More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 5,951 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Claim Refund | 19797811 | 232 days ago | IN | 0 ETH | 0.00024124 | ||||
Claim Refund | 19797809 | 232 days ago | IN | 0 ETH | 0.00022903 | ||||
Claim Refund | 19754270 | 238 days ago | IN | 0 ETH | 0.00061449 | ||||
Claim Refund | 19752055 | 239 days ago | IN | 0 ETH | 0.00041317 | ||||
Claim Refund | 19750711 | 239 days ago | IN | 0 ETH | 0.00040848 | ||||
Claim Refund | 19750390 | 239 days ago | IN | 0 ETH | 0.00076496 | ||||
Claim Refund | 19748635 | 239 days ago | IN | 0 ETH | 0.00043118 | ||||
Claim Refund | 19747664 | 239 days ago | IN | 0 ETH | 0.00073487 | ||||
Claim Refund | 19747316 | 239 days ago | IN | 0 ETH | 0.00047327 | ||||
Claim Refund | 19745043 | 240 days ago | IN | 0 ETH | 0.00042177 | ||||
Claim Refund | 19744653 | 240 days ago | IN | 0 ETH | 0.00041861 | ||||
Claim Refund | 19744473 | 240 days ago | IN | 0 ETH | 0.00041951 | ||||
Claim Refund | 19740862 | 240 days ago | IN | 0 ETH | 0.0004894 | ||||
Claim Refund | 19740383 | 240 days ago | IN | 0 ETH | 0.00078571 | ||||
Claim Refund | 19739569 | 240 days ago | IN | 0 ETH | 0.00078343 | ||||
Claim Refund | 19739531 | 240 days ago | IN | 0 ETH | 0.00080188 | ||||
Claim Refund | 19739522 | 240 days ago | IN | 0 ETH | 0.00087355 | ||||
Claim Refund | 19739493 | 240 days ago | IN | 0 ETH | 0.00060863 | ||||
Claim Refund | 19739479 | 240 days ago | IN | 0 ETH | 0.00067406 | ||||
Claim Refund | 19739400 | 240 days ago | IN | 0 ETH | 0.00059387 | ||||
Claim Refund | 19738616 | 241 days ago | IN | 0 ETH | 0.00054885 | ||||
Claim Refund | 19736136 | 241 days ago | IN | 0 ETH | 0.00036593 | ||||
Claim Refund | 19735393 | 241 days ago | IN | 0 ETH | 0.00047755 | ||||
Claim Refund | 19734166 | 241 days ago | IN | 0 ETH | 0.00117215 | ||||
Claim Refund | 19733605 | 241 days ago | IN | 0 ETH | 0.00170443 |
Latest 25 internal transactions (View All)
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
19916759 | 216 days ago | 113.1 ETH | ||||
19754270 | 238 days ago | 0.1 ETH | ||||
19752055 | 239 days ago | 0.25 ETH | ||||
19750711 | 239 days ago | 0.25 ETH | ||||
19750390 | 239 days ago | 0.15 ETH | ||||
19748635 | 239 days ago | 0.05 ETH | ||||
19747664 | 239 days ago | 0.6 ETH | ||||
19747316 | 239 days ago | 0.05 ETH | ||||
19745043 | 240 days ago | 0.15 ETH | ||||
19744653 | 240 days ago | 0.3 ETH | ||||
19744473 | 240 days ago | 0.1 ETH | ||||
19740862 | 240 days ago | 0.45 ETH | ||||
19740383 | 240 days ago | 0.05 ETH | ||||
19739569 | 240 days ago | 0.05 ETH | ||||
19739531 | 240 days ago | 0.1 ETH | ||||
19739522 | 240 days ago | 0.55 ETH | ||||
19739493 | 240 days ago | 0.05 ETH | ||||
19739479 | 240 days ago | 0.05 ETH | ||||
19739400 | 240 days ago | 0.05 ETH | ||||
19738616 | 241 days ago | 0.2 ETH | ||||
19736136 | 241 days ago | 0.05 ETH | ||||
19735393 | 241 days ago | 0.05 ETH | ||||
19734166 | 241 days ago | 0.05 ETH | ||||
19733605 | 241 days ago | 0.3 ETH | ||||
19733107 | 241 days ago | 0.35 ETH |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
Refunds
Compiler Version
v0.8.24+commit.e11b9ed9
Optimization Enabled:
Yes with 10000000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; import {ReentrancyGuard} from "lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol"; import {Ownable2Step, Ownable} from "lib/openzeppelin-contracts/contracts/access/Ownable2Step.sol"; import {MerkleProof} from "lib/openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol"; import {Presale} from "src/Presale.sol"; /// @title Refunds /// @notice Refund unallocated funds to users /// @author karooolis contract Refunds is Ownable2Step, ReentrancyGuard { /*============================================================== CONSTANTS & IMMUTABLES ==============================================================*/ /// @notice The presale contract address Presale public immutable presale; /*============================================================== STORAGE VARIABLES ==============================================================*/ /// @notice Did the address already get refunded mapping(address => bool) public refunded; /// @notice When refunds started uint256 public refundsStartedAt; /*============================================================== FUNCTIONS ==============================================================*/ /// @notice Refunds contract constructor /// @param _initialOwner The initial owner of the contract /// @param _presale The presale contract address constructor(address _initialOwner, address _presale) payable Ownable(_initialOwner) { presale = Presale(_presale); } /// @notice Claim refund from Open phase allocations /// @param _proof The merkle proof /// @param _ethAmount The Open phase allocation (ETH) /// @param _tokensAmount The Open phase allocation (tokens) function claimRefund(bytes32[] calldata _proof, uint256 _ethAmount, uint256 _tokensAmount) external nonReentrant { if (refundsStartedAt == 0) { revert RefundsNotStarted(); } else if (block.timestamp > refundsStartedAt + 30 days) { revert RefundsEnded(); } else if (refunded[msg.sender]) { revert AlreadyRefunded(msg.sender); } _verifyOpenTierAllocation(_proof, _ethAmount, _tokensAmount); uint256 refundable = _refundableAmount(_ethAmount); if (refundable == 0) { revert NothingToRefund(msg.sender); } // update refunds refunded[msg.sender] = true; // transfer (bool success,) = msg.sender.call{value: refundable}(""); if (!success) { revert TransferFailed(msg.sender, refundable); } emit Refunded(msg.sender, refundable); } /// @notice Get the refundable amount /// @param _proof The merkle proof /// @param _ethAmount The Open phase allocation (ETH) /// @param _tokensAmount The Open phase allocation (tokens) function refundableAmount(bytes32[] calldata _proof, uint256 _ethAmount, uint256 _tokensAmount) external view returns (uint256) { _verifyOpenTierAllocation(_proof, _ethAmount, _tokensAmount); return _refundableAmount(_ethAmount); } /*============================================================== ADMIN FUNCTIONS ==============================================================*/ /// @notice Start refunds function startRefunds() external onlyOwner { if (refundsStartedAt != 0) { revert RefundsAlreadyStarted(); } refundsStartedAt = block.timestamp; emit RefundsStarted(); } /// @notice Withdraw remaining funds back to owner function withdraw() external onlyOwner { if (refundsStartedAt == 0 || block.timestamp <= refundsStartedAt + 30 days) { revert RefundsNotEnded(); } uint256 balance = address(this).balance; (bool success,) = owner().call{value: balance}(""); if (!success) { revert TransferFailed(owner(), balance); } emit RefundsWithdrawn(balance); } receive() external payable {} /*============================================================== INTERNAL FUNCTIONS ==============================================================*/ /// @notice Verify the merkle proof /// @param _proof The merkle proof /// @param _ethAmount The amount to verify /// @param _tokensAmount The amount to verify function _verifyOpenTierAllocation(bytes32[] calldata _proof, uint256 _ethAmount, uint256 _tokensAmount) internal view { bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(msg.sender, _ethAmount, _tokensAmount)))); bytes32 root = presale.openPhaseAllocationsMerkleRoot(); if (!MerkleProof.verify(_proof, root, leaf)) { revert InvalidOpenTierAllocationsMerkleProof(); } } /// @notice Get the refundable amount /// @param _allocation The Open phase allocation function _refundableAmount(uint256 _allocation) internal view returns (uint256) { uint256 contributed = presale.openPhaseContributed(msg.sender); if (_allocation >= contributed) { return 0; } return contributed - _allocation; } /*============================================================== EVENTS ==============================================================*/ /// @notice Emitted when refunds started event RefundsStarted(); /// @notice Emitted when a refund is claimed /// @param recipient The address of the recipient /// @param amount The amount of funds refunded event Refunded(address indexed recipient, uint256 indexed amount); /// @notice Emitted when funds are withdrawn /// @param amount The amount of funds withdrawn event RefundsWithdrawn(uint256 indexed amount); /*============================================================== ERRORS ==============================================================*/ /// @notice Error when transfer failed /// @param recipient The address of the recipient /// @param amount The amount of funds to transfer error TransferFailed(address recipient, uint256 amount); /// @notice Error when refunds not started error RefundsNotStarted(); /// @notice Error when refunds already started error RefundsAlreadyStarted(); /// @notice Error when refunds ended error RefundsEnded(); /// @notice Error when refunds not ended error RefundsNotEnded(); /// @notice Error when already refunded /// @param recipient The address of the recipient error AlreadyRefunded(address recipient); /// @notice Error when nothing to refund /// @param recipient The address of the recipient error NothingToRefund(address recipient); /// @notice Revert if the merkle proof for Open phase allocations is invalid error InvalidOpenTierAllocationsMerkleProof(); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol) pragma solidity ^0.8.20; import {Ownable} from "./Ownable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is specified at deployment time in the constructor for `Ownable`. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2Step is Ownable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() public virtual { address sender = _msgSender(); if (pendingOwner() != sender) { revert OwnableUnauthorizedAccount(sender); } _transferOwnership(sender); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.20; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the Merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates Merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** *@dev The multiproof provided is not valid. */ error MerkleProofInvalidMultiproof(); /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Sorts the pair (a, b) and hashes the result. */ function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } /** * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory. */ function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; import {MerkleProof} from "lib/openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol"; import {ECDSA} from "lib/openzeppelin-contracts/contracts/utils/cryptography/ECDSA.sol"; import {MessageHashUtils} from "lib/openzeppelin-contracts/contracts/utils/cryptography/MessageHashUtils.sol"; import {IERC721} from "lib/openzeppelin-contracts/contracts/token/ERC721/IERC721.sol"; import {ReentrancyGuard} from "lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol"; import {Ownable2Step, Ownable} from "lib/openzeppelin-contracts/contracts/access/Ownable2Step.sol"; import {Pausable} from "lib/openzeppelin-contracts/contracts/utils/Pausable.sol"; import {IDelegationRegistry} from "src/lib/IDelegationRegistry.sol"; import {IDelegateRegistry} from "lib/delegate-registry/src/IDelegateRegistry.sol"; /// @title Presale /// @notice Block Games presale contract /// @author karooolis contract Presale is Ownable2Step, Pausable, ReentrancyGuard { /*============================================================== CONSTANTS & IMMUTABLES ==============================================================*/ /// @notice Event emitted when the merkle root for the allowed wallets is set bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(uint256 chainId,address verifyingContract)"); /// @notice Event emitted when the merkle root for the allowed wallets is set bytes32 public immutable cachedDomainSeparator; /// @notice Chain ID of the contract uint256 public immutable cachedChainId; // @notice Address of the contract address public immutable cachedThis; /// @notice Address of the Dice NFT address public immutable diceNFT; /// @notice Address of the wallet that will receive the funds address public immutable treasury; /// @notice Address of the delegate registry v1 IDelegationRegistry public immutable delegateRegistryV1; /// @notice Address of the delegate registry v2 IDelegateRegistry public immutable delegateRegistryV2; /*============================================================== STRUCTS ==============================================================*/ struct BuyWithDiceNFTParams { bytes32[] proof; uint256 tokenId; uint256 amount; uint256 maxAmount; } struct BuyWithAllowedNFTParams { bytes32[] proof; address collection; uint256 tokenId; uint256 amount; uint256 maxAmount; } struct AllowedWalletParams { bytes32[] proof; uint256 amount; uint256 maxAmount; } /*============================================================== STORAGE VARIABLES ==============================================================*/ enum Phase { Guaranteed, Lucky, Open } /// @notice Merkle root for the allowed wallets, and their caps (wallet + ETH amount) bytes32 public allowedWalletsMerkleRoot; /// @notice Merkle root for the Dice NFTs, and their caps (tokenId + ETH amount) bytes32 public diceNFTsMerkleRoot; /// @notice Merkle root for the allowed NFT collections, and their caps (collection + ETH amount) bytes32 public allowedNFTsMerkleRoot; /// @notice Merkle root for Open phase alocations (wallet + ETH amount + tokens amount) bytes32 public openPhaseAllocationsMerkleRoot; /// @notice Merkle root for Dice NFT eligible tokens (tokenId + tokens amount) bytes32 public diceNFTsTokensEligibleMerkleRoot; /// @notice Guaranteed allocation (ETH) uint256 public guaranteedAllocation; /// @notice Lucky allocation for each Lucky Tier 1 (ETH) uint256 public luckyAllocationTier1; /// @notice Lucky allocation for each Lucky Tier 2 (ETH) uint256 public luckyAllocationTier2; /// @notice Lucky allocation for each Lucky Tier 3 (ETH) uint256 public luckyAllocationTier3; /// @notice Signer of lucky signatures address public luckySigner; /// @notice Guaranteed phase start uint256 public guaranteedStart; /// @notice Guaranteed phase end uint256 public guaranteedEnd; /// @notice Lucky phase start uint256 public luckyStart; /// @notice Lucky phase end uint256 public luckyEnd; /// @notice Open phase start uint256 public openStart; /// @notice Open phase end uint256 public openEnd; /// @notice Wallet cap for the Open phase uint256 public openPhaseWalletCap; /// @notice Contribution step for the Open phase uint256 public openPhaseContributionStep; /// @notice Guaranteed phase exchange rate uint256 public guaranteedExchangeRate; /// @notice Lucky phase Tier 1 exchange rate uint256 public luckyExchangeRate1; /// @notice Lucky phase Tier 2 exchange rate uint256 public luckyExchangeRate2; /// @notice Lucky phase Tier 3 exchange rate uint256 public luckyExchangeRate3; /// @notice Guaranteed phase raised ETH uint256 public guaranteedRaisedETH; /// @notice Lucky phase raised ETH uint256 public luckyRaisedETH; /// @notice Open phase raised ETH uint256 public openRaisedETH; /// @notice Contributed ETH in allowed NFTs (tokenId => amount) mapping(uint256 => uint256) public diceNFTContributed; /// @notice Contributed in allowed wallets (wallet => amount) mapping(address => uint256) public allowedWalletContributed; /// @notice Contributed in allowed NFTs (collection => (tokenId => amount) mapping(address => mapping(uint256 => uint256)) public allowedNFTContributed; /// @notice Contributed in Lucky phase (wallet => amount) mapping(address => uint256) public luckyPhaseContributed; /// @notice Contributed in Lucky phase with signature (signature => amount) mapping(bytes => uint256) public raffleTicketContributed; /// @notice Contributed in Open phase (wallet => amount) mapping(address => uint256) public openPhaseContributed; /// @notice Tokens vestable after contribution (wallet => amount) mapping(address => uint256) public tokensEligible; /*============================================================== MODIFIERS ==============================================================*/ /// @notice Modifier to check if the phase is active /// @param _phase The phase to check modifier phaseGuard(Phase _phase) { bool isPhaseActive = isPhaseActive(_phase); if (!isPhaseActive) { revert PhaseNotActive(_phase); } _; } /// @notice Check if the presale has not started modifier onlyBeforePresale() { if ( (guaranteedStart != 0 && block.timestamp > guaranteedStart) || (luckyStart != 0 && block.timestamp > luckyStart) || (openStart != 0 && block.timestamp > openStart) ) { revert OnlyBeforePresale(); } _; } /// @notice Check if the presale has ended modifier onlyAfterPresale() { if ( (guaranteedEnd != 0 && block.timestamp < guaranteedEnd) || (luckyEnd != 0 && block.timestamp < luckyEnd) || (openEnd != 0 && block.timestamp < openEnd) ) { revert OnlyAfterPresale(); } _; } /*============================================================== FUNCTIONS ==============================================================*/ /// @param _diceNFT Address of the Dice NFT /// @param _treasury Address of the wallet that will receive the funds /// @param _initialOwner Address of the initial owner /// @param _delegateRegistryV1 Address of the delegate registry v1 /// @param _delegateRegistryV2 Address of the delegate registry v2 constructor( address _diceNFT, address _treasury, address _initialOwner, address _delegateRegistryV1, address _delegateRegistryV2 ) Ownable(_initialOwner) { diceNFT = _diceNFT; treasury = _treasury; delegateRegistryV1 = IDelegationRegistry(_delegateRegistryV1); delegateRegistryV2 = IDelegateRegistry(_delegateRegistryV2); // Domain separator for EIP-712 cachedChainId = block.chainid; cachedDomainSeparator = _constructDomainSeparator(); cachedThis = address(this); } /// @notice Buy tokens with Dice NFTs /// @dev This function allows users to buy tokens with Dice NFTs during the guaranteed phase /// @param _params Array of BuyWithDiceNFTParams function buyWithDiceNFTs(BuyWithDiceNFTParams[] calldata _params) public payable { uint256 ethContributed; for (uint256 i = 0; i < _params.length; i++) { _buyWithDiceNFT(_params[i].amount, _params[i].proof, _params[i].tokenId, _params[i].maxAmount); ethContributed += _params[i].amount; } if (ethContributed != msg.value) { revert ContributionAmountMismatch(); } } /// @notice Buy tokens with a Dice NFT /// @dev This function allows users to buy tokens with a Dice NFT during the guaranteed phase /// @param _proof Merkle proof /// @param _tokenId ID of the NFT /// @param _maxAmount Maximum amount of ETH that can be contributed function buyWithDiceNFT(bytes32[] calldata _proof, uint256 _tokenId, uint256 _maxAmount) external payable { _buyWithDiceNFT(msg.value, _proof, _tokenId, _maxAmount); } /// @notice Buy tokens with an allowlisted wallet /// @dev This function relies on the merkle proof to verify the caller's eligibility /// @param _proof Merkle proof /// @param _maxAmount Maximum amount of ETH that can be contributed function buyWithAllowedWallet(bytes32[] calldata _proof, uint256 _maxAmount) external payable { _buyWithAllowedWallet(msg.value, _proof, _maxAmount); } /// @notice Buy tokens with an allowlisted wallet /// @param _params AllowedWalletParams function buyWithAllowedNFTs(BuyWithAllowedNFTParams[] calldata _params) external payable { uint256 ethContributed; for (uint256 i = 0; i < _params.length; i++) { _buyWithAllowedNFT( _params[i].amount, _params[i].proof, _params[i].collection, _params[i].tokenId, _params[i].maxAmount ); ethContributed += _params[i].amount; } if (ethContributed != msg.value) { revert ContributionAmountMismatch(); } } /// @notice Buy tokens with an allowlisted NFT /// @dev This function allows users to buy tokens with an allowlisted NFT /// @param _proof Merkle proof /// @param _collection Address of the NFT collection /// @param _tokenId ID of the NFT /// @param _maxAmount Maximum amount of ETH that can be contributed function buyWithAllowedNFT(bytes32[] calldata _proof, address _collection, uint256 _tokenId, uint256 _maxAmount) external payable { _buyWithAllowedNFT(msg.value, _proof, _collection, _tokenId, _maxAmount); } /// @notice Buy tokens in the Lucky phase /// @dev This function uses a signature to verify the maximum investment amount /// @param _maxAmount Maximum amount of ETH that can be contributed /// @param _signature Signature of the maximum amount and the sender's address function buyLuckyTier(uint256 _maxAmount, bytes calldata _signature) external payable { _buyLuckyTier(msg.value, _maxAmount, _signature); } /// @notice Buy tokens in the Open phase function buyOpenPhase() external payable { _buyOpenPhase(msg.value); } /// @notice Buy tokens in all phases /// @param _diceNFTParams Array of BuyWithDiceNFTParams /// @param _allowedNFTParams Array of BuyWithAllowedNFTParams /// @param _allowedWalletParams AllowedWalletParams /// @param _luckyPhaseSignature Signature of the maximum amount and the sender's address /// @param _luckyPhaseAmount Amount of ETH to contribute in the lucky phase /// @param _luckyPhaseMaxAmount Maximum amount of ETH that can be contributed in the lucky phase /// @param _openPhaseAmount Amount of ETH to contribute in the open phase function buyAllPhases( BuyWithDiceNFTParams[] calldata _diceNFTParams, BuyWithAllowedNFTParams[] calldata _allowedNFTParams, AllowedWalletParams calldata _allowedWalletParams, bytes calldata _luckyPhaseSignature, uint256 _luckyPhaseAmount, uint256 _luckyPhaseMaxAmount, uint256 _openPhaseAmount ) external payable { uint256 ethContributed; uint256 diceNFTParamsLength = _diceNFTParams.length; for (uint256 i = 0; i < diceNFTParamsLength; i++) { BuyWithDiceNFTParams memory param = _diceNFTParams[i]; _buyWithDiceNFT(param.amount, _diceNFTParams[i].proof, param.tokenId, param.maxAmount); ethContributed += param.amount; } uint256 allowedNFTParamsLength = _allowedNFTParams.length; for (uint256 i = 0; i < allowedNFTParamsLength; i++) { BuyWithAllowedNFTParams memory param = _allowedNFTParams[i]; _buyWithAllowedNFT( param.amount, _allowedNFTParams[i].proof, param.collection, param.tokenId, param.maxAmount ); ethContributed += param.amount; } if (_allowedWalletParams.proof.length > 0) { _buyWithAllowedWallet( _allowedWalletParams.amount, _allowedWalletParams.proof, _allowedWalletParams.maxAmount ); ethContributed += _allowedWalletParams.amount; } if (_luckyPhaseSignature.length > 0) { _buyLuckyTier(_luckyPhaseAmount, _luckyPhaseMaxAmount, _luckyPhaseSignature); ethContributed += _luckyPhaseAmount; } if (_openPhaseAmount > 0) { _buyOpenPhase(_openPhaseAmount); ethContributed += _openPhaseAmount; } if (ethContributed != msg.value) { revert ContributionAmountMismatch(); } } /*============================================================== VIEW FUNCTIONS ==============================================================*/ /// @notice Calculate the amount of tokens for a given amount and phase /// @param _amount Amount of ETH to calculate tokens for /// @param _phase Phase to calculate tokens for function calculateTokens(uint256 _amount, Phase _phase) public view returns (uint256 tokens) { if (_phase == Phase.Guaranteed) { tokens = _amount * guaranteedExchangeRate; } else { uint256 remainingETH = _amount; uint256 luckyRaisedETH_ = luckyRaisedETH; uint256 tier1Space = luckyAllocationTier1 > luckyRaisedETH_ ? luckyAllocationTier1 - luckyRaisedETH_ : 0; if (tier1Space > 0) { uint256 tier1ETH = remainingETH > tier1Space ? tier1Space : remainingETH; tokens = tier1ETH * luckyExchangeRate1; remainingETH -= tier1ETH; luckyRaisedETH_ += tier1Space; } if (remainingETH > 0) { uint256 tier2Space = luckyAllocationTier1 + luckyAllocationTier2 > luckyRaisedETH_ ? luckyAllocationTier1 + luckyAllocationTier2 - luckyRaisedETH_ : 0; if (tier2Space > 0) { uint256 tier2ETH = remainingETH > tier2Space ? tier2Space : remainingETH; tokens += tier2ETH * luckyExchangeRate2; remainingETH -= tier2ETH; } } if (remainingETH > 0) { tokens += remainingETH * luckyExchangeRate3; } } } /// @notice Check if a phase is active /// @param _phase Phase to check /// @return bool function isPhaseActive(Phase _phase) public view returns (bool) { if (_phase == Phase.Guaranteed) { if ( guaranteedRaisedETH > guaranteedAllocation || (block.timestamp < guaranteedStart || block.timestamp > guaranteedEnd) ) { return false; } } else if (_phase == Phase.Lucky) { if ( luckyRaisedETH > luckyAllocationTier1 + luckyAllocationTier2 + luckyAllocationTier3 || (block.timestamp < luckyStart || block.timestamp > luckyEnd) ) { return false; } } else if (_phase == Phase.Open) { if (block.timestamp < openStart || block.timestamp > openEnd) { return false; } } return true; } /*============================================================== ADMIN FUNCTIONS ==============================================================*/ /// @notice Set the merkle root for the allowed wallets /// @param _allowedWalletsMerkleRoot Merkle root for the allowed wallets function setAllowedWalletsMerkleRoot(bytes32 _allowedWalletsMerkleRoot) external onlyOwner onlyBeforePresale { allowedWalletsMerkleRoot = _allowedWalletsMerkleRoot; emit AllowedWalletsMerkleRootSet(_allowedWalletsMerkleRoot); } /// @notice Set the merkle root for the Dice NFTs /// @param _diceNFTsMerkleRoot Merkle root for the Dice NFTs function setDiceNFTsMerkleRoot(bytes32 _diceNFTsMerkleRoot) external onlyOwner onlyBeforePresale { diceNFTsMerkleRoot = _diceNFTsMerkleRoot; emit DiceNFTsMerkleRootSet(_diceNFTsMerkleRoot); } /// @notice Set the merkle root for the allowed NFTs /// @param _allowedNFTsMerkleRoot Merkle root for the allowed NFTs function setAllowedNFTsMerkleRoot(bytes32 _allowedNFTsMerkleRoot) external onlyOwner onlyBeforePresale { allowedNFTsMerkleRoot = _allowedNFTsMerkleRoot; emit AllowedNFTsMerkleRootSet(_allowedNFTsMerkleRoot); } /// @notice Set the merkle root for the Open phase allocations /// @param _openPhaseAllocationsMerkleRoot Merkle root for the Open phase allocations function setOpenPhaseAllocationsMerkleRoot(bytes32 _openPhaseAllocationsMerkleRoot) external onlyOwner onlyAfterPresale { openPhaseAllocationsMerkleRoot = _openPhaseAllocationsMerkleRoot; emit OpenPhaseAllocationsMerkleRootSet(_openPhaseAllocationsMerkleRoot); } /// @notice Sets the merkle root for the Dice NFTs tokens eligible /// @param _diceNFTsTokensEligibleMerkleRoot Merkle root for the Dice NFTs tokens eligible function setDiceNFTsTokensEligibleMerkleRoot(bytes32 _diceNFTsTokensEligibleMerkleRoot) external onlyOwner onlyAfterPresale { diceNFTsTokensEligibleMerkleRoot = _diceNFTsTokensEligibleMerkleRoot; emit DiceNFTsTokensEligibleMerkleRootSet(_diceNFTsTokensEligibleMerkleRoot); } /// @notice Set guaranteed phase start, end and allocation /// @param _guaranteedStart Start time of the guaranteed phase /// @param _guaranteedEnd End time of the guaranteed phase /// @param _guaranteedAllocation Allocation for the guaranteed phase function setGuaranteedPhase(uint256 _guaranteedStart, uint256 _guaranteedEnd, uint256 _guaranteedAllocation) external onlyOwner onlyBeforePresale { guaranteedStart = _guaranteedStart; guaranteedEnd = _guaranteedEnd; guaranteedAllocation = _guaranteedAllocation; emit GuaranteedPhaseSet(guaranteedStart, guaranteedEnd, guaranteedAllocation); } /// @notice Set Lucky phase start, end, allocations per tier, and wallet cap /// @param _luckyStart Start time of the Lucky phase /// @param _luckyEnd End time of the Lucky phase /// @param _luckyAllocationTier1 Allocation for the first lucky tier1 /// @param _luckyAllocationTier2 Allocation for the second lucky tier2 /// @param _luckyAllocationTier3 Allocation for the third lucky tier3 /// @param _luckySigner Signer of lucky signatures function setLuckyPhase( uint256 _luckyStart, uint256 _luckyEnd, uint256 _luckyAllocationTier1, uint256 _luckyAllocationTier2, uint256 _luckyAllocationTier3, address _luckySigner ) external onlyOwner onlyBeforePresale { luckyStart = _luckyStart; luckyEnd = _luckyEnd; luckyAllocationTier1 = _luckyAllocationTier1; luckyAllocationTier2 = _luckyAllocationTier2; luckyAllocationTier3 = _luckyAllocationTier3; luckySigner = _luckySigner; emit LuckyPhaseSet( _luckyStart, _luckyEnd, _luckyAllocationTier1, _luckyAllocationTier2, _luckyAllocationTier3, _luckySigner ); } /// @notice Set Open phase start, end and allocation /// @param _openStart Start time of the open phase /// @param _openEnd End time of the open phase function setOpenPhase( uint256 _openStart, uint256 _openEnd, uint256 _openPhaseWalletCap, uint256 _openPhaseContributionStep ) external onlyOwner onlyBeforePresale { openStart = _openStart; openEnd = _openEnd; openPhaseWalletCap = _openPhaseWalletCap; openPhaseContributionStep = _openPhaseContributionStep; emit OpenPhaseSet(_openStart, _openEnd, _openPhaseWalletCap, _openPhaseContributionStep); } /// @notice Set the exchange rates for each phase /// @param _guaranteedExchangeRate Exchange rate for the guaranteed phase /// @param _luckyExchangeRate1 Exchange rate for the first lucky phase /// @param _luckyExchangeRate2 Exchange rate for the second lucky phase /// @param _luckyExchangeRate3 Exchange rate for the third lucky phase function setExchangeRates( uint256 _guaranteedExchangeRate, uint256 _luckyExchangeRate1, uint256 _luckyExchangeRate2, uint256 _luckyExchangeRate3 ) external onlyOwner onlyBeforePresale { guaranteedExchangeRate = _guaranteedExchangeRate; luckyExchangeRate1 = _luckyExchangeRate1; luckyExchangeRate2 = _luckyExchangeRate2; luckyExchangeRate3 = _luckyExchangeRate3; emit ExchangeRatesSet(_guaranteedExchangeRate, _luckyExchangeRate1, _luckyExchangeRate2, _luckyExchangeRate3); } /// @notice Pause the purchase functions, only owner can call this function function pause() external onlyOwner { _pause(); } /// @notice Unpause the purchase functions, only owner can call this function function unpause() external onlyOwner { _unpause(); } /*============================================================== INTERNAL FUNCTIONS ==============================================================*/ function _buyWithDiceNFT(uint256 _amount, bytes32[] calldata _proof, uint256 _tokenId, uint256 _maxAmount) internal nonReentrant whenNotPaused phaseGuard(Phase.Guaranteed) { _verifyTokenOwner(diceNFT, _tokenId); _verifyDiceNFTProof(_proof, _tokenId, _maxAmount); // check if contribution cap is not exceeded if (diceNFTContributed[_tokenId] + _amount > _maxAmount) { revert ExceededDiceNFTCap(_tokenId); } // check if total contribution cap is not exceeded if (guaranteedRaisedETH + _amount > guaranteedAllocation) { revert ExceededGuaranteedAllocation(); } // update contributed amount, tokens eligible & total sold uint256 tokensAmount = calculateTokens(_amount, Phase.Guaranteed); tokensEligible[msg.sender] += tokensAmount; diceNFTContributed[_tokenId] += _amount; guaranteedRaisedETH += _amount; // transfer ETH to receiver wallet (bool success,) = treasury.call{value: _amount}(""); if (!success) { revert TransferFailed(treasury, _amount); } emit ContributedDiceNFT(msg.sender, _amount, tokensAmount, _tokenId); } /// @notice Buy tokens with an allowlisted NFT /// @param _amount Amount of ETH to contribute /// @param _proof Merkle proof /// @param _collection Address of the NFT collection /// @param _tokenId ID of the NFT /// @param _maxAmount Maximum amount of ETH that can be contributed function _buyWithAllowedNFT( uint256 _amount, bytes32[] calldata _proof, address _collection, uint256 _tokenId, uint256 _maxAmount ) internal nonReentrant whenNotPaused phaseGuard(Phase.Guaranteed) { _verifyTokenOwner(_collection, _tokenId); _verifyAllowedNFTProof(_proof, _collection, _maxAmount); // check if total contribution cap is not exceeded if (guaranteedRaisedETH + _amount > guaranteedAllocation) { revert ExceededGuaranteedAllocation(); } // check if NFT cap is not exceeded if (allowedNFTContributed[_collection][_tokenId] + _amount > _maxAmount) { revert ExceededNFTCap(_collection, _tokenId); } // update contributed amount, tokens eligible & total sold uint256 tokensAmount = calculateTokens(_amount, Phase.Guaranteed); tokensEligible[msg.sender] += tokensAmount; allowedNFTContributed[_collection][_tokenId] += _amount; guaranteedRaisedETH += _amount; // transfer ETH to receiver wallet (bool success,) = treasury.call{value: _amount}(""); if (!success) { revert TransferFailed(treasury, _amount); } emit ContributedAllowedNFT(msg.sender, _amount, tokensAmount, _collection, _tokenId); } /// @notice Buy tokens with an allowlisted wallet /// @param _amount Amount of ETH to contribute /// @param _proof Merkle proof /// @param _maxAmount Maximum amount of ETH that can be contributed function _buyWithAllowedWallet(uint256 _amount, bytes32[] calldata _proof, uint256 _maxAmount) internal nonReentrant whenNotPaused phaseGuard(Phase.Guaranteed) { _verifyAllowedWalletProof(_proof, _maxAmount); // check if contribution cap is not exceeded if (allowedWalletContributed[msg.sender] + _amount > _maxAmount) { revert ExceededAllowedWalletCap(msg.sender); } // check if total contribution cap is not exceeded if (guaranteedRaisedETH + _amount > guaranteedAllocation) { revert ExceededGuaranteedAllocation(); } // Update contributed amount, tokens eligible & total sold uint256 tokensAmount = calculateTokens(_amount, Phase.Guaranteed); tokensEligible[msg.sender] += tokensAmount; allowedWalletContributed[msg.sender] += _amount; guaranteedRaisedETH += _amount; // Transfer ETH to receiver wallet (bool success,) = treasury.call{value: _amount}(""); if (!success) { revert TransferFailed(treasury, _amount); } emit ContributedAllowedWallet(msg.sender, _amount, tokensAmount); } /// @notice Buy tokens in the Lucky phase /// @param _amount Amount of ETH to contribute /// @param _maxAmount Maximum amount of ETH that can be contributed /// @param _signature Signature of the maximum amount and the sender's address function _buyLuckyTier(uint256 _amount, uint256 _maxAmount, bytes calldata _signature) internal nonReentrant whenNotPaused phaseGuard(Phase.Lucky) { _verifyLuckySignature(_maxAmount, _signature); if (raffleTicketContributed[_signature] + _amount > _maxAmount) { revert ExceededRaffleTicketContribution(); } else if (luckyRaisedETH + _amount > luckyAllocationTier1 + luckyAllocationTier2 + luckyAllocationTier3) { revert ExceededLuckyAllocation(); } // update contributed amounts for raffle ticket and per-wallet, tokens eligible & total sold uint256 tokensAmount = calculateTokens(_amount, Phase.Lucky); tokensEligible[msg.sender] += tokensAmount; raffleTicketContributed[_signature] += _amount; luckyPhaseContributed[msg.sender] += _amount; luckyRaisedETH += _amount; // transfer ETH to receiver wallet (bool success,) = treasury.call{value: _amount}(""); if (!success) { revert TransferFailed(treasury, _amount); } emit ContributedLuckyPhase(msg.sender, _amount, tokensAmount); } /// @notice Buy tokens in the Open phase /// @param _amount Amount of ETH to contribute function _buyOpenPhase(uint256 _amount) internal nonReentrant whenNotPaused phaseGuard(Phase.Open) { if (_amount % openPhaseContributionStep != 0) { revert IncorrectContributionStep(); } if (openPhaseContributed[msg.sender] + _amount > openPhaseWalletCap) { revert ExceededOpenPhaseWalletCap(msg.sender); } openPhaseContributed[msg.sender] += _amount; openRaisedETH += _amount; // transfer ETH to receiver wallet (bool success,) = treasury.call{value: _amount}(""); if (!success) { revert TransferFailed(treasury, _amount); } emit ContributedOpenPhase(msg.sender, _amount); } /// @notice Verifies if the sender is the owner of a given token or a valid delegate. /// @param _collection The address of the collection contract. /// @param _tokenId The token ID to verify ownership or delegation for. function _verifyTokenOwner(address _collection, uint256 _tokenId) internal view { address _tokenOwner = IERC721(_collection).ownerOf(_tokenId); // Check sender is owner if (_tokenOwner == msg.sender) { return; } // Check with delegate registry v2 if (delegateRegistryV2.checkDelegateForERC721(msg.sender, _tokenOwner, _collection, _tokenId, "")) { return; } // Check with delegate registry v1 if (delegateRegistryV1.checkDelegateForToken(msg.sender, _tokenOwner, _collection, _tokenId)) { return; } // Revert if not owner or delegate revert NotTokenOwner(_collection, _tokenId); } /// @notice Verify the signature of the maximum amount and the sender's address /// @param _maxAmount Maximum amount of ETH that can be contributed /// @param _signature Signature of the maximum amount and the sender's address function _verifyLuckySignature(uint256 _maxAmount, bytes calldata _signature) internal view { bytes32 signedMessageHash = MessageHashUtils.toEthSignedMessageHash( keccak256(abi.encode(_getDomainSeparator(), _maxAmount, msg.sender)) ); address recoveredOwner = ECDSA.recover(signedMessageHash, _signature); if (recoveredOwner != luckySigner) { revert InvalidSignature(); } } /// @notice Verify the merkle proof /// @param _proof The merkle proof /// @param _maxAmount The amount to verify function _verifyAllowedWalletProof(bytes32[] calldata _proof, uint256 _maxAmount) internal view { bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(msg.sender, _maxAmount)))); if (!MerkleProof.verify(_proof, allowedWalletsMerkleRoot, leaf)) { revert InvalidAllowedWalletProof(); } } /// @notice Verify the merkle proof /// @param _proof The merkle proof /// @param _tokenId The token ID to verify /// @param _maxAmount The amount to verify function _verifyDiceNFTProof(bytes32[] calldata _proof, uint256 _tokenId, uint256 _maxAmount) internal view { bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(_tokenId, _maxAmount)))); if (!MerkleProof.verify(_proof, diceNFTsMerkleRoot, leaf)) { revert InvalidDiceNFTProof(); } } /// @notice Verify the merkle proof /// @param _proof The merkle proof /// @param _collection Collection address /// @param _maxAmount The amount to verify function _verifyAllowedNFTProof(bytes32[] calldata _proof, address _collection, uint256 _maxAmount) internal view { bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(_collection, _maxAmount)))); if (!MerkleProof.verify(_proof, allowedNFTsMerkleRoot, leaf)) { revert InvalidAllowedNFTProof(); } } /// @notice Get the domain separator function _getDomainSeparator() internal view returns (bytes32) { if (address(this) == cachedThis && block.chainid == cachedChainId) { return cachedDomainSeparator; } else { return _constructDomainSeparator(); } } /// @notice Construct the domain separator function _constructDomainSeparator() internal view returns (bytes32) { return keccak256(abi.encode(DOMAIN_TYPEHASH, block.chainid, address(this))); } /*============================================================== EVENTS ==============================================================*/ /// @notice Emitted when the merkle root for the allowed wallets is set /// @param allowedWalletsMerkleRoot The merkle root for the allowed wallets event AllowedWalletsMerkleRootSet(bytes32 indexed allowedWalletsMerkleRoot); /// @notice Emitted when the merkle root for the Dice NFTs is set /// @param diceNFTsMerkleRoot The merkle root for the Dice NFTs event DiceNFTsMerkleRootSet(bytes32 indexed diceNFTsMerkleRoot); /// @notice Emitted when the merkle root for the allowed NFTs is set /// @param allowedNFTsMerkleRoot The merkle root for the allowed NFTs event AllowedNFTsMerkleRootSet(bytes32 indexed allowedNFTsMerkleRoot); /// @notice Emitted when the merkle root for the open phase allocations is set /// @param openPhaseAllocationsMerkleRoot The merkle root for the open phase allocations event OpenPhaseAllocationsMerkleRootSet(bytes32 indexed openPhaseAllocationsMerkleRoot); /// @notice Emitted when the merkle root for the Dice NFTs tokens eligible is set /// @param diceNFTsTokensEligibleMerkleRootSet The merkle root for the Dice NFTs tokens eligible event DiceNFTsTokensEligibleMerkleRootSet(bytes32 indexed diceNFTsTokensEligibleMerkleRootSet); /// @notice Emitted when the exchange rates for each phase are set event ExchangeRatesSet( uint256 guaranteedExchangeRate, uint256 luckyExchangeRate1, uint256 luckyExchangeRate2, uint256 luckyExchangeRate3 ); /// @notice Emitted when the allocations for the guaranteed phase are set /// @param guaranteedStart Start time of the guaranteed phase /// @param guaranteedEnd End time of the guaranteed phase /// @param guaranteedAllocation Allocation for the guaranteed phase event GuaranteedPhaseSet( uint256 indexed guaranteedStart, uint256 indexed guaranteedEnd, uint256 indexed guaranteedAllocation ); /// @notice Emitted when the allocations for the lucky phase are set /// @param luckyStart Start time of the Lucky phase /// @param luckyEnd End time of the Lucky phase /// @param luckyAllocationTier1 Allocation for the first lucky tier1 /// @param luckyAllocationTier2 Allocation for the second lucky tier2 /// @param luckyAllocationTier3 Allocation for the third lucky tier3 /// @param luckySigner Signer of lucky signatures event LuckyPhaseSet( uint256 luckyStart, uint256 luckyEnd, uint256 luckyAllocationTier1, uint256 luckyAllocationTier2, uint256 luckyAllocationTier3, address luckySigner ); /// @notice Emitted when the allocations for the open phase are set /// @param openStart Start time of the Open phase /// @param openEnd End time of the Open phase /// @param openPhaseWalletCap Wallet cap for the Open phase /// @param openPhaseContributionStep Contribution step for the Open phase event OpenPhaseSet( uint256 openStart, uint256 openEnd, uint256 openPhaseWalletCap, uint256 openPhaseContributionStep ); /// @notice Emitted when a contributor buys tokens /// @param contributor The address of the contributor /// @param amount The amount of ETH contributed event Contributed(address indexed contributor, uint256 indexed amount); /// @notice Emitted when a contributor buys tokens with allowed wallet /// @param contributor The address of the contributor /// @param amount The amount of ETH contributed /// @param tokensAmount The amount of tokens contributed event ContributedAllowedWallet(address indexed contributor, uint256 indexed amount, uint256 indexed tokensAmount); /// @notice Emitted when a contributor buys tokens with a Dice NFT /// @param contributor The address of the contributor /// @param amount The amount of ETH contributed /// @param tokensAmount The amount of tokens contributed /// @param tokenId The token ID contributed for event ContributedDiceNFT( address indexed contributor, uint256 indexed amount, uint256 indexed tokensAmount, uint256 tokenId ); /// @notice Emitted when a contributor buys tokens with an allowlisted NFT /// @param contributor The address of the contributor /// @param amount The amount of ETH contributed /// @param tokensAmount The amount of tokens contributed /// @param collection The address of the NFT collection /// @param tokenId The token ID contributed for event ContributedAllowedNFT( address indexed contributor, uint256 indexed amount, uint256 indexed tokensAmount, address collection, uint256 tokenId ); /// @notice Emitted when a contributor buys tokens in the Lucky phase /// @param contributor The address of the contributor /// @param amount The amount of ETH contributed /// @param tokensAmount The amount of tokens contributed event ContributedLuckyPhase(address indexed contributor, uint256 indexed amount, uint256 indexed tokensAmount); /// @notice Emitted when a contributor buys tokens in the Open phase /// @param contributor The address of the contributor /// @param amount The amount of ETH contributed event ContributedOpenPhase(address indexed contributor, uint256 indexed amount); /*============================================================== ERRORS ==============================================================*/ /// @notice Revert if the transfer of funds fails /// @param recipient The address of the recipient /// @param amount The amount of funds refunded error TransferFailed(address recipient, uint256 amount); /// @notice Reverse if the signature is invalid error InvalidSignature(); /// @notice Revert if the merkle proof for allowed wallet is invalid error InvalidAllowedWalletProof(); /// @notice Revert if the merkle proof for Dice NFT is invalid error InvalidDiceNFTProof(); /// @notice Revert if the merkle proof for allowed NFT is invalid error InvalidAllowedNFTProof(); /// @notice Revert if the Dice NFT cap is exceeded error ExceededDiceNFTCap(uint256 tokenId); /// @notice Revert if the NFT cap is exceeded error ExceededNFTCap(address collection, uint256 tokenId); /// @notice Revert if the guaranteed allocation is exceeded error ExceededGuaranteedAllocation(); /// @notice Revert if the contribution amount is incorrect error ContributionAmountMismatch(); /// @notice Revert if the lucky allocation is exceeded error ExceededLuckyAllocation(); /// @notice Revert if the wallet cap is exceeded error ExceededAllowedWalletCap(address wallet); /// @notice Revert if the raffle ticket contribution is exceeded error ExceededOpenPhaseWalletCap(address wallet); /// @notice Revert if the contribution is not divisible by the step error IncorrectContributionStep(); /// @notice Revert if the raffle ticket contribution is exceeded error ExceededRaffleTicketContribution(); /// @notice Revert if the phase is not active error PhaseNotActive(Phase phase); /// @notice Revert if the caller is not the owner of the token or a valid delegate. /// @param collection The address of the collection contract. /// @param tokenId The token ID to verify ownership or delegation for. error NotTokenOwner(address collection, uint256 tokenId); /// @notice Revert if presale has started error OnlyBeforePresale(); /// @notice Revert if presale has ended error OnlyAfterPresale(); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { bool private _paused; /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); /** * @dev The operation failed because the contract is paused. */ error EnforcedPause(); /** * @dev The operation failed because the contract is not paused. */ error ExpectedPause(); /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { if (paused()) { revert EnforcedPause(); } } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { if (!paused()) { revert ExpectedPause(); } } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } }
// SPDX-License-Identifier: CC0-1.0 pragma solidity ^0.8.17; /** * @title An immutable registry contract to be deployed as a standalone primitive * @dev See EIP-5639, new project launches can read previous cold wallet -> hot wallet delegations * from here and integrate those permissions into their flow */ interface IDelegationRegistry { /// @notice Delegation type enum DelegationType { NONE, ALL, CONTRACT, TOKEN } /// @notice Info about a single delegation, used for onchain enumeration struct DelegationInfo { DelegationType type_; address vault; address delegate; address contract_; uint256 tokenId; } /// @notice Info about a single contract-level delegation struct ContractDelegation { address contract_; address delegate; } /// @notice Info about a single token-level delegation struct TokenDelegation { address contract_; uint256 tokenId; address delegate; } /// @notice Emitted when a user delegates their entire wallet event DelegateForAll(address vault, address delegate, bool value); /// @notice Emitted when a user delegates a specific contract event DelegateForContract( address vault, address delegate, address contract_, bool value ); /// @notice Emitted when a user delegates a specific token event DelegateForToken( address vault, address delegate, address contract_, uint256 tokenId, bool value ); /// @notice Emitted when a user revokes all delegations event RevokeAllDelegates(address vault); /// @notice Emitted when a user revoes all delegations for a given delegate event RevokeDelegate(address vault, address delegate); /** * ----------- WRITE ----------- */ /** * @notice Allow the delegate to act on your behalf for all contracts * @param delegate The hotwallet to act on your behalf * @param value Whether to enable or disable delegation for this address, true for setting and false for revoking */ function delegateForAll(address delegate, bool value) external; /** * @notice Allow the delegate to act on your behalf for a specific contract * @param delegate The hotwallet to act on your behalf * @param contract_ The address for the contract you're delegating * @param value Whether to enable or disable delegation for this address, true for setting and false for revoking */ function delegateForContract( address delegate, address contract_, bool value ) external; /** * @notice Allow the delegate to act on your behalf for a specific token * @param delegate The hotwallet to act on your behalf * @param contract_ The address for the contract you're delegating * @param tokenId The token id for the token you're delegating * @param value Whether to enable or disable delegation for this address, true for setting and false for revoking */ function delegateForToken( address delegate, address contract_, uint256 tokenId, bool value ) external; /** * @notice Revoke all delegates */ function revokeAllDelegates() external; /** * @notice Revoke a specific delegate for all their permissions * @param delegate The hotwallet to revoke */ function revokeDelegate(address delegate) external; /** * @notice Remove yourself as a delegate for a specific vault * @param vault The vault which delegated to the msg.sender, and should be removed */ function revokeSelf(address vault) external; /** * ----------- READ ----------- */ /** * @notice Returns all active delegations a given delegate is able to claim on behalf of * @param delegate The delegate that you would like to retrieve delegations for * @return info Array of DelegationInfo structs */ function getDelegationsByDelegate( address delegate ) external view returns (DelegationInfo[] memory); /** * @notice Returns an array of wallet-level delegates for a given vault * @param vault The cold wallet who issued the delegation * @return addresses Array of wallet-level delegates for a given vault */ function getDelegatesForAll( address vault ) external view returns (address[] memory); /** * @notice Returns an array of contract-level delegates for a given vault and contract * @param vault The cold wallet who issued the delegation * @param contract_ The address for the contract you're delegating * @return addresses Array of contract-level delegates for a given vault and contract */ function getDelegatesForContract( address vault, address contract_ ) external view returns (address[] memory); /** * @notice Returns an array of contract-level delegates for a given vault's token * @param vault The cold wallet who issued the delegation * @param contract_ The address for the contract holding the token * @param tokenId The token id for the token you're delegating * @return addresses Array of contract-level delegates for a given vault's token */ function getDelegatesForToken( address vault, address contract_, uint256 tokenId ) external view returns (address[] memory); /** * @notice Returns all contract-level delegations for a given vault * @param vault The cold wallet who issued the delegations * @return delegations Array of ContractDelegation structs */ function getContractLevelDelegations( address vault ) external view returns (ContractDelegation[] memory delegations); /** * @notice Returns all token-level delegations for a given vault * @param vault The cold wallet who issued the delegations * @return delegations Array of TokenDelegation structs */ function getTokenLevelDelegations( address vault ) external view returns (TokenDelegation[] memory delegations); /** * @notice Returns true if the address is delegated to act on the entire vault * @param delegate The hotwallet to act on your behalf * @param vault The cold wallet who issued the delegation */ function checkDelegateForAll( address delegate, address vault ) external view returns (bool); /** * @notice Returns true if the address is delegated to act on your behalf for a token contract or an entire vault * @param delegate The hotwallet to act on your behalf * @param contract_ The address for the contract you're delegating * @param vault The cold wallet who issued the delegation */ function checkDelegateForContract( address delegate, address vault, address contract_ ) external view returns (bool); /** * @notice Returns true if the address is delegated to act on your behalf for a specific token, the token's contract or an entire vault * @param delegate The hotwallet to act on your behalf * @param contract_ The address for the contract you're delegating * @param tokenId The token id for the token you're delegating * @param vault The cold wallet who issued the delegation */ function checkDelegateForToken( address delegate, address vault, address contract_, uint256 tokenId ) external view returns (bool); }
// SPDX-License-Identifier: CC0-1.0 pragma solidity >=0.8.13; /** * @title IDelegateRegistry * @custom:version 2.0 * @custom:author foobar (0xfoobar) * @notice A standalone immutable registry storing delegated permissions from one address to another */ interface IDelegateRegistry { /// @notice Delegation type, NONE is used when a delegation does not exist or is revoked enum DelegationType { NONE, ALL, CONTRACT, ERC721, ERC20, ERC1155 } /// @notice Struct for returning delegations struct Delegation { DelegationType type_; address to; address from; bytes32 rights; address contract_; uint256 tokenId; uint256 amount; } /// @notice Emitted when an address delegates or revokes rights for their entire wallet event DelegateAll(address indexed from, address indexed to, bytes32 rights, bool enable); /// @notice Emitted when an address delegates or revokes rights for a contract address event DelegateContract(address indexed from, address indexed to, address indexed contract_, bytes32 rights, bool enable); /// @notice Emitted when an address delegates or revokes rights for an ERC721 tokenId event DelegateERC721(address indexed from, address indexed to, address indexed contract_, uint256 tokenId, bytes32 rights, bool enable); /// @notice Emitted when an address delegates or revokes rights for an amount of ERC20 tokens event DelegateERC20(address indexed from, address indexed to, address indexed contract_, bytes32 rights, uint256 amount); /// @notice Emitted when an address delegates or revokes rights for an amount of an ERC1155 tokenId event DelegateERC1155(address indexed from, address indexed to, address indexed contract_, uint256 tokenId, bytes32 rights, uint256 amount); /// @notice Thrown if multicall calldata is malformed error MulticallFailed(); /** * ----------- WRITE ----------- */ /** * @notice Call multiple functions in the current contract and return the data from all of them if they all succeed * @param data The encoded function data for each of the calls to make to this contract * @return results The results from each of the calls passed in via data */ function multicall(bytes[] calldata data) external payable returns (bytes[] memory results); /** * @notice Allow the delegate to act on behalf of `msg.sender` for all contracts * @param to The address to act as delegate * @param rights Specific subdelegation rights granted to the delegate, pass an empty bytestring to encompass all rights * @param enable Whether to enable or disable this delegation, true delegates and false revokes * @return delegationHash The unique identifier of the delegation */ function delegateAll(address to, bytes32 rights, bool enable) external payable returns (bytes32 delegationHash); /** * @notice Allow the delegate to act on behalf of `msg.sender` for a specific contract * @param to The address to act as delegate * @param contract_ The contract whose rights are being delegated * @param rights Specific subdelegation rights granted to the delegate, pass an empty bytestring to encompass all rights * @param enable Whether to enable or disable this delegation, true delegates and false revokes * @return delegationHash The unique identifier of the delegation */ function delegateContract(address to, address contract_, bytes32 rights, bool enable) external payable returns (bytes32 delegationHash); /** * @notice Allow the delegate to act on behalf of `msg.sender` for a specific ERC721 token * @param to The address to act as delegate * @param contract_ The contract whose rights are being delegated * @param tokenId The token id to delegate * @param rights Specific subdelegation rights granted to the delegate, pass an empty bytestring to encompass all rights * @param enable Whether to enable or disable this delegation, true delegates and false revokes * @return delegationHash The unique identifier of the delegation */ function delegateERC721(address to, address contract_, uint256 tokenId, bytes32 rights, bool enable) external payable returns (bytes32 delegationHash); /** * @notice Allow the delegate to act on behalf of `msg.sender` for a specific amount of ERC20 tokens * @dev The actual amount is not encoded in the hash, just the existence of a amount (since it is an upper bound) * @param to The address to act as delegate * @param contract_ The address for the fungible token contract * @param rights Specific subdelegation rights granted to the delegate, pass an empty bytestring to encompass all rights * @param amount The amount to delegate, > 0 delegates and 0 revokes * @return delegationHash The unique identifier of the delegation */ function delegateERC20(address to, address contract_, bytes32 rights, uint256 amount) external payable returns (bytes32 delegationHash); /** * @notice Allow the delegate to act on behalf of `msg.sender` for a specific amount of ERC1155 tokens * @dev The actual amount is not encoded in the hash, just the existence of a amount (since it is an upper bound) * @param to The address to act as delegate * @param contract_ The address of the contract that holds the token * @param tokenId The token id to delegate * @param rights Specific subdelegation rights granted to the delegate, pass an empty bytestring to encompass all rights * @param amount The amount of that token id to delegate, > 0 delegates and 0 revokes * @return delegationHash The unique identifier of the delegation */ function delegateERC1155(address to, address contract_, uint256 tokenId, bytes32 rights, uint256 amount) external payable returns (bytes32 delegationHash); /** * ----------- CHECKS ----------- */ /** * @notice Check if `to` is a delegate of `from` for the entire wallet * @param to The potential delegate address * @param from The potential address who delegated rights * @param rights Specific rights to check for, pass the zero value to ignore subdelegations and check full delegations only * @return valid Whether delegate is granted to act on the from's behalf */ function checkDelegateForAll(address to, address from, bytes32 rights) external view returns (bool); /** * @notice Check if `to` is a delegate of `from` for the specified `contract_` or the entire wallet * @param to The delegated address to check * @param contract_ The specific contract address being checked * @param from The cold wallet who issued the delegation * @param rights Specific rights to check for, pass the zero value to ignore subdelegations and check full delegations only * @return valid Whether delegate is granted to act on from's behalf for entire wallet or that specific contract */ function checkDelegateForContract(address to, address from, address contract_, bytes32 rights) external view returns (bool); /** * @notice Check if `to` is a delegate of `from` for the specific `contract` and `tokenId`, the entire `contract_`, or the entire wallet * @param to The delegated address to check * @param contract_ The specific contract address being checked * @param tokenId The token id for the token to delegating * @param from The wallet that issued the delegation * @param rights Specific rights to check for, pass the zero value to ignore subdelegations and check full delegations only * @return valid Whether delegate is granted to act on from's behalf for entire wallet, that contract, or that specific tokenId */ function checkDelegateForERC721(address to, address from, address contract_, uint256 tokenId, bytes32 rights) external view returns (bool); /** * @notice Returns the amount of ERC20 tokens the delegate is granted rights to act on the behalf of * @param to The delegated address to check * @param contract_ The address of the token contract * @param from The cold wallet who issued the delegation * @param rights Specific rights to check for, pass the zero value to ignore subdelegations and check full delegations only * @return balance The delegated balance, which will be 0 if the delegation does not exist */ function checkDelegateForERC20(address to, address from, address contract_, bytes32 rights) external view returns (uint256); /** * @notice Returns the amount of a ERC1155 tokens the delegate is granted rights to act on the behalf of * @param to The delegated address to check * @param contract_ The address of the token contract * @param tokenId The token id to check the delegated amount of * @param from The cold wallet who issued the delegation * @param rights Specific rights to check for, pass the zero value to ignore subdelegations and check full delegations only * @return balance The delegated balance, which will be 0 if the delegation does not exist */ function checkDelegateForERC1155(address to, address from, address contract_, uint256 tokenId, bytes32 rights) external view returns (uint256); /** * ----------- ENUMERATIONS ----------- */ /** * @notice Returns all enabled delegations a given delegate has received * @param to The address to retrieve delegations for * @return delegations Array of Delegation structs */ function getIncomingDelegations(address to) external view returns (Delegation[] memory delegations); /** * @notice Returns all enabled delegations an address has given out * @param from The address to retrieve delegations for * @return delegations Array of Delegation structs */ function getOutgoingDelegations(address from) external view returns (Delegation[] memory delegations); /** * @notice Returns all hashes associated with enabled delegations an address has received * @param to The address to retrieve incoming delegation hashes for * @return delegationHashes Array of delegation hashes */ function getIncomingDelegationHashes(address to) external view returns (bytes32[] memory delegationHashes); /** * @notice Returns all hashes associated with enabled delegations an address has given out * @param from The address to retrieve outgoing delegation hashes for * @return delegationHashes Array of delegation hashes */ function getOutgoingDelegationHashes(address from) external view returns (bytes32[] memory delegationHashes); /** * @notice Returns the delegations for a given array of delegation hashes * @param delegationHashes is an array of hashes that correspond to delegations * @return delegations Array of Delegation structs, return empty structs for nonexistent or revoked delegations */ function getDelegationsFromHashes(bytes32[] calldata delegationHashes) external view returns (Delegation[] memory delegations); /** * ----------- STORAGE ACCESS ----------- */ /** * @notice Allows external contracts to read arbitrary storage slots */ function readSlot(bytes32 location) external view returns (bytes32); /** * @notice Allows external contracts to read an arbitrary array of storage slots */ function readSlots(bytes32[] calldata locations) external view returns (bytes32[] memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
{ "remappings": [ "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "LayerZero-v2/=lib/LayerZero-v2/", "delegate-registry/=lib/delegate-registry/src/", "ds-test/=lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "murky/=lib/delegate-registry/lib/murky/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "openzeppelin/=lib/delegate-registry/lib/openzeppelin-contracts/contracts/" ], "optimizer": { "enabled": true, "runs": 10000000 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "viaIR": false, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_initialOwner","type":"address"},{"internalType":"address","name":"_presale","type":"address"}],"stateMutability":"payable","type":"constructor"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"AlreadyRefunded","type":"error"},{"inputs":[],"name":"InvalidOpenTierAllocationsMerkleProof","type":"error"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"NothingToRefund","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"RefundsAlreadyStarted","type":"error"},{"inputs":[],"name":"RefundsEnded","type":"error"},{"inputs":[],"name":"RefundsNotEnded","type":"error"},{"inputs":[],"name":"RefundsNotStarted","type":"error"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TransferFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Refunded","type":"event"},{"anonymous":false,"inputs":[],"name":"RefundsStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"RefundsWithdrawn","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"_proof","type":"bytes32[]"},{"internalType":"uint256","name":"_ethAmount","type":"uint256"},{"internalType":"uint256","name":"_tokensAmount","type":"uint256"}],"name":"claimRefund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"presale","outputs":[{"internalType":"contract Presale","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"_proof","type":"bytes32[]"},{"internalType":"uint256","name":"_ethAmount","type":"uint256"},{"internalType":"uint256","name":"_tokensAmount","type":"uint256"}],"name":"refundableAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"refunded","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"refundsStartedAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startRefunds","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
60a0604052604051610f00380380610f00833981016040819052610022916100fa565b816001600160a01b03811661005157604051631e4fbdf760e01b81526000600482015260240160405180910390fd5b61005a81610072565b5060016002556001600160a01b03166080525061012d565b600180546001600160a01b031916905561008b8161008e565b50565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80516001600160a01b03811681146100f557600080fd5b919050565b6000806040838503121561010d57600080fd5b610116836100de565b9150610124602084016100de565b90509250929050565b608051610daa6101566000396000818161027f015281816108bc0152610a110152610daa6000f3fe6080604052600436106100cb5760003560e01c80638da5cb5b11610074578063e30c39781161004e578063e30c397814610222578063f2fde38b1461024d578063fdea8e0b1461026d57600080fd5b80638da5cb5b14610176578063c033a490146101c2578063c71bca6c1461020257600080fd5b80636af582d8116100a55780636af582d814610123578063715018a61461014c57806379ba50971461016157600080fd5b806307a91528146100d75780632fe9f821146100f95780633ccfd60b1461010e57600080fd5b366100d257005b600080fd5b3480156100e357600080fd5b506100f76100f2366004610c1f565b6102a1565b005b34801561010557600080fd5b506100f76104d3565b34801561011a57600080fd5b506100f7610544565b34801561012f57600080fd5b5061013960045481565b6040519081526020015b60405180910390f35b34801561015857600080fd5b506100f76106ac565b34801561016d57600080fd5b506100f76106c0565b34801561018257600080fd5b5060005473ffffffffffffffffffffffffffffffffffffffff165b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610143565b3480156101ce57600080fd5b506101f26101dd366004610ca1565b60036020526000908152604090205460ff1681565b6040519015158152602001610143565b34801561020e57600080fd5b5061013961021d366004610c1f565b610737565b34801561022e57600080fd5b5060015473ffffffffffffffffffffffffffffffffffffffff1661019d565b34801561025957600080fd5b506100f7610268366004610ca1565b610757565b34801561027957600080fd5b5061019d7f000000000000000000000000000000000000000000000000000000000000000081565b6102a9610807565b6004546000036102e5576040517f5a54654500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6004546102f59062278d00610d06565b42111561032e576040517f2db8eabb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b3360009081526003602052604090205460ff161561037f576040517f086735f50000000000000000000000000000000000000000000000000000000081523360048201526024015b60405180910390fd5b61038b84848484610848565b6000610396836109c9565b9050806000036103d4576040517fbb386939000000000000000000000000000000000000000000000000000000008152336004820152602401610376565b3360008181526003602052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790555190919083908381818185875af1925050503d806000811461044b576040519150601f19603f3d011682016040523d82523d6000602084013e610450565b606091505b5050905080610494576040517f1c43b97600000000000000000000000000000000000000000000000000000000815233600482015260248101839052604401610376565b604051829033907fd7dee2702d63ad89917b6a4da9981c90c4d24f8c2bdfd64c604ecae57d8d065190600090a350506104cd6001600255565b50505050565b6104db610a9f565b60045415610515576040517fa0827d0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b426004556040517fbc1f5722811e09c8335814964968a46668c64629cb96e3490703ef59a0f5375590600090a1565b61054c610a9f565b600454158061056a57506004546105669062278d00610d06565b4211155b156105a1576040517fafd4a04900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b4760006105c360005473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff168260405160006040518083038185875af1925050503d806000811461061a576040519150601f19603f3d011682016040523d82523d6000602084013e61061f565b606091505b505090508061067d576000546040517f1c43b97600000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff909116600482015260248101839052604401610376565b60405182907febf375307b93b39034afbc1771b8387e5c41824bdea4a95d9317e0f58555136690600090a25050565b6106b4610a9f565b6106be6000610af2565b565b600154339073ffffffffffffffffffffffffffffffffffffffff16811461072b576040517f118cdaa700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff82166004820152602401610376565b61073481610af2565b50565b600061074585858585610848565b61074e836109c9565b95945050505050565b61075f610a9f565b6001805473ffffffffffffffffffffffffffffffffffffffff83167fffffffffffffffffffffffff000000000000000000000000000000000000000090911681179091556107c260005473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b6002805403610842576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60028055565b6040805133602082015290810183905260608101829052600090608001604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181528282528051602091820120908301520160405160208183030381529060405280519060200120905060007f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff166354e9f7cd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610925573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109499190610d19565b905061098b868680806020026020016040519081016040528093929190818152602001838360200280828437600092019190915250859250869150610b239050565b6109c1576040517f9cb946d500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b505050505050565b6040517ff3ef576c000000000000000000000000000000000000000000000000000000008152336004820152600090819073ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000169063f3ef576c90602401602060405180830381865afa158015610a58573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a7c9190610d19565b9050808310610a8e5750600092915050565b610a988382610d32565b9392505050565b60005473ffffffffffffffffffffffffffffffffffffffff1633146106be576040517f118cdaa7000000000000000000000000000000000000000000000000000000008152336004820152602401610376565b600180547fffffffffffffffffffffffff000000000000000000000000000000000000000016905561073481610b39565b600082610b308584610bae565b14949350505050565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b600081815b8451811015610be957610bdf82868381518110610bd257610bd2610d45565b6020026020010151610bf3565b9150600101610bb3565b5090505b92915050565b6000818310610c0f576000828152602084905260409020610a98565b5060009182526020526040902090565b60008060008060608587031215610c3557600080fd5b843567ffffffffffffffff80821115610c4d57600080fd5b818701915087601f830112610c6157600080fd5b813581811115610c7057600080fd5b8860208260051b8501011115610c8557600080fd5b6020928301999098509187013596604001359550909350505050565b600060208284031215610cb357600080fd5b813573ffffffffffffffffffffffffffffffffffffffff81168114610a9857600080fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b80820180821115610bed57610bed610cd7565b600060208284031215610d2b57600080fd5b5051919050565b81810381811115610bed57610bed610cd7565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fdfea2646970667358221220feb28e021a9ec63c84a2c6ea054c5c1cb1fd7b2583aa9527f0d67784af7c644e64736f6c634300081800330000000000000000000000008d15554f578c952d7388ed12c25384b715cdc6960000000000000000000000007a655a234ddf076c3530ac847040f8d8c5115021
Deployed Bytecode
0x6080604052600436106100cb5760003560e01c80638da5cb5b11610074578063e30c39781161004e578063e30c397814610222578063f2fde38b1461024d578063fdea8e0b1461026d57600080fd5b80638da5cb5b14610176578063c033a490146101c2578063c71bca6c1461020257600080fd5b80636af582d8116100a55780636af582d814610123578063715018a61461014c57806379ba50971461016157600080fd5b806307a91528146100d75780632fe9f821146100f95780633ccfd60b1461010e57600080fd5b366100d257005b600080fd5b3480156100e357600080fd5b506100f76100f2366004610c1f565b6102a1565b005b34801561010557600080fd5b506100f76104d3565b34801561011a57600080fd5b506100f7610544565b34801561012f57600080fd5b5061013960045481565b6040519081526020015b60405180910390f35b34801561015857600080fd5b506100f76106ac565b34801561016d57600080fd5b506100f76106c0565b34801561018257600080fd5b5060005473ffffffffffffffffffffffffffffffffffffffff165b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610143565b3480156101ce57600080fd5b506101f26101dd366004610ca1565b60036020526000908152604090205460ff1681565b6040519015158152602001610143565b34801561020e57600080fd5b5061013961021d366004610c1f565b610737565b34801561022e57600080fd5b5060015473ffffffffffffffffffffffffffffffffffffffff1661019d565b34801561025957600080fd5b506100f7610268366004610ca1565b610757565b34801561027957600080fd5b5061019d7f0000000000000000000000007a655a234ddf076c3530ac847040f8d8c511502181565b6102a9610807565b6004546000036102e5576040517f5a54654500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6004546102f59062278d00610d06565b42111561032e576040517f2db8eabb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b3360009081526003602052604090205460ff161561037f576040517f086735f50000000000000000000000000000000000000000000000000000000081523360048201526024015b60405180910390fd5b61038b84848484610848565b6000610396836109c9565b9050806000036103d4576040517fbb386939000000000000000000000000000000000000000000000000000000008152336004820152602401610376565b3360008181526003602052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790555190919083908381818185875af1925050503d806000811461044b576040519150601f19603f3d011682016040523d82523d6000602084013e610450565b606091505b5050905080610494576040517f1c43b97600000000000000000000000000000000000000000000000000000000815233600482015260248101839052604401610376565b604051829033907fd7dee2702d63ad89917b6a4da9981c90c4d24f8c2bdfd64c604ecae57d8d065190600090a350506104cd6001600255565b50505050565b6104db610a9f565b60045415610515576040517fa0827d0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b426004556040517fbc1f5722811e09c8335814964968a46668c64629cb96e3490703ef59a0f5375590600090a1565b61054c610a9f565b600454158061056a57506004546105669062278d00610d06565b4211155b156105a1576040517fafd4a04900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b4760006105c360005473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff168260405160006040518083038185875af1925050503d806000811461061a576040519150601f19603f3d011682016040523d82523d6000602084013e61061f565b606091505b505090508061067d576000546040517f1c43b97600000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff909116600482015260248101839052604401610376565b60405182907febf375307b93b39034afbc1771b8387e5c41824bdea4a95d9317e0f58555136690600090a25050565b6106b4610a9f565b6106be6000610af2565b565b600154339073ffffffffffffffffffffffffffffffffffffffff16811461072b576040517f118cdaa700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff82166004820152602401610376565b61073481610af2565b50565b600061074585858585610848565b61074e836109c9565b95945050505050565b61075f610a9f565b6001805473ffffffffffffffffffffffffffffffffffffffff83167fffffffffffffffffffffffff000000000000000000000000000000000000000090911681179091556107c260005473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b6002805403610842576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60028055565b6040805133602082015290810183905260608101829052600090608001604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181528282528051602091820120908301520160405160208183030381529060405280519060200120905060007f0000000000000000000000007a655a234ddf076c3530ac847040f8d8c511502173ffffffffffffffffffffffffffffffffffffffff166354e9f7cd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610925573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109499190610d19565b905061098b868680806020026020016040519081016040528093929190818152602001838360200280828437600092019190915250859250869150610b239050565b6109c1576040517f9cb946d500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b505050505050565b6040517ff3ef576c000000000000000000000000000000000000000000000000000000008152336004820152600090819073ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000007a655a234ddf076c3530ac847040f8d8c5115021169063f3ef576c90602401602060405180830381865afa158015610a58573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a7c9190610d19565b9050808310610a8e5750600092915050565b610a988382610d32565b9392505050565b60005473ffffffffffffffffffffffffffffffffffffffff1633146106be576040517f118cdaa7000000000000000000000000000000000000000000000000000000008152336004820152602401610376565b600180547fffffffffffffffffffffffff000000000000000000000000000000000000000016905561073481610b39565b600082610b308584610bae565b14949350505050565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b600081815b8451811015610be957610bdf82868381518110610bd257610bd2610d45565b6020026020010151610bf3565b9150600101610bb3565b5090505b92915050565b6000818310610c0f576000828152602084905260409020610a98565b5060009182526020526040902090565b60008060008060608587031215610c3557600080fd5b843567ffffffffffffffff80821115610c4d57600080fd5b818701915087601f830112610c6157600080fd5b813581811115610c7057600080fd5b8860208260051b8501011115610c8557600080fd5b6020928301999098509187013596604001359550909350505050565b600060208284031215610cb357600080fd5b813573ffffffffffffffffffffffffffffffffffffffff81168114610a9857600080fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b80820180821115610bed57610bed610cd7565b600060208284031215610d2b57600080fd5b5051919050565b81810381811115610bed57610bed610cd7565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fdfea2646970667358221220feb28e021a9ec63c84a2c6ea054c5c1cb1fd7b2583aa9527f0d67784af7c644e64736f6c63430008180033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000008d15554f578c952d7388ed12c25384b715cdc6960000000000000000000000007a655a234ddf076c3530ac847040f8d8c5115021
-----Decoded View---------------
Arg [0] : _initialOwner (address): 0x8d15554f578c952D7388ED12C25384b715CdC696
Arg [1] : _presale (address): 0x7A655a234DDf076C3530aC847040f8d8C5115021
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 0000000000000000000000008d15554f578c952d7388ed12c25384b715cdc696
Arg [1] : 0000000000000000000000007a655a234ddf076c3530ac847040f8d8c5115021
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.