ETH Price: $2,833.49 (-7.21%)
Gas: 6 Gwei

Contract

0xfBD81A9C1d8c24C358643077BEfefC38De1a0668
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Value
Prove181791472023-09-20 19:19:35291 days ago1695237575IN
0xfBD81A9C...8De1a0668
0 ETH0.0086775244.61567794
Prove181541812023-09-17 7:06:11294 days ago1694934371IN
0xfBD81A9C...8De1a0668
0 ETH0.00174529
Prove181541802023-09-17 7:05:59294 days ago1694934359IN
0xfBD81A9C...8De1a0668
0 ETH0.001746289
Prove181541792023-09-17 7:05:47294 days ago1694934347IN
0xfBD81A9C...8De1a0668
0 ETH0.00174549
Prove181027102023-09-10 1:30:23302 days ago1694309423IN
0xfBD81A9C...8De1a0668
0 ETH0.0020604810.58259752
Prove181027092023-09-10 1:30:11302 days ago1694309411IN
0xfBD81A9C...8De1a0668
0 ETH0.0020445610.5083551
Prove181027082023-09-10 1:29:59302 days ago1694309399IN
0xfBD81A9C...8De1a0668
0 ETH0.001838589.45252674
Prove180289982023-08-30 17:48:23312 days ago1693417703IN
0xfBD81A9C...8De1a0668
0 ETH0.0052480227.00644394
Prove179297062023-08-16 20:15:23326 days ago1692216923IN
0xfBD81A9C...8De1a0668
0 ETH0.0080586741.47498578
Prove178752372023-08-09 5:23:35333 days ago1691558615IN
0xfBD81A9C...8De1a0668
0 ETH0.0032768916.84415824
Prove178752362023-08-09 5:23:23333 days ago1691558603IN
0xfBD81A9C...8De1a0668
0 ETH0.0034313717.63158882
Prove177780742023-07-26 15:13:47347 days ago1690384427IN
0xfBD81A9C...8De1a0668
0 ETH0.0061457231.63772894
Prove177696572023-07-25 10:57:23348 days ago1690282643IN
0xfBD81A9C...8De1a0668
0 ETH0.0040588320.91956571
Prove177696572023-07-25 10:57:23348 days ago1690282643IN
0xfBD81A9C...8De1a0668
0 ETH0.0040575720.91956571
Prove177696522023-07-25 10:56:23348 days ago1690282583IN
0xfBD81A9C...8De1a0668
0 ETH0.0037673219.42330386
Prove177642212023-07-24 16:41:47349 days ago1690216907IN
0xfBD81A9C...8De1a0668
0 ETH0.0101677152.42793035
Prove177642162023-07-24 16:40:47349 days ago1690216847IN
0xfBD81A9C...8De1a0668
0 ETH0.0107209755.28070041
Prove177297102023-07-19 20:47:11354 days ago1689799631IN
0xfBD81A9C...8De1a0668
0 ETH0.0070216236.20997076
0x60e06040176664562023-07-10 23:15:35363 days ago1689030935IN
 Create: AccountStorageProver
0 ETH0.0255999820

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
AccountStorageProver

Compiler Version
v0.8.13+commit.abaa5c0e

Optimization Enabled:
Yes with 1000 runs

Other Settings:
default evmVersion, Unlicense license
File 1 of 34 : AccountStorageProver.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.12;

import "../interfaces/IReliquary.sol";
import "../RelicToken.sol";
import "../BlockHistory.sol";
import "./Prover.sol";
import "./StateVerifier.sol";
import "../lib/FactSigs.sol";

/**
 * @title AccountStorageProver
 * @author Theori, Inc.
 * @notice AccountStorageProver proves an account's storage root at a particular block
 */
contract AccountStorageProver is Prover, StateVerifier {
    constructor(BlockHistory blockHistory, IReliquary _reliquary)
        Prover(_reliquary)
        StateVerifier(blockHistory, _reliquary)
    {}

    struct AccountStorageProof {
        address account;
        bytes accountProof;
        bytes header;
        bytes blockProof;
    }

    function parseAccountStorageProof(bytes calldata proof)
        internal
        pure
        returns (AccountStorageProof calldata res)
    {
        assembly {
            res := proof.offset
        }
    }

    /**
     * @notice Proves that a storage slot had a particular value at a particular block.
     *
     * @param encodedProof the encoded AccountStorageProof
     */
    function _prove(bytes calldata encodedProof) internal view override returns (Fact memory) {
        AccountStorageProof calldata proof = parseAccountStorageProof(encodedProof);
        (
            bool exists,
            CoreTypes.BlockHeaderData memory head,
            CoreTypes.AccountData memory acc
        ) = verifyAccountAtBlock(proof.account, proof.accountProof, proof.header, proof.blockProof);
        require(exists, "Account does not exist at block");

        return
            Fact(proof.account, FactSigs.accountStorageFactSig(head.Number, acc.StorageRoot), "");
    }
}

File 2 of 34 : AccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}

File 3 of 34 : IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}

File 4 of 34 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 5 of 34 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 6 of 34 : IERC721Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

File 7 of 34 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 8 of 34 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 9 of 34 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

File 10 of 34 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 11 of 34 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 12 of 34 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 13 of 34 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 14 of 34 : BlockHistory.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.0;

import "@openzeppelin/contracts/access/AccessControl.sol";

import "./lib/CoreTypes.sol";
import "./lib/MerkleTree.sol";
import "./lib/AuxMerkleTree.sol";
import "./interfaces/IBlockHistory.sol";
import "./interfaces/IRecursiveVerifier.sol";

import {
    RecursiveProof,
    SignedRecursiveProof,
    getProofSigner,
    readHashWords
} from "./lib/Proofs.sol";

/**
 * @title BlockHistory
 * @author Theori, Inc.
 * @notice BlockHistory allows trustless and cheap verification of any
 *         historical block hash. Historical blocks are divided into chunks of
 *         fixed size, and each chunk's merkle root is stored on-chain. The
 *         merkle roots are validated on chain using aggregated SNARK proofs,
 *         enabling both trustlessness and scalability.
 *
 * @dev Each SNARK proof validates some contiguous block headers and has
 *      public inputs (parentHash, lastHash, merkleRoot). Here the merkleRoot
 *      is the merkleRoot of all block hashes contained in the proof, which may
 *      commit to many merkle roots which to commit on chain. If the last block
 *      is recent enough (<= 256 blocks old), the lastHash can be confirmed in
 *      the EVM, verifying that all blocks of the proof belong to this chain.
 *      Due to this, the historical blocks' merkle roots are imported in reverse
 *      order.
 */
contract BlockHistory is AccessControl, IBlockHistory {
    bytes32 public constant ADMIN_ROLE = keccak256("ADMIN_ROLE");
    bytes32 public constant QUERY_ROLE = keccak256("QUERY_ROLE");

    // depth of the merkle trees whose roots we store in storage
    uint256 private constant MERKLE_TREE_DEPTH = 13;
    uint256 private constant BLOCKS_PER_CHUNK = 1 << MERKLE_TREE_DEPTH;

    /// @dev address of the reliquary, immutable
    address public immutable reliquary;

    /// @dev the expected signer of the SNARK proofs - if 0, then no signatures
    address public signer;

    /// @dev maps numBlocks => SNARK verifier (with VK embedded), only assigned
    ///      to in the constructor
    mapping(uint256 => IRecursiveVerifier) public verifiers;

    /// @dev parent hash of oldest block in current merkle trees
    ///      (0 once backlog fully imported)
    bytes32 public parentHash;

    /// @dev the earliest merkle root that has been imported
    uint256 public earliestRoot;

    /// @dev hash of most recent block in merkle trees
    bytes32 public lastHash;

    /// @dev merkle roots of block chunks between parentHash and lastHash
    mapping(uint256 => bytes32) private merkleRoots;

    /// @dev ZK-Friendly merkle roots, used by auxiliary SNARKs
    mapping(uint256 => bytes32) private auxiliaryRoots;

    /// @dev whether auth checks should run on aux root queries
    bool private needsAuth;

    event ImportMerkleRoot(uint256 indexed index, bytes32 merkleRoot, bytes32 auxiliaryRoot);
    event NewSigner(address newSigner);

    enum ProofType {
        Merkle,
        SNARK
    }

    /// @dev A SNARK + Merkle proof used to prove validity of a block
    struct MerkleSNARKProof {
        uint256 numBlocks;
        uint256 endBlock;
        SignedRecursiveProof snark;
        bytes32[] merkleProof;
    }

    struct ProofInputs {
        bytes32 parent;
        bytes32 last;
        bytes32 merkleRoot;
        bytes32 auxiliaryRoot;
    }

    constructor(
        uint256[] memory sizes,
        IRecursiveVerifier[] memory _verifiers,
        address _reliquary
    ) AccessControl() {
        _setupRole(DEFAULT_ADMIN_ROLE, msg.sender);
        _setupRole(ADMIN_ROLE, msg.sender);
        _setupRole(QUERY_ROLE, msg.sender);

        reliquary = _reliquary;
        signer = msg.sender;

        require(sizes.length == _verifiers.length);
        for (uint256 i = 0; i < sizes.length; i++) {
            require(address(verifiers[sizes[i]]) == address(0));
            verifiers[sizes[i]] = _verifiers[i];
        }
    }

    /**
     * @notice Checks if a SNARK is valid and signed as expected.
     *         Signatures checks are disabled if stored signer == address(0)
     *         Properties proven by the SNARK:
     *         - (parent ... last) form a valid block chain of length numBlocks
     *         - root is the merkle root of all contained blocks
     *
     * @param proof the aggregated proof
     * @param numBlocks the number of blocks contained in the proof
     * @return the validity
     */
    function validSNARK(SignedRecursiveProof calldata proof, uint256 numBlocks)
        internal
        view
        returns (bool)
    {
        address expected = signer;
        if (expected != address(0) && getProofSigner(proof) != expected) {
            return false;
        }
        IRecursiveVerifier verifier = verifiers[numBlocks];
        require(address(verifier) != address(0), "invalid numBlocks");
        return verifier.verify(proof.inner);
    }

    /**
     * @notice Asserts that the provided SNARK proof is valid and contains
     *         the provied merkle roots.
     *
     * @param proof the aggregated proof
     * @param roots the block merkle roots
     * @param aux the auxiliary merkle roots
     * @return inputs the proof inputs
     */
    function assertValidSNARKWithRoots(
        SignedRecursiveProof calldata proof,
        bytes32[] calldata roots,
        bytes32[] calldata aux
    ) internal view returns (ProofInputs memory inputs) {
        require(roots.length & (roots.length - 1) == 0, "roots length must be a power of 2");
        require(roots.length == aux.length, "roots arrays must be same length");

        // extract the inputs from the proof
        inputs = parseProofInputs(proof);

        // ensure the merkle roots are valid
        require(inputs.merkleRoot == MerkleTree.computeRoot(roots), "invalid block roots");

        // ensure the auxiliary merkle roots are valid
        require(inputs.auxiliaryRoot == AuxMerkleTree.computeRoot(aux), "invalid aux roots");

        // assert the SNARK proof is valid
        require(validSNARK(proof, BLOCKS_PER_CHUNK * roots.length), "invalid SNARK");
    }

    /**
     * @notice Checks if the given block number/hash connects to the current
     *         block using a SNARK.
     *
     * @param num the block number to check
     * @param hash the block hash to check
     * @param encodedProof the encoded MerkleSNARKProof
     * @return the validity
     */
    function validBlockHashWithSNARK(
        bytes32 hash,
        uint256 num,
        bytes calldata encodedProof
    ) internal view returns (bool) {
        MerkleSNARKProof calldata proof = parseMerkleSNARKProof(encodedProof);

        ProofInputs memory inputs = parseProofInputs(proof.snark);

        // check that the proof ends with a current block
        if (!validCurrentBlock(inputs.last, proof.endBlock)) {
            return false;
        }

        if (!validSNARK(proof.snark, proof.numBlocks)) {
            return false;
        }

        // compute the first block number in the proof
        uint256 startBlock = proof.endBlock + 1 - proof.numBlocks;

        // check if the target block is the parent of the proven blocks
        if (num == startBlock - 1 && hash == inputs.parent) {
            // merkle proof not needed in this case
            return true;
        }

        // check if the target block is in the proven merkle root
        uint256 index = num - startBlock;
        return MerkleTree.validProof(inputs.merkleRoot, index, hash, proof.merkleProof);
    }

    /**
     * @notice Checks if the given block number + hash exists in a commited
     *         merkle tree.
     *
     * @param num the block number to check
     * @param hash the block hash to check
     * @param encodedProof the encoded merkle proof
     * @return the validity
     */
    function validBlockHashWithMerkle(
        bytes32 hash,
        uint256 num,
        bytes calldata encodedProof
    ) internal view returns (bool) {
        bytes32 merkleRoot = merkleRoots[num / BLOCKS_PER_CHUNK];
        if (merkleRoot == 0) {
            return false;
        }
        bytes32[] calldata proofHashes = parseMerkleProof(encodedProof);
        if (proofHashes.length != MERKLE_TREE_DEPTH) {
            return false;
        }
        return MerkleTree.validProof(merkleRoot, num % BLOCKS_PER_CHUNK, hash, proofHashes);
    }

    /**
     * @notice Checks if the block is a current block (defined as being
     *         accessible in the EVM, i.e. <= 256 blocks old) and that the hash
     *         is correct.
     *
     * @param hash the alleged block hash
     * @param num the block number
     * @return the validity
     */
    function validCurrentBlock(bytes32 hash, uint256 num) internal view returns (bool) {
        // the block hash must be accessible in the EVM and match
        return (block.number - num <= 256) && (blockhash(num) == hash);
    }

    /**
     * @notice Stores the merkle roots starting at the index
     *
     * @param index the index for the first merkle root
     * @param roots the merkle roots of the block hashes
     * @param aux the auxiliary merkle roots of the block hashes
     */
    function storeMerkleRoots(
        uint256 index,
        bytes32[] calldata roots,
        bytes32[] calldata aux
    ) internal {
        for (uint256 i = 0; i < roots.length; i++) {
            uint256 idx = index + i;
            merkleRoots[idx] = roots[i];
            auxiliaryRoots[idx] = aux[i];
            emit ImportMerkleRoot(idx, roots[i], aux[i]);
        }
    }

    /**
     * @notice Imports new chunks of blocks before the current parentHash
     *
     * @param proof the aggregated proof for these chunks
     * @param roots the merkle roots for the block hashes
     * @param aux the auxiliary roots for the block hashes
     */
    function importParent(
        SignedRecursiveProof calldata proof,
        bytes32[] calldata roots,
        bytes32[] calldata aux
    ) external {
        require(parentHash != 0 && earliestRoot != 0, "import not started or already completed");

        ProofInputs memory inputs = assertValidSNARKWithRoots(proof, roots, aux);

        // assert the last hash in the proof is our current parent hash
        require(parentHash == inputs.last, "proof doesn't connect with parentHash");

        // store the merkle roots
        uint256 index = earliestRoot - roots.length;
        storeMerkleRoots(index, roots, aux);

        // store the new parentHash and earliestRoot
        parentHash = inputs.parent;
        earliestRoot = index;
    }

    /**
     * @notice Imports new chunks of blocks after the current lastHash
     *
     * @param endBlock the last block number in the chunks
     * @param proof the aggregated proof for these chunks
     * @param roots the merkle roots for the block hashes
     * @param connectProof an optional SNARK proof connecting the proof to
     *                     a current block
     */
    function importLast(
        uint256 endBlock,
        SignedRecursiveProof calldata proof,
        bytes32[] calldata roots,
        bytes32[] calldata aux,
        bytes calldata connectProof
    ) external {
        require((endBlock + 1) % BLOCKS_PER_CHUNK == 0, "endBlock must end at a chunk boundary");

        ProofInputs memory inputs = assertValidSNARKWithRoots(proof, roots, aux);

        if (!validCurrentBlock(inputs.last, endBlock)) {
            // if the proof doesn't connect our lastHash with a current block,
            // then the connectProof must fill the gap
            require(
                validBlockHashWithSNARK(inputs.last, endBlock, connectProof),
                "connectProof invalid"
            );
        }

        uint256 index = (endBlock + 1) / BLOCKS_PER_CHUNK - roots.length;
        if (lastHash == 0) {
            // if we're importing for the first time, set parentHash and earliestRoot
            require(parentHash == 0);
            parentHash = inputs.parent;
            earliestRoot = index;
        } else {
            require(inputs.parent == lastHash, "proof doesn't connect with lastHash");
        }

        // store the new lastHash
        lastHash = inputs.last;

        // store the merkle roots
        storeMerkleRoots(index, roots, aux);
    }

    /**
     * @notice Checks if a block hash is valid. A proof is required unless the
     *         block is current (accesible in the EVM). If the target block has
     *         no commited merkle root, the proof must contain a SNARK proof.
     *
     * @param hash the hash to check
     * @param num the block number for the alleged hash
     * @param proof the merkle witness or SNARK proof (if needed)
     * @return the validity
     */
    function _validBlockHash(
        bytes32 hash,
        uint256 num,
        bytes calldata proof
    ) internal view returns (bool) {
        if (validCurrentBlock(hash, num)) {
            return true;
        }

        ProofType typ;
        (typ, proof) = parseProofType(proof);
        if (typ == ProofType.Merkle) {
            return validBlockHashWithMerkle(hash, num, proof);
        } else if (typ == ProofType.SNARK) {
            return validBlockHashWithSNARK(hash, num, proof);
        } else {
            revert("invalid proof type");
        }
    }

    /**
     * @notice Checks if a block hash is correct. A proof is required unless the
     *         block is current (accesible in the EVM). If the target block has
     *         no commited merkle root, the proof must contain a SNARK proof.
     *         Reverts if block hash or proof is invalid.
     *
     * @param hash the hash to check
     * @param num the block number for the alleged hash
     * @param proof the merkle witness or SNARK proof (if needed)
     */
    function validBlockHash(
        bytes32 hash,
        uint256 num,
        bytes calldata proof
    ) external view returns (bool) {
        require(msg.sender == reliquary || hasRole(QUERY_ROLE, msg.sender));
        require(num < block.number);
        return _validBlockHash(hash, num, proof);
    }

    /**
     * @notice Queries an auxRoot
     *
     * @dev only authorized addresses can call this
     * @param idx the index of the root to query
     */
    function auxRoots(uint256 idx) external view returns (bytes32 root) {
        if (needsAuth) {
            _checkRole(QUERY_ROLE);
        }
        root = auxiliaryRoots[idx];
    }

    /**
     * @notice sets the needsAuth flag which controls auxRoot query auth checks
     *
     * @dev only the owner can call this
     * @param _needsAuth the new value
     */
    function setNeedsAuth(bool _needsAuth) external onlyRole(ADMIN_ROLE) {
        needsAuth = _needsAuth;
    }

    /**
     * @notice Parses a proof type and proof from the encoded proof
     *
     * @param proof the encoded proof
     * @return typ the proof type (SNARK or Merkle)
     * @return proof the remaining encoded proof
     */
    function parseProofType(bytes calldata encodedProof)
        internal
        pure
        returns (ProofType typ, bytes calldata proof)
    {
        require(encodedProof.length > 0, "cannot parse proof type");
        typ = ProofType(uint8(encodedProof[0]));
        proof = encodedProof[1:];
    }

    /**
     * @notice Parses a MerkleSNARKProof from calldata bytes
     *
     * @param proof the encoded proof
     * @return result a MerkleSNARKProof
     */
    function parseMerkleSNARKProof(bytes calldata proof)
        internal
        pure
        returns (MerkleSNARKProof calldata result)
    {
        // solidity doesn't support getting calldata outputs from abi.decode
        // but we can decode it; calldata structs are just offsets
        assembly {
            result := proof.offset
        }
    }

    /**
     * @notice Parses a merkle inclusion proof from the bytes
     *
     * @param proof the encoded merkle inclusion proof
     * @return result the array of proof hashes
     */
    function parseMerkleProof(bytes calldata proof)
        internal
        pure
        returns (bytes32[] calldata result)
    {
        require(proof.length % 32 == 0);
        require(proof.length >= 32);

        // solidity doesn't support getting calldata outputs from abi.decode
        // but we can decode it; calldata arrays are just (offset,length)
        assembly {
            result.offset := add(proof.offset, 0x20)
            result.length := calldataload(proof.offset)
        }
    }

    /**
     * @notice Parses the proof inputs for block history snark proofs
     *
     * @param proof the snark proof
     * @return result the parsed proof inputs
     */
    function parseProofInputs(SignedRecursiveProof calldata proof)
        internal
        pure
        returns (ProofInputs memory result)
    {
        uint256[] calldata inputs = proof.inner.inputs;
        require(inputs.length == 13);
        result = ProofInputs(
            readHashWords(inputs[0:4]),
            readHashWords(inputs[4:8]),
            readHashWords(inputs[8:12]),
            bytes32(inputs[12])
        );
    }

    /**
     * @notice sets the expected signer of the SNARK proofs, only callable by
     *         the contract owner
     *
     * @param _signer the new signer; if 0, disables signature checks
     */
    function setSigner(address _signer) external onlyRole(ADMIN_ROLE) {
        require(signer != _signer);
        signer = _signer;
        emit NewSigner(_signer);
    }
}

File 15 of 34 : RelicToken.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.12;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";

import "./interfaces/IContractURI.sol";
import "./interfaces/IERC5192.sol";
import "./interfaces/ITokenURI.sol";

/**
 * @title RelicToken
 * @author Theori, Inc.
 * @notice RelicToken is the base contract for all Relic SBTs. It implements
 *         ERC721 (with transfers disables) and ERC5192.
 */
abstract contract RelicToken is Ownable, ERC165, IERC721, IERC721Metadata, IERC5192 {
    mapping(address => bool) public provers;

    /// @notice contract metadata URI provider
    IContractURI contractURIProvider;

    /**
     * @notice determind if the given owner is entitiled to a token with the specific data
     * @param owner the address in question
     * @param data the opaque data in question
     * @return the existence of the given data
     */
    function hasToken(address owner, uint96 data) internal view virtual returns (bool);

    /**
     * @notice updates the set of contracts trusted to create new tokens and
     *         possibly resolve entitlement questions
     * @param prover the address of the prover
     * @param valid whether the prover is trusted
     */
    function setProver(address prover, bool valid) external onlyOwner {
        provers[prover] = valid;
    }

    /**
     * @notice helper function to break a tokenId into its constituent data
     * @param tokenId the tokenId in question
     * @return who the address bound to this token
     * @return data any additional data bound to this token
     */
    function parseTokenId(uint256 tokenId) internal pure returns (address who, uint96 data) {
        who = address(bytes20(bytes32(tokenId << 96)));
        data = uint96(tokenId >> 160);
    }

    /**
     * @notice issue a new Relic
     * @param who the address to which this token should be bound
     * @param data any data to be associated with this token
     * @dev emits ERC-721 Transfer event and ERC-5192 Locked event. Note
     *      that storage is not generally updated by this function.
     */
    function mint(address who, uint96 data) public virtual {
        require(provers[msg.sender], "only a prover can mint");
        require(hasToken(who, data), "cannot mint for invalid token");

        uint256 id = uint256(uint160(who)) | (uint256(data) << 160);
        emit Transfer(address(0), who, id);
        emit Locked(id);
    }

    /* begin ERC-721 spec functions */
    /**
     * @inheritdoc IERC721
     * @dev If the token has not been issued (no transfer event) this function
     *      may still return an owner if there is an account entitled to this
     *      token.
     */
    function ownerOf(uint256 id) public view virtual returns (address who) {
        uint96 data;
        (who, data) = parseTokenId(id);
        if (!hasToken(who, data)) {
            who = address(0);
        }
    }

    /**
     * @inheritdoc IERC721
     * @dev Balance will always be 0 if the address is not entitled to any
     *      tokens, and 1 if they are entitled to a token. If multiple tokens
     *      are minted, this will still return 1.
     */
    function balanceOf(address who) external view override returns (uint256 balance) {
        require(who != address(0), "ERC721: address zero is not a valid owner");
        if (hasToken(who, 0)) {
            balance = 1;
        }
    }

    /**
     * @inheritdoc IERC721
     * @dev Immediately reverts: Relics are soul-bound/non-transferrable
     */
    function safeTransferFrom(
        address, /* from */
        address, /* _to */
        uint256, /* _tokenId */
        bytes calldata /* data */
    ) external pure {
        revert("RelicToken is soulbound");
    }

    /**
     * @inheritdoc IERC721
     * @dev Immediately reverts: Relics are soul-bound/non-transferrable
     */
    function safeTransferFrom(
        address, /* from */
        address, /* to */
        uint256 /* tokenId */
    ) external pure {
        revert("RelicToken is soulbound");
    }

    /**
     * @inheritdoc IERC721
     * @dev Immediately reverts: Relics are soul-bound/non-transferrable
     */
    function transferFrom(
        address, /* from */
        address, /* to */
        uint256 /* id */
    ) external pure {
        revert("RelicToken is soulbound");
    }

    /**
     * @inheritdoc IERC721
     * @dev Immediately reverts: Relics are soul-bound/non-transferrable
     */
    function approve(
        address, /* to */
        uint256 /* tokenId */
    ) external pure {
        revert("RelicToken is soulbound");
    }

    /**
     * @inheritdoc IERC721
     * @dev Immediately reverts: Relics are soul-bound/non-transferrable
     */
    function setApprovalForAll(
        address, /* operator */
        bool /* _approved */
    ) external pure {
        revert("RelicToken is soulbound");
    }

    /**
     * @inheritdoc IERC721
     * @dev Always returns the null address: Relics are soul-bound/non-transferrable
     */
    function getApproved(
        uint256 /* tokenId */
    ) external pure returns (address operator) {
        operator = address(0);
    }

    /**
     * @inheritdoc IERC721
     * @dev Always returns false: Relics are soul-bound/non-transferrable
     */
    function isApprovedForAll(
        address, /* owner */
        address /* operator */
    ) external pure returns (bool) {
        return false;
    }

    /**
     * @inheritdoc IERC165
     * @dev Supported interfaces: IERC721, IERC721Metadata, IERC5192
     */
    function supportsInterface(bytes4 interfaceId)
        public
        view
        virtual
        override(ERC165, IERC165)
        returns (bool)
    {
        return (interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            interfaceId == type(IERC5192).interfaceId ||
            super.supportsInterface(interfaceId));
    }

    /// @inheritdoc IERC721Metadata
    function name() external pure virtual returns (string memory);

    /// @inheritdoc IERC721Metadata
    function symbol() external pure virtual returns (string memory);

    /// @inheritdoc IERC721Metadata
    function tokenURI(uint256 tokenID) external view virtual returns (string memory);

    /* end ERC-721 spec functions */

    /* begin ERC-5192 spec functions */
    /**
     * @inheritdoc IERC5192
     * @dev All valid tokens are locked: Relics are soul-bound/non-transferrable
     */
    function locked(uint256 id) external view returns (bool) {
        return ownerOf(id) != address(0);
    }

    /* end ERC-5192 spec functions */

    /* begin OpenSea metadata functions */
    /**
     * @notice contract metadata URI as defined by OpenSea
     */
    function contractURI() external view returns (string memory) {
        return contractURIProvider.contractURI();
    }

    /**
     * @notice set contract-level metadata URI provider
     * @param provider new metadata URI provider
     */
    function setContractURIProvider(IContractURI provider) external onlyOwner {
        contractURIProvider = provider;
    }
    /* end OpenSea metadata functions */
}

File 16 of 34 : IBlockHistory.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.0;

/**
 * @title Block history provider
 * @author Theori, Inc.
 * @notice IBlockHistory provides a way to verify a blockhash
 */

interface IBlockHistory {
    /**
     * @notice Determine if the given hash corresponds to the given block
     * @param hash the hash if the block in question
     * @param num the number of the block in question
     * @param proof any witness data required to prove the block hash is
     *        correct (such as a Merkle or SNARK proof)
     * @return boolean indicating if the block hash can be verified correct
     */
    function validBlockHash(
        bytes32 hash,
        uint256 num,
        bytes calldata proof
    ) external view returns (bool);
}

File 17 of 34 : IContractURI.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.0;

/**
 * @title NFT Contract Metadata URI provider
 * @author Theori, Inc.
 * @notice Outsourced contractURI provider for NFT/SBT tokens
 */
interface IContractURI {
    /**
     * @notice Get the contract metadata URI
     * @return the string of the URI
     */
    function contractURI() external view returns (string memory);
}

File 18 of 34 : IERC5192.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.12;

/**
 * @title EIP-5192 specification
 * @author Theori, Inc.
 * @notice EIP-5192 events and functions
 */
interface IERC5192 {
    /// @notice Emitted when the locking status is changed to locked.
    /// @dev If a token is minted and the status is locked, this event should be emitted.
    /// @param tokenId The identifier for a token.
    event Locked(uint256 tokenId);

    /// @notice Emitted when the locking status is changed to unlocked.
    /// @dev If a token is minted and the status is unlocked, this event should be emitted.
    /// @param tokenId The identifier for a token.
    event Unlocked(uint256 tokenId);

    /// @notice Returns the locking status of an Soulbound Token
    /// @dev SBTs assigned to zero address are considered invalid, and queries
    /// about them do throw.
    /// @param tokenId The identifier for an SBT.
    function locked(uint256 tokenId) external view returns (bool);
}

File 19 of 34 : IProver.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

import "../lib/Facts.sol";

pragma solidity >=0.8.12;

/**
 * @title IProver
 * @author Theori, Inc.
 * @notice IProver is a standard interface implemented by some Relic provers.
 *         Supports proving a fact ephemerally or proving and storing it in the
 *         Reliquary.
 */
interface IProver {
    /**
     * @notice prove a fact ephemerally
     * @param proof the encoded proof, depends on the prover implementation
     * @param store whether to store the facts in the reliquary
     * @return fact the proven fact information
     */
    function prove(bytes calldata proof, bool store) external payable returns (Fact memory fact);
}

File 20 of 34 : IRecursiveVerifier.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.0;

import {RecursiveProof} from "../lib/Proofs.sol";

/**
 * @title Verifier of zk-SNARK proofs
 * @author Theori, Inc.
 * @notice Provider of validity checking of zk-SNARKs
 */
interface IRecursiveVerifier {
    /**
     * @notice Checks the validity of SNARK data
     * @param proof the proof to verify
     * @return the validity of the proof
     */
    function verify(RecursiveProof calldata proof) external view returns (bool);
}

File 21 of 34 : IReliquary.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.12;

import "../lib/Facts.sol";

interface IReliquary {
    event NewProver(address prover, uint64 version);
    event PendingProverAdded(address prover, uint64 version, uint64 timestamp);
    event ProverRevoked(address prover, uint64 version);
    event RoleAdminChanged(
        bytes32 indexed role,
        bytes32 indexed previousAdminRole,
        bytes32 indexed newAdminRole
    );
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    struct ProverInfo {
        uint64 version;
        FeeInfo feeInfo;
        bool revoked;
    }

    enum FeeFlags {
        FeeNone,
        FeeNative,
        FeeCredits,
        FeeExternalDelegate,
        FeeExternalToken
    }

    struct FeeInfo {
        uint8 flags;
        uint16 feeCredits;
        // feeWei = feeWeiMantissa * pow(10, feeWeiExponent)
        uint8 feeWeiMantissa;
        uint8 feeWeiExponent;
        uint32 feeExternalId;
    }

    function ADD_PROVER_ROLE() external view returns (bytes32);

    function CREDITS_ROLE() external view returns (bytes32);

    function DEFAULT_ADMIN_ROLE() external view returns (bytes32);

    function DELAY() external view returns (uint64);

    function GOVERNANCE_ROLE() external view returns (bytes32);

    function SUBSCRIPTION_ROLE() external view returns (bytes32);

    function activateProver(address prover) external;

    function addCredits(address user, uint192 amount) external;

    function addProver(address prover, uint64 version) external;

    function addSubscriber(address user, uint64 ts) external;

    function assertValidBlockHash(
        address verifier,
        bytes32 hash,
        uint256 num,
        bytes memory proof
    ) external payable;

    function assertValidBlockHashFromProver(
        address verifier,
        bytes32 hash,
        uint256 num,
        bytes memory proof
    ) external view;

    function checkProveFactFee(address sender) external payable;

    function checkProver(ProverInfo memory prover) external pure;

    function credits(address user) external view returns (uint192);

    function debugValidBlockHash(
        address verifier,
        bytes32 hash,
        uint256 num,
        bytes memory proof
    ) external view returns (bool);

    function debugVerifyFact(address account, FactSignature factSig)
        external
        view
        returns (
            bool exists,
            uint64 version,
            bytes memory data
        );

    function factFees(uint8)
        external
        view
        returns (
            uint8 flags,
            uint16 feeCredits,
            uint8 feeWeiMantissa,
            uint8 feeWeiExponent,
            uint32 feeExternalId
        );

    function feeAccounts(address)
        external
        view
        returns (uint64 subscriberUntilTime, uint192 credits);

    function feeExternals(uint256) external view returns (address);

    function getFact(address account, FactSignature factSig)
        external
        view
        returns (
            bool exists,
            uint64 version,
            bytes memory data
        );

    function getProveFactNativeFee(address prover) external view returns (uint256);

    function getProveFactTokenFee(address prover) external view returns (uint256);

    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    function getVerifyFactNativeFee(FactSignature factSig) external view returns (uint256);

    function getVerifyFactTokenFee(FactSignature factSig) external view returns (uint256);

    function grantRole(bytes32 role, address account) external;

    function hasRole(bytes32 role, address account) external view returns (bool);

    function initialized() external view returns (bool);

    function isSubscriber(address user) external view returns (bool);

    function pendingProvers(address) external view returns (uint64 timestamp, uint64 version);

    function provers(address) external view returns (ProverInfo memory);

    function removeCredits(address user, uint192 amount) external;

    function removeSubscriber(address user) external;

    function renounceRole(bytes32 role, address account) external;

    function resetFact(address account, FactSignature factSig) external;

    function revokeProver(address prover) external;

    function revokeRole(bytes32 role, address account) external;

    function setCredits(address user, uint192 amount) external;

    function setFact(
        address account,
        FactSignature factSig,
        bytes memory data
    ) external;

    function setFactFee(
        uint8 cls,
        FeeInfo memory feeInfo,
        address feeExternal
    ) external;

    function setInitialized() external;

    function setProverFee(
        address prover,
        FeeInfo memory feeInfo,
        address feeExternal
    ) external;

    function setValidBlockFee(FeeInfo memory feeInfo, address feeExternal) external;

    function supportsInterface(bytes4 interfaceId) external view returns (bool);

    function validBlockHash(
        address verifier,
        bytes32 hash,
        uint256 num,
        bytes memory proof
    ) external payable returns (bool);

    function validBlockHashFromProver(
        address verifier,
        bytes32 hash,
        uint256 num,
        bytes memory proof
    ) external view returns (bool);

    function verifyBlockFeeInfo()
        external
        view
        returns (
            uint8 flags,
            uint16 feeCredits,
            uint8 feeWeiMantissa,
            uint8 feeWeiExponent,
            uint32 feeExternalId
        );

    function verifyFact(address account, FactSignature factSig)
        external
        payable
        returns (
            bool exists,
            uint64 version,
            bytes memory data
        );

    function verifyFactNoFee(address account, FactSignature factSig)
        external
        view
        returns (
            bool exists,
            uint64 version,
            bytes memory data
        );

    function verifyFactVersion(address account, FactSignature factSig)
        external
        payable
        returns (bool exists, uint64 version);

    function verifyFactVersionNoFee(address account, FactSignature factSig)
        external
        view
        returns (bool exists, uint64 version);

    function versions(uint64) external view returns (address);

    function withdrawFees(address token, address dest) external;
}

File 22 of 34 : ITokenURI.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.0;

/**
 * @title NFT Token URI provider
 * @author Theori, Inc.
 * @notice Outsourced tokenURI provider for NFT/SBT tokens
 */
interface ITokenURI {
    /**
     * @notice Get the URI for the given token
     * @param tokenID the unique ID for the token
     * @return the string of the URI
     * @dev when called with an invalid tokenID, this may revert,
     *      or it may return invalid output
     */
    function tokenURI(uint256 tokenID) external view returns (string memory);
}

File 23 of 34 : AnemoiJive.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.0;

/**
 * @title AnemoiJive
 * @author Theori, Inc.
 * @notice Implementation of the Anemoi hash function and Jive mode of operation
 */
library AnemoiJive {
    uint256 constant beta = 5;
    uint256 constant alpha_inv =
        17510594297471420177797124596205820070838691520332827474958563349260646796493;
    uint256 constant q =
        21888242871839275222246405745257275088548364400416034343698204186575808495617;
    uint256 constant delta =
        8755297148735710088898562298102910035419345760166413737479281674630323398247;

    function CD(uint256 round) internal pure returns (uint256, uint256) {
        if (round == 0)
            return (
                37,
                8755297148735710088898562298102910035419345760166413737479281674630323398284
            );
        if (round == 1)
            return (
                13352247125433170118601974521234241686699252132838635793584252509352796067497,
                5240474505904316858775051800099222288270827863409873986701694203345984265770
            );
        if (round == 2)
            return (
                8959866518978803666083663798535154543742217570455117599799616562379347639707,
                9012679925958717565787111885188464538194947839997341443807348023221726055342
            );
        if (round == 3)
            return (
                3222831896788299315979047232033900743869692917288857580060845801753443388885,
                21855834035835287540286238525800162342051591799629360593177152465113152235615
            );
        if (round == 4)
            return (
                11437915391085696126542499325791687418764799800375359697173212755436799377493,
                11227229470941648605622822052481187204980748641142847464327016901091886692935
            );
        if (round == 5)
            return (
                14725846076402186085242174266911981167870784841637418717042290211288365715997,
                8277823808153992786803029269162651355418392229624501612473854822154276610437
            );
        if (round == 6)
            return (
                3625896738440557179745980526949999799504652863693655156640745358188128872126,
                20904607884889140694334069064199005451741168419308859136555043894134683701950
            );
        if (round == 7)
            return (
                463291105983501380924034618222275689104775247665779333141206049632645736639,
                1902748146936068574869616392736208205391158973416079524055965306829204527070
            );
        if (round == 8)
            return (
                17443852951621246980363565040958781632244400021738903729528591709655537559937,
                14452570815461138929654743535323908350592751448372202277464697056225242868484
            );
        if (round == 9)
            return (
                10761214205488034344706216213805155745482379858424137060372633423069634639664,
                10548134661912479705005015677785100436776982856523954428067830720054853946467
            );
        if (round == 10)
            return (
                1555059412520168878870894914371762771431462665764010129192912372490340449901,
                17068729307795998980462158858164249718900656779672000551618940554342475266265
            );
        if (round == 11)
            return (
                7985258549919592662769781896447490440621354347569971700598437766156081995625,
                16199718037005378969178070485166950928725365516399196926532630556982133691321
            );
        if (round == 12)
            return (
                9570976950823929161626934660575939683401710897903342799921775980893943353035,
                19148564379197615165212957504107910110246052442686857059768087896511716255278
            );
        if (round == 13)
            return (
                17962366505931708682321542383646032762931774796150042922562707170594807376009,
                5497141763311860520411283868772341077137612389285480008601414949457218086902
            );
        if (round == 14)
            return (
                12386136552538719544323156650508108618627836659179619225468319506857645902649,
                18379046272821041930426853913114663808750865563081998867954732461233335541378
            );
        if (round == 15)
            return (
                21184636178578575123799189548464293431630680704815247777768147599366857217074,
                7696001730141875853127759241422464241772355903155684178131833937483164915734
            );
        if (round == 16)
            return (
                3021529450787050964585040537124323203563336821758666690160233275817988779052,
                963844642109550260189938374814031216012862679737123536423540607519656220143
            );
        if (round == 17)
            return (
                7005374570978576078843482270548485551486006385990713926354381743200520456088,
                12412434690468911461310698766576920805270445399824272791985598210955534611003
            );
        if (round == 18)
            return (
                3870834761329466217812893622834770840278912371521351591476987639109753753261,
                6971318955459107915662273112161635903624047034354567202210253298398705502050
            );
        revert();
    }

    function expmod(
        uint256 base,
        uint256 e,
        uint256 m
    ) internal view returns (uint256 o) {
        assembly {
            // define pointer
            let p := mload(0x40)
            // store data assembly-favouring ways
            mstore(p, 0x20) // Length of Base
            mstore(add(p, 0x20), 0x20) // Length of Exponent
            mstore(add(p, 0x40), 0x20) // Length of Modulus
            mstore(add(p, 0x60), base) // Base
            mstore(add(p, 0x80), e) // Exponent
            mstore(add(p, 0xa0), m) // Modulus
            if iszero(staticcall(sub(gas(), 2000), 0x05, p, 0xc0, p, 0x20)) {
                revert(0, 0)
            }
            // data
            o := mload(p)
        }
    }

    function sbox(uint256 x, uint256 y) internal view returns (uint256, uint256) {
        x = addmod(x, q - mulmod(beta, mulmod(y, y, q), q), q);
        y = addmod(y, q - expmod(x, alpha_inv, q), q);
        x = addmod(addmod(x, mulmod(beta, mulmod(y, y, q), q), q), delta, q);
        return (x, y);
    }

    function ll(uint256 x, uint256 y) internal pure returns (uint256 r0, uint256 r1) {
        r0 = addmod(x, mulmod(5, y, q), q);
        r1 = addmod(y, mulmod(5, r0, q), q);
    }

    function compress(uint256 x, uint256 y) internal view returns (uint256) {
        uint256 sum = addmod(x, y, q);
        uint256 c;
        uint256 d;
        for (uint256 r = 0; r < 19; r++) {
            (c, d) = CD(r);
            x = addmod(x, c, q);
            y = addmod(y, d, q);
            (x, y) = ll(x, y);
            (x, y) = sbox(x, y);
        }
        (x, y) = ll(x, y);
        return addmod(addmod(x, y, q), sum, q);
    }
}

File 24 of 34 : AuxMerkleTree.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.0;

import "./AnemoiJive.sol";

/**
 * @title Auxiliary Merkle Tree
 * @author Theori, Inc.
 * @notice Gas optimized arithmetic-friendly merkle tree code.
 * @dev uses Anemoi / Jive 2-to-1
 */
library AuxMerkleTree {
    /**
     * @notice computes a jive merkle root of the provided hashes, in place
     * @param temp the mutable array of hashes
     * @return root the merkle root hash
     */
    function computeRoot(bytes32[] memory temp) internal view returns (bytes32 root) {
        uint256 count = temp.length;
        while (count > 1) {
            unchecked {
                for (uint256 i = 0; i < count / 2; i++) {
                    uint256 x;
                    uint256 y;
                    assembly {
                        let ptr := add(temp, add(0x20, mul(0x40, i)))
                        x := mload(ptr)
                        ptr := add(ptr, 0x20)
                        y := mload(ptr)
                    }
                    x = AnemoiJive.compress(x, y);
                    assembly {
                        mstore(add(temp, add(0x20, mul(0x20, i))), x)
                    }
                }
                count >>= 1;
            }
        }
        return temp[0];
    }
}

File 25 of 34 : BytesCalldata.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.13;

// custom bytes calldata pointer storing (length | offset) in one word,
// also allows calldata pointers to be stored in memory
type BytesCalldata is uint256;

using BytesCalldataOps for BytesCalldata global;

// can't introduce global using .. for non UDTs
// each consumer should add the following line:
using BytesCalldataOps for bytes;

/**
 * @author Theori, Inc
 * @title BytesCalldataOps
 * @notice Common operations for bytes calldata, implemented for both the builtin
 *         type and our BytesCalldata type. These operations are heavily optimized
 *         and omit safety checks, so this library should only be used when memory
 *         safety is not a security issue.
 */
library BytesCalldataOps {
    function length(BytesCalldata bc) internal pure returns (uint256 result) {
        assembly {
            result := shr(128, shl(128, bc))
        }
    }

    function offset(BytesCalldata bc) internal pure returns (uint256 result) {
        assembly {
            result := shr(128, bc)
        }
    }

    function convert(BytesCalldata bc) internal pure returns (bytes calldata value) {
        assembly {
            value.offset := shr(128, bc)
            value.length := shr(128, shl(128, bc))
        }
    }

    function convert(bytes calldata inp) internal pure returns (BytesCalldata bc) {
        assembly {
            bc := or(shl(128, inp.offset), inp.length)
        }
    }

    function slice(
        BytesCalldata bc,
        uint256 start,
        uint256 len
    ) internal pure returns (BytesCalldata result) {
        assembly {
            result := shl(128, add(shr(128, bc), start)) // add to the offset and clear the length
            result := or(result, len) // set the new length
        }
    }

    function slice(
        bytes calldata value,
        uint256 start,
        uint256 len
    ) internal pure returns (bytes calldata result) {
        assembly {
            result.offset := add(value.offset, start)
            result.length := len
        }
    }

    function prefix(BytesCalldata bc, uint256 len) internal pure returns (BytesCalldata result) {
        assembly {
            result := shl(128, shr(128, bc)) // clear out the length
            result := or(result, len) // set it to the new length
        }
    }

    function prefix(bytes calldata value, uint256 len)
        internal
        pure
        returns (bytes calldata result)
    {
        assembly {
            result.offset := value.offset
            result.length := len
        }
    }

    function suffix(BytesCalldata bc, uint256 start) internal pure returns (BytesCalldata result) {
        assembly {
            result := add(bc, shl(128, start)) // add to the offset
            result := sub(result, start) // subtract from the length
        }
    }

    function suffix(bytes calldata value, uint256 start)
        internal
        pure
        returns (bytes calldata result)
    {
        assembly {
            result.offset := add(value.offset, start)
            result.length := sub(value.length, start)
        }
    }

    function split(BytesCalldata bc, uint256 start)
        internal
        pure
        returns (BytesCalldata, BytesCalldata)
    {
        return (prefix(bc, start), suffix(bc, start));
    }

    function split(bytes calldata value, uint256 start)
        internal
        pure
        returns (bytes calldata, bytes calldata)
    {
        return (prefix(value, start), suffix(value, start));
    }
}

File 26 of 34 : CoreTypes.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.0;

import "./BytesCalldata.sol";
import "./RLP.sol";

/**
 * @title CoreTypes
 * @author Theori, Inc.
 * @notice Data types and parsing functions for core types, including block headers
 *         and account data.
 */
library CoreTypes {
    using BytesCalldataOps for bytes;
    struct BlockHeaderData {
        bytes32 ParentHash;
        address Coinbase;
        bytes32 Root;
        bytes32 TxHash;
        bytes32 ReceiptHash;
        uint256 Number;
        uint256 GasLimit;
        uint256 GasUsed;
        uint256 Time;
        bytes32 MixHash;
        uint256 BaseFee;
        bytes32 WithdrawalsHash;
    }

    struct AccountData {
        uint256 Nonce;
        uint256 Balance;
        bytes32 StorageRoot;
        bytes32 CodeHash;
    }

    struct LogData {
        address Address;
        bytes32[] Topics;
        bytes Data;
    }

    struct WithdrawalData {
        uint256 Index;
        uint256 ValidatorIndex;
        address Address;
        uint256 AmountInGwei;
    }

    function parseHash(bytes calldata buf) internal pure returns (bytes32 result, uint256 offset) {
        uint256 value;
        (value, offset) = RLP.parseUint(buf);
        result = bytes32(value);
    }

    function parseAddress(bytes calldata buf)
        internal
        pure
        returns (address result, uint256 offset)
    {
        uint256 value;
        (value, offset) = RLP.parseUint(buf);
        result = address(uint160(value));
    }

    function parseBlockHeader(bytes calldata header)
        internal
        pure
        returns (BlockHeaderData memory data)
    {
        (uint256 listSize, uint256 offset) = RLP.parseList(header);
        header = header.slice(offset, listSize);

        (data.ParentHash, offset) = parseHash(header); // ParentHash
        header = header.suffix(offset);
        header = RLP.skip(header); // UncleHash
        (data.Coinbase, offset) = parseAddress(header); // Coinbase
        header = header.suffix(offset);
        (data.Root, offset) = parseHash(header); // Root
        header = header.suffix(offset);
        (data.TxHash, offset) = parseHash(header); // TxHash
        header = header.suffix(offset);
        (data.ReceiptHash, offset) = parseHash(header); // ReceiptHash
        header = header.suffix(offset);
        header = RLP.skip(header); // Bloom
        header = RLP.skip(header); // Difficulty
        (data.Number, offset) = RLP.parseUint(header); // Number
        header = header.suffix(offset);
        (data.GasLimit, offset) = RLP.parseUint(header); // GasLimit
        header = header.suffix(offset);
        (data.GasUsed, offset) = RLP.parseUint(header); // GasUsed
        header = header.suffix(offset);
        (data.Time, offset) = RLP.parseUint(header); // Time
        header = header.suffix(offset);
        header = RLP.skip(header); // Extra
        (data.MixHash, offset) = parseHash(header); // MixHash
        header = header.suffix(offset);
        header = RLP.skip(header); // Nonce

        if (header.length > 0) {
            (data.BaseFee, offset) = RLP.parseUint(header); // BaseFee
            header = header.suffix(offset);
        }

        if (header.length > 0) {
            (data.WithdrawalsHash, offset) = parseHash(header); // WithdrawalsHash
        }
    }

    function getBlockHeaderHashAndSize(bytes calldata header)
        internal
        pure
        returns (bytes32 blockHash, uint256 headerSize)
    {
        (uint256 listSize, uint256 offset) = RLP.parseList(header);
        unchecked {
            headerSize = offset + listSize;
        }
        blockHash = keccak256(header.prefix(headerSize));
    }

    function parseAccount(bytes calldata account) internal pure returns (AccountData memory data) {
        (, uint256 offset) = RLP.parseList(account);
        account = account.suffix(offset);

        (data.Nonce, offset) = RLP.parseUint(account); // Nonce
        account = account.suffix(offset);
        (data.Balance, offset) = RLP.parseUint(account); // Balance
        account = account.suffix(offset);
        (data.StorageRoot, offset) = parseHash(account); // StorageRoot
        account = account.suffix(offset);
        (data.CodeHash, offset) = parseHash(account); // CodeHash
        account = account.suffix(offset);
    }

    function parseLog(bytes calldata log) internal pure returns (LogData memory data) {
        (, uint256 offset) = RLP.parseList(log);
        log = log.suffix(offset);

        uint256 tmp;
        (tmp, offset) = RLP.parseUint(log); // Address
        data.Address = address(uint160(tmp));
        log = log.suffix(offset);

        (tmp, offset) = RLP.parseList(log); // Topics
        bytes calldata topics = log.slice(offset, tmp);
        log = log.suffix(offset + tmp);

        require(topics.length % 33 == 0);
        data.Topics = new bytes32[](tmp / 33);
        uint256 i = 0;
        while (topics.length > 0) {
            (data.Topics[i], offset) = parseHash(topics);
            topics = topics.suffix(offset);
            unchecked {
                i++;
            }
        }

        (data.Data, ) = RLP.splitBytes(log);
    }

    function extractLog(bytes calldata receiptValue, uint256 logIdx)
        internal
        pure
        returns (LogData memory)
    {
        // support EIP-2718: Currently all transaction types have the same
        // receipt RLP format, so we can just skip the receipt type byte
        if (receiptValue[0] < 0x80) {
            receiptValue = receiptValue.suffix(1);
        }

        (, uint256 offset) = RLP.parseList(receiptValue);
        receiptValue = receiptValue.suffix(offset);

        // pre EIP-658, receipts stored an intermediate state root in this field
        // post EIP-658, the field is a tx status (0 for failure, 1 for success)
        uint256 statusOrIntermediateRoot;
        (statusOrIntermediateRoot, offset) = RLP.parseUint(receiptValue);
        require(statusOrIntermediateRoot != 0, "tx did not succeed");
        receiptValue = receiptValue.suffix(offset);

        receiptValue = RLP.skip(receiptValue); // GasUsed
        receiptValue = RLP.skip(receiptValue); // LogsBloom

        uint256 length;
        (length, offset) = RLP.parseList(receiptValue); // Logs
        receiptValue = receiptValue.slice(offset, length);

        // skip the earlier logs
        for (uint256 i = 0; i < logIdx; i++) {
            require(receiptValue.length > 0, "log index does not exist");
            receiptValue = RLP.skip(receiptValue);
        }

        return parseLog(receiptValue);
    }

    function parseWithdrawal(bytes calldata withdrawal)
        internal
        pure
        returns (WithdrawalData memory data)
    {
        (, uint256 offset) = RLP.parseList(withdrawal);
        withdrawal = withdrawal.suffix(offset);

        (data.Index, offset) = RLP.parseUint(withdrawal); // Index
        withdrawal = withdrawal.suffix(offset);
        (data.ValidatorIndex, offset) = RLP.parseUint(withdrawal); // ValidatorIndex
        withdrawal = withdrawal.suffix(offset);
        (data.Address, offset) = parseAddress(withdrawal); // Address
        withdrawal = withdrawal.suffix(offset);
        (data.AmountInGwei, offset) = RLP.parseUint(withdrawal); // Amount
    }
}

File 27 of 34 : FactSigs.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.12;

import "./Facts.sol";

/**
 * @title FactSigs
 * @author Theori, Inc.
 * @notice Helper functions for computing fact signatures
 */
library FactSigs {
    /**
     * @notice Produce the fact signature data for birth certificates
     */
    function birthCertificateFactSigData() internal pure returns (bytes memory) {
        return abi.encode("BirthCertificate");
    }

    /**
     * @notice Produce the fact signature for a birth certificate fact
     */
    function birthCertificateFactSig() internal pure returns (FactSignature) {
        return Facts.toFactSignature(Facts.NO_FEE, birthCertificateFactSigData());
    }

    /**
     * @notice Produce the fact signature data for an account's storage root
     * @param blockNum the block number to look at
     * @param storageRoot the storageRoot for the account
     */
    function accountStorageFactSigData(uint256 blockNum, bytes32 storageRoot)
        internal
        pure
        returns (bytes memory)
    {
        return abi.encode("AccountStorage", blockNum, storageRoot);
    }

    /**
     * @notice Produce a fact signature for an account storage root
     * @param blockNum the block number to look at
     * @param storageRoot the storageRoot for the account
     */
    function accountStorageFactSig(uint256 blockNum, bytes32 storageRoot)
        internal
        pure
        returns (FactSignature)
    {
        return
            Facts.toFactSignature(Facts.NO_FEE, accountStorageFactSigData(blockNum, storageRoot));
    }

    /**
     * @notice Produce the fact signature data for an account's code hash
     * @param blockNum the block number to look at
     * @param codeHash the codeHash for the account
     */
    function accountCodeHashFactSigData(uint256 blockNum, bytes32 codeHash)
        internal
        pure
        returns (bytes memory)
    {
        return abi.encode("AccountCodeHash", blockNum, codeHash);
    }

    /**
     * @notice Produce a fact signature for an account code hash
     * @param blockNum the block number to look at
     * @param codeHash the codeHash for the account
     */
    function accountCodeHashFactSig(uint256 blockNum, bytes32 codeHash)
        internal
        pure
        returns (FactSignature)
    {
        return Facts.toFactSignature(Facts.NO_FEE, accountCodeHashFactSigData(blockNum, codeHash));
    }

    /**
     * @notice Produce the fact signature data for an account's nonce at a block
     * @param blockNum the block number to look at
     */
    function accountNonceFactSigData(uint256 blockNum) internal pure returns (bytes memory) {
        return abi.encode("AccountNonce", blockNum);
    }

    /**
     * @notice Produce a fact signature for an account nonce at a block
     * @param blockNum the block number to look at
     */
    function accountNonceFactSig(uint256 blockNum) internal pure returns (FactSignature) {
        return Facts.toFactSignature(Facts.NO_FEE, accountNonceFactSigData(blockNum));
    }

    /**
     * @notice Produce the fact signature data for an account's balance at a block
     * @param blockNum the block number to look at
     */
    function accountBalanceFactSigData(uint256 blockNum) internal pure returns (bytes memory) {
        return abi.encode("AccountBalance", blockNum);
    }

    /**
     * @notice Produce a fact signature for an account balance a block
     * @param blockNum the block number to look at
     */
    function accountBalanceFactSig(uint256 blockNum) internal pure returns (FactSignature) {
        return Facts.toFactSignature(Facts.NO_FEE, accountBalanceFactSigData(blockNum));
    }

    /**
     * @notice Produce the fact signature data for an account's raw header
     * @param blockNum the block number to look at
     */
    function accountFactSigData(uint256 blockNum) internal pure returns (bytes memory) {
        return abi.encode("Account", blockNum);
    }

    /**
     * @notice Produce a fact signature for an account raw header
     * @param blockNum the block number to look at
     */
    function accountFactSig(uint256 blockNum) internal pure returns (FactSignature) {
        return Facts.toFactSignature(Facts.NO_FEE, accountFactSigData(blockNum));
    }

    /**
     * @notice Produce the fact signature data for a storage slot
     * @param slot the account's slot
     * @param blockNum the block number to look at
     */
    function storageSlotFactSigData(bytes32 slot, uint256 blockNum)
        internal
        pure
        returns (bytes memory)
    {
        return abi.encode("StorageSlot", slot, blockNum);
    }

    /**
     * @notice Produce a fact signature for a storage slot
     * @param slot the account's slot
     * @param blockNum the block number to look at
     */
    function storageSlotFactSig(bytes32 slot, uint256 blockNum)
        internal
        pure
        returns (FactSignature)
    {
        return Facts.toFactSignature(Facts.NO_FEE, storageSlotFactSigData(slot, blockNum));
    }

    /**
     * @notice Produce the fact signature data for a log
     * @param blockNum the block number to look at
     * @param txIdx the transaction index in the block
     * @param logIdx the log index in the transaction
     */
    function logFactSigData(
        uint256 blockNum,
        uint256 txIdx,
        uint256 logIdx
    ) internal pure returns (bytes memory) {
        return abi.encode("Log", blockNum, txIdx, logIdx);
    }

    /**
     * @notice Produce a fact signature for a log
     * @param blockNum the block number to look at
     * @param txIdx the transaction index in the block
     * @param logIdx the log index in the transaction
     */
    function logFactSig(
        uint256 blockNum,
        uint256 txIdx,
        uint256 logIdx
    ) internal pure returns (FactSignature) {
        return Facts.toFactSignature(Facts.NO_FEE, logFactSigData(blockNum, txIdx, logIdx));
    }

    /**
     * @notice Produce the fact signature data for a block header
     * @param blockNum the block number
     */
    function blockHeaderSigData(uint256 blockNum) internal pure returns (bytes memory) {
        return abi.encode("BlockHeader", blockNum);
    }

    /**
     * @notice Produce the fact signature data for a block header
     * @param blockNum the block number
     */
    function blockHeaderSig(uint256 blockNum) internal pure returns (FactSignature) {
        return Facts.toFactSignature(Facts.NO_FEE, blockHeaderSigData(blockNum));
    }

    /**
     * @notice Produce the fact signature data for a withdrawal
     * @param blockNum the block number
     * @param index the withdrawal index
     */
    function withdrawalSigData(uint256 blockNum, uint256 index)
        internal
        pure
        returns (bytes memory)
    {
        return abi.encode("Withdrawal", blockNum, index);
    }

    /**
     * @notice Produce the fact signature for a withdrawal
     * @param blockNum the block number
     * @param index the withdrawal index
     */
    function withdrawalFactSig(uint256 blockNum, uint256 index)
        internal
        pure
        returns (FactSignature)
    {
        return Facts.toFactSignature(Facts.NO_FEE, withdrawalSigData(blockNum, index));
    }

    /**
     * @notice Produce the fact signature data for an event fact
     * @param eventId The event in question
     */
    function eventFactSigData(uint64 eventId) internal pure returns (bytes memory) {
        return abi.encode("EventAttendance", "EventID", eventId);
    }

    /**
     * @notice Produce a fact signature for a given event
     * @param eventId The event in question
     */
    function eventFactSig(uint64 eventId) internal pure returns (FactSignature) {
        return Facts.toFactSignature(Facts.NO_FEE, eventFactSigData(eventId));
    }

    /**
     * @notice Produce the fact signature data for a transaction fact
     * @param transaction the transaction hash to be proven
     */
    function transactionFactSigData(bytes32 transaction) internal pure returns (bytes memory) {
        return abi.encode("Transaction", transaction);
    }

    /**
     * @notice Produce a fact signature for a transaction
     * @param transaction the transaction hash to be proven
     */
    function transactionFactSig(bytes32 transaction) internal pure returns (FactSignature) {
        return Facts.toFactSignature(Facts.NO_FEE, transactionFactSigData(transaction));
    }
}

File 28 of 34 : Facts.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.12;

type FactSignature is bytes32;

struct Fact {
    address account;
    FactSignature sig;
    bytes data;
}

library Facts {
    uint8 internal constant NO_FEE = 0;

    function toFactSignature(uint8 cls, bytes memory data) internal pure returns (FactSignature) {
        return FactSignature.wrap(bytes32((uint256(keccak256(data)) << 8) | cls));
    }

    function toFactClass(FactSignature factSig) internal pure returns (uint8) {
        return uint8(uint256(FactSignature.unwrap(factSig)));
    }
}

File 29 of 34 : MPT.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

/**
 * @title MPT
 * @author Theori, Inc.
 * @notice Implements proof checking for Ethereum Merkle-Patricia Tries.
 *         To save gas, it assumes nodes are validly structured,
 *         so soundness is only guaranteed if the rootHash belongs
 *         to a valid ethereum block.
 */

pragma solidity >=0.8.0;

import "./RLP.sol";
import "./CoreTypes.sol";
import "./BytesCalldata.sol";

library MPT {
    using BytesCalldataOps for bytes;

    struct Node {
        BytesCalldata data;
        bytes32 hash;
    }

    // prefix constants
    uint8 constant ODD_LENGTH = 1;
    uint8 constant LEAF = 2;
    uint8 constant MAX_PREFIX = 3;

    /**
     * @notice parses concatenated MPT nodes into processed Node structs
     * @param input the concatenated MPT nodes
     * @return result the parsed nodes array, containing a calldata slice and hash
     *                for each node
     */
    function parseNodes(bytes calldata input) internal pure returns (Node[] memory result) {
        uint256 freePtr;
        uint256 firstNode;

        // we'll use a dynamic amount of memory starting at the free pointer
        // it is crucial that no other allocations happen during parsing
        assembly {
            freePtr := mload(0x40)

            // corrupt free pointer to cause out-of-gas if allocation occurs
            mstore(0x40, 0xcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc)

            firstNode := freePtr
        }

        uint256 count;
        while (input.length > 0) {
            (uint256 listsize, uint256 offset) = RLP.parseList(input);
            bytes calldata node = input.slice(offset, listsize);
            BytesCalldata slice = node.convert();

            uint256 len;
            assembly {
                len := add(listsize, offset)

                // compute node hash
                calldatacopy(freePtr, input.offset, len)
                let nodeHash := keccak256(freePtr, len)

                // store the Node struct (calldata slice and hash)
                mstore(freePtr, slice)
                mstore(add(freePtr, 0x20), nodeHash)

                // advance pointer
                count := add(count, 1)
                freePtr := add(freePtr, 0x40)
            }

            input = input.suffix(len);
        }

        assembly {
            // allocate the result array and fill it with the node pointers
            result := freePtr
            mstore(result, count)
            freePtr := add(freePtr, 0x20)
            for {
                let i := 0
            } lt(i, count) {
                i := add(i, 1)
            } {
                mstore(freePtr, add(firstNode, mul(0x40, i)))
                freePtr := add(freePtr, 0x20)
            }

            // update the free pointer
            mstore(0x40, freePtr)
        }
    }

    /**
     * @notice parses a compressed MPT proof into arrays of Node structs
     * @param nodes the set of nodes used in the compressed proofs
     * @param compressed the compressed MPT proof
     * @param count the number of proofs expected from the compressed proof
     * @return result the array of proofs
     */
    function parseCompressedProofs(
        Node[] memory nodes,
        bytes calldata compressed,
        uint256 count
    ) internal pure returns (Node[][] memory result) {
        uint256 resultPtr;
        uint256 freePtr;

        // we'll use a dynamic amount of memory starting at the free pointer
        // it is crucial that no other allocations happen during parsing
        assembly {
            result := mload(0x40)

            // corrupt free pointer to cause out-of-gas if allocation occurs
            mstore(0x40, 0xcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc)

            mstore(result, count)
            resultPtr := add(result, 0x20)
            freePtr := add(resultPtr, mul(0x20, count))
        }

        (uint256 listSize, uint256 offset) = RLP.parseList(compressed);
        compressed = compressed.slice(offset, listSize);

        // parse the indices and populate the proof list
        for (; count > 0; count--) {
            bytes calldata indices;
            (listSize, offset) = RLP.parseList(compressed);
            indices = compressed.slice(offset, listSize);
            compressed = compressed.suffix(listSize + offset);

            // begin next proof array
            uint256 arr;
            assembly {
                arr := freePtr
                freePtr := add(freePtr, 0x20)
            }

            // fill proof array
            uint256 len;
            for (len = 0; indices.length > 0; len++) {
                uint256 idx;
                (idx, offset) = RLP.parseUint(indices);
                indices = indices.suffix(offset);
                require(idx < nodes.length, "invalid node index in compressed proof");
                assembly {
                    let node := mload(add(add(nodes, 0x20), mul(0x20, idx)))
                    mstore(freePtr, node)
                    freePtr := add(freePtr, 0x20)
                }
            }

            assembly {
                // store the array length
                mstore(arr, len)

                // store the array pointer in the result
                mstore(resultPtr, arr)
                resultPtr := add(resultPtr, 0x20)
            }
        }

        assembly {
            // update the free pointer
            mstore(0x40, freePtr)
        }
    }

    /**
     * @notice Checks if the provided bytes match the key at a given offset
     * @param key the MPT key to check against
     * @param keyLen the length (in nibbles) of the key
     * @param testBytes the subkey to check
     */
    function subkeysEqual(
        bytes32 key,
        uint256 keyLen,
        bytes calldata testBytes
    ) private pure returns (bool result) {
        // arithmetic cannot overflow because testBytes is from calldata
        uint256 nibbleLength;
        unchecked {
            nibbleLength = 2 * testBytes.length;
            require(nibbleLength <= keyLen);
        }

        assembly {
            let shiftAmount := sub(256, shl(2, nibbleLength))
            let testValue := shr(shiftAmount, calldataload(testBytes.offset))
            let subkey := shr(shiftAmount, key)
            result := eq(testValue, subkey)
        }
    }

    /**
     * @notice checks the MPT proof. Note: for certain optimizations, we assume
     *         that the rootHash belongs to a valid ethereum block. Correctness
     *         is only guaranteed in that case.
     *         Gas usage depends on both proof size and key nibble values.
     *         Gas usage for actual ethereum account proofs: ~ 30000 - 45000
     * @param nodes MPT proof nodes, parsed using parseNodes()
     * @param key the MPT key, padded with trailing 0s if needed
     * @param keyLen the byte length of the MPT key, must be <= 32
     * @param expectedHash the root hash of the MPT
     */
    function verifyTrieValueWithNodes(
        Node[] memory nodes,
        bytes32 key,
        uint256 keyLen,
        bytes32 expectedHash
    ) internal pure returns (bool exists, bytes calldata value) {
        // handle completely empty trie case
        if (nodes.length == 0) {
            require(keccak256(hex"80") == expectedHash, "root hash incorrect");
            return (false, msg.data[:0]);
        }

        // we will read the key nibble by nibble, so double the length
        unchecked {
            keyLen *= 2;
        }

        // initialize return values to make solc happy;
        // one will always be overwritten before returing
        assembly {
            value.offset := 0
            value.length := 0
        }
        exists = true;

        // we'll use nodes as a pointer, advancing through each element
        // end will point to the end of the array
        uint256 end;
        assembly {
            end := add(nodes, add(0x20, mul(0x20, mload(nodes))))
            nodes := add(nodes, 0x20)
        }

        while (true) {
            bytes calldata node;
            {
                BytesCalldata slice;
                bytes32 nodeHash;

                // load the element and advance the proof pointer
                assembly {
                    // bounds checking
                    if iszero(lt(nodes, end)) {
                        revert(0, 0)
                    }

                    let ptr := mload(nodes)
                    nodes := add(nodes, 0x20)

                    slice := mload(ptr)
                    nodeHash := mload(add(ptr, 0x20))
                }
                node = slice.convert();

                require(nodeHash == expectedHash, "node hash incorrect");
            }

            // find the length of the first two elements
            uint256 size = RLP.nextSize(node);
            unchecked {
                size += RLP.nextSize(node.suffix(size));
            }

            // we now know which type of node we're looking at:
            // leaf + extension nodes have 2 list elements, branch nodes have 17
            if (size == node.length) {
                // only two elements, leaf or extension node
                bytes calldata encodedPath;
                (encodedPath, node) = RLP.splitBytes(node);

                // keep track of whether the key nibbles match
                bool keysMatch;

                // the first nibble of the encodedPath tells us the type of
                // node and if it contains an even or odd number of nibbles
                uint8 firstByte = uint8(encodedPath[0]);
                uint8 prefix = firstByte >> 4;
                require(prefix <= MAX_PREFIX);
                if (prefix & ODD_LENGTH == 0) {
                    // second nibble is padding, must be 0
                    require(firstByte & 0xf == 0);
                    keysMatch = true;
                } else {
                    // second nibble is part of key
                    keysMatch = (firstByte & 0xf) == (uint8(bytes1(key)) >> 4);
                    unchecked {
                        key <<= 4;
                        keyLen--;
                    }
                }

                // check the remainder of the encodedPath
                encodedPath = encodedPath.suffix(1);
                keysMatch = keysMatch && subkeysEqual(key, keyLen, encodedPath);
                // cannot overflow because encodedPath is from calldata
                unchecked {
                    key <<= 8 * encodedPath.length;
                    keyLen -= 2 * encodedPath.length;
                }

                if (prefix & LEAF == 0) {
                    // extension can't prove nonexistence, subkeys must match
                    require(keysMatch);

                    (expectedHash, ) = CoreTypes.parseHash(node);
                } else {
                    // leaf node, must have used all of key
                    require(keyLen == 0);

                    if (keysMatch) {
                        // if keys equal, we found the value
                        (value, node) = RLP.splitBytes(node);
                        break;
                    } else {
                        // if keys aren't equal, key doesn't exist
                        exists = false;
                        break;
                    }
                }
            } else {
                // branch node, this is the hotspot for gas usage

                // there should be 17 elements (16 branch hashes + a value)
                // we won't explicitly check this in order to save gas, since
                // it's implied by inclusion in a valid ethereum block

                // also note, we never need the value element because we assume
                // uniquely-prefixed keys, so branch nodes never hold values

                // fetch the branch for the next nibble of the key
                uint256 keyNibble = uint256(key >> 252);

                // skip past the branches we don't need
                // we already skipped past 2 elements; start there if we can
                uint256 i = 0;
                if (keyNibble >= 2) {
                    i = 2;
                    node = node.suffix(size);
                }
                while (i < keyNibble) {
                    node = RLP.skip(node);
                    unchecked {
                        i++;
                    }
                }

                (expectedHash, ) = CoreTypes.parseHash(node);
                // if we've reached an empty branch, key doesn't exist
                if (expectedHash == 0) {
                    exists = false;
                    break;
                }
                unchecked {
                    key <<= 4;
                    keyLen -= 1;
                }
            }
        }
    }

    /**
     * @notice checks the MPT proof. Note: for certain optimizations, we assume
     *         that the rootHash belongs to a valid ethereum block. Correctness
     *         is only guaranteed in that case.
     *         Gas usage depends on both proof size and key nibble values.
     *         Gas usage for actual ethereum account proofs: ~ 30000 - 45000
     * @param proof the encoded MPT proof noodes concatenated
     * @param key the MPT key, padded with trailing 0s if needed
     * @param keyLen the byte length of the MPT key, must be <= 32
     * @param rootHash the root hash of the MPT
     */
    function verifyTrieValue(
        bytes calldata proof,
        bytes32 key,
        uint256 keyLen,
        bytes32 rootHash
    ) internal pure returns (bool exists, bytes calldata value) {
        Node[] memory nodes = parseNodes(proof);
        return verifyTrieValueWithNodes(nodes, key, keyLen, rootHash);
    }
}

File 30 of 34 : MerkleTree.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.0;

/**
 * @title Merkle Tree
 * @author Theori, Inc.
 * @notice Gas optimized SHA256 Merkle tree code.
 */
library MerkleTree {
    /**
     * @notice computes a SHA256 merkle root of the provided hashes, in place
     * @param temp the mutable array of hashes
     * @return the merkle root hash
     */
    function computeRoot(bytes32[] memory temp) internal view returns (bytes32) {
        uint256 count = temp.length;
        assembly {
            // repeat until we arrive at one root hash
            for {

            } gt(count, 1) {

            } {
                let dataElementLocation := add(temp, 0x20)
                let hashElementLocation := add(temp, 0x20)
                for {
                    let i := 0
                } lt(i, count) {
                    i := add(i, 2)
                } {
                    if iszero(
                        staticcall(gas(), 0x2, hashElementLocation, 0x40, dataElementLocation, 0x20)
                    ) {
                        revert(0, 0)
                    }
                    dataElementLocation := add(dataElementLocation, 0x20)
                    hashElementLocation := add(hashElementLocation, 0x40)
                }
                count := shr(1, count)
            }
        }
        return temp[0];
    }

    /**
     * @notice check if a hash is in the merkle tree for rootHash
     * @param rootHash the merkle root
     * @param index the index of the node to check
     * @param hash the hash to check
     * @param proofHashes the proof, i.e. the sequence of siblings from the
     *        node to root
     */
    function validProof(
        bytes32 rootHash,
        uint256 index,
        bytes32 hash,
        bytes32[] memory proofHashes
    ) internal view returns (bool result) {
        assembly {
            let constructedHash := hash
            let length := mload(proofHashes)
            let start := add(proofHashes, 0x20)
            let end := add(start, mul(length, 0x20))
            for {
                let ptr := start
            } lt(ptr, end) {
                ptr := add(ptr, 0x20)
            } {
                let proofHash := mload(ptr)

                // use scratch space (0x0 - 0x40) for hash input
                switch and(index, 1)
                case 0 {
                    mstore(0x0, constructedHash)
                    mstore(0x20, proofHash)
                }
                case 1 {
                    mstore(0x0, proofHash)
                    mstore(0x20, constructedHash)
                }

                // compute sha256
                if iszero(staticcall(gas(), 0x2, 0x0, 0x40, 0x0, 0x20)) {
                    revert(0, 0)
                }
                constructedHash := mload(0x0)

                index := shr(1, index)
            }
            result := eq(constructedHash, rootHash)
        }
    }
}

File 31 of 34 : Proofs.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

/*
 * @author Theori, Inc.
 */

pragma solidity >=0.8.0;

import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

uint256 constant BASE_PROOF_SIZE = 34;
uint256 constant SUBPROOF_LIMBS_SIZE = 16;

struct RecursiveProof {
    uint256[BASE_PROOF_SIZE] base;
    uint256[SUBPROOF_LIMBS_SIZE] subproofLimbs;
    uint256[] inputs;
}

struct SignedRecursiveProof {
    RecursiveProof inner;
    bytes signature;
}

/**
 * @notice recover the signer of the proof
 * @param proof the SignedRecursiveProof
 * @return the address of the signer
 */
function getProofSigner(SignedRecursiveProof calldata proof) pure returns (address) {
    bytes32 msgHash = keccak256(
        abi.encodePacked("\x19Ethereum Signed Message:\n", "32", hashProof(proof.inner))
    );
    return ECDSA.recover(msgHash, proof.signature);
}

/**
 * @notice hash the contents of a RecursiveProof
 * @param proof the RecursiveProof
 * @return result a 32-byte digest of the proof
 */
function hashProof(RecursiveProof calldata proof) pure returns (bytes32 result) {
    uint256[] calldata inputs = proof.inputs;
    assembly {
        let ptr := mload(0x40)
        let contigLen := mul(0x20, add(BASE_PROOF_SIZE, SUBPROOF_LIMBS_SIZE))
        let inputsLen := mul(0x20, inputs.length)
        calldatacopy(ptr, proof, contigLen)
        calldatacopy(add(ptr, contigLen), inputs.offset, inputsLen)
        result := keccak256(ptr, add(contigLen, inputsLen))
    }
}

/**
 * @notice reverse the byte order of a uint256
 * @param input the input value
 * @return v the byte-order reversed value
 */
function byteReverse(uint256 input) pure returns (uint256 v) {
    v = input;

    uint256 MASK08 = 0xFF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00;
    uint256 MASK16 = 0xFFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000;
    uint256 MASK32 = 0xFFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000;
    uint256 MASK64 = 0xFFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF0000000000000000;

    // swap bytes
    v = ((v & MASK08) >> 8) | ((v & (~MASK08)) << 8);

    // swap 2-byte long pairs
    v = ((v & MASK16) >> 16) | ((v & (~MASK16)) << 16);

    // swap 4-byte long pairs
    v = ((v & MASK32) >> 32) | ((v & (~MASK32)) << 32);

    // swap 8-byte long pairs
    v = ((v & MASK64) >> 64) | ((v & (~MASK64)) << 64);

    // swap 16-byte long pairs
    v = (v >> 128) | (v << 128);
}

/**
 * @notice reads a 32-byte hash from its little-endian word-encoded form
 * @param words the hash words
 * @return the hash
 */
function readHashWords(uint256[] calldata words) pure returns (bytes32) {
    uint256 mask = 0xffffffffffffffff;
    uint256 result = (words[0] & mask);
    result |= (words[1] & mask) << 0x40;
    result |= (words[2] & mask) << 0x80;
    result |= (words[3] & mask) << 0xc0;
    return bytes32(byteReverse(result));
}

File 32 of 34 : RLP.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.0;

/**
 * @title RLP
 * @author Theori, Inc.
 * @notice Gas optimized RLP parsing code. Note that some parsing logic is
 *         duplicated because helper functions are oddly expensive.
 */
library RLP {
    function parseUint(bytes calldata buf) internal pure returns (uint256 result, uint256 size) {
        assembly {
            // check that we have at least one byte of input
            if iszero(buf.length) {
                revert(0, 0)
            }
            let first32 := calldataload(buf.offset)
            let kind := shr(248, first32)

            // ensure it's a not a long string or list (> 0xB7)
            // also ensure it's not a short string longer than 32 bytes (> 0xA0)
            if gt(kind, 0xA0) {
                revert(0, 0)
            }

            switch lt(kind, 0x80)
            case true {
                // small single byte
                result := kind
                size := 1
            }
            case false {
                // short string
                size := sub(kind, 0x80)

                // ensure it's not reading out of bounds
                if lt(buf.length, size) {
                    revert(0, 0)
                }

                switch eq(size, 32)
                case true {
                    // if it's exactly 32 bytes, read it from calldata
                    result := calldataload(add(buf.offset, 1))
                }
                case false {
                    // if it's < 32 bytes, we've already read it from calldata
                    result := shr(shl(3, sub(32, size)), shl(8, first32))
                }
                size := add(size, 1)
            }
        }
    }

    function nextSize(bytes calldata buf) internal pure returns (uint256 size) {
        assembly {
            if iszero(buf.length) {
                revert(0, 0)
            }
            let first32 := calldataload(buf.offset)
            let kind := shr(248, first32)

            switch lt(kind, 0x80)
            case true {
                // small single byte
                size := 1
            }
            case false {
                switch lt(kind, 0xB8)
                case true {
                    // short string
                    size := add(1, sub(kind, 0x80))
                }
                case false {
                    switch lt(kind, 0xC0)
                    case true {
                        // long string
                        let lengthSize := sub(kind, 0xB7)

                        // ensure that we don't overflow
                        if gt(lengthSize, 31) {
                            revert(0, 0)
                        }

                        // ensure that we don't read out of bounds
                        if lt(buf.length, lengthSize) {
                            revert(0, 0)
                        }
                        size := shr(mul(8, sub(32, lengthSize)), shl(8, first32))
                        size := add(size, add(1, lengthSize))
                    }
                    case false {
                        switch lt(kind, 0xF8)
                        case true {
                            // short list
                            size := add(1, sub(kind, 0xC0))
                        }
                        case false {
                            let lengthSize := sub(kind, 0xF7)

                            // ensure that we don't overflow
                            if gt(lengthSize, 31) {
                                revert(0, 0)
                            }
                            // ensure that we don't read out of bounds
                            if lt(buf.length, lengthSize) {
                                revert(0, 0)
                            }
                            size := shr(mul(8, sub(32, lengthSize)), shl(8, first32))
                            size := add(size, add(1, lengthSize))
                        }
                    }
                }
            }
        }
    }

    function skip(bytes calldata buf) internal pure returns (bytes calldata) {
        uint256 size = RLP.nextSize(buf);
        assembly {
            buf.offset := add(buf.offset, size)
            buf.length := sub(buf.length, size)
        }
        return buf;
    }

    function parseList(bytes calldata buf)
        internal
        pure
        returns (uint256 listSize, uint256 offset)
    {
        assembly {
            // check that we have at least one byte of input
            if iszero(buf.length) {
                revert(0, 0)
            }
            let first32 := calldataload(buf.offset)
            let kind := shr(248, first32)

            // ensure it's a list
            if lt(kind, 0xC0) {
                revert(0, 0)
            }

            switch lt(kind, 0xF8)
            case true {
                // short list
                listSize := sub(kind, 0xC0)
                offset := 1
            }
            case false {
                // long list
                let lengthSize := sub(kind, 0xF7)

                // ensure that we don't overflow
                if gt(lengthSize, 31) {
                    revert(0, 0)
                }
                // ensure that we don't read out of bounds
                if lt(buf.length, lengthSize) {
                    revert(0, 0)
                }
                listSize := shr(mul(8, sub(32, lengthSize)), shl(8, first32))
                offset := add(lengthSize, 1)
            }
        }
    }

    function splitBytes(bytes calldata buf)
        internal
        pure
        returns (bytes calldata result, bytes calldata rest)
    {
        uint256 offset;
        uint256 size;
        assembly {
            // check that we have at least one byte of input
            if iszero(buf.length) {
                revert(0, 0)
            }
            let first32 := calldataload(buf.offset)
            let kind := shr(248, first32)

            // ensure it's a not list
            if gt(kind, 0xBF) {
                revert(0, 0)
            }

            switch lt(kind, 0x80)
            case true {
                // small single byte
                offset := 0
                size := 1
            }
            case false {
                switch lt(kind, 0xB8)
                case true {
                    // short string
                    offset := 1
                    size := sub(kind, 0x80)
                }
                case false {
                    // long string
                    let lengthSize := sub(kind, 0xB7)

                    // ensure that we don't overflow
                    if gt(lengthSize, 31) {
                        revert(0, 0)
                    }
                    // ensure we don't read out of bounds
                    if lt(buf.length, lengthSize) {
                        revert(0, 0)
                    }
                    size := shr(mul(8, sub(32, lengthSize)), shl(8, first32))
                    offset := add(lengthSize, 1)
                }
            }

            result.offset := add(buf.offset, offset)
            result.length := size

            let end := add(offset, size)
            rest.offset := add(buf.offset, end)
            rest.length := sub(buf.length, end)
        }
    }

    function encodeUint(uint256 value) internal pure returns (bytes memory) {
        // allocate our result bytes
        bytes memory result = new bytes(33);

        if (value == 0) {
            // store length = 1, value = 0x80
            assembly {
                mstore(add(result, 1), 0x180)
            }
            return result;
        }

        if (value < 128) {
            // store length = 1, value = value
            assembly {
                mstore(add(result, 1), or(0x100, value))
            }
            return result;
        }

        if (value > 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) {
            // length 33, prefix 0xa0 followed by value
            assembly {
                mstore(add(result, 1), 0x21a0)
                mstore(add(result, 33), value)
            }
            return result;
        }

        if (value > 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) {
            // length 32, prefix 0x9f followed by value
            assembly {
                mstore(add(result, 1), 0x209f)
                mstore(add(result, 33), shl(8, value))
            }
            return result;
        }

        assembly {
            let length := 1
            for {
                let min := 0x100
            } lt(sub(min, 1), value) {
                min := shl(8, min)
            } {
                length := add(length, 1)
            }

            let bytesLength := add(length, 1)

            // bytes length field
            let hi := shl(mul(bytesLength, 8), bytesLength)

            // rlp encoding of value
            let lo := or(shl(mul(length, 8), add(length, 0x80)), value)

            mstore(add(result, bytesLength), or(hi, lo))
        }
        return result;
    }
}

File 33 of 34 : Prover.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.12;

import "@openzeppelin/contracts/utils/introspection/ERC165.sol";

import "../interfaces/IReliquary.sol";
import "../interfaces/IProver.sol";

abstract contract Prover is ERC165, IProver {
    IReliquary immutable reliquary;

    constructor(IReliquary _reliquary) {
        reliquary = _reliquary;
    }

    event FactProven(Fact fact);

    // must implemented by each prover
    function _prove(bytes calldata proof) internal view virtual returns (Fact memory);

    // can optionally be overridden by each prover
    function _afterStore(Fact memory fact, bool alreadyStored) internal virtual {}

    /**
     * @notice proves a fact ephemerally and returns the fact information
     * @param proof the encoded proof for this prover
     * @param store whether to store the fact in the reqliquary
     */
    function prove(bytes calldata proof, bool store) public payable returns (Fact memory fact) {
        reliquary.checkProveFactFee{value: msg.value}(msg.sender);
        fact = _prove(proof);
        emit FactProven(fact);
        if (store) {
            (bool alreadyStored, , ) = reliquary.getFact(fact.account, fact.sig);
            reliquary.setFact(fact.account, fact.sig, fact.data);
            _afterStore(fact, alreadyStored);
        }
    }

    /**
     * @inheritdoc IERC165
     * @dev Supported interfaces: IProver
     */
    function supportsInterface(bytes4 interfaceId)
        public
        view
        virtual
        override(ERC165)
        returns (bool)
    {
        return (interfaceId == type(IProver).interfaceId || super.supportsInterface(interfaceId));
    }
}

File 34 of 34 : StateVerifier.sol
/// SPDX-License-Identifier: UNLICENSED
/// (c) Theori, Inc. 2022
/// All rights reserved

pragma solidity >=0.8.12;

import "../BlockHistory.sol";
import "../interfaces/IReliquary.sol";
import "../lib/BytesCalldata.sol";
import "../lib/CoreTypes.sol";
import "../lib/RLP.sol";
import "../lib/MPT.sol";

/**
 * @title StateVerifier
 * @author Theori, Inc.
 * @notice StateVerifier is a base contract for verifying historical Ethereum
 *         state using BlockHistory proofs and MPT proofs.
 */
contract StateVerifier {
    using BytesCalldataOps for bytes;

    BlockHistory public immutable blockHistory;
    IReliquary private immutable reliquary;

    constructor(BlockHistory _blockHistory, IReliquary _reliquary) {
        blockHistory = _blockHistory;
        reliquary = _reliquary;
    }

    /**
     * @notice verifies that the block header is included in the current chain
     *         by querying the BlockHistory contract using the provided proof.
     *         Reverts if the header or proof is invalid.
     *
     * @param header the block header in RLP encoded form
     * @param proof the proof to pass to blockHistory
     * @return head the parsed block header
     */
    function verifyBlockHeader(bytes calldata header, bytes calldata proof)
        internal
        view
        returns (CoreTypes.BlockHeaderData memory head)
    {
        // first validate the block, ensuring that the rootHash is valid
        (bytes32 blockHash, ) = CoreTypes.getBlockHeaderHashAndSize(header);
        head = CoreTypes.parseBlockHeader(header);
        reliquary.assertValidBlockHashFromProver(
            address(blockHistory),
            blockHash,
            head.Number,
            proof
        );
    }

    /**
     * @notice verifies that the account is included in the account trie using
     *         the provided proof. Accepts both existence and nonexistence
     *         proofs. Reverts if the proof is invalid. Assumes the stateRoot
     *         comes from a valid Ethereum block header.
     *
     * @param account the account address to check
     * @param proof the MPT proof for the account trie
     * @param stateRoot the MPT root hash for the account trie
     * @return exists whether the account exists
     * @return acc the parsed account value
     */
    function verifyAccount(
        address account,
        bytes calldata proof,
        bytes32 stateRoot
    ) internal pure returns (bool exists, CoreTypes.AccountData memory acc) {
        bytes32 key = keccak256(abi.encodePacked(account));

        // validate the trie node and extract the value (if it exists)
        bytes calldata accountValue;
        (exists, accountValue) = MPT.verifyTrieValue(proof, key, 32, stateRoot);
        if (exists) {
            acc = CoreTypes.parseAccount(accountValue);
        }
    }

    /**
     * @notice verifies that the storage slot is included in the storage trie
     *         using the provided proof. Accepts both existence and nonexistence
     *         proofs. Reverts if the proof is invalid. Assumes the storageRoot
     *         comes from a valid Ethereum account.
     *
     * @param slot the storage slot index
     * @param proof the MPT proof for the storage trie
     * @param storageRoot the MPT root hash for the storage trie
     * @return value the value in the storage slot, as bytes, with leading 0 bytes removed
     */
    function verifyStorageSlot(
        bytes32 slot,
        bytes calldata proof,
        bytes32 storageRoot
    ) internal pure returns (bytes calldata value) {
        bytes32 key = keccak256(abi.encodePacked(slot));

        // validate the trie node and extract the value (default is 0)
        bool exists;
        (exists, value) = MPT.verifyTrieValue(proof, key, 32, storageRoot);
        if (exists) {
            (value, ) = RLP.splitBytes(value);
            require(value.length <= 32);
        }
    }

    /**
     * @notice verifies that each storage slot is included in the storage trie
     *         using the provided proofs. Accepts both existence and nonexistence
     *         proofs. Reverts if a proof is invalid. Assumes the storageRoot
     *         comes from a valid Ethereum account.
     * @param proofNodes concatenation of all nodes used in the trie proofs
     * @param slots the list of slots being proven
     * @param slotProofs the compressed MPT proofs for each slot
     * @param storageRoot the MPT root hash for the storage trie
     * @return values the values in the storage slot, as bytes, with leading 0 bytes removed
     */
    function verifyMultiStorageSlot(
        bytes calldata proofNodes,
        bytes32[] calldata slots,
        bytes calldata slotProofs,
        bytes32 storageRoot
    ) internal pure returns (BytesCalldata[] memory values) {
        MPT.Node[] memory nodes = MPT.parseNodes(proofNodes);
        MPT.Node[][] memory proofs = MPT.parseCompressedProofs(nodes, slotProofs, slots.length);
        BytesCalldata[] memory results = new BytesCalldata[](slots.length);

        for (uint256 i = 0; i < slots.length; i++) {
            bytes32 key = keccak256(abi.encodePacked(slots[i]));
            (bool exists, bytes calldata value) = MPT.verifyTrieValueWithNodes(
                proofs[i],
                key,
                32,
                storageRoot
            );
            if (exists) {
                (value, ) = RLP.splitBytes(value);
                require(value.length <= 32);
            }
            results[i] = value.convert();
        }
        return results;
    }

    /**
     * @notice verifies that an entry is included in the indexed trie using
     *         the provided proof. Accepts both existence and nonexistence
     *         proofs. Reverts if the proof is invalid. Assumes the root comes
     *         from a valid Ethereum MPT, i.e. from a valid block header.
     *
     * @param idx the receipt index in the block
     * @param proof the MPT proof for the indexed trie
     * @param root the MPT root hash for the indexed trie
     * @return exists whether the index exists
     * @return value the value at the given index, as bytes
     */
    function verifyIndexedTrieProof(
        uint256 idx,
        bytes calldata proof,
        bytes32 root
    ) internal pure returns (bool exists, bytes calldata value) {
        bytes memory key = RLP.encodeUint(idx);
        (exists, value) = MPT.verifyTrieValue(proof, bytes32(key), key.length, root);
    }

    /**
     * @notice verifies that the account is included in the account trie for
     *         a block using the provided proofs. Accepts both existence and
     *         nonexistence proofs. Reverts if the proofs are invalid.
     *
     * @param account the account address to check
     * @param accountProof the MPT proof for the account trie
     * @param header the block header in RLP encoded form
     * @param blockProof the proof to pass to blockHistory
     * @return exists whether the account exists
     * @return head the parsed block header
     * @return acc the parsed account value
     */
    function verifyAccountAtBlock(
        address account,
        bytes calldata accountProof,
        bytes calldata header,
        bytes calldata blockProof
    )
        internal
        view
        returns (
            bool exists,
            CoreTypes.BlockHeaderData memory head,
            CoreTypes.AccountData memory acc
        )
    {
        head = verifyBlockHeader(header, blockProof);
        (exists, acc) = verifyAccount(account, accountProof, head.Root);
    }

    /**
     * @notice verifies a log was emitted in the given block, txIdx, and logIdx
     *         using the provided proofs. Reverts if the log doesn't exist or if
     *         the proofs are invalid.
     *
     * @param txIdx the transaction index in the block
     * @param logIdx the index of the log in the transaction
     * @param receiptProof the Merkle-Patricia trie proof for the receipt
     * @param header the block header, RLP encoded
     * @param blockProof proof that the block header is valid
     * @return head the parsed block header
     * @return log the parsed log value
     */
    function verifyLogAtBlock(
        uint256 txIdx,
        uint256 logIdx,
        bytes calldata receiptProof,
        bytes calldata header,
        bytes calldata blockProof
    ) internal view returns (CoreTypes.BlockHeaderData memory head, CoreTypes.LogData memory log) {
        head = verifyBlockHeader(header, blockProof);
        (bool exists, bytes calldata receiptValue) = verifyIndexedTrieProof(
            txIdx,
            receiptProof,
            head.ReceiptHash
        );
        require(exists, "receipt does not exist");
        log = CoreTypes.extractLog(receiptValue, logIdx);
    }

    /**
     * @notice verifies the presence of a transaction in the given block at txIdx
     *         using the provided proofs. Reverts if the transaction doesn't exist or if
     *         the proofs are invalid.
     *
     * @param txIdx the transaction index in the block
     * @param transactionProof the Merkle-Patricia trie proof for the transaction's hash
     * @param header the block header, RLP encoded
     * @param blockProof proof that the block header is valid
     * @return head the parsed block header
     * @return txHash the hash of the transaction proven
     */
    function verifyTransactionAtBlock(
        uint256 txIdx,
        bytes calldata transactionProof,
        bytes calldata header,
        bytes calldata blockProof
    ) internal view returns (CoreTypes.BlockHeaderData memory head, bytes32 txHash) {
        head = verifyBlockHeader(header, blockProof);
        (bool exists, bytes calldata txData) = verifyIndexedTrieProof(
            txIdx,
            transactionProof,
            head.TxHash
        );
        require(exists, "transaction does not exist in given block");
        txHash = keccak256(txData);
    }

    /**
     * @notice verifies a withdrawal occurred in the given block using the
     *         provided proofs. Reverts if the withdrawal doesn't exist or
     *         if the proofs are invalid.
     *
     * @param idx the index of the withdrawal in the block
     * @param withdrawalProof the Merkle-Patricia trie proof for the receipt
     * @param header the block header, RLP encoded
     * @param blockProof proof that the block header is valid
     * @return head the parsed block header
     * @return withdrawal the parsed withdrawal value
     */
    function verifyWithdrawalAtBlock(
        uint256 idx,
        bytes calldata withdrawalProof,
        bytes calldata header,
        bytes calldata blockProof
    )
        internal
        view
        returns (CoreTypes.BlockHeaderData memory head, CoreTypes.WithdrawalData memory withdrawal)
    {
        head = verifyBlockHeader(header, blockProof);
        (bool exists, bytes calldata withdrawalValue) = verifyIndexedTrieProof(
            idx,
            withdrawalProof,
            head.WithdrawalsHash
        );
        require(exists, "Withdrawal does not exist at block");
        withdrawal = CoreTypes.parseWithdrawal(withdrawalValue);
    }
}

Settings
{
  "evmVersion": "london",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs",
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 1000
  },
  "remappings": [],
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"contract BlockHistory","name":"blockHistory","type":"address"},{"internalType":"contract IReliquary","name":"_reliquary","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"components":[{"internalType":"address","name":"account","type":"address"},{"internalType":"FactSignature","name":"sig","type":"bytes32"},{"internalType":"bytes","name":"data","type":"bytes"}],"indexed":false,"internalType":"struct Fact","name":"fact","type":"tuple"}],"name":"FactProven","type":"event"},{"inputs":[],"name":"blockHistory","outputs":[{"internalType":"contract BlockHistory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"proof","type":"bytes"},{"internalType":"bool","name":"store","type":"bool"}],"name":"prove","outputs":[{"components":[{"internalType":"address","name":"account","type":"address"},{"internalType":"FactSignature","name":"sig","type":"bytes32"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Fact","name":"fact","type":"tuple"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]

60e060405234801561001057600080fd5b506040516200171c3803806200171c83398101604081905261003191610066565b6001600160a01b039081166080819052911660a05260c0526100a0565b6001600160a01b038116811461006357600080fd5b50565b6000806040838503121561007957600080fd5b82516100848161004e565b60208401519092506100958161004e565b809150509250929050565b60805160a05160c051611638620000e460003960006106ca01526000818160a001526106f70152600081816101c1015281816102b2015261036201526116386000f3fe6080604052600436106100345760003560e01c806301ffc9a714610039578063e19108c31461006e578063f2e005d91461008e575b600080fd5b34801561004557600080fd5b50610059610054366004611261565b6100da565b60405190151581526020015b60405180910390f35b61008161007c3660046112b4565b610173565b6040516100659190611393565b34801561009a57600080fd5b506100c27f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610065565b60007fffffffff0000000000000000000000000000000000000000000000000000000082167fe19108c300000000000000000000000000000000000000000000000000000000148061016d57507f01ffc9a7000000000000000000000000000000000000000000000000000000007fffffffff000000000000000000000000000000000000000000000000000000008316145b92915050565b6040805160608082018352600080835260208301528183015290517f72fc6d620000000000000000000000000000000000000000000000000000000081523360048201526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906372fc6d629034906024016000604051808303818588803b15801561020657600080fd5b505af115801561021a573d6000803e3d6000fd5b505050505061022984846103d4565b90507f5e1e9a83ed872f2e1e039b2294a9e89b601727c4621b3c07d351281bbc1158c48160405161025a9190611393565b60405180910390a181156103cd57805160208201516040517fc59a97030000000000000000000000000000000000000000000000000000000081526001600160a01b03928316600482015260248101919091526000917f0000000000000000000000000000000000000000000000000000000000000000169063c59a970390604401600060405180830381865afa1580156102f9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261032191908101906113e9565b50508251602084015160408086015190517fa432d4ca0000000000000000000000000000000000000000000000000000000081529394506001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169363a432d4ca9361039993909290916004016114c4565b600060405180830381600087803b1580156103b357600080fd5b505af11580156103c7573d6000803e3d6000fd5b50505050505b9392505050565b60408051606080820183526000808352602083015291810191909152368390506000808061043461040860208601866114f5565b610415602087018761151e565b610422604089018961151e565b61042f60608b018b61151e565b6104e5565b9250925092508261048c5760405162461bcd60e51b815260206004820152601f60248201527f4163636f756e7420646f6573206e6f7420657869737420617420626c6f636b0060448201526064015b60405180910390fd5b6040805160608101909152806104a560208701876114f5565b6001600160a01b031681526020016104c58460a001518460400151610599565b815260408051602080820190925260008152910152979650505050505050565b6040805161018081018252600080825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e0810182905261010081018290526101208101829052610140810182905261016081018290526040805160808101825260008082526020820181905291810182905260608101919091526105758787878761061a565b91506105878a8a8a856040015161075e565b909b929a509850909650505050505050565b60006103cd6000610605858560408051606060208201819052600e60808301527f4163636f756e7453746f7261676500000000000000000000000000000000000060a083015291810184905280820183905260c001604051602081830303815290604052905092915050565b8051602082012060081b60ff83161792915050565b6040805161018081018252600080825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e0810182905261010081018290526101208101829052610140810182905261016081018290529061068586866107f2565b509050610692868661082f565b60a08101516040517f49fae6590000000000000000000000000000000000000000000000000000000081529193506001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016916349fae65991610725917f00000000000000000000000000000000000000000000000000000000000000009186918a908a90600401611565565b60006040518083038186803b15801561073d57600080fd5b505afa158015610751573d6000803e3d6000fd5b5050505050949350505050565b60408051608081018252600080825260208201819052918101829052606081018290526040516bffffffffffffffffffffffff19606088901b1660208201526000906034016040516020818303038152906040528051906020012090503660006107cc88888560208a610a5f565b9196509250905084156107e6576107e38282610a8f565b93505b50505094509492505050565b6000806000806108028686610b33565b80820194509092509050858360405161081c9291906115b2565b6040518091039020935050509250929050565b6040805161018081018252600080825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e081018290526101008101829052610120810182905261014081018290526101608101829052908061089b8585610b33565b9586019590945084925090506108b18583610bb9565b90845294850194938490039390506108c98585610bd4565b945094506108d78585610bb9565b6001600160a01b0391909116602085015294850194938490039390506108fd8585610bb9565b6040850191909152948501949384900393905061091a8585610bb9565b606085019190915294850194938490039390506109378585610bb9565b608085019190915294850194938490039390506109548585610bd4565b945094506109628585610bd4565b945094506109708585610bf9565b60a0850191909152948501949384900393905061098d8585610bf9565b60c085019190915294850194938490039390506109aa8585610bf9565b60e085019190915294850194938490039390506109c78585610bf9565b61010085019190915294850194938490039390506109e58585610bd4565b945094506109f38585610bb9565b6101208501919091529485019493849003939050610a118585610bd4565b90955093508315610a3b57610a268585610bf9565b61014085019190915294850194938490039390505b8315610a5757610a4b8585610bb9565b61016085019190915290505b505092915050565b600036600080610a6f8989610c93565b9050610a7d81888888610d4c565b93509350935050955095509592505050565b604080516080810182526000808252602082018190529181018290526060810182905290610abd8484610b33565b91505083810181840393509350610ad48484610bf9565b9083529384019392839003929050610aec8484610bf9565b60208401919091529384019392839003929050610b098484610bb9565b60408401919091529384019392839003929050610b268484610bb9565b5060608301525092915050565b60008082610b4057600080fd5b83358060f81c60c0811015610b5457600080fd5b60f8811060018114610b6b578015610b7a57610baf565b60c08203945060019350610baf565b60f78203601f811115610b8c57600080fd5b80871015610b9957600080fd5b8360081b816020036008021c9550600181019450505b5050509250929050565b6000806000610bc88585610bf9565b90969095509350505050565b36600080610be28585611066565b9485019490930392508391508290505b9250929050565b60008082610c0657600080fd5b83358060f81c60a0811115610c1a57600080fd5b6080811060018114610c31578015610c3d57610baf565b81945060019350610baf565b60808203935083861015610c5057600080fd5b6020841460018114610c67578015610c7357610c82565b60018801359550610c82565b8360081b8560200360031b1c95505b506001840193505050509250929050565b604080517fcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc9091526060908060005b8415610d1457600080610cd58888610b33565b909250905087810182608082901b8117818401808c8a378089209189526020890191909152998a01999098039750506040909401935050600101610cc2565b808352919250602083019160005b81811015610d40576040810283018452602090930192600101610d22565b50505060405292915050565b60003660008651600003610de257837f56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b42114610dc95760405162461bcd60e51b815260206004820152601360248201527f726f6f74206861736820696e636f7272656374000000000000000000000000006044820152606401610483565b6000610dd7818036816115c2565b92509250925061105c565b5050845160208087019660029590950294600193506000928392908102909101015b366000806000848c10610e1657600080fd5b50508951805160209182015191909b019a90608082901c6fffffffffffffffffffffffffffffffff831693509350888114610e935760405162461bcd60e51b815260206004820152601360248201527f6e6f6465206861736820696e636f7272656374000000000000000000000000006044820152606401610483565b50506000610ea18383611066565b9050610eb1838201828403611066565b01818103610fe357366000610ec68585611170565b9097509550909250905060008083838281610ee357610ee36115ec565b919091013560f881901c925060fc1c90506003811115610f0257600080fd5b60018116600003610f2457600f821615610f1b57600080fd5b60019250610f3d565b60048f901b9e6000199e909e019d60fc1c600f83161492505b60018501600019850194509450828015610f5e5750610f5e8f8f8787611234565b600885029f909f1b9e6002808602909f039e9093508116600003610f985782610f8657600080fd5b610f908888610bb9565b509c50610fd9565b8d15610fa357600080fd5b8215610fc857610fb38888611170565b50919c509a5061105a98505050505050505050565b60009b50505050505050505061105a565b5050505050611052565b60fc8a901c600060028210610fff575092810192918190039160025b8181101561101e576110118585610bd4565b9095509350600101610fff565b6110288585610bb9565b50995060008a90036110425760009850505050505061105a565b60048c901b9b5060018b039a5050505b505050610e04565b505b9450945094915050565b60008161107257600080fd5b82358060f81c608081106001811461108f57801561109857611167565b60019350611167565b60b88210600181146110af5780156110bb57611165565b607e1983019450611165565b60c08310600181146110d257801561110a57611163565b60b78403601f8111156110e457600080fd5b808810156110f157600080fd5b600886811b60208390039091021c016001019550611163565b60f884106001811461112157801561112d57611161565b60be1985019650611161565b60f78503601f81111561113f57600080fd5b8089101561114c57600080fd5b600887811b60208390039091021c0160010196505b505b505b505b50505092915050565b3660003660008060008661118357600080fd5b87358060f81c60bf81111561119757600080fd5b60808110600181146111ae5780156111bb57611218565b6000945060019350611218565b60b88210600181146111d25780156111e157611216565b60019550608083039450611216565b60b78303601f8111156111f357600080fd5b808c101561120057600080fd5b8460081b816020036008021c9550600181019650505b505b5050508782019890979188019182019691909103945092505050565b6000600282028481111561124757600080fd5b60021b6101000394851c923590941c919091149392505050565b60006020828403121561127357600080fd5b81357fffffffff00000000000000000000000000000000000000000000000000000000811681146103cd57600080fd5b80151581146112b157600080fd5b50565b6000806000604084860312156112c957600080fd5b833567ffffffffffffffff808211156112e157600080fd5b818601915086601f8301126112f557600080fd5b81358181111561130457600080fd5b87602082850101111561131657600080fd5b6020928301955093505084013561132c816112a3565b809150509250925092565b60005b8381101561135257818101518382015260200161133a565b83811115611361576000848401525b50505050565b6000815180845261137f816020860160208601611337565b601f01601f19169290920160200192915050565b602081526001600160a01b03825116602082015260208201516040820152600060408301516060808401526113cb6080840182611367565b949350505050565b634e487b7160e01b600052604160045260246000fd5b6000806000606084860312156113fe57600080fd5b8351611409816112a3565b602085015190935067ffffffffffffffff808216821461142857600080fd5b60408601519193508082111561143d57600080fd5b818601915086601f83011261145157600080fd5b815181811115611463576114636113d3565b604051601f8201601f19908116603f0116810190838211818310171561148b5761148b6113d3565b816040528281528960208487010111156114a457600080fd5b6114b5836020830160208801611337565b80955050505050509250925092565b6001600160a01b03841681528260208201526060604082015260006114ec6060830184611367565b95945050505050565b60006020828403121561150757600080fd5b81356001600160a01b03811681146103cd57600080fd5b6000808335601e1984360301811261153557600080fd5b83018035915067ffffffffffffffff82111561155057600080fd5b602001915036819003821315610bf257600080fd5b6001600160a01b038616815284602082015283604082015260806060820152816080820152818360a0830137600081830160a090810191909152601f909201601f19160101949350505050565b8183823760009101908152919050565b600080858511156115d257600080fd5b838611156115df57600080fd5b5050820193919092039150565b634e487b7160e01b600052603260045260246000fdfea2646970667358221220f9123df45948538cd235e998d9bf20288884829ce3e381e7d1278382a080b79964736f6c634300080d003300000000000000000000000075d6ac4fd8b578d6fde72a02f8a00189208dcc3a0000000000000000000000005e4de6bb8c6824f29c44bd3473d44da120387d08

Deployed Bytecode

0x6080604052600436106100345760003560e01c806301ffc9a714610039578063e19108c31461006e578063f2e005d91461008e575b600080fd5b34801561004557600080fd5b50610059610054366004611261565b6100da565b60405190151581526020015b60405180910390f35b61008161007c3660046112b4565b610173565b6040516100659190611393565b34801561009a57600080fd5b506100c27f00000000000000000000000075d6ac4fd8b578d6fde72a02f8a00189208dcc3a81565b6040516001600160a01b039091168152602001610065565b60007fffffffff0000000000000000000000000000000000000000000000000000000082167fe19108c300000000000000000000000000000000000000000000000000000000148061016d57507f01ffc9a7000000000000000000000000000000000000000000000000000000007fffffffff000000000000000000000000000000000000000000000000000000008316145b92915050565b6040805160608082018352600080835260208301528183015290517f72fc6d620000000000000000000000000000000000000000000000000000000081523360048201526001600160a01b037f0000000000000000000000005e4de6bb8c6824f29c44bd3473d44da120387d0816906372fc6d629034906024016000604051808303818588803b15801561020657600080fd5b505af115801561021a573d6000803e3d6000fd5b505050505061022984846103d4565b90507f5e1e9a83ed872f2e1e039b2294a9e89b601727c4621b3c07d351281bbc1158c48160405161025a9190611393565b60405180910390a181156103cd57805160208201516040517fc59a97030000000000000000000000000000000000000000000000000000000081526001600160a01b03928316600482015260248101919091526000917f0000000000000000000000005e4de6bb8c6824f29c44bd3473d44da120387d08169063c59a970390604401600060405180830381865afa1580156102f9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261032191908101906113e9565b50508251602084015160408086015190517fa432d4ca0000000000000000000000000000000000000000000000000000000081529394506001600160a01b037f0000000000000000000000005e4de6bb8c6824f29c44bd3473d44da120387d08169363a432d4ca9361039993909290916004016114c4565b600060405180830381600087803b1580156103b357600080fd5b505af11580156103c7573d6000803e3d6000fd5b50505050505b9392505050565b60408051606080820183526000808352602083015291810191909152368390506000808061043461040860208601866114f5565b610415602087018761151e565b610422604089018961151e565b61042f60608b018b61151e565b6104e5565b9250925092508261048c5760405162461bcd60e51b815260206004820152601f60248201527f4163636f756e7420646f6573206e6f7420657869737420617420626c6f636b0060448201526064015b60405180910390fd5b6040805160608101909152806104a560208701876114f5565b6001600160a01b031681526020016104c58460a001518460400151610599565b815260408051602080820190925260008152910152979650505050505050565b6040805161018081018252600080825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e0810182905261010081018290526101208101829052610140810182905261016081018290526040805160808101825260008082526020820181905291810182905260608101919091526105758787878761061a565b91506105878a8a8a856040015161075e565b909b929a509850909650505050505050565b60006103cd6000610605858560408051606060208201819052600e60808301527f4163636f756e7453746f7261676500000000000000000000000000000000000060a083015291810184905280820183905260c001604051602081830303815290604052905092915050565b8051602082012060081b60ff83161792915050565b6040805161018081018252600080825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e0810182905261010081018290526101208101829052610140810182905261016081018290529061068586866107f2565b509050610692868661082f565b60a08101516040517f49fae6590000000000000000000000000000000000000000000000000000000081529193506001600160a01b037f0000000000000000000000005e4de6bb8c6824f29c44bd3473d44da120387d0816916349fae65991610725917f00000000000000000000000075d6ac4fd8b578d6fde72a02f8a00189208dcc3a9186918a908a90600401611565565b60006040518083038186803b15801561073d57600080fd5b505afa158015610751573d6000803e3d6000fd5b5050505050949350505050565b60408051608081018252600080825260208201819052918101829052606081018290526040516bffffffffffffffffffffffff19606088901b1660208201526000906034016040516020818303038152906040528051906020012090503660006107cc88888560208a610a5f565b9196509250905084156107e6576107e38282610a8f565b93505b50505094509492505050565b6000806000806108028686610b33565b80820194509092509050858360405161081c9291906115b2565b6040518091039020935050509250929050565b6040805161018081018252600080825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e081018290526101008101829052610120810182905261014081018290526101608101829052908061089b8585610b33565b9586019590945084925090506108b18583610bb9565b90845294850194938490039390506108c98585610bd4565b945094506108d78585610bb9565b6001600160a01b0391909116602085015294850194938490039390506108fd8585610bb9565b6040850191909152948501949384900393905061091a8585610bb9565b606085019190915294850194938490039390506109378585610bb9565b608085019190915294850194938490039390506109548585610bd4565b945094506109628585610bd4565b945094506109708585610bf9565b60a0850191909152948501949384900393905061098d8585610bf9565b60c085019190915294850194938490039390506109aa8585610bf9565b60e085019190915294850194938490039390506109c78585610bf9565b61010085019190915294850194938490039390506109e58585610bd4565b945094506109f38585610bb9565b6101208501919091529485019493849003939050610a118585610bd4565b90955093508315610a3b57610a268585610bf9565b61014085019190915294850194938490039390505b8315610a5757610a4b8585610bb9565b61016085019190915290505b505092915050565b600036600080610a6f8989610c93565b9050610a7d81888888610d4c565b93509350935050955095509592505050565b604080516080810182526000808252602082018190529181018290526060810182905290610abd8484610b33565b91505083810181840393509350610ad48484610bf9565b9083529384019392839003929050610aec8484610bf9565b60208401919091529384019392839003929050610b098484610bb9565b60408401919091529384019392839003929050610b268484610bb9565b5060608301525092915050565b60008082610b4057600080fd5b83358060f81c60c0811015610b5457600080fd5b60f8811060018114610b6b578015610b7a57610baf565b60c08203945060019350610baf565b60f78203601f811115610b8c57600080fd5b80871015610b9957600080fd5b8360081b816020036008021c9550600181019450505b5050509250929050565b6000806000610bc88585610bf9565b90969095509350505050565b36600080610be28585611066565b9485019490930392508391508290505b9250929050565b60008082610c0657600080fd5b83358060f81c60a0811115610c1a57600080fd5b6080811060018114610c31578015610c3d57610baf565b81945060019350610baf565b60808203935083861015610c5057600080fd5b6020841460018114610c67578015610c7357610c82565b60018801359550610c82565b8360081b8560200360031b1c95505b506001840193505050509250929050565b604080517fcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc9091526060908060005b8415610d1457600080610cd58888610b33565b909250905087810182608082901b8117818401808c8a378089209189526020890191909152998a01999098039750506040909401935050600101610cc2565b808352919250602083019160005b81811015610d40576040810283018452602090930192600101610d22565b50505060405292915050565b60003660008651600003610de257837f56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b42114610dc95760405162461bcd60e51b815260206004820152601360248201527f726f6f74206861736820696e636f7272656374000000000000000000000000006044820152606401610483565b6000610dd7818036816115c2565b92509250925061105c565b5050845160208087019660029590950294600193506000928392908102909101015b366000806000848c10610e1657600080fd5b50508951805160209182015191909b019a90608082901c6fffffffffffffffffffffffffffffffff831693509350888114610e935760405162461bcd60e51b815260206004820152601360248201527f6e6f6465206861736820696e636f7272656374000000000000000000000000006044820152606401610483565b50506000610ea18383611066565b9050610eb1838201828403611066565b01818103610fe357366000610ec68585611170565b9097509550909250905060008083838281610ee357610ee36115ec565b919091013560f881901c925060fc1c90506003811115610f0257600080fd5b60018116600003610f2457600f821615610f1b57600080fd5b60019250610f3d565b60048f901b9e6000199e909e019d60fc1c600f83161492505b60018501600019850194509450828015610f5e5750610f5e8f8f8787611234565b600885029f909f1b9e6002808602909f039e9093508116600003610f985782610f8657600080fd5b610f908888610bb9565b509c50610fd9565b8d15610fa357600080fd5b8215610fc857610fb38888611170565b50919c509a5061105a98505050505050505050565b60009b50505050505050505061105a565b5050505050611052565b60fc8a901c600060028210610fff575092810192918190039160025b8181101561101e576110118585610bd4565b9095509350600101610fff565b6110288585610bb9565b50995060008a90036110425760009850505050505061105a565b60048c901b9b5060018b039a5050505b505050610e04565b505b9450945094915050565b60008161107257600080fd5b82358060f81c608081106001811461108f57801561109857611167565b60019350611167565b60b88210600181146110af5780156110bb57611165565b607e1983019450611165565b60c08310600181146110d257801561110a57611163565b60b78403601f8111156110e457600080fd5b808810156110f157600080fd5b600886811b60208390039091021c016001019550611163565b60f884106001811461112157801561112d57611161565b60be1985019650611161565b60f78503601f81111561113f57600080fd5b8089101561114c57600080fd5b600887811b60208390039091021c0160010196505b505b505b505b50505092915050565b3660003660008060008661118357600080fd5b87358060f81c60bf81111561119757600080fd5b60808110600181146111ae5780156111bb57611218565b6000945060019350611218565b60b88210600181146111d25780156111e157611216565b60019550608083039450611216565b60b78303601f8111156111f357600080fd5b808c101561120057600080fd5b8460081b816020036008021c9550600181019650505b505b5050508782019890979188019182019691909103945092505050565b6000600282028481111561124757600080fd5b60021b6101000394851c923590941c919091149392505050565b60006020828403121561127357600080fd5b81357fffffffff00000000000000000000000000000000000000000000000000000000811681146103cd57600080fd5b80151581146112b157600080fd5b50565b6000806000604084860312156112c957600080fd5b833567ffffffffffffffff808211156112e157600080fd5b818601915086601f8301126112f557600080fd5b81358181111561130457600080fd5b87602082850101111561131657600080fd5b6020928301955093505084013561132c816112a3565b809150509250925092565b60005b8381101561135257818101518382015260200161133a565b83811115611361576000848401525b50505050565b6000815180845261137f816020860160208601611337565b601f01601f19169290920160200192915050565b602081526001600160a01b03825116602082015260208201516040820152600060408301516060808401526113cb6080840182611367565b949350505050565b634e487b7160e01b600052604160045260246000fd5b6000806000606084860312156113fe57600080fd5b8351611409816112a3565b602085015190935067ffffffffffffffff808216821461142857600080fd5b60408601519193508082111561143d57600080fd5b818601915086601f83011261145157600080fd5b815181811115611463576114636113d3565b604051601f8201601f19908116603f0116810190838211818310171561148b5761148b6113d3565b816040528281528960208487010111156114a457600080fd5b6114b5836020830160208801611337565b80955050505050509250925092565b6001600160a01b03841681528260208201526060604082015260006114ec6060830184611367565b95945050505050565b60006020828403121561150757600080fd5b81356001600160a01b03811681146103cd57600080fd5b6000808335601e1984360301811261153557600080fd5b83018035915067ffffffffffffffff82111561155057600080fd5b602001915036819003821315610bf257600080fd5b6001600160a01b038616815284602082015283604082015260806060820152816080820152818360a0830137600081830160a090810191909152601f909201601f19160101949350505050565b8183823760009101908152919050565b600080858511156115d257600080fd5b838611156115df57600080fd5b5050820193919092039150565b634e487b7160e01b600052603260045260246000fdfea2646970667358221220f9123df45948538cd235e998d9bf20288884829ce3e381e7d1278382a080b79964736f6c634300080d0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000075d6ac4fd8b578d6fde72a02f8a00189208dcc3a0000000000000000000000005e4de6bb8c6824f29c44bd3473d44da120387d08

-----Decoded View---------------
Arg [0] : blockHistory (address): 0x75d6Ac4Fd8b578D6FDe72A02F8a00189208dCc3a
Arg [1] : _reliquary (address): 0x5E4DE6Bb8c6824f29c44Bd3473d44da120387d08

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 00000000000000000000000075d6ac4fd8b578d6fde72a02f8a00189208dcc3a
Arg [1] : 0000000000000000000000005e4de6bb8c6824f29c44bd3473d44da120387d08


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.