IERC20, IERC20Metadata} from "@openzeppelin/contracts/interfaces/IERC4626.sol"; import {IStrategy} from "src/interfaces/IStrategy.sol"; import {IAllocator} from "src/interfaces/IAllocator.sol"; import {IAccountant} from "src/interfaces/IAccountant.sol"; import {IRewardVault} from "src/interfaces/IRewardVault.sol"; import {IProtocolController} from "src/interfaces/IProtocolController.sol"; import {ImmutableArgsParser} from "src/libraries/ImmutableArgsParser.sol"; /// @title RewardVault. /// @author Stake DAO /// @custom:github @stake-dao /// @custom:contact [email protected] /// @notice RewardVault is the user-facing ERC4626 vault for yield aggregation, serving as the entry point /// for users to deposit LP tokens and earn rewards. It manages extra reward tokens from gauges /// (e.g., LDO, BAL) while main protocol rewards (CRV) are handled by the Accountant. The vault /// routes deposits and withdrawals through the Strategy and Allocator, maintaining full ERC4626 /// compliance for composability. contract RewardVault is IRewardVault, ERC20 { using Math for uint256; using SafeCast for uint256; using SafeERC20 for IERC20; using ImmutableArgsParser for address; /////////////////////////////////////////////////////////////// // --- EVENTS /////////////////////////////////////////////////////////////// /// @notice Emitted when a new reward token is added to the vault /// @param rewardToken The address of the reward token being added /// @param distributor The authorized address that can distribute this reward event RewardTokenAdded(address indexed rewardToken, address indexed distributor); /// @notice Emitted when new rewards are deposited for distribution /// @param rewardToken The token being distributed as rewards /// @param amount The total amount of rewards being added /// @param rewardRate The calculated rate at which rewards will be distributed (tokens/second) event RewardsDeposited(address indexed rewardToken, uint256 amount, uint128 rewardRate); /// @notice Emitted when the vault resumes operations event OperationsResumed(); /////////////////////////////////////////////////////////////// // --- ERRORS /////////////////////////////////////////////////////////////// /// @notice Thrown when an operation is attempted by an unauthorized caller error NotApproved(); /// @notice Thrown when a zero address is provided where a valid address is required error ZeroAddress(); /// @notice Thrown when a function is called by an address not in the allowed list error OnlyAllowed(); /// @notice Thrown when a function is called by an address that isn't a registrar error OnlyRegistrar(); /// @notice Thrown when a function is called by an address that isn't the protocol controller error OnlyProtocolController(); /// @notice Thrown when a protocol ID is zero error InvalidProtocolId(); /// @notice Thrown when attempting to allocate assets to an unapproved target error TargetNotApproved(); /// @notice Thrown when attempting to interact with an unregistered reward token error InvalidRewardToken(); /// @notice Thrown when attempting to add a reward token that's already registered error RewardAlreadyExists(); /// @notice Thrown when an unauthorized address attempts to distribute rewards error UnauthorizedRewardsDistributor(); /////////////////////////////////////////////////////////////// // --- CONSTANTS & IMMUTABLES /////////////////////////////////////////////////////////////// /// @notice Default duration for reward distribution periods uint32 public constant DEFAULT_REWARDS_DURATION = 7 days; /// @notice Protocol identifier (e.g., bytes4(keccak256("CURVE"))) bytes4 public immutable PROTOCOL_ID; /// @notice Accountant tracks user balances and main protocol rewards IAccountant public immutable ACCOUNTANT; /// @notice Central registry for strategies, allocators, and permissions IProtocolController public immutable PROTOCOL_CONTROLLER; /// @notice Determines reward claiming behavior during user actions /// @dev HARVEST = claim on every action, CHECKPOINT = accumulate until manual harvest IStrategy.HarvestPolicy public immutable POLICY; /////////////////////////////////////////////////////////////// // --- STORAGE STRUCTURES /////////////////////////////////////////////////////////////// /// @notice Tracks distribution parameters for each extra reward token /// @dev Packed into 2 storage slots for gas efficiency struct RewardData { // Slot 1 address rewardsDistributor; // Who can add rewards for this token uint32 lastUpdateTime; // Last time rewardPerTokenStored was updated uint32 periodFinish; // When current reward period ends // Slot 2 uint128 rewardRate; // Tokens distributed per second uint128 rewardPerTokenStored; // Cumulative rewards per vault token (scaled by 1e18) } /// @notice Tracks user's reward state for each reward token /// @dev Packed into 1 storage slot struct AccountData { uint128 rewardPerTokenPaid; // User's last synced rewardPerTokenStored uint128 claimable; // Rewards ready to claim } /////////////////////////////////////////////////////////////// // --- STATE VARIABLES /////////////////////////////////////////////////////////////// /// @notice List of extra reward tokens this vault distributes address[] internal rewardTokens; /// @notice Distribution parameters for each reward token mapping(address rewardToken => RewardData rewardData) public rewardData; /// @notice User reward accounting per token mapping(address account => mapping(address rewardToken => AccountData accountData)) public accountData; /////////////////////////////////////////////////////////////// // --- MODIFIERS /////////////////////////////////////////////////////////////// /// @notice Restricts functions to the protocol controller modifier onlyProtocolController() { require(msg.sender == address(PROTOCOL_CONTROLLER), OnlyProtocolController()); _; } /// @notice Restricts functions to addresses with specific permissions modifier onlyAllowed() { require(PROTOCOL_CONTROLLER.allowed(address(this), msg.sender, msg.sig), OnlyAllowed()); _; } /// @notice Restricts functions to authorized vault deployers modifier onlyRegistrar() { require(PROTOCOL_CONTROLLER.isRegistrar(msg.sender), OnlyRegistrar()); _; } /// @notice Initializes the vault with basic ERC20 metadata /// @dev Sets up the vault with a standard name and symbol prefix /// @param protocolId The protocol ID. /// @param protocolController The protocol controller address /// @param accountant The accountant address /// @param policy The harvest policy. /// @custom:reverts ZeroAddress if the accountant or protocol controller address is the zero address. constructor(bytes4 protocolId, address protocolController, address accountant, IStrategy.HarvestPolicy policy) ERC20("", "") { require(accountant != address(0) && protocolController != address(0), ZeroAddress()); require(protocolId != bytes4(0), InvalidProtocolId()); PROTOCOL_ID = protocolId; ACCOUNTANT = IAccountant(accountant); PROTOCOL_CONTROLLER = IProtocolController(protocolController); POLICY = policy; } /////////////////////////////////////////////////////////////// // --- DEPOSIT & MINT - PUBLIC /////////////////////////////////////////////////////////////// function deposit(uint256 assets, address receiver) external returns (uint256) { return deposit(assets, receiver, address(0)); } /// @notice Deposits LP tokens and mints vault shares /// @dev Allocator determines where to send the LP tokens (locker, sidecar, etc.) /// @param assets Amount of LP tokens to deposit /// @param receiver Address to receive vault shares (defaults to msg.sender if zero) /// @param referrer Optional referrer for tracking (emitted in Accountant event) /// @return _ Amount deposited (always equals assets due to 1:1 ratio) function deposit(uint256 assets, address receiver, address referrer) public returns (uint256) { if (receiver == address(0)) receiver = msg.sender; _deposit(msg.sender, receiver, assets, assets, referrer); return assets; } /// @notice Mints exact `shares` to `receiver` by depositing assets. /// @dev Due to the 1:1 relationship between the assets and the shares, /// the mint function is a wrapper of the deposit function. /// @param shares The amount of shares to mint. /// @param receiver The address to receive the minted shares. /// @param referrer The address of the referrer. Can be the zero address. /// @return _ The amount of shares minted. function mint(uint256 shares, address receiver, address referrer) external returns (uint256) { return deposit(shares, receiver, referrer); } /// @notice Mints exact `shares` to `receiver` by depositing assets. /// @dev Due to the 1:1 relationship between the assets and the shares, /// the mint function is a wrapper of the deposit function. /// @param shares The amount of shares to mint. /// @param receiver The address to receive the minted shares. /// @return _ The amount of shares minted. function mint(uint256 shares, address receiver) external returns (uint256) { return deposit(shares, receiver, address(0)); } /////////////////////////////////////////////////////////////// // --- DEPOSIT & MINT - PERMISSIONED /////////////////////////////////////////////////////////////// /// @notice Deposits `assets` from `account` into the vault and mints shares to `account`. /// @dev Only callable by allowed addresses. `account` should have approved this contract to transfer `assets`. /// This function tracks the referrer address and handles deposit allocation through strategy and updates rewards. /// @param account The address to deposit assets from and mint shares to. /// @param receiver The address to receive the minted shares. /// @param assets The amount of assets to deposit. /// @param referrer The address of the referrer. Can be the zero address. /// @return _ The amount of assets deposited. /// @custom:reverts ZeroAddress if the account or receiver address is the zero address. function deposit(address account, address receiver, uint256 assets, address referrer) public onlyAllowed returns (uint256) { require(account != address(0) && receiver != address(0), ZeroAddress()); _deposit(account, receiver, assets, assets, referrer); // return the amount of assets deposited. Thanks to the 1:1 relationship between assets and shares // the amount of assets deposited is the same as the amount of shares minted return assets; } /////////////////////////////////////////////////////////////// /// ~ DEPOSIT - INTERNAL /////////////////////////////////////////////////////////////// /// @dev Internal function to deposit assets into the vault. /// 1. Update the reward state for the receiver. /// 2. Get the deposit allocation. /// 3. Transfer assets to the targets. /// 4. Trigger deposit on the strategy. /// 5. Mint shares (accountant checkpoint). /// 6. Emit Deposit event. /// @param account The address of the account to deposit assets from. /// @param receiver The address to receive the minted shares. /// @param assets The amount of assets to deposit. /// @param shares The amount of shares to mint. /// @param referrer The address of the referrer. Can be the zero address. function _deposit(address account, address receiver, uint256 assets, uint256 shares, address referrer) internal { _deposit(account, receiver, assets, shares, referrer, false); } /// @dev Internal function to deposit assets into the vault with transfer mode option. /// @param account The address of the account to deposit assets from. /// @param receiver The address to receive the minted shares. /// @param assets The amount of assets to deposit. /// @param shares The amount of shares to mint. /// @param referrer The address of the referrer. Can be the zero address. /// @param useTransfer True to use safeTransfer (for resumeVault), false for safeTransferFrom function _deposit( address account, address receiver, uint256 assets, uint256 shares, address referrer, bool useTransfer ) internal { // 1. Update extra reward state before balance changes if (receiver != address(0)) { _checkpoint(receiver, address(0)); } // Allocate funds to targets and deposit through strategy IStrategy.PendingRewards memory pendingRewards = _allocateFunds(account, assets, useTransfer); // Update Accountant balances and mint shares _mint(receiver, shares, pendingRewards, POLICY, referrer); emit Deposit(msg.sender, receiver, assets, shares); } /// @dev Allocates funds to targets and deposits through strategy /// @param from Source of assets (user address or address(this) for resumeVault) /// @param assets Amount to allocate /// @param useTransfer True to use safeTransfer (resumeVault), false for safeTransferFrom (deposits) /// @return pendingRewards Rewards harvested during deposit function _allocateFunds(address from, uint256 assets, bool useTransfer) internal returns (IStrategy.PendingRewards memory pendingRewards) { // Ask allocator where to send the LP tokens (e.g., 70% locker, 30% Convex) IAllocator.Allocation memory allocation = allocator().getDepositAllocation(asset(), gauge(), assets); // Transfer LP tokens directly to allocation targets (bypasses vault) IERC20 _asset = IERC20(asset()); for (uint256 i; i < allocation.targets.length; i++) { if (allocation.amounts[i] == 0) continue; require(PROTOCOL_CONTROLLER.isValidAllocationTarget(gauge(), allocation.targets[i]), TargetNotApproved()); if (useTransfer) { SafeERC20.safeTransfer(_asset, allocation.targets[i], allocation.amounts[i]); } else { SafeERC20.safeTransferFrom(_asset, from, allocation.targets[i], allocation.amounts[i]); } } // Strategy deposits into gauge/sidecar and may harvest if HARVEST policy return strategy().deposit(allocation, POLICY); } /////////////////////////////////////////////////////////////// // --- EXTERNAL/PUBLIC USER-FACING - WITHDRAW & REDEEM /////////////////////////////////////////////////////////////// /// @notice Burns vault shares and returns LP tokens to receiver /// @dev Strategy handles withdrawing from gauge and sending tokens to receiver /// @param assets Amount of LP tokens to withdraw /// @param receiver Address to receive LP tokens (defaults to msg.sender if zero) /// @param owner Address whose shares will be burned /// @return _ Amount withdrawn (always equals assets due to 1:1 ratio) /// @custom:reverts NotApproved if caller lacks sufficient allowance function withdraw(uint256 assets, address receiver, address owner) public returns (uint256) { if (receiver == address(0)) receiver = msg.sender; // if the caller isn't the owner, check if the caller is allowed to withdraw the amount of assets if (msg.sender != owner) { uint256 allowed = allowance(owner, msg.sender); require(assets <= allowed, NotApproved()); if (allowed != type(uint256).max) _spendAllowance(owner, msg.sender, assets); } _withdraw(owner, receiver, assets, assets); // return the amount of assets withdrawn. Thanks to the 1:1 relationship between assets and shares // the amount of assets withdrawn is the same as the amount of shares burned return assets; } /// @notice Redeems `shares` from `owner` and sends assets to `receiver`. /// @dev Checks allowances and calls strategy withdrawal logic. Due to the 1:1 /// relationship of the assets and the shares, the redeem function is a /// wrapper of the withdraw function. /// @param shares The amount of shares to redeem. /// @param receiver The address to receive the assets. /// @param owner The address to burn shares from. /// @return _ The amount of shares burned. function redeem(uint256 shares, address receiver, address owner) external returns (uint256) { return withdraw(shares, receiver, owner); } /// @dev Internal function to withdraw assets from the vault. function _withdraw(address owner, address receiver, uint256 assets, uint256 shares) internal { // Update the reward state for the owner. _checkpoint(owner, address(0)); // Get the address of the allocator contract from the protocol controller // then fetch the withdrawal allocation from the allocator IAllocator.Allocation memory allocation = allocator().getWithdrawalAllocation(asset(), gauge(), assets); // Get the address of the strategy contract from the protocol controller // then process the withdrawal of the allocation IStrategy.PendingRewards memory pendingRewards = strategy().withdraw(allocation, POLICY, receiver); // Burn the shares by calling the endpoint function of the accountant contract _burn(owner, shares, pendingRewards, POLICY); /// @dev If the gauge is shutdown, funds will sit here pending recovery /// @dev Recovery mechanism: users can withdraw directly from vault if (PROTOCOL_CONTROLLER.isShutdown(gauge())) { // Transfer the assets to the receiver. The 1:1 relationship between assets and shares is maintained. SafeERC20.safeTransfer(IERC20(asset()), receiver, shares); } emit Withdraw(msg.sender, receiver, owner, assets, shares); } /////////////////////////////////////////////////////////////// // --- EMERGENCY - /////////////////////////////////////////////////////////////// /// @notice Resumes the vault operations /// @dev Only callable by the protocol controller /// @custom:reverts OnlyProtocolController if caller is not the protocol controller function resumeVault() external onlyProtocolController { uint256 assets = _safeTotalSupply(); // If there are no assets in the vault, we don't need to do anything if (assets == 0) { emit OperationsResumed(); return; } // Use internal deposit function with vault as both source and receiver // No new shares are minted (amount = 0) since we're just re-depositing existing assets _deposit({ account: address(0), receiver: address(0), assets: assets, shares: 0, referrer: address(0), useTransfer: true }); emit OperationsResumed(); } /////////////////////////////////////////////////////////////// // --- EXTERNAL/PUBLIC USER-FACING - REWARDS /////////////////////////////////////////////////////////////// /// @notice Claims rewards for multiple tokens in a single transaction /// @dev Updates reward state and transfers claimed rewards to the receiver /// @param tokens Array of reward token addresses to claim /// @param receiver Address to receive the claimed rewards (defaults to msg.sender if zero) /// @return amounts Array of amounts claimed for each token, in the same order as input tokens function claim(address[] calldata tokens, address receiver) public returns (uint256[] memory amounts) { return _claim(msg.sender, tokens, receiver); } /// @notice Claims rewards on behalf of another account (requires authorization) /// @dev Only callable by addresses allowed by the protocol controller /// @param account Address to claim rewards for /// @param tokens Array of reward token addresses to claim /// @param receiver Address to receive the claimed rewards /// @return amounts Array of amounts claimed for each token /// @custom:reverts OnlyAllowed if caller is not authorized function claim(address account, address[] calldata tokens, address receiver) public onlyAllowed returns (uint256[] memory amounts) { return _claim(account, tokens, receiver); } /// @dev Core reward claiming implementation /// @param account Account whose rewards are being claimed /// @param tokens Array of reward tokens to process /// @param receiver Destination for the claimed rewards /// @return amounts Array of claimed amounts per token /// @custom:reverts InvalidRewardToken if any token is not registered function _claim(address account, address[] calldata tokens, address receiver) internal returns (uint256[] memory amounts) { if (receiver == address(0)) receiver = account; // Update all reward states before processing claims _checkpoint(account, address(0)); amounts = new uint256[](tokens.length); for (uint256 i; i < tokens.length; i++) { address rewardToken = tokens[i]; require(isRewardToken(rewardToken), InvalidRewardToken()); // Calculate earned rewards since last claim AccountData storage accountData_ = accountData[account][rewardToken]; uint256 accountEarned = accountData_.claimable; if (accountEarned == 0) continue; // Reset claimable amount accountData_.claimable = 0; // Transfer earned rewards to receiver SafeERC20.safeTransfer(IERC20(rewardToken), receiver, accountEarned); amounts[i] = accountEarned; } return amounts; } /// @notice Registers a new extra reward token for this vault /// @dev Called by factory during vault deployment to setup gauge rewards /// @param rewardToken Address of the extra reward token (e.g., LDO, BAL) /// @param distributor Address that receives and distributes these rewards /// @custom:reverts OnlyRegistrar if caller is not a registrar /// @custom:reverts ZeroAddress if distributor is zero address /// @custom:reverts RewardAlreadyExists if token is already registered function addRewardToken(address rewardToken, address distributor) external onlyRegistrar { require(distributor != address(0), ZeroAddress()); RewardData storage reward = rewardData[rewardToken]; require(!_isRewardToken(reward), RewardAlreadyExists()); rewardTokens.push(rewardToken); reward.rewardsDistributor = distributor; emit RewardTokenAdded(rewardToken, distributor); } /// @notice Deposits rewards for linear distribution over 7 days /// @dev Automatically handles rollover of undistributed rewards /// @param rewardToken Token to distribute (must be pre-registered) /// @param amount Amount to distribute over the next period /// @custom:reverts UnauthorizedRewardsDistributor if caller isn't the distributor function depositRewards(address rewardToken, uint128 amount) external { // Ensure all reward states are current _checkpoint(address(0), address(0)); RewardData storage reward = rewardData[rewardToken]; require(reward.rewardsDistributor == msg.sender, UnauthorizedRewardsDistributor()); uint32 currentTime = uint32(block.timestamp); uint32 periodFinish = reward.periodFinish; uint128 newRewardRate; // Calculate new reward rate, accounting for any remaining rewards if (currentTime >= periodFinish) { newRewardRate = Math.mulDiv(amount, 1e18, DEFAULT_REWARDS_DURATION).toUint128(); } else { uint32 remainingTime = periodFinish - currentTime; uint256 remainingRewardsUnscaled = Math.mulDiv(reward.rewardRate, remainingTime, 1e18); newRewardRate = Math.mulDiv(amount + remainingRewardsUnscaled, 1e18, DEFAULT_REWARDS_DURATION).toUint128(); } // Update reward distribution state reward.lastUpdateTime = currentTime; reward.periodFinish = currentTime + DEFAULT_REWARDS_DURATION; reward.rewardRate = newRewardRate; // Transfer rewards to vault IERC20(rewardToken).safeTransferFrom(msg.sender, address(this), amount); emit RewardsDeposited(rewardToken, amount, newRewardRate); } /// @notice Manually updates reward accounting for an account /// @param account Account to update rewards for function checkpoint(address account) external { _checkpoint(account, address(0)); } /////////////////////////////////////////////////////////////// // --- INTERNAL REWARD UPDATES & HELPERS ~ /////////////////////////////////////////////////////////////// /// @notice Syncs extra reward accounting for affected accounts /// @dev Called before any balance change to ensure accurate reward distribution /// @param _from Account losing balance (address(0) to skip) /// @param _to Account gaining balance (address(0) to skip) function _checkpoint(address _from, address _to) internal { uint256 len = rewardTokens.length; for (uint256 i; i < len; i++) { address token = rewardTokens[i]; uint128 newRewardPerToken = _updateRewardToken(token); if (_from != address(0)) { _updateAccountData(_from, token, newRewardPerToken); } if (_to != address(0)) { _updateAccountData(_to, token, newRewardPerToken); } } } /// @notice Updates the reward state for a specific token /// @dev Calculates and stores new reward per token value /// @param token The reward token to update /// @return newRewardPerToken The newly calculated reward per token value function _updateRewardToken(address token) internal returns (uint128 newRewardPerToken) { RewardData storage reward = rewardData[token]; newRewardPerToken = _rewardPerToken(reward); reward.lastUpdateTime = _lastTimeRewardApplicable(reward.periodFinish); reward.rewardPerTokenStored = newRewardPerToken; } /// @notice Updates an account's reward data for a specific token /// @dev Calculates and stores earned rewards since last update /// @param account The account to update /// @param token The reward token to process /// @param newRewardPerToken Current reward per token value function _updateAccountData(address account, address token, uint128 newRewardPerToken) internal { AccountData storage accountData_ = accountData[account][token]; accountData_.claimable = _earned(account, token, accountData_.claimable, accountData_.rewardPerTokenPaid); accountData_.rewardPerTokenPaid = newRewardPerToken; } /// @notice Checks if a reward token is properly registered /// @dev A token is considered registered if it has a non-zero distributor /// @param reward Storage pointer to the reward data /// @return True if the reward token is registered function _isRewardToken(RewardData storage reward) internal view returns (bool) { return reward.rewardsDistributor != address(0); } /// @notice Calculates the latest timestamp for reward distribution /// @dev Returns the earlier of current time or period finish /// @param periodFinish The timestamp when the reward period ends /// @return The latest timestamp for reward calculations function _lastTimeRewardApplicable(uint32 periodFinish) internal view returns (uint32) { return Math.min(block.timestamp, periodFinish).toUint32(); } /// @notice Calculates the current reward per token value /// @dev Accounts for time elapsed and total supply /// @param reward Storage pointer to the reward data /// @return Current reward per token, scaled by 1e18 function _rewardPerToken(RewardData storage reward) internal view returns (uint128) { uint128 _totalSupply = _safeTotalSupply(); if (_totalSupply == 0) return reward.rewardPerTokenStored; uint256 timeDelta = _lastTimeRewardApplicable(reward.periodFinish) - reward.lastUpdateTime; uint256 rewardRatePerToken = 0; if (timeDelta > 0) { // Calculate additional rewards per token since last update rewardRatePerToken = Math.mulDiv(timeDelta, reward.rewardRate, _totalSupply); } return (reward.rewardPerTokenStored + rewardRatePerToken).toUint128(); } /// @notice Calculates earned rewards for an account /// @dev Includes both stored claimable amount and newly earned rewards /// @param account The account to calculate rewards for /// @param token The reward token to calculate /// @param userClaimable Previously stored claimable amount /// @param userRewardPerTokenPaid Last checkpoint of reward per token for user /// @return Total earned rewards as uint128 function _earned(address account, address token, uint128 userClaimable, uint128 userRewardPerTokenPaid) internal view returns (uint128) { uint128 newEarned = balanceOf(account).mulDiv(rewardPerToken(token) - userRewardPerTokenPaid, 1e18).toUint128(); return userClaimable + newEarned; } /////////////////////////////////////////////////////////////// // --- VIEW / PURE METHODS ~ /////////////////////////////////////////////////////////////// /// @notice Checks if a reward token exists. /// @dev The check is based on the assumption that the distributor is always set for a /// active address and it can not be zero. /// @param rewardToken The address of the reward token to check. /// @return _ True if the reward token exists, false otherwise. function isRewardToken(address rewardToken) public view returns (bool) { RewardData storage reward = rewardData[rewardToken]; return _isRewardToken(reward); } /// @notice Returns the address of the underlying token. /// @dev Retrieves the token address from the clone's immutable args. /// @return _ The address of the underlying token used by the vault. function asset() public view returns (address) { return address(this).readAddress(20); } /// @notice Returns the total amount of underlying assets (1:1 with total shares). /// @dev Due to the 1:1 relationship between assets and shares, the total assets /// is the same as the total supply. /// @return _ The total amount of underlying assets. function totalAssets() external view returns (uint256) { return totalSupply(); } /// @notice Converts a given number of assets to the equivalent amount of shares (1:1). /// @dev Due to the 1:1 relationship between assets and shares, the conversion is the same. /// @param assets The amount of assets to convert to shares. /// @return _ The amount of shares that would be received for the given amount of assets. /// Basically the same value as the assets parameter. function convertToShares(uint256 assets) external pure returns (uint256) { return assets; } /// @notice Converts a given number of shares to the equivalent amount of assets (1:1). /// @dev Due to the 1:1 relationship between assets and shares, the conversion is the same. /// @param shares The amount of shares to convert to assets. /// @return _ The amount of assets that would be received for the given amount of shares. /// Basically the same value as the shares parameter. function convertToAssets(uint256 shares) external pure returns (uint256) { return shares; } /// @notice Returns the amount of assets that would be received for a given amount of shares. /// @dev Due to the 1:1 relationship between assets and shares, the amount of assets /// received is the same as the amount of shares deposited. /// @param shares The amount of shares to deposit. /// @return _ The amount of assets that would be received for the given amount of shares. /// Basically the same value as the shares parameter. function previewDeposit(uint256 shares) external pure returns (uint256) { return shares; } /// @notice Returns the amount of shares that would be received for a given amount of assets. /// @dev Due to the 1:1 relationship between assets and shares, the amount of shares /// received is the same as the amount of assets deposited. /// @param assets The amount of assets to mint. /// @return _ The amount of shares that would be received for the given amount of assets. /// Basically the same value as the assets parameter. function previewMint(uint256 assets) external pure returns (uint256) { return assets; } /// @notice Returns the amount of shares that would be received for a given amount of assets. /// @dev Due to the 1:1 relationship between assets and shares, the amount of shares /// received is the same as the amount of assets withdrawn. /// @param assets The amount of assets to withdraw. /// @return _ The amount of shares that would be received for the given amount of assets. /// Basically the same value as the assets parameter. function previewWithdraw(uint256 assets) external pure returns (uint256) { return assets; } /// @notice Returns the amount of assets that would be received for a given amount of shares. /// @dev Due to the 1:1 relationship between assets and shares, the amount of tokens /// received is the same as the amount of shares redeemed. /// @param shares The amount of shares to redeem. /// @return _ The amount of assets that would be received for the given amount of shares. /// Basically the same value as the shares parameter. function previewRedeem(uint256 shares) external pure returns (uint256) { return shares; } /// @notice Returns the maximum amount of assets that can be deposited. /// @dev The parameter is not used and is included to satisfy the interface. Pass whatever you want to. /// @return _ The maximum amount of assets that can be deposited. function maxDeposit(address) public pure returns (uint256) { return type(uint128).max; } /// @notice Returns the maximum amount of shares that can be minted. /// @dev Due to the 1:1 relationship between assets and shares, the max mint /// is the same as the max deposit. /// @param _account The address of the account to calculate the max mint for. /// @return _ The maximum amount of shares that can be minted. function maxMint(address _account) external pure returns (uint256) { return maxDeposit(_account); } /// @notice Returns the maximum amount of assets that can be withdrawn. /// @param owner The address of the owner to calculate the max withdraw for. /// @return _ The maximum amount of assets that can be withdrawn. function maxWithdraw(address owner) public view returns (uint256) { return balanceOf(owner); } /// @notice Returns the maximum amount of shares that can be redeemed. /// @dev Due to the 1:1 relationship between assets and shares, the max redeem /// is the same as the max withdraw. /// @param owner The address of the owner to calculate the max redeem for. /// @return _ The maximum amount of shares that can be redeemed. function maxRedeem(address owner) external view returns (uint256) { return maxWithdraw(owner); } /// @notice Returns the distributor address for a given reward token. /// @param token The address of the reward token to calculate the distributor address for. /// @return _ The distributor address for the given reward token. function getRewardsDistributor(address token) external view returns (address) { return rewardData[token].rewardsDistributor; } /// @notice Returns the last update time for a given reward token. /// @param token The address of the reward token to calculate the last update time for. /// @return _ The last update time for the given reward token. function getLastUpdateTime(address token) external view returns (uint32) { return rewardData[token].lastUpdateTime; } /// @notice Returns the period finish time for a given reward token. /// @param token The address of the reward token to calculate the period finish time for. /// @return _ The period finish time for the given reward token. function getPeriodFinish(address token) external view returns (uint32) { return rewardData[token].periodFinish; } /// @notice Returns the reward rate for a given reward token. /// @param token The address of the reward token to calculate the reward rate for. /// @return _ The reward rate for the given reward token. function getRewardRate(address token) external view returns (uint128) { return rewardData[token].rewardRate; } /// @notice Returns the reward per token stored for a given reward token. /// @param token The address of the reward token to calculate the reward per token stored for. /// @return _ The reward per token stored for the given reward token. function getRewardPerTokenStored(address token) external view returns (uint128) { return rewardData[token].rewardPerTokenStored; } /// @notice Returns the reward per token paid for a given reward token and account. /// @param token The address of the reward token to calculate the reward per token paid for. /// @param account The address of the account to calculate the reward per token paid for. /// @return _ The reward per token paid for the given reward token and account. function getRewardPerTokenPaid(address token, address account) external view returns (uint128) { return accountData[account][token].rewardPerTokenPaid; } /// @notice Returns the claimable amount for a given reward token and account. /// @param token The address of the reward token to calculate the claimable amount for. /// @param account The address of the account to calculate the claimable amount for. /// @return _ The claimable amount for the given reward token and account. function getClaimable(address token, address account) external view returns (uint128) { return accountData[account][token].claimable; } function getRewardTokens() external view returns (address[] memory) { return rewardTokens; } /// @notice Returns the total supply of this vault fetched from the accountant contract. /// @return _ The total supply of this vault. function totalSupply() public view override(ERC20, IERC20) returns (uint256) { return ACCOUNTANT.totalSupply(address(this)); } /// @notice Returns the total supply of the vault safely casted as a uint128. /// @return _ The total supply of the vault safely casted as a uint128. /// @custom:reverts Overflow if the total supply is greater than the maximum value of a uint128. function _safeTotalSupply() internal view returns (uint128) { return totalSupply().toUint128(); } /// @notice Returns the balance of the vault for a given account. /// @param account The address of the account to calculate the balance for. /// @return _ The balance of the vault for the given account. function balanceOf(address account) public view override(ERC20, IERC20) returns (uint256) { return ACCOUNTANT.balanceOf(address(this), account); } /// @notice Returns the last time reward is applicable for a given reward token /// @dev Wrapper around internal _lastTimeRewardApplicable function /// @param token The reward token to check /// @return Latest applicable timestamp for rewards function lastTimeRewardApplicable(address token) external view returns (uint256) { return _lastTimeRewardApplicable(rewardData[token].periodFinish); } /// @notice Returns the reward per token for a given reward token /// @dev Wrapper around internal _rewardPerToken function /// @param token The reward token to calculate for /// @return Current reward per token value function rewardPerToken(address token) public view returns (uint128) { return _rewardPerToken(rewardData[token]); } /// @notice Calculates total earned rewards for an account /// @dev Includes both claimed and pending rewards /// @param account Account to check rewards for /// @param token Reward token to calculate /// @return Total earned rewards function earned(address account, address token) external view returns (uint128) { AccountData storage accountData_ = accountData[account][token]; return _earned(account, token, accountData_.claimable, accountData_.rewardPerTokenPaid); } /////////////////////////////////////////////////////////////// // --- PROTOCOL_CONTROLLER / CLONE ARGUMENT GETTERS ~ /////////////////////////////////////////////////////////////// /// @notice Retrieves the gauge address from clone arguments /// @dev Uses assembly to read from clone initialization data /// @return _gauge The gauge contract address /// @custom:reverts CloneArgsNotFound if clone is incorrectly initialized function gauge() public view returns (address _gauge) { return address(this).readAddress(0); } /// @notice Gets the allocator contract for this protocol type /// @dev Fetches from protocol controller using PROTOCOL_ID /// @return _allocator The allocator contract interface function allocator() public view returns (IAllocator _allocator) { return IAllocator(PROTOCOL_CONTROLLER.allocator(PROTOCOL_ID)); } /// @notice Gets the strategy contract for this protocol type /// @dev Fetches from protocol controller using PROTOCOL_ID /// @return _strategy The strategy contract interface function strategy() public view returns (IStrategy _strategy) { return IStrategy(PROTOCOL_CONTROLLER.strategy(PROTOCOL_ID)); } /////////////////////////////////////////////////////////////// // --- ERC20 OVERRIDES ~ /////////////////////////////////////////////////////////////// /// @notice Handles reward state updates during token transfers /// @dev Updates balances via Accountant and reward states /// @param from Address sending tokens /// @param to Address receiving tokens /// @param amount Number of tokens being transferred function _update(address from, address to, uint256 amount) internal override { // 1. Update Reward State _checkpoint(from, to); /// Get addresses where funds are allocated to. address[] memory targets = allocator().getAllocationTargets(gauge()); /// Create an allocation struct to pass to the strategy. /// We want to withdraw 0, just to get the pending rewards. IAllocator.Allocation memory allocation = IAllocator.Allocation({ asset: asset(), gauge: gauge(), targets: targets, amounts: new uint256[](targets.length) }); /// Checkpoint to get the pending rewards. /// @dev Strategy address used as receiver to avoid zero address validation in some tokens IStrategy.PendingRewards memory pendingRewards = strategy().withdraw(allocation, POLICY, address(strategy())); // 2. Update Balances via Accountant ACCOUNTANT.checkpoint(gauge(), from, to, amount.toUint128(), pendingRewards, POLICY); // 3. Emit Transfer event emit Transfer(from, to, amount); } /// @notice Mints new vault shares /// @dev Updates balances and processes pending rewards /// @param to Recipient of new shares /// @param amount Amount of shares to mint /// @param pendingRewards Rewards to process during mint /// @param policy The harvest policy. /// @param referrer The address of the referrer. Can be the zero address. function _mint( address to, uint256 amount, IStrategy.PendingRewards memory pendingRewards, IStrategy.HarvestPolicy policy, address referrer ) internal { ACCOUNTANT.checkpoint({ gauge: gauge(), from: address(0), to: to, amount: amount.toUint128(), pendingRewards: pendingRewards, policy: policy, referrer: referrer }); emit Transfer(address(0), to, amount); } /// @notice Burns vault shares /// @dev Updates balances and processes pending rewards /// @param from Address to burn shares from /// @param amount Amount of shares to burn /// @param pendingRewards Rewards to process during burn /// @param policy The harvest policy. function _burn( address from, uint256 amount, IStrategy.PendingRewards memory pendingRewards, IStrategy.HarvestPolicy policy ) internal { ACCOUNTANT.checkpoint({ gauge: gauge(), from: from, to: address(0), amount: amount.toUint128(), pendingRewards: pendingRewards, policy: policy }); emit Transfer(from, address(0), amount); } /// @notice Generates the vault's name /// @dev Combines "StakeDAO", underlying asset name, and "Vault" /// @return Full vault name function name() public view override(ERC20, IERC20Metadata) returns (string memory) { return string.concat("Stake DAO ", IERC20Metadata(asset()).name(), " Vault"); } /// @notice Generates the vault's symbol /// @dev Combines "sd-", underlying asset symbol, and "-vault" /// @return Full vault symbol function symbol() public view override(ERC20, IERC20Metadata) returns (string memory) { return string.concat("sd-", IERC20Metadata(asset()).symbol(), "-vault"); } /// @notice Gets the vault's decimal places /// @dev Matches underlying asset decimals /// @return Number of decimal places function decimals() public view override(ERC20, IERC20Metadata) returns (uint8) { return IERC20Metadata(asset()).decimals(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC-20 * applications. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Skips emitting an {Approval} event indicating an allowance update. This is not * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve]. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * * ```solidity * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance < type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4626.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol"; import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol"; /** * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626]. */ interface IERC4626 is IERC20, IERC20Metadata { event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares); event Withdraw( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /** * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing. * * - MUST be an ERC-20 token contract. * - MUST NOT revert. */ function asset() external view returns (address assetTokenAddress); /** * @dev Returns the total amount of the underlying asset that is “managed” by Vault. * * - SHOULD include any compounding that occurs from yield. * - MUST be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT revert. */ function totalAssets() external view returns (uint256 totalManagedAssets); /** * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToShares(uint256 assets) external view returns (uint256 shares); /** * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToAssets(uint256 shares) external view returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver, * through a deposit call. * * - MUST return a limited value if receiver is subject to some deposit limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited. * - MUST NOT revert. */ function maxDeposit(address receiver) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given * current on-chain conditions. * * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit * call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called * in the same transaction. * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the * deposit would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewDeposit(uint256 assets) external view returns (uint256 shares); /** * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * deposit execution, and are accounted for during deposit. * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function deposit(uint256 assets, address receiver) external returns (uint256 shares); /** * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call. * - MUST return a limited value if receiver is subject to some mint limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted. * - MUST NOT revert. */ function maxMint(address receiver) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given * current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call * in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the * same transaction. * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint * would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by minting. */ function previewMint(uint256 shares) external view returns (uint256 assets); /** * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint * execution, and are accounted for during mint. * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function mint(uint256 shares, address receiver) external returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the * Vault, through a withdraw call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST NOT revert. */ function maxWithdraw(address owner) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block, * given current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw * call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if * called * in the same transaction. * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though * the withdrawal would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewWithdraw(uint256 assets) external view returns (uint256 shares); /** * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * withdraw execution, and are accounted for during withdraw. * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares); /** * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault, * through a redeem call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock. * - MUST NOT revert. */ function maxRedeem(address owner) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block, * given current on-chain conditions. * * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call * in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the * same transaction. * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the * redemption would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by redeeming. */ function previewRedeem(uint256 shares) external view returns (uint256 assets); /** * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * redeem execution, and are accounted for during redeem. * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; import "src/interfaces/IAllocator.sol"; interface IStrategy { /// @notice The policy for harvesting rewards. enum HarvestPolicy { CHECKPOINT, HARVEST } struct PendingRewards { uint128 feeSubjectAmount; uint128 totalAmount; } function deposit(IAllocator.Allocation calldata allocation, HarvestPolicy policy) external returns (PendingRewards memory pendingRewards); function withdraw(IAllocator.Allocation calldata allocation, HarvestPolicy policy, address receiver) external returns (PendingRewards memory pendingRewards); function balanceOf(address gauge) external view returns (uint256 balance); function harvest(address gauge, bytes calldata extraData) external returns (PendingRewards memory pendingRewards); function flush() external; function shutdown(address gauge) external; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; interface IAllocator { struct Allocation { address asset; address gauge; address[] targets; uint256[] amounts; } function getDepositAllocation(address asset, address gauge, uint256 amount) external view returns (Allocation memory); function getWithdrawalAllocation(address asset, address gauge, uint256 amount) external view returns (Allocation memory); function getRebalancedAllocation(address asset, address gauge, uint256 amount) external view returns (Allocation memory); function getAllocationTargets(address gauge) external view returns (address[] memory); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.7; import {IStrategy} from "src/interfaces/IStrategy.sol"; interface IAccountant { function checkpoint( address gauge, address from, address to, uint128 amount, IStrategy.PendingRewards calldata pendingRewards, IStrategy.HarvestPolicy policy ) external; function checkpoint( address gauge, address from, address to, uint128 amount, IStrategy.PendingRewards calldata pendingRewards, IStrategy.HarvestPolicy policy, address referrer ) external; function totalSupply(address asset) external view returns (uint128); function balanceOf(address asset, address account) external view returns (uint128); function claim(address[] calldata _gauges, bytes[] calldata harvestData) external; function claim(address[] calldata _gauges, bytes[] calldata harvestData, address receiver) external; function claim(address[] calldata _gauges, address account, bytes[] calldata harvestData, address receiver) external; function claimProtocolFees() external; function harvest(address[] calldata _gauges, bytes[] calldata _harvestData, address _receiver) external; function REWARD_TOKEN() external view returns (address); function getPendingRewards(address vault) external view returns (uint128); function getPendingRewards(address vault, address account) external view returns (uint256); function SCALING_FACTOR() external view returns (uint128); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol"; import {IAccountant} from "src/interfaces/IAccountant.sol"; /// @title IRewardVault /// @notice Interface for the RewardVault contract interface IRewardVault is IERC4626 { function addRewardToken(address rewardsToken, address distributor) external; function depositRewards(address _rewardsToken, uint128 _amount) external; function deposit(uint256 assets, address receiver, address referrer) external returns (uint256 shares); function deposit(address account, address receiver, uint256 assets, address referrer) external returns (uint256 shares); function claim(address[] calldata tokens, address receiver) external returns (uint256[] memory amounts); function claim(address account, address[] calldata tokens, address receiver) external returns (uint256[] memory amounts); function getRewardsDistributor(address token) external view returns (address); function getLastUpdateTime(address token) external view returns (uint32); function getPeriodFinish(address token) external view returns (uint32); function getRewardRate(address token) external view returns (uint128); function getRewardPerTokenStored(address token) external view returns (uint128); function getRewardPerTokenPaid(address token, address account) external view returns (uint128); function getClaimable(address token, address account) external view returns (uint128); function getRewardTokens() external view returns (address[] memory); function lastTimeRewardApplicable(address token) external view returns (uint256); function rewardPerToken(address token) external view returns (uint128); function earned(address account, address token) external view returns (uint128); function isRewardToken(address rewardToken) external view returns (bool); function resumeVault() external; function gauge() external view returns (address); function ACCOUNTANT() external view returns (IAccountant); function checkpoint(address account) external; function PROTOCOL_ID() external view returns (bytes4); }
/// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; interface IProtocolController { function vault(address) external view returns (address); function asset(address) external view returns (address); function rewardReceiver(address) external view returns (address); function allowed(address, address, bytes4 selector) external view returns (bool); function permissionSetters(address) external view returns (bool); function isRegistrar(address) external view returns (bool); function strategy(bytes4 protocolId) external view returns (address); function allocator(bytes4 protocolId) external view returns (address); function accountant(bytes4 protocolId) external view returns (address); function feeReceiver(bytes4 protocolId) external view returns (address); function factory(bytes4 protocolId) external view returns (address); function isPaused(bytes4) external view returns (bool); function isShutdown(address) external view returns (bool); function registerVault(address _gauge, address _vault, address _asset, address _rewardReceiver, bytes4 _protocolId) external; function setValidAllocationTarget(address _gauge, address _target) external; function removeValidAllocationTarget(address _gauge, address _target) external; function isValidAllocationTarget(address _gauge, address _target) external view returns (bool); function shutdown(address _gauge) external; function setPermissionSetter(address _setter, bool _allowed) external; function setPermission(address _contract, address _caller, bytes4 _selector, bool _allowed) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol"; /// @title ImmutableArgsParser /// @notice A library for reading immutable arguments from a clone. library ImmutableArgsParser { /// @dev Safely read an `address` from `clone`'s immutable args at `offset`. function readAddress(address clone, uint256 offset) internal view returns (address result) { bytes memory args = Clones.fetchCloneArgs(clone); assembly { // Load 32 bytes starting at `args + offset + 32`. Then shift right // by 96 bits (12 bytes) so that the address is right‐aligned and // the high bits are cleared. result := shr(96, mload(add(add(args, 0x20), offset))) } } /// @dev Safely read a `uint256` from `clone`'s immutable args at `offset`. function readUint256(address clone, uint256 offset) internal view returns (uint256 result) { bytes memory args = Clones.fetchCloneArgs(clone); assembly { // Load the entire 32‐byte word directly. result := mload(add(add(args, 0x20), offset)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (proxy/Clones.sol) pragma solidity ^0.8.20; import {Create2} from "../utils/Create2.sol"; import {Errors} from "../utils/Errors.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. */ library Clones { error CloneArgumentsTooLong(); /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { return clone(implementation, 0); } /** * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency * to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function clone(address implementation, uint256 value) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } assembly ("memory-safe") { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create(value, 0x09, 0x37) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple times will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { return cloneDeterministic(implementation, salt, 0); } /** * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with * a `value` parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneDeterministic( address implementation, bytes32 salt, uint256 value ) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } assembly ("memory-safe") { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create2(value, 0x09, 0x37, salt) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(add(ptr, 0x38), deployer) mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff) mstore(add(ptr, 0x14), implementation) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73) mstore(add(ptr, 0x58), salt) mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37)) predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } /** * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom * immutable arguments. These are provided through `args` and cannot be changed after deployment. To * access the arguments within the implementation, use {fetchCloneArgs}. * * This function uses the create opcode, which should never revert. */ function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) { return cloneWithImmutableArgs(implementation, args, 0); } /** * @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value` * parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneWithImmutableArgs( address implementation, bytes memory args, uint256 value ) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args); assembly ("memory-safe") { instance := create(value, add(bytecode, 0x20), mload(bytecode)) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation` with custom * immutable arguments. These are provided through `args` and cannot be changed after deployment. To * access the arguments within the implementation, use {fetchCloneArgs}. * * This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same * `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice * at the same address. */ function cloneDeterministicWithImmutableArgs( address implementation, bytes memory args, bytes32 salt ) internal returns (address instance) { return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0); } /** * @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs], * but with a `value` parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneDeterministicWithImmutableArgs( address implementation, bytes memory args, bytes32 salt, uint256 value ) internal returns (address instance) { bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args); return Create2.deploy(value, salt, bytecode); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}. */ function predictDeterministicAddressWithImmutableArgs( address implementation, bytes memory args, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args); return Create2.computeAddress(salt, keccak256(bytecode), deployer); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}. */ function predictDeterministicAddressWithImmutableArgs( address implementation, bytes memory args, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this)); } /** * @dev Get the immutable args attached to a clone. * * - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this * function will return an empty array. * - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or * `cloneDeterministicWithImmutableArgs`, this function will return the args array used at * creation. * - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This * function should only be used to check addresses that are known to be clones. */ function fetchCloneArgs(address instance) internal view returns (bytes memory) { bytes memory result = new bytes(instance.code.length - 45); // revert if length is too short assembly ("memory-safe") { extcodecopy(instance, add(result, 32), 45, mload(result)) } return result; } /** * @dev Helper that prepares the initcode of the proxy with immutable args. * * An assembly variant of this function requires copying the `args` array, which can be efficiently done using * `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using * abi.encodePacked is more expensive but also more portable and easier to review. * * NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes. * With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes. */ function _cloneCodeWithImmutableArgs( address implementation, bytes memory args ) private pure returns (bytes memory) { if (args.length > 24531) revert CloneArgumentsTooLong(); return abi.encodePacked( hex"61", uint16(args.length + 45), hex"3d81600a3d39f3363d3d373d3d3d363d73", implementation, hex"5af43d82803e903d91602b57fd5bf3", args ); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer. * `CREATE2` can be used to compute in advance the address where a smart * contract will be deployed, which allows for interesting new mechanisms known * as 'counterfactual interactions'. * * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more * information. */ library Create2 { /** * @dev There's no code to deploy. */ error Create2EmptyBytecode(); /** * @dev Deploys a contract using `CREATE2`. The address where the contract * will be deployed can be known in advance via {computeAddress}. * * The bytecode for a contract can be obtained from Solidity with * `type(contractName).creationCode`. * * Requirements: * * - `bytecode` must not be empty. * - `salt` must have not been used for `bytecode` already. * - the factory must have a balance of at least `amount`. * - if `amount` is non-zero, `bytecode` must have a `payable` constructor. */ function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } if (bytecode.length == 0) { revert Create2EmptyBytecode(); } assembly ("memory-safe") { addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt) // if no address was created, and returndata is not empty, bubble revert if and(iszero(addr), not(iszero(returndatasize()))) { let p := mload(0x40) returndatacopy(p, 0, returndatasize()) revert(p, returndatasize()) } } if (addr == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the * `bytecodeHash` or `salt` will result in a new destination address. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) { return computeAddress(salt, bytecodeHash, address(this)); } /** * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) { assembly ("memory-safe") { let ptr := mload(0x40) // Get free memory pointer // | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... | // |-------------------|---------------------------------------------------------------------------| // | bytecodeHash | CCCCCCCCCCCCC...CC | // | salt | BBBBBBBBBBBBB...BB | // | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA | // | 0xFF | FF | // |-------------------|---------------------------------------------------------------------------| // | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC | // | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ | mstore(add(ptr, 0x40), bytecodeHash) mstore(add(ptr, 0x20), salt) mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff mstore8(start, 0xff) addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
{ "remappings": [ "forge-std/=node_modules/forge-std/", "shared/=node_modules/@stake-dao/shared/", "layerzerolabs/oft-evm/=node_modules/@layerzerolabs/oft-evm/", "@safe/=node_modules/@safe-global/safe-smart-account/", "@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/", "@interfaces/=node_modules/@stake-dao/interfaces/src/interfaces/", "@address-book/=node_modules/@stake-dao/address-book/", "@layerzerolabs/=node_modules/@layerzerolabs/", "@safe-global/=node_modules/@safe-global/", "@solady/=node_modules/@solady/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false }
Contract ABI
API[{"inputs":[{"internalType":"bytes4","name":"protocolId","type":"bytes4"},{"internalType":"address","name":"protocolController","type":"address"},{"internalType":"address","name":"accountant","type":"address"},{"internalType":"enum IStrategy.HarvestPolicy","name":"policy","type":"uint8"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"InvalidProtocolId","type":"error"},{"inputs":[],"name":"InvalidRewardToken","type":"error"},{"inputs":[],"name":"NotApproved","type":"error"},{"inputs":[],"name":"OnlyAllowed","type":"error"},{"inputs":[],"name":"OnlyProtocolController","type":"error"},{"inputs":[],"name":"OnlyRegistrar","type":"error"},{"inputs":[],"name":"RewardAlreadyExists","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"TargetNotApproved","type":"error"},{"inputs":[],"name":"UnauthorizedRewardsDistributor","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[],"name":"OperationsResumed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"rewardToken","type":"address"},{"indexed":true,"internalType":"address","name":"distributor","type":"address"}],"name":"RewardTokenAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"rewardToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint128","name":"rewardRate","type":"uint128"}],"name":"RewardsDeposited","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"ACCOUNTANT","outputs":[{"internalType":"contract IAccountant","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_REWARDS_DURATION","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"POLICY","outputs":[{"internalType":"enum IStrategy.HarvestPolicy","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PROTOCOL_CONTROLLER","outputs":[{"internalType":"contract IProtocolController","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PROTOCOL_ID","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"rewardToken","type":"address"}],"name":"accountData","outputs":[{"internalType":"uint128","name":"rewardPerTokenPaid","type":"uint128"},{"internalType":"uint128","name":"claimable","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"rewardToken","type":"address"},{"internalType":"address","name":"distributor","type":"address"}],"name":"addRewardToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"allocator","outputs":[{"internalType":"contract IAllocator","name":"_allocator","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"checkpoint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"address","name":"receiver","type":"address"}],"name":"claim","outputs":[{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"address","name":"receiver","type":"address"}],"name":"claim","outputs":[{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"referrer","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"referrer","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"rewardToken","type":"address"},{"internalType":"uint128","name":"amount","type":"uint128"}],"name":"depositRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"token","type":"address"}],"name":"earned","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gauge","outputs":[{"internalType":"address","name":"_gauge","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"account","type":"address"}],"name":"getClaimable","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"getLastUpdateTime","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"getPeriodFinish","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"account","type":"address"}],"name":"getRewardPerTokenPaid","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"getRewardPerTokenStored","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"getRewardRate","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRewardTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"getRewardsDistributor","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"rewardToken","type":"address"}],"name":"isRewardToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"lastTimeRewardApplicable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"maxDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"_account","type":"address"}],"name":"maxMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"maxRedeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"maxWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"referrer","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewRedeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"resumeVault","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"rewardToken","type":"address"}],"name":"rewardData","outputs":[{"internalType":"address","name":"rewardsDistributor","type":"address"},{"internalType":"uint32","name":"lastUpdateTime","type":"uint32"},{"internalType":"uint32","name":"periodFinish","type":"uint32"},{"internalType":"uint128","name":"rewardRate","type":"uint128"},{"internalType":"uint128","name":"rewardPerTokenStored","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"rewardPerToken","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"strategy","outputs":[{"internalType":"contract IStrategy","name":"_strategy","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]
Loading...
Loading
Loading...
Loading

Multichain Portfolio | 34 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.