Source Code
                
                
                
                    
                
                
            
          
            
        Overview
ETH Balance
0 ETH
                            Eth Value
$0.00More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 25 from a total of 2,253 transactions
| Transaction Hash | 
                                         
                                           Method 
                                             
                                     | 
                                    
                                         
                                            
                                                Block
                                            
                                            
                                         
                                     | 
                                    
                                         
                                            
                                                From
                                            
                                             
                                     | 
                                    
                                         | 
                                    
                                         
                                            
                                                To
                                            
                                             
                                     | 
                                    ||||
|---|---|---|---|---|---|---|---|---|---|
| Set Approval For... | 23715048 | 29 hrs ago | IN | 0 ETH | 0.00000373 | ||||
| Set Approval For... | 23704832 | 2 days ago | IN | 0 ETH | 0.0000965 | ||||
| Set Approval For... | 23698935 | 3 days ago | IN | 0 ETH | 0.00011118 | ||||
| Set Approval For... | 23648556 | 10 days ago | IN | 0 ETH | 0.00001224 | ||||
| Safe Transfer Fr... | 23648554 | 10 days ago | IN | 0 ETH | 0.00002034 | ||||
| Set Approval For... | 23643211 | 11 days ago | IN | 0 ETH | 0.00010011 | ||||
| Set Approval For... | 23642988 | 11 days ago | IN | 0 ETH | 0.00001065 | ||||
| Set Approval For... | 23586327 | 19 days ago | IN | 0 ETH | 0.00004384 | ||||
| Set Approval For... | 23585109 | 19 days ago | IN | 0 ETH | 0.00006019 | ||||
| Set Approval For... | 23583083 | 19 days ago | IN | 0 ETH | 0.00015864 | ||||
| Set Approval For... | 23548517 | 24 days ago | IN | 0 ETH | 0.00012305 | ||||
| Set Approval For... | 23524779 | 27 days ago | IN | 0 ETH | 0.00000484 | ||||
| Set Approval For... | 23512812 | 29 days ago | IN | 0 ETH | 0.00001103 | ||||
| Set Approval For... | 23500996 | 31 days ago | IN | 0 ETH | 0.00005321 | ||||
| Set Approval For... | 23492153 | 32 days ago | IN | 0 ETH | 0.00005701 | ||||
| Set Approval For... | 23481347 | 33 days ago | IN | 0 ETH | 0.00005335 | ||||
| Set Approval For... | 23476000 | 34 days ago | IN | 0 ETH | 0.00009136 | ||||
| Set Approval For... | 23472689 | 35 days ago | IN | 0 ETH | 0.00005821 | ||||
| Set Approval For... | 23463482 | 36 days ago | IN | 0 ETH | 0.00697542 | ||||
| Set Approval For... | 23455129 | 37 days ago | IN | 0 ETH | 0.00007045 | ||||
| Set Approval For... | 23453999 | 37 days ago | IN | 0 ETH | 0.00005634 | ||||
| Set Approval For... | 23449159 | 38 days ago | IN | 0 ETH | 0.00007922 | ||||
| Set Approval For... | 23449144 | 38 days ago | IN | 0 ETH | 0.00008052 | ||||
| Safe Transfer Fr... | 23448292 | 38 days ago | IN | 0 ETH | 0.00019657 | ||||
| Safe Transfer Fr... | 23448290 | 38 days ago | IN | 0 ETH | 0.00020783 | 
Latest 25 internal transactions (View All)
                                    
                                    
                                    
                                         Advanced mode:
                                    
                                    
                                    
                                        
                                    
                                
                            | Parent Transaction Hash | Method | Block | 
                                         
                                            From
                                             
                                     | 
                                    
                                         | 
                                    
                                         
                                            To
                                             
                                     | 
                                    ||
|---|---|---|---|---|---|---|---|
| Transfer | 22976256 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976255 | 104 days ago | 0.096 ETH | ||||
| Transfer | 22976255 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976255 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976255 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976255 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976254 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976254 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976254 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976254 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976254 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976254 | 104 days ago | 0.096 ETH | ||||
| Transfer | 22976253 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976253 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976252 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976252 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976252 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976252 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976252 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976252 | 104 days ago | 0.096 ETH | ||||
| Transfer | 22976252 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976252 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976252 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976252 | 104 days ago | 0.069 ETH | ||||
| Transfer | 22976251 | 104 days ago | 0.069 ETH | 
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
                                        
                                            Lumens
                                        
                                    Compiler Version
                                        
                                            v0.8.29+commit.ab55807c
                                        
                                    Optimization Enabled:
                                        
                                            Yes with 200 runs
                                        
                                    Other Settings:
                                        
                                            cancun EvmVersion
                                        
                                    Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED
// @author: ZeBlocks
/*
 ___       ____  ____  ___      ___   _______  _____  ___    ________
|"  |     ("  _||_ " ||"  \    /"  | /"     "|(\"   \|"  \  /"       )
||  |     |   (  ) : | \   \  //   |(: ______)|.\\   \    |(:   \___/
|:  |     (:  |  | . ) /\\  \/.    | \/    |  |: \.   \\  | \___  \
 \  |___   \\ \__/ // |: \.        | // ___)_ |.  \    \. |  __/  \\
( \_|:  \  /\\ __ //\ |.  \    /:  |(:      "||    \    \ | /" \   :)
 \_______)(__________)|___|\__/|___| \_______) \___|\____\)(_______/
*/
pragma solidity ^0.8.13;
import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "@openzeppelin/contracts/utils/Base64.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "./INFTDelegationRead.sol";
struct Traits {
    string perfectFollowing;
    string palette;
    string thickness;
    string length;
    string tightness;
    string rayDensity;
    string strandDensity;
    string dots;
}
contract Lumens is ERC721Enumerable, Ownable, ReentrancyGuard{
    event MetadataUpdate(uint256 _tokenId);
    event showAIVersion(uint256 _tokenId, bool _showAI);
    address private fundsAddress;
    uint public constant maxSupply = 900;
    uint[2] private mintPrices;
    mapping(uint => bool) public showAI;
    mapping(uint => uint24[][2]) private points;
    mapping(uint => bytes32) private hashes;
    mapping(uint => Traits) private tokenTraits;
    mapping(uint => string) private imageURIs;
    string public description;
    string[2] private script;
    string[8] private traitNames = ["Perfect Following", "Palette", "Thickness", "Length", "Tightness", "Ray Density", "Strand Density", "Dots"];
    INFTDelegationRead private DelegationsManager;
    address constant ALL_COLLECTIONS = 0x8888888888888888888888888888888888888888;
    bytes32 public WLRoot;
    bytes32 public FSRoot;
    mapping(address => uint8) public WLMints;
    mapping(address => mapping(uint8 => uint8)) public FSMints;
    mapping(uint => uint8) private FSTokenIndexes;
    uint public WLStart;
    uint public publicStart;
    string public AIModelURI;
    string private defaultImageURI;
    bool private isMintingEnabled = true;
    constructor(address _address, uint[2] memory _mintPrices, address _delegationsManagerAddress, string memory _name, string memory _symbol) ERC721(_name, _symbol) Ownable(_msgSender()){//TODO
        fundsAddress = _address;
        mintPrices = _mintPrices;
        DelegationsManager = INFTDelegationRead(_delegationsManagerAddress);
    }
    function mint(uint24[][2] calldata _points, bool _perfectFollowing, bool _showAI, address _delegationDelegator, address _delegationCollection, uint8 _delegationUseCase, bytes32[] calldata WLProof, uint8 WLAmount, bytes32[] calldata FSProof, uint8 FSIndex, uint8 FSAmount) external payable nonReentrant returns(uint _tokenId) {
        require(isMintingEnabled, "Minting is disabled");
        require(WLStart!=0&&block.timestamp>=WLStart, "Mint did not start yet");
        _tokenId = totalSupply();
        require(_tokenId<maxSupply, "Minted out");
        address addressToCheck = _msgSender();
        if(_delegationDelegator != address(0)){
            if(_delegationCollection!=ALL_COLLECTIONS&&_delegationCollection!=address(this))
                revert("Invalid delegation collection address");
            if(_delegationUseCase!=1&&_delegationUseCase!=2)
                revert("Invalid delegation use case");
            bool active = DelegationsManager.retrieveStatusOfActiveDelegator(_delegationDelegator, _delegationCollection, _msgSender(), block.timestamp, _delegationUseCase);
            if(!active){
                revert("Delegation is not active");
            }
            addressToCheck = _delegationDelegator;
        }
        if(block.timestamp < publicStart){
            bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(addressToCheck, WLAmount))));
            require(MerkleProof.verify(WLProof, WLRoot, leaf), "Not whitelisted");
            require(WLMints[addressToCheck]<WLAmount, "No more AL mints left");
            WLMints[addressToCheck]++;
        }
        if(FSAmount>0){
            bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(addressToCheck, FSIndex, FSAmount))));
            if(MerkleProof.verify(FSProof, FSRoot, leaf)&&FSMints[addressToCheck][FSIndex]<FSAmount){
                FSMints[addressToCheck][FSIndex]++;
                FSTokenIndexes[_tokenId] = FSIndex;
            }
        }
        uint mintPrice = mintPrices[0];
        tokenTraits[_tokenId].perfectFollowing = "No";
        if(_perfectFollowing){
            mintPrice = mintPrices[1];
            tokenTraits[_tokenId].perfectFollowing = "Yes";
            for(uint i=0;i<2;++i){
                uint length = _points[i].length;
                if(length%2!=0)
                    revert("Points mismatch");
                if(length>50)
                    revert("Too many points");
                for(uint j=0;j<length;++j){
                    if(_points[i][j]>=100_000){
                        revert("Invalid point");
                    }
                }
            }
            points[_tokenId] = _points;
        }
        require(msg.value >= mintPrice, "Insufficient amount");
        showAI[_tokenId] = _showAI;
        emit showAIVersion(_tokenId, _showAI);
        (bool sent, ) = fundsAddress.call{value: mintPrice}("");
        require(sent, "Failed to send funds");
        uint refund = msg.value - mintPrice;
        if(refund > 0){
            (sent, ) = _msgSender().call{value: refund}("");
            require(sent, "Failed to send refund");
        }
        _safeMint(_msgSender(), _tokenId);
        bytes32 hash = keccak256(abi.encodePacked(_tokenId, blockhash(block.number - 1), block.number, _msgSender(), block.coinbase));
        hashes[_tokenId] = hash;
    }
    function setShowAI(uint _tokenId, bool _showAI) external {
        require(_requireOwned(_tokenId)==_msgSender(),"Only owner of token allowed");
        showAI[_tokenId] = _showAI;
        emit MetadataUpdate(_tokenId);
        emit showAIVersion(_tokenId, _showAI);
    }
    function setPerfectFollowing(uint _tokenId, bool _isPerfectFollowing) external onlyOwner {
        tokenTraits[_tokenId].perfectFollowing = _isPerfectFollowing?"Yes":"No";
    }
    function setTraitsAndImageURI(uint _tokenId, Traits calldata _tokenTraits, string calldata _uri) external onlyOwner {
        tokenTraits[_tokenId].palette = _tokenTraits.palette;
        tokenTraits[_tokenId].thickness = _tokenTraits.thickness;
        tokenTraits[_tokenId].length = _tokenTraits.length;
        tokenTraits[_tokenId].tightness = _tokenTraits.tightness;
        tokenTraits[_tokenId].rayDensity = _tokenTraits.rayDensity;
        tokenTraits[_tokenId].strandDensity = _tokenTraits.strandDensity;
        tokenTraits[_tokenId].dots = _tokenTraits.dots;
        imageURIs[_tokenId] = _uri;
    }
    function getImageURI(uint _tokenId, bool _AI) public view returns(string memory imageURI){
        _requireOwned(_tokenId);
        if(bytes(imageURIs[_tokenId]).length > 0){
            imageURI = string(abi.encodePacked(imageURIs[_tokenId],Strings.toString(_tokenId), _AI?"_ai":"",".png"));
        }else{
            imageURI = defaultImageURI;
        }
    }
    function getTraits(uint _tokenId) external view returns(Traits memory traits){
        _requireOwned(_tokenId);
        traits = tokenTraits[_tokenId];
    }
    function setScript(uint8 _index, string calldata _script) external onlyOwner{
        script[_index] = _script;
    }
    function setIsMintingEnabled(bool _enabled) external onlyOwner{
        isMintingEnabled = _enabled;
    }
    function setRoots(bytes32 _WLRoot, bytes32 _FSRoot) external onlyOwner{
        WLRoot = _WLRoot;
        FSRoot = _FSRoot;
    }
    function setAIModelURI(string calldata _uri) external onlyOwner{
        AIModelURI = _uri;
    }
    function setStarts(uint _WLStart, uint _publicStart) external onlyOwner{
        if(_publicStart<=_WLStart)
            revert("Public start can't be earlier than AL start");
            WLStart = _WLStart;
            publicStart = _publicStart;
    }
    function setDescription(string calldata _description) external onlyOwner{
        description = _description;
    }
    function setDefaultImageURI(string calldata _uri) external onlyOwner{
        defaultImageURI = _uri;
    }
    function getHTML(uint _tokenId) public view returns (string memory) {
        _requireOwned(_tokenId);
        Traits memory traits = tokenTraits[_tokenId];
        bytes memory sc;
        bytes memory ps = bytes("let points=[[");
        for(uint8 i=0;i<2;++i){
            uint len = points[_tokenId][i].length;
            for(uint8 j=0;j<len;++j){
                ps = abi.encodePacked(ps,Strings.toString(points[_tokenId][i][j]), j!=(len-1)?",":"");
            }
            ps = abi.encodePacked(ps,i==0?"],[":"]];");
            sc = abi.encodePacked(sc, script[i]);
        }
        bytes memory scpt = abi.encodePacked("let hash='",Strings.toHexString(uint256(hashes[_tokenId]), 32),"',perfectFollowing=",Strings.equal(traits.perfectFollowing,"Yes")?"true":"false",",fullSetIndex=",Strings.toString(FSTokenIndexes[_tokenId]),";",ps,sc);
        bytes memory html = abi.encodePacked("data:text/html;base64,",Base64.encode(abi.encodePacked("<html><head></head><body><script>",scpt,"</script></body></html>")));
        return string(html);
    }
    function tokenURI(uint _tokenId) public view override returns (string memory) {
        _requireOwned(_tokenId);
        string memory html = getHTML(_tokenId);
        bytes memory extUrl = abi.encodePacked("\"external_url\":\"",html,"\"");
        bytes memory image = abi.encodePacked("\"image\":\"",getImageURI(_tokenId,showAI[_tokenId]),"\"");
        bytes memory name = abi.encodePacked("\"name\":\"",name()," #",Strings.toString(_tokenId),"\"");
        bytes memory desc = abi.encodePacked("\"description\":\"",description,"\"");
        Traits memory traits = tokenTraits[_tokenId];
        string[8] memory traitsArr = [traits.perfectFollowing, traits.palette, traits.thickness, traits.length, traits.tightness, traits.rayDensity, traits.strandDensity, traits.dots];
        bytes memory atts = bytes("\"attributes\":[");
        for(uint8 i=0;i<8;++i){
            atts = abi.encodePacked(atts,"{\"trait_type\":\"",traitNames[i],"\",\"value\":\"",traitsArr[i],"\"}",i==7?"]":",");
        }
        string memory uri = string(abi.encodePacked("data:application/json;base64,", Base64.encode(abi.encodePacked("{",name,",",desc,",",image,",",extUrl,",",atts,"}"))));
        return uri;
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/extensions/ERC721Enumerable.sol)
pragma solidity ^0.8.20;
import {ERC721} from "../ERC721.sol";
import {IERC721Enumerable} from "./IERC721Enumerable.sol";
import {IERC165} from "../../../utils/introspection/ERC165.sol";
/**
 * @dev This implements an optional extension of {ERC721} defined in the ERC that adds enumerability
 * of all the token ids in the contract as well as all token ids owned by each account.
 *
 * CAUTION: {ERC721} extensions that implement custom `balanceOf` logic, such as {ERC721Consecutive},
 * interfere with enumerability and should not be used together with {ERC721Enumerable}.
 */
abstract contract ERC721Enumerable is ERC721, IERC721Enumerable {
    mapping(address owner => mapping(uint256 index => uint256)) private _ownedTokens;
    mapping(uint256 tokenId => uint256) private _ownedTokensIndex;
    uint256[] private _allTokens;
    mapping(uint256 tokenId => uint256) private _allTokensIndex;
    /**
     * @dev An `owner`'s token query was out of bounds for `index`.
     *
     * NOTE: The owner being `address(0)` indicates a global out of bounds index.
     */
    error ERC721OutOfBoundsIndex(address owner, uint256 index);
    /**
     * @dev Batch mint is not allowed.
     */
    error ERC721EnumerableForbiddenBatchMint();
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC721) returns (bool) {
        return interfaceId == type(IERC721Enumerable).interfaceId || super.supportsInterface(interfaceId);
    }
    /**
     * @dev See {IERC721Enumerable-tokenOfOwnerByIndex}.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual returns (uint256) {
        if (index >= balanceOf(owner)) {
            revert ERC721OutOfBoundsIndex(owner, index);
        }
        return _ownedTokens[owner][index];
    }
    /**
     * @dev See {IERC721Enumerable-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _allTokens.length;
    }
    /**
     * @dev See {IERC721Enumerable-tokenByIndex}.
     */
    function tokenByIndex(uint256 index) public view virtual returns (uint256) {
        if (index >= totalSupply()) {
            revert ERC721OutOfBoundsIndex(address(0), index);
        }
        return _allTokens[index];
    }
    /**
     * @dev See {ERC721-_update}.
     */
    function _update(address to, uint256 tokenId, address auth) internal virtual override returns (address) {
        address previousOwner = super._update(to, tokenId, auth);
        if (previousOwner == address(0)) {
            _addTokenToAllTokensEnumeration(tokenId);
        } else if (previousOwner != to) {
            _removeTokenFromOwnerEnumeration(previousOwner, tokenId);
        }
        if (to == address(0)) {
            _removeTokenFromAllTokensEnumeration(tokenId);
        } else if (previousOwner != to) {
            _addTokenToOwnerEnumeration(to, tokenId);
        }
        return previousOwner;
    }
    /**
     * @dev Private function to add a token to this extension's ownership-tracking data structures.
     * @param to address representing the new owner of the given token ID
     * @param tokenId uint256 ID of the token to be added to the tokens list of the given address
     */
    function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private {
        uint256 length = balanceOf(to) - 1;
        _ownedTokens[to][length] = tokenId;
        _ownedTokensIndex[tokenId] = length;
    }
    /**
     * @dev Private function to add a token to this extension's token tracking data structures.
     * @param tokenId uint256 ID of the token to be added to the tokens list
     */
    function _addTokenToAllTokensEnumeration(uint256 tokenId) private {
        _allTokensIndex[tokenId] = _allTokens.length;
        _allTokens.push(tokenId);
    }
    /**
     * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that
     * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for
     * gas optimizations e.g. when performing a transfer operation (avoiding double writes).
     * This has O(1) time complexity, but alters the order of the _ownedTokens array.
     * @param from address representing the previous owner of the given token ID
     * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address
     */
    function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private {
        // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and
        // then delete the last slot (swap and pop).
        uint256 lastTokenIndex = balanceOf(from);
        uint256 tokenIndex = _ownedTokensIndex[tokenId];
        mapping(uint256 index => uint256) storage _ownedTokensByOwner = _ownedTokens[from];
        // When the token to delete is the last token, the swap operation is unnecessary
        if (tokenIndex != lastTokenIndex) {
            uint256 lastTokenId = _ownedTokensByOwner[lastTokenIndex];
            _ownedTokensByOwner[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
            _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
        }
        // This also deletes the contents at the last position of the array
        delete _ownedTokensIndex[tokenId];
        delete _ownedTokensByOwner[lastTokenIndex];
    }
    /**
     * @dev Private function to remove a token from this extension's token tracking data structures.
     * This has O(1) time complexity, but alters the order of the _allTokens array.
     * @param tokenId uint256 ID of the token to be removed from the tokens list
     */
    function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private {
        // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and
        // then delete the last slot (swap and pop).
        uint256 lastTokenIndex = _allTokens.length - 1;
        uint256 tokenIndex = _allTokensIndex[tokenId];
        // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so
        // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding
        // an 'if' statement (like in _removeTokenFromOwnerEnumeration)
        uint256 lastTokenId = _allTokens[lastTokenIndex];
        _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
        _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
        // This also deletes the contents at the last position of the array
        delete _allTokensIndex[tokenId];
        _allTokens.pop();
    }
    /**
     * See {ERC721-_increaseBalance}. We need that to account tokens that were minted in batch
     */
    function _increaseBalance(address account, uint128 amount) internal virtual override {
        if (amount > 0) {
            revert ERC721EnumerableForbiddenBatchMint();
        }
        super._increaseBalance(account, amount);
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;
    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);
    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }
    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }
    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }
    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }
    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }
    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }
    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.
    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;
    uint256 private _status;
    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();
    constructor() {
        _status = NOT_ENTERED;
    }
    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }
    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }
        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }
    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }
    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.
pragma solidity ^0.8.20;
import {Hashes} from "./Hashes.sol";
/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 *
 * IMPORTANT: Consider memory side-effects when using custom hashing functions
 * that access memory in an unsafe way.
 *
 * NOTE: This library supports proof verification for merkle trees built using
 * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
 * leaf inclusion in trees built using non-commutative hashing functions requires
 * additional logic that is not supported by this library.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }
    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProof(proof, leaf, hasher) == root;
    }
    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function processProof(
        bytes32[] memory proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }
    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProofCalldata(proof, leaf, hasher) == root;
    }
    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function processProofCalldata(
        bytes32[] calldata proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }
    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }
    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;
        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }
        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }
        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProof(proof, proofFlags, leaves, hasher) == root;
    }
    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;
        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }
        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }
        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }
    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;
        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }
        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }
        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
    }
    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;
        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }
        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }
        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Base64.sol)
pragma solidity ^0.8.20;
/**
 * @dev Provides a set of functions to operate with Base64 strings.
 */
library Base64 {
    /**
     * @dev Base64 Encoding/Decoding Table
     * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
     */
    string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
    /**
     * @dev Converts a `bytes` to its Bytes64 `string` representation.
     */
    function encode(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE, true);
    }
    /**
     * @dev Converts a `bytes` to its Bytes64Url `string` representation.
     * Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648].
     */
    function encodeURL(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE_URL, false);
    }
    /**
     * @dev Internal table-agnostic conversion
     */
    function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
        /**
         * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
         * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
         */
        if (data.length == 0) return "";
        // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
        // multiplied by 4 so that it leaves room for padding the last chunk
        // - `data.length + 2`  -> Prepare for division rounding up
        // - `/ 3`              -> Number of 3-bytes chunks (rounded up)
        // - `4 *`              -> 4 characters for each chunk
        // This is equivalent to: 4 * Math.ceil(data.length / 3)
        //
        // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
        // opposed to when padding is required to fill the last chunk.
        // - `4 * data.length`  -> 4 characters for each chunk
        // - ` + 2`             -> Prepare for division rounding up
        // - `/ 3`              -> Number of 3-bytes chunks (rounded up)
        // This is equivalent to: Math.ceil((4 * data.length) / 3)
        uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;
        string memory result = new string(resultLength);
        assembly ("memory-safe") {
            // Prepare the lookup table (skip the first "length" byte)
            let tablePtr := add(table, 1)
            // Prepare result pointer, jump over length
            let resultPtr := add(result, 0x20)
            let dataPtr := data
            let endPtr := add(data, mload(data))
            // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
            // set it to zero to make sure no dirty bytes are read in that section.
            let afterPtr := add(endPtr, 0x20)
            let afterCache := mload(afterPtr)
            mstore(afterPtr, 0x00)
            // Run over the input, 3 bytes at a time
            for {
            } lt(dataPtr, endPtr) {
            } {
                // Advance 3 bytes
                dataPtr := add(dataPtr, 3)
                let input := mload(dataPtr)
                // To write each character, shift the 3 byte (24 bits) chunk
                // 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
                // and apply logical AND with 0x3F to bitmask the least significant 6 bits.
                // Use this as an index into the lookup table, mload an entire word
                // so the desired character is in the least significant byte, and
                // mstore8 this least significant byte into the result and continue.
                mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance
                mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance
                mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance
                mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance
            }
            // Reset the value that was cached
            mstore(afterPtr, afterCache)
            if withPadding {
                // When data `bytes` is not exactly 3 bytes long
                // it is padded with `=` characters at the end
                switch mod(mload(data), 3)
                case 1 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                    mstore8(sub(resultPtr, 2), 0x3d)
                }
                case 2 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                }
            }
        }
        return result;
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash
    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);
    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();
    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();
    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }
    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }
    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }
    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }
    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }
    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));
        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }
        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }
    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }
    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }
    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }
    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }
    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);
        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }
    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }
    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }
    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }
    uint256 private constant ABS_MIN_INT256 = 2 ** 255;
    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }
    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);
        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();
        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }
    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }
    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }
    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }
    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }
    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);
        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;
        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }
    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }
    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }
    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }
    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }
    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);
        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }
        return value;
    }
    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;
        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }
        return string(output);
    }
    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}//SPDX-License-Identifier: MIT
/**
 * @dev Interface for all Getter functions (Read functions) of the NFTDelegation.com Smart Contract
 */
pragma solidity ^0.8.18;
interface INFTDelegationRead {
    /**
     * @notice This function returns an array of all delegation addresses (active AND inactive) assigned by a delegator for a specific use case on a specific NFT collection
     */
    function retrieveDelegationAddresses(address _delegatorAddress, address _collectionAddress, uint256 _useCase) external view returns (address[] memory);
    /**
     * @notice This function returns an array of all delegators (active AND inactive) that delegated to a delegationAddress for a specific use case on a specific NFT collection
     */
    function retrieveDelegators(address _delegationAddress, address _collectionAddress, uint256 _useCase) external view returns (address[] memory);
    /**
    * @notice This function returns the most recent delegation address delegated on a specific use case on a specific NFT collection
     */
    function retrieveMostRecentDelegation(address _delegatorAddress, address _collectionAddress, uint256 _useCase) external view returns (address);
    /**
     * @notice This function returns the most recent delegator on a specific use case on a specific NFT collection for a delegation Address
     */
    function retrieveMostRecentDelegator(address _delegationAddress, address _collectionAddress, uint256 _useCase) external view returns (address);
    /**
     * @notice This function returns the status of a delegation for a delegator address and a delegation address
     */
    function retrieveGlobalStatusOfDelegation(address _delegatorAddress, address _collectionAddress, address _delegationAddress, uint256 _useCase) external view returns (bool);
    /**
     * @notice This function returns the status of a delegation given the delegator address, the collection address, the delegation address as well as a specific token id
     */
    function retrieveTokenStatus(address _delegatorAddress, address _collectionAddress, address _delegationAddress, uint256 _useCase, uint256 _tokenId) external view returns (bool);
    /**
     * @notice This function checks if the delegation address performing actions is the most recent delegated by the specific delegator
     */
    function retrieveStatusOfMostRecentDelegation(address _delegatorAddress, address _collectionAddress, address _delegationAddress, uint256 _useCase) external view returns (bool);
    /**
    * @notice This function checks if a delegator granted subdelegation status to an Address
     */
    function retrieveSubDelegationStatus(address _delegatorAddress, address _collectionAddress, address _delegationAddress) external view returns (bool);
    /**
    * @notice This function checks the status of an active delegator for a delegation Address
     */
    function retrieveStatusOfActiveDelegator(address _delegatorAddress, address _collectionAddress, address _delegationAddress, uint256 _date, uint256 _useCase) external view returns (bool);
    /**
     * @notice This function checks the Consolidation status between 2 addresses
     */
    function checkConsolidationStatus(address _wallet1, address _wallet2, address _collectionAddress) external view returns (bool);
    /**
     * @notice This function returns the Global Lock Status of an address
     */
    function retrieveGlobalLockStatus(address _delegationAddress) external view returns (bool);
    /**
     * @notice This function returns the Collection Lock Status of an address
     */
    function retrieveCollectionLockStatus(address _collectionAddress, address _delegationAddress) external view returns (bool);
    /**
     * @notice This function returns the Collection Use Case Lock Status of an address
     */
    function retrieveCollectionUseCaseLockStatus(address _collectionAddress, address _delegationAddress, uint256 _useCase) external view returns (bool);
    /**
     * @notice This function returns the status of a collection/delegation for a delegator
     */
    function retrieveDelegatorStatusOfDelegation(address _delegatorAddress, address _collectionAddress, uint256 _useCase) external view returns (bool);
    /**
     * @notice This function returns the status of a collection/delegation for a delegation address (hot wallet)
     */
    function retrieveDelegationAddressStatusOfDelegation(address _delegationAddress, address _collectionAddress, uint256 _useCase) external view returns (bool);
    /**
     * @notice This function returns all delegation addresses, expiry dates of delegations, if the delegations refer to all tokens and tokensids for a delegator address
     */
    function retrieveDelegationAddressesTokensIDsandExpiredDates(address _delegatorAddress, address _collectionAddress, uint256 _useCase) external view returns (address[] memory, uint256[] memory, bool[] memory, uint256[] memory);
    /**
     * @notice This function returns an array of all active delegation addresses on a certain date for a specific use case on a specific NFT collection for a delegator address
     */
    function retrieveActiveDelegations(address _delegatorAddress, address _collectionAddress, uint256 _date, uint256 _useCase) external view returns (address[] memory);
    /**
     * @notice This function returns all delegator addresses, expiry dates of delegations, if the delegations refer to all tokens and tokensids for a delegator address
     */
    function retrieveDelegatorsTokensIDsandExpiredDates(address _delegationAddress, address _collectionAddress, uint256 _useCase) external view returns (address[] memory, uint256[] memory, bool[] memory, uint256[] memory);
    /**
     * @notice This function returns an array of all active delegators on a certain date for a specific use case on a specific NFT collection for a delegation address
     */
    function retrieveActiveDelegators(address _delegationAddress, address _collectionAddress, uint256 _date, uint256 _useCase) external view returns (address[] memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/ERC721.sol)
pragma solidity ^0.8.20;
import {IERC721} from "./IERC721.sol";
import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
import {ERC721Utils} from "./utils/ERC721Utils.sol";
import {Context} from "../../utils/Context.sol";
import {Strings} from "../../utils/Strings.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";
/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including
 * the Metadata extension, but not including the Enumerable extension, which is available separately as
 * {ERC721Enumerable}.
 */
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
    using Strings for uint256;
    // Token name
    string private _name;
    // Token symbol
    string private _symbol;
    mapping(uint256 tokenId => address) private _owners;
    mapping(address owner => uint256) private _balances;
    mapping(uint256 tokenId => address) private _tokenApprovals;
    mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;
    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }
    /**
     * @dev See {IERC721-balanceOf}.
     */
    function balanceOf(address owner) public view virtual returns (uint256) {
        if (owner == address(0)) {
            revert ERC721InvalidOwner(address(0));
        }
        return _balances[owner];
    }
    /**
     * @dev See {IERC721-ownerOf}.
     */
    function ownerOf(uint256 tokenId) public view virtual returns (address) {
        return _requireOwned(tokenId);
    }
    /**
     * @dev See {IERC721Metadata-name}.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }
    /**
     * @dev See {IERC721Metadata-symbol}.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }
    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
        _requireOwned(tokenId);
        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
    }
    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }
    /**
     * @dev See {IERC721-approve}.
     */
    function approve(address to, uint256 tokenId) public virtual {
        _approve(to, tokenId, _msgSender());
    }
    /**
     * @dev See {IERC721-getApproved}.
     */
    function getApproved(uint256 tokenId) public view virtual returns (address) {
        _requireOwned(tokenId);
        return _getApproved(tokenId);
    }
    /**
     * @dev See {IERC721-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }
    /**
     * @dev See {IERC721-isApprovedForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
        return _operatorApprovals[owner][operator];
    }
    /**
     * @dev See {IERC721-transferFrom}.
     */
    function transferFrom(address from, address to, uint256 tokenId) public virtual {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
        // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
        address previousOwner = _update(to, tokenId, _msgSender());
        if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }
    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) public {
        safeTransferFrom(from, to, tokenId, "");
    }
    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
        transferFrom(from, to, tokenId);
        ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
    }
    /**
     * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
     *
     * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
     * core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances
     * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
     * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
     */
    function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
        return _owners[tokenId];
    }
    /**
     * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
     */
    function _getApproved(uint256 tokenId) internal view virtual returns (address) {
        return _tokenApprovals[tokenId];
    }
    /**
     * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
     * particular (ignoring whether it is owned by `owner`).
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
        return
            spender != address(0) &&
            (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
    }
    /**
     * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
     * Reverts if:
     * - `spender` does not have approval from `owner` for `tokenId`.
     * - `spender` does not have approval to manage all of `owner`'s assets.
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
        if (!_isAuthorized(owner, spender, tokenId)) {
            if (owner == address(0)) {
                revert ERC721NonexistentToken(tokenId);
            } else {
                revert ERC721InsufficientApproval(spender, tokenId);
            }
        }
    }
    /**
     * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
     *
     * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
     * a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
     *
     * WARNING: Increasing an account's balance using this function tends to be paired with an override of the
     * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
     * remain consistent with one another.
     */
    function _increaseBalance(address account, uint128 value) internal virtual {
        unchecked {
            _balances[account] += value;
        }
    }
    /**
     * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
     * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that
     * `auth` is either the owner of the token, or approved to operate on the token (by the owner).
     *
     * Emits a {Transfer} event.
     *
     * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
     */
    function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
        address from = _ownerOf(tokenId);
        // Perform (optional) operator check
        if (auth != address(0)) {
            _checkAuthorized(from, auth, tokenId);
        }
        // Execute the update
        if (from != address(0)) {
            // Clear approval. No need to re-authorize or emit the Approval event
            _approve(address(0), tokenId, address(0), false);
            unchecked {
                _balances[from] -= 1;
            }
        }
        if (to != address(0)) {
            unchecked {
                _balances[to] += 1;
            }
        }
        _owners[tokenId] = to;
        emit Transfer(from, to, tokenId);
        return from;
    }
    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner != address(0)) {
            revert ERC721InvalidSender(address(0));
        }
    }
    /**
     * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal {
        _safeMint(to, tokenId, "");
    }
    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
        _mint(to, tokenId);
        ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data);
    }
    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     * This is an internal function that does not check if the sender is authorized to operate on the token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal {
        address previousOwner = _update(address(0), tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
    }
    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(address from, address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        } else if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }
    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
     * are aware of the ERC-721 standard to prevent tokens from being forever locked.
     *
     * `data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is like {safeTransferFrom} in the sense that it invokes
     * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `tokenId` token must exist and be owned by `from`.
     * - `to` cannot be the zero address.
     * - `from` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(address from, address to, uint256 tokenId) internal {
        _safeTransfer(from, to, tokenId, "");
    }
    /**
     * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
        _transfer(from, to, tokenId);
        ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
    }
    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
     * either the owner of the token, or approved to operate on all tokens held by this owner.
     *
     * Emits an {Approval} event.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address to, uint256 tokenId, address auth) internal {
        _approve(to, tokenId, auth, true);
    }
    /**
     * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
     * emitted in the context of transfers.
     */
    function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
        // Avoid reading the owner unless necessary
        if (emitEvent || auth != address(0)) {
            address owner = _requireOwned(tokenId);
            // We do not use _isAuthorized because single-token approvals should not be able to call approve
            if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
                revert ERC721InvalidApprover(auth);
            }
            if (emitEvent) {
                emit Approval(owner, to, tokenId);
            }
        }
        _tokenApprovals[tokenId] = to;
    }
    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Requirements:
     * - operator can't be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        if (operator == address(0)) {
            revert ERC721InvalidOperator(operator);
        }
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }
    /**
     * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
     * Returns the owner.
     *
     * Overrides to ownership logic should be done to {_ownerOf}.
     */
    function _requireOwned(uint256 tokenId) internal view returns (address) {
        address owner = _ownerOf(tokenId);
        if (owner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
        return owner;
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../IERC721.sol";
/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);
    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }
    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/Hashes.sol)
pragma solidity ^0.8.20;
/**
 * @dev Library of standard hash functions.
 *
 * _Available since v5.1._
 */
library Hashes {
    /**
     * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
     *
     * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     */
    function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
        return a < b ? efficientKeccak256(a, b) : efficientKeccak256(b, a);
    }
    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function efficientKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32 value) {
        assembly ("memory-safe") {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }
    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²āµā¶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }
    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²āµā¶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²āµā¶ and mod 2²āµā¶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²āµā¶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }
    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }
    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }
    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }
    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }
    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }
    /**
     * @dev Unsigned saturating addition, bounds to `2²āµā¶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }
    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }
    /**
     * @dev Unsigned saturating multiplication, bounds to `2²āµā¶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }
    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }
    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }
    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }
    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }
    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }
            // Make sure the result is less than 2²āµā¶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }
            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////
            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)
                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }
            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)
                // Divide [high low] by twos.
                low := div(low, twos)
                // Flip twos such that it is 2²āµā¶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }
            // Shift in bits from high into low.
            low |= high * twos;
            // Invert denominator mod 2²āµā¶. Now that denominator is an odd number, it has an inverse modulo 2²āµā¶ such
            // that denominator * inv ā” 1 mod 2²āµā¶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ā” 1 mod 2ā“.
            uint256 inverse = (3 * denominator) ^ 2;
            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2āø
            inverse *= 2 - denominator * inverse; // inverse mod 2¹ā¶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2ā¶ā“
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²āø
            inverse *= 2 - denominator * inverse; // inverse mod 2²āµā¶
            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²āµā¶. Since the preconditions guarantee that the outcome is
            // less than 2²āµā¶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }
    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }
    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }
    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }
    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;
            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ā” 1 (mod n) # x is the inverse of a modulo n
            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;
            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;
            while (remainder != 0) {
                uint256 quotient = gcd / remainder;
                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );
                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }
            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }
    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ā” 1 mod p`. As a consequence, we have `a * a**(p-2) ā” 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }
    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }
    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)
            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }
    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }
    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));
        uint256 mLen = m.length;
        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }
    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }
    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }
            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ⤠sqrt(a) < 2**e`). We know that `e ⤠128` because `(2¹²āø)² = 2²āµā¶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ⤠sqrt(a) < 2**e ā (2**(e-1))² ⤠a < (2**e)² ā 2**(2*e-2) ⤠a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;
            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }
            // We now have x_n such that `x_n = 2**(e-1) ⤠sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ⤠2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ⤠2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ⤠2**(e-2)
            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_nā“ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_nā“ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_nā“ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ā„ 0
            // Which proves that for all n ℠1, sqrt(a) ⤠x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ⤠(2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ⤠2**(2*e-4) / (3 * 2**(e-1))
            //     ⤠2**(e-3) / 3
            //     ⤠2**(e-3-log2(3))
            //     ⤠2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ⤠sqrt(a) ⤠x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ⤠(2**(e-k))² / (2 * 2**(e-1))
            //         ⤠2**(2*e-2*k) / 2**e
            //         ⤠2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ⤠2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ⤠2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ⤠2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ⤠2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ⤠2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ⤠2**(e-144)  -- general case with k = 72
            // Because e ⤠128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ⤠2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }
    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }
    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;
        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }
    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }
    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }
    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }
    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }
    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }
    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);
    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);
    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }
    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }
    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }
    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }
    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }
    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }
    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }
    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }
    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }
    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }
    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }
    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }
    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }
    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }
    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }
    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }
    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }
    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }
    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }
    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }
    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }
    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }
    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }
    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }
    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }
    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }
    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }
    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }
    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }
    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }
    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }
    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }
    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }
    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }
    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }
    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }
    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }
    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }
    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }
    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }
    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }
    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }
    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }
    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }
    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }
    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }
    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }
    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }
    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }
    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }
    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }
    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }
    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }
    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }
    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }
    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }
    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }
    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }
    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }
    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }
    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }
    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }
    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }
    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }
    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }
    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }
    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }
    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;
            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
 * @dev Required interface of an ERC-721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);
    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);
    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;
    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;
    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;
    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;
    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);
    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../IERC721.sol";
/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);
    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);
    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC721/utils/ERC721Utils.sol)
pragma solidity ^0.8.20;
import {IERC721Receiver} from "../IERC721Receiver.sol";
import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol";
/**
 * @dev Library that provide common ERC-721 utility functions.
 *
 * See https://eips.ethereum.org/EIPS/eip-721[ERC-721].
 *
 * _Available since v5.1._
 */
library ERC721Utils {
    /**
     * @dev Performs an acceptance check for the provided `operator` by calling {IERC721Receiver-onERC721Received}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC721Received(
        address operator,
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) {
                if (retval != IERC721Receiver.onERC721Received.selector) {
                    // Token rejected
                    revert IERC721Errors.ERC721InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC721Receiver implementer
                    revert IERC721Errors.ERC721InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);
    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);
    /**
     * @dev Indicates a failure with the `spender`ās `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);
    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}
/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);
    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);
    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);
    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);
    /**
     * @dev Indicates a failure with the `operator`ās approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);
    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);
    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}
/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);
    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);
    /**
     * @dev Indicates a failure with the `operator`ās approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);
    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);
    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);
    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.20;
/**
 * @title ERC-721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC-721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true,
  "libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
 
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_address","type":"address"},{"internalType":"uint256[2]","name":"_mintPrices","type":"uint256[2]"},{"internalType":"address","name":"_delegationsManagerAddress","type":"address"},{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ERC721EnumerableForbiddenBatchMint","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721IncorrectOwner","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721InsufficientApproval","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC721InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC721InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721InvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC721InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC721InvalidSender","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721NonexistentToken","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"ERC721OutOfBoundsIndex","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"length","type":"uint256"}],"name":"StringsInsufficientHexLength","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"MetadataUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_tokenId","type":"uint256"},{"indexed":false,"internalType":"bool","name":"_showAI","type":"bool"}],"name":"showAIVersion","type":"event"},{"inputs":[],"name":"AIModelURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint8","name":"","type":"uint8"}],"name":"FSMints","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FSRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"WLMints","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WLRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WLStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"description","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"getHTML","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"bool","name":"_AI","type":"bool"}],"name":"getImageURI","outputs":[{"internalType":"string","name":"imageURI","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"getTraits","outputs":[{"components":[{"internalType":"string","name":"perfectFollowing","type":"string"},{"internalType":"string","name":"palette","type":"string"},{"internalType":"string","name":"thickness","type":"string"},{"internalType":"string","name":"length","type":"string"},{"internalType":"string","name":"tightness","type":"string"},{"internalType":"string","name":"rayDensity","type":"string"},{"internalType":"string","name":"strandDensity","type":"string"},{"internalType":"string","name":"dots","type":"string"}],"internalType":"struct Traits","name":"traits","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint24[][2]","name":"_points","type":"uint24[][2]"},{"internalType":"bool","name":"_perfectFollowing","type":"bool"},{"internalType":"bool","name":"_showAI","type":"bool"},{"internalType":"address","name":"_delegationDelegator","type":"address"},{"internalType":"address","name":"_delegationCollection","type":"address"},{"internalType":"uint8","name":"_delegationUseCase","type":"uint8"},{"internalType":"bytes32[]","name":"WLProof","type":"bytes32[]"},{"internalType":"uint8","name":"WLAmount","type":"uint8"},{"internalType":"bytes32[]","name":"FSProof","type":"bytes32[]"},{"internalType":"uint8","name":"FSIndex","type":"uint8"},{"internalType":"uint8","name":"FSAmount","type":"uint8"}],"name":"mint","outputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"publicStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_uri","type":"string"}],"name":"setAIModelURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_uri","type":"string"}],"name":"setDefaultImageURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_description","type":"string"}],"name":"setDescription","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_enabled","type":"bool"}],"name":"setIsMintingEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"bool","name":"_isPerfectFollowing","type":"bool"}],"name":"setPerfectFollowing","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_WLRoot","type":"bytes32"},{"internalType":"bytes32","name":"_FSRoot","type":"bytes32"}],"name":"setRoots","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"_index","type":"uint8"},{"internalType":"string","name":"_script","type":"string"}],"name":"setScript","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"bool","name":"_showAI","type":"bool"}],"name":"setShowAI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_WLStart","type":"uint256"},{"internalType":"uint256","name":"_publicStart","type":"uint256"}],"name":"setStarts","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"components":[{"internalType":"string","name":"perfectFollowing","type":"string"},{"internalType":"string","name":"palette","type":"string"},{"internalType":"string","name":"thickness","type":"string"},{"internalType":"string","name":"length","type":"string"},{"internalType":"string","name":"tightness","type":"string"},{"internalType":"string","name":"rayDensity","type":"string"},{"internalType":"string","name":"strandDensity","type":"string"},{"internalType":"string","name":"dots","type":"string"}],"internalType":"struct Traits","name":"_tokenTraits","type":"tuple"},{"internalType":"string","name":"_uri","type":"string"}],"name":"setTraitsAndImageURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"showAI","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenOfOwnerByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
60806040523461061b576143cf803803806100198161062f565b92833981019060c08183031261061b5761003281610654565b9180603f8301121561061b5760409261004a8461062f565b91606084018382821161061b5760208601905b82821061061f57505061006f90610654565b60808501519094906001600160401b03811161061b5782610091918301610668565b60a08201519092906001600160401b03811161061b576100b19201610668565b815190916001600160401b038211610491576100cd5f546106b9565b601f81116105ce575b50602090601f831160011461056b5761010692915f91836103e2575b50508160011b915f199060031b1c19161790565b5f555b8051906001600160401b038211610491576101256001546106b9565b601f811161051d575b50602090601f83116001146104b85761015d92915f91836103e25750508160011b915f199060031b1c19161790565b6001555b33156104a557600a8054336001600160a01b0319821681179092556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a36001600b55835161010081016001600160401b038111828210176104915785526101d28561062f565b60118152705065726665637420466f6c6c6f77696e6760781b602082015281526101fb8561062f565b600781526650616c6574746560c81b6020820152602082015261021d8561062f565b6009815268546869636b6e65737360b81b6020820152858201526102408561062f565b6006815265098cadccee8d60d31b602082015260608201526102618561062f565b600981526854696768746e65737360b81b602082015260808201526102858561062f565b600b81526a5261792044656e7369747960a81b602082015260a08201526102ab8561062f565b600e81526d537472616e642044656e7369747960901b602082015260c08201526102d48561062f565b6004815263446f747360e01b602082015260e08201526017905f905b600882106103765750506029805460ff1916600117905550600c80546001600160a01b0319166001600160a01b03929092169190911790555f5b60028110610361575050601f80546001600160a01b0319166001600160a01b039290921691909117905551613cc790816107088239f35b6001906020835193019281600d01550161032a565b80518051906001600160401b0382116104915761039385546106b9565b601f8111610456575b50602090601f83116001146103ed57926103d3836001959460209487965f926103e25750508160011b915f199060031b1c19161790565b86555b019301910190916102f0565b015190505f806100f2565b90601f19831691865f52815f20925f5b81811061043e5750936020936001969387969383889510610426575b505050811b0186556103d6565b01515f1960f88460031b161c191690555f8080610419565b929360206001819287860151815501950193016103fd565b61048190865f5260205f20601f850160051c81019160208610610487575b601f0160051c01906106f1565b5f61039c565b9091508190610474565b634e487b7160e01b5f52604160045260245ffd5b631e4fbdf760e01b5f525f60045260245ffd5b90601f1983169160015f52815f20925f5b81811061050557509084600195949392106104ed575b505050811b01600155610161565b01515f1960f88460031b161c191690555f80806104df565b929360206001819287860151815501950193016104c9565b60015f52610565907fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6601f850160051c8101916020861061048757601f0160051c01906106f1565b5f61012e565b90601f198316915f8052815f20925f5b8181106105b6575090846001959493921061059e575b505050811b015f55610109565b01515f1960f88460031b161c191690555f8080610591565b9293602060018192878601518155019501930161057b565b5f8052610615907f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563601f850160051c8101916020861061048757601f0160051c01906106f1565b5f6100d6565b5f80fd5b815181526020918201910161005d565b6040519190601f01601f191682016001600160401b0381118382101761049157604052565b51906001600160a01b038216820361061b57565b81601f8201121561061b578051906001600160401b03821161049157610697601f8301601f191660200161062f565b928284526020838301011161061b57815f9260208093018386015e8301015290565b90600182811c921680156106e7575b60208310146106d357565b634e487b7160e01b5f52602260045260245ffd5b91607f16916106c8565b8181106106fc575050565b5f81556001016106f156fe6080806040526004361015610012575f80fd5b5f3560e01c90816301ffc9a7146127ac5750806306fdde0314612791578063081812fc14612755578063095ea7b31461266b578063102581d21461264c57806318160ddd1461262f57806323b872dd146126185780632f745c59146125a657806330f4f6db146124ba578063358bc027146123ce578063393d5445146122545780633b38a93414612237578063403e16781461221a578063426e3714146121bf57806342842e0e146121905780634f6ccce714612142578063528538e8146120265780635d8bcf1114611fd15780636352211e14611fa157806370a0823114611f76578063715018a614611f1b5780637284e41614611e765780638da5cb5b14611e4e578063905e067314611e1657806390c3f38f14611d1e57806395d89b4114611c795780639b4e17cd14611c4a578063a22cb46514611ba9578063a5f4c6ff14611b8c578063ab864ad914611b65578063ad394cc514611add578063aeeca09214611ac1578063b4958cfd14610cff578063b88d4fde14610c6a578063bfd342bd14610c43578063c87b56dd146106e5578063d5abeb01146106c9578063ddf6b58e146105eb578063dff1b304146105b0578063e1dc0761146103d0578063e59af534146102d6578063e985e9c51461027f5763f2fde38b146101f5575f80fd5b3461027b57602036600319011261027b5761020e612855565b610216613a12565b6001600160a01b0316801561026857600a80546001600160a01b0319811683179091556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3005b631e4fbdf760e01b5f525f60045260245ffd5b5f80fd5b3461027b57604036600319011261027b57610298612855565b6102a061286b565b9060018060a01b03165f52600560205260405f209060018060a01b03165f52602052602060ff60405f2054166040519015158152f35b3461027b57604036600319011261027b576004356102f26128e8565b6102fb826137fd565b336001600160a01b039091160361038b57817f8f4be82dcf2b6154d151de1b772b51514f758eba001fc2d3498261b06726e7dd925f52600f60205261034f8260405f209060ff801983541691151516179055565b7ff8e1a15aba9398e019f0b49df1a4fde98ee17ae345cb5f6b5e2c27f5033e8ce76020604051838152a1604080519182529115156020820152a1005b60405162461bcd60e51b815260206004820152601b60248201527f4f6e6c79206f776e6572206f6620746f6b656e20616c6c6f77656400000000006044820152606490fd5b3461027b57602036600319011261027b576004356040516103f08161292f565b60608152602081016060905260408101606090526060810160609052608081016060905260a081016060905260c081016060905260e00160609052610434816137fd565b505f52601260205260405f2060405161044c8161292f565b61045582612a20565b815261046360018301612a20565b602082019081529161047760028201612a20565b604083019081529061048b60038201612a20565b6060840190815261049e60048301612a20565b608085019081526104b160058401612a20565b60a08601908152916104c560068501612a20565b9360c087019485526007016104d990612a20565b9460e087019586526040519788976020895251602089016101009052610120890161050391612831565b9051888203601f190160408a015261051b9190612831565b9051878203601f190160608901526105339190612831565b9051868203601f1901608088015261054b9190612831565b9051858203601f190160a08701526105639190612831565b9051848203601f190160c086015261057b9190612831565b9051838203601f190160e08501526105939190612831565b9051828203601f19016101008401526105ac9190612831565b0390f35b3461027b57602036600319011261027b576001600160a01b036105d1612855565b165f526022602052602060ff60405f205416604051908152f35b3461027b575f36600319011261027b576040515f60275461060b816128f7565b80845290600181169081156106a55750600114610647575b6105ac836106338185038261294b565b604051918291602083526020830190612831565b60275f9081527f98a476f1687bc3d60a2da2adbcba2c46958e61fa2fb4042cd7bc5816a710195b939250905b80821061068b57509091508101602001610633610623565b919260018160209254838588010152019101909291610673565b60ff191660208086019190915291151560051b840190910191506106339050610623565b3461027b575f36600319011261027b5760206040516103848152f35b3461027b57602036600319011261027b57600435610702816137fd565b5061070c81612bd3565b6040519061075960016030846020808201956f1132bc3a32b93730b62fbab936111d1160811b87528051918291018484015e8101601160f91b838201520301601e1981018552018361294b565b825f52600f60205261077260ff60405f20541684613688565b91604051916107b96001602985602080820198681134b6b0b3b2911d1160b91b8a528051918291018484015e8101601160f91b838201520301601e1981018652018461294b565b6107c161296c565b602061082b600160026107d38a613863565b6028604051958692818085019967113730b6b2911d1160c11b8b528051918291018587015e84019061202360f01b84830152805192839101602a83015e0101601160f91b838201520301601e1981018452018261294b565b6040519260208401946e113232b9b1b934b83a34b7b7111d1160891b86525f98601454610857816128f7565b9060018116908115610c1f5750600114610bc5575b50610890600187610945999a9b9c601160f91b815203601e1981018952018761294b565b5f52601260205260405f20604051906108a88261292f565b6108b181612a20565b82526108bf60018201612a20565b602083019081526108d260028301612a20565b604084019081526108e560038401612a20565b606085019081526108f860048501612a20565b916080860192835261090c60058601612a20565b9360a08701948552610933600761092560068901612a20565b9760c08a0198895201612a20565b9660e081019788526040519d8e61292f565b518d525160208d01525160408c01525160608b01525160808a01525160a08901525160c08801525160e087015260409889516109818b8261294b565b600e81526d2261747472696275746573223a5b60901b60208201525f99905b60ff8b16906008821015610aa95760088c1015610a95576020610a7c60028f938f848f968160ff99610a32600b95600760019c611fe08360051b16015193145f14610a8557602f85516109f3878261294b565b8d8152605d60f81b86820152955b519b898d9a5191829101878c015e89016e3d913a3930b4ba2fba3cb832911d1160891b868201520190601701612b48565b6a1116113b30b63ab2911d1160a91b815281519290918391018683015e019061227d60f01b84830152805192839101600d83015e01015f838201520301601f19810183528261294b565b9b0116996109a0565b602f610a8f612b29565b95610a01565b634e487b7160e01b5f52603260045260245ffd5b9596978c99508a9150895198899860208a01607b60f81b905251809160218b015e88019060218201600b60fa1b9052518092602283015e016021019060018201600b60fa1b9052518092600283015e016001019060018201600b60fa1b9052518092600283015e0160010160018101600b60fa1b905281516020819301600283015e0160010160018101607d60f81b905203600101601e1981018252600101610b52908261294b565b610b5b906139ab565b9080518092602082017f646174613a6170706c69636174696f6e2f6a736f6e3b6261736536342c000000905280516020819201603d84015e8101603d81015f905203603d01601f1981018352610bb1908361294b565b51809160208252602082016105ac91612831565b60145f908152909a507fce6d7b5282bd9a3661ae061feed1dbda4e52ab073b1f9285be6e155d9c38d4ec5b8b8210610c08575050988501602f019861089061086c565b60018160209254602f858c01015201910190610bf0565b60ff1916602f8981019190915282151590920288019091019a50610890905061086c565b3461027b57604036600319011261027b576105ac610633610c626128e8565b600435613688565b3461027b57608036600319011261027b57610c83612855565b610c8b61286b565b90604435606435926001600160401b03841161027b573660238501121561027b57836004013592610cbb84612aee565b93610cc9604051958661294b565b808552366024828801011161027b576020815f926024610cfd99018389013786010152610cf7838383613173565b33613a8a565b005b61016036600319011261027b576004356001600160401b03811161027b57806004019060443691011161027b57610d346128e8565b604435801515810361027b576064356001600160a01b038116939084810361027b576084356001600160a01b0381169081900361027b5760a43560ff811680910361027b5760c4356001600160401b03811161027b57610d98903690600401612abe565b9060e4359160ff831680930361027b57610104356001600160401b03811161027b57610dc8903690600401612abe565b939092610124359760ff891680990361027b57610144359660ff881680980361027b576002600b5414611ab2576002600b5560ff6029541615611a77576025548015159081611a6c575b5015611a2e576008549d6103848f10156119fc57339981611830575b50505050602654421061172f575b50505082611653575b5050505050600d5492845f52601260205260405f20610e6481546128f7565b601f8111611633575b506004614e6f60f01b019055611351575b5081341061131657610ee47f8f4be82dcf2b6154d151de1b772b51514f758eba001fc2d3498261b06726e7dd91845f52600f602052610ecc8160405f209060ff801983541691151516179055565b60408051868152911515602083015290918291820190565b0390a15f8080808460018060a01b03600c54165af1610f01613659565b50156112da578034039034821161106e573403611281575b50602090604051610f2a838261294b565b5f8152331561126e575f8281526002845260409020546001600160a01b03168015801591908261123d575b335f8181526003885260408082208054600101905587825260028952812080546001600160a01b0319168317905586919084907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9080a4156111c757600854845f52600986528060405f2055600160401b8110156111b35784610fe1826001610ff99401600855613541565b90919082549060031b91821b915f19901b1916179055565b338103611178575b506111655782333b611082575b50505f19430143811161106e57604051838101918383524060408201524360608201523360601b60808201524160601b60948201526088815261105260a88261294b565b519020815f526011835260405f20556001600b55604051908152f35b634e487b7160e01b5f52601160045260245ffd5b6110ba9160405180938192630a85bd0160e11b83523360048401525f6024840152866044840152608060648401526084830190612831565b03815f335af15f9181611125575b506110f457826110d6613659565b805191826110f157633250574960e11b5f523360045260245ffd5b01fd5b6001600160e01b03191663757a42ff60e11b0161111257828261100e565b633250574960e11b5f523360045260245ffd5b9091508381813d831161115e575b61113d818361294b565b8101031261027b57516001600160e01b03198116810361027b5790846110c8565b503d611133565b6339e3563760e11b5f525f60045260245ffd5b61118133613559565b5f19810190811161106e57335f526006865260405f20815f5286528460405f2055845f526007865260405f2055611001565b634e487b7160e01b5f52604160045260245ffd5b338114610ff9576111d781613559565b845f526007865260405f205490825f526006875260405f2091818103611215575b50855f52600787525f60408120555f5285525f6040812055610ff9565b815f5282885260405f2054815f528389528060405f20555f526007885260405f2055876111f8565b5f8581526004602052604080822080546001600160a01b031916905583825260038852902080545f19019055610f55565b633250574960e11b5f525f60045260245ffd5b5f80808093335af1611291613659565b501561129d5781610f19565b60405162461bcd60e51b815260206004820152601560248201527411985a5b1959081d1bc81cd95b99081c99599d5b99605a1b6044820152606490fd5b60405162461bcd60e51b81526020600482015260146024820152734661696c656420746f2073656e642066756e647360601b6044820152606490fd5b60405162461bcd60e51b8152602060048201526013602482015272125b9cdd59999a58da595b9d08185b5bdd5b9d606a1b6044820152606490fd5b9150600e5491835f52601260205260405f2061136d81546128f7565b601f8111611613575b5060066259657360e81b0190555f5b6002811061150b5750835f52601060205260405f2090805f905b600282106113af57505050610e7e565b6113b981846135f8565b906001600160401b0382116111b357600160401b82116111b35785548287558083106114bd575b50855f5260205f20600a8304915f5b83811061146f5750600a8302808503940361141b575b505050506001602081920194019101909261139f565b5f935f905b80821061143757505050015560016020818a611405565b909194602061146560019261144b89613649565b908660030262ffffff809160031b9316831b921b19161790565b9601920190611420565b5f5f5b600a81106114875750838201556001016113ef565b929060206114b460019261149a85613649565b908760030262ffffff809160031b9316831b921b19161790565b92019301611472565b6114ea90875f5260205f20600a60098181880104830193600383890602806114f0575b50010401906133fb565b896113e0565b5f198601908154905f199060200360031b1c1690558f6114e0565b611515818361362d565b9050600181166115dc57603281116115a5575f5b81811061153a575050600101611385565b611544838561362d565b821015610a955762ffffff611561620186a0928460051b01613649565b16101561157057600101611529565b60405162461bcd60e51b815260206004820152600d60248201526c125b9d985b1a59081c1bda5b9d609a1b6044820152606490fd5b60405162461bcd60e51b815260206004820152600f60248201526e546f6f206d616e7920706f696e747360881b6044820152606490fd5b60405162461bcd60e51b815260206004820152600f60248201526e0a0ded2dce8e640dad2e6dac2e8c6d608b1b6044820152606490fd5b61162d90825f52601f60205f20910160051c8101906133fb565b85611376565b61164d90825f52601f60205f20910160051c8101906133fb565b86610e6d565b6116ad916116a861169560405196602088019060018060a01b0316978882528960408201528760608201526060815261168d60808261294b565b51902061358a565b60208151910120926021549236916135a3565b613a39565b908161170c575b506116c2575b808080610e45565b5f52602360205260405f20815f5260205260405f2060ff6116e581835416612b18565b1660ff19825416179055845f52602460205260405f209060ff1982541617905584806116ba565b9050815f52602360205260405f20835f5260205260ff60405f20541610876116b4565b61177690604051936116a86117636020870160018060a01b038c16978882528760408201526040815261168d60608261294b565b60208151910120926020549236916135a3565b156117f957815f52602260205260ff60405f20541610156117bc575f52602260205260405f2060ff6117aa81835416612b18565b1660ff19825416179055898080610e3c565b60405162461bcd60e51b8152602060048201526015602482015274139bc81b5bdc99481053081b5a5b9d1cc81b19599d605a1b6044820152606490fd5b60405162461bcd60e51b815260206004820152600f60248201526e139bdd081dda1a5d195b1a5cdd1959608a1b6044820152606490fd5b909192939950738888888888888888888888888888888888888888811415806119f2575b61199f57600183141580611994575b61194f5760a460209260018060a01b03601f5416604051958694859363234dd63960e01b85526004850152602484015233604484015242606484015260848301525afa908115611944575f91611909575b50156118c457958c808080610e2e565b60405162461bcd60e51b815260206004820152601860248201527f44656c65676174696f6e206973206e6f742061637469766500000000000000006044820152606490fd5b90506020813d60201161193c575b816119246020938361294b565b8101031261027b5751801515810361027b578d6118b4565b3d9150611917565b6040513d5f823e3d90fd5b60405162461bcd60e51b815260206004820152601b60248201527f496e76616c69642064656c65676174696f6e20757365206361736500000000006044820152606490fd5b506002831415611863565b60405162461bcd60e51b815260206004820152602560248201527f496e76616c69642064656c65676174696f6e20636f6c6c656374696f6e206164604482015264647265737360d81b6064820152608490fd5b5030811415611854565b60405162461bcd60e51b815260206004820152600a602482015269135a5b9d1959081bdd5d60b21b6044820152606490fd5b60405162461bcd60e51b8152602060048201526016602482015275135a5b9d08191a59081b9bdd081cdd185c9d081e595d60521b6044820152606490fd5b90504210158f610e12565b60405162461bcd60e51b8152602060048201526013602482015272135a5b9d1a5b99c81a5cc8191a5cd8589b1959606a1b6044820152606490fd5b633ee5aeb560e01b5f5260045ffd5b3461027b575f36600319011261027b5760208054604051908152f35b3461027b57604036600319011261027b57602435600435611afc613a12565b80821115611b0c57602555602655005b60405162461bcd60e51b815260206004820152602b60248201527f5075626c69632073746172742063616e2774206265206561726c69657220746860448201526a185b881053081cdd185c9d60aa1b6064820152608490fd5b3461027b57604036600319011261027b57611b7e613a12565b600435602055602435602155005b3461027b575f36600319011261027b576020602654604051908152f35b3461027b57604036600319011261027b57611bc2612855565b611bca6128e8565b6001600160a01b03909116908115611c3757335f52600560205260405f20825f52602052611c078160405f209060ff801983541691151516179055565b60405190151581527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c3160203392a3005b50630b61174360e31b5f5260045260245ffd5b3461027b57602036600319011261027b576004355f52600f602052602060ff60405f2054166040519015158152f35b3461027b575f36600319011261027b576040515f600154611c99816128f7565b80845290600181169081156106a55750600114611cc0576105ac836106338185038261294b565b60015f9081527fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6939250905b808210611d0457509091508101602001610633610623565b919260018160209254838588010152019101909291611cec565b3461027b57602036600319011261027b576004356001600160401b03811161027b57611d4e9036906004016128bb565b611d56613a12565b6001600160401b0381116111b357611d7a81611d736014546128f7565b6014613411565b5f601f8211600114611db7578190611da7935f92611dac575b50508160011b915f199060031b1c19161790565b601455005b013590508380611d93565b601f1982169260145f5260205f20915f5b858110611dfe57508360019510611de5575b505050811b01601455005b01355f19600384901b60f8161c19169055828080611dda565b90926020600181928686013581550194019101611dc8565b3461027b57602036600319011261027b5760043580151580910361027b57611e3c613a12565b60ff8019602954169116176029555f80f35b3461027b575f36600319011261027b57600a546040516001600160a01b039091168152602090f35b3461027b575f36600319011261027b576040515f601454611e96816128f7565b80845290600181169081156106a55750600114611ebd576105ac836106338185038261294b565b60145f9081527fce6d7b5282bd9a3661ae061feed1dbda4e52ab073b1f9285be6e155d9c38d4ec939250905b808210611f0157509091508101602001610633610623565b919260018160209254838588010152019101909291611ee9565b3461027b575f36600319011261027b57611f33613a12565b600a80546001600160a01b031981169091555f906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b3461027b57602036600319011261027b576020611f99611f94612855565b613559565b604051908152f35b3461027b57602036600319011261027b576020611fbf6004356137fd565b6040516001600160a01b039091168152f35b3461027b57604036600319011261027b57611fea612855565b6024359060ff8216820361027b5760018060a01b03165f52602360205260ff60405f2091165f52602052602060ff60405f205416604051908152f35b3461027b57604036600319011261027b5761203f6128e8565b612047613a12565b1561212057612054612bb2565b6004355f52601260205260405f2081516001600160401b0381116111b3576120868161208084546128f7565b84613411565b602092601f82116001146120c4576120b5929382915f926120b95750508160011b915f199060031b1c19161790565b9055005b015190508480611d93565b601f19821693835f52805f20915f5b86811061210857508360019596106120f0575b505050811b019055005b01515f1960f88460031b161c191690558380806120e6565b919260206001819286850151815501940192016120d3565b60405161212e60408261294b565b60028152614e6f60f01b6020820152612054565b3461027b57602036600319011261027b5760043560085481101561217a5761216b602091613541565b90549060031b1c604051908152f35b63295f44f760e21b5f525f60045260245260445ffd5b3461027b57610cfd6121a136612881565b90604051926121b160208561294b565b5f8452610cf7838383613173565b3461027b57604036600319011261027b5760043560ff8116810361027b576024356001600160401b03811161027b576121fc9036906004016128bb565b90612205613a12565b6002831015610a9557610cfd92601501613454565b3461027b575f36600319011261027b576020602554604051908152f35b3461027b575f36600319011261027b576020602154604051908152f35b3461027b57606036600319011261027b576024356004356001600160401b03821161027b578160040191610100600319823603011261027b57604435916001600160401b03831161027b576123be6123a9610cfd956122b960e49636906004016128bb565b9690956122c4613a12565b6122e96122d4602483018561350f565b90885f526012602052600160405f2001613454565b61230e6122f9604483018561350f565b90885f526012602052600260405f2001613454565b61233361231e606483018561350f565b90885f526012602052600360405f2001613454565b612358612343608483018561350f565b90885f526012602052600460405f2001613454565b61237d61236860a483018561350f565b90885f526012602052600560405f2001613454565b6123a261238d60c483018561350f565b90885f526012602052600660405f2001613454565b019061350f565b90835f526012602052600760405f2001613454565b5f52601360205260405f20613454565b3461027b57602036600319011261027b576004356001600160401b03811161027b576123fe9036906004016128bb565b612406613a12565b6001600160401b0381116111b35761242a816124236028546128f7565b6028613411565b5f601f821160011461245b578190612456935f92611dac5750508160011b915f199060031b1c19161790565b602855005b601f1982169260285f5260205f20915f5b8581106124a257508360019510612489575b505050811b01602855005b01355f19600384901b60f8161c1916905582808061247e565b9092602060018192868601358155019401910161246c565b3461027b57602036600319011261027b576004356001600160401b03811161027b576124ea9036906004016128bb565b6124f2613a12565b6001600160401b0381116111b3576125168161250f6027546128f7565b6027613411565b5f601f8211600114612547578190612542935f92611dac5750508160011b915f199060031b1c19161790565b602755005b601f1982169260275f5260205f20915f5b85811061258e57508360019510612575575b505050811b01602755005b01355f19600384901b60f8161c1916905582808061256a565b90926020600181928686013581550194019101612558565b3461027b57604036600319011261027b576125bf612855565b602435906125cc81613559565b8210156125fb5760018060a01b03165f52600660205260405f20905f52602052602060405f2054604051908152f35b63295f44f760e21b5f5260018060a01b031660045260245260445ffd5b3461027b57610cfd61262936612881565b91613173565b3461027b575f36600319011261027b576020600854604051908152f35b3461027b57602036600319011261027b576105ac610633600435612bd3565b3461027b57604036600319011261027b57612684612855565b602435612690816137fd565b33151580612742575b80612715575b6127025781906001600160a01b0384811691167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9255f80a45f90815260046020526040902080546001600160a01b0319166001600160a01b03909216919091179055005b63a9fbf51f60e01b5f523360045260245ffd5b506001600160a01b0381165f90815260056020908152604080832033845290915290205460ff161561269f565b506001600160a01b038116331415612699565b3461027b57602036600319011261027b57600435612772816137fd565b505f526004602052602060018060a01b0360405f205416604051908152f35b3461027b575f36600319011261027b576105ac61063361296c565b3461027b57602036600319011261027b576004359063ffffffff60e01b821680920361027b5760209163780e9d6360e01b81149081156127ee575b5015158152f35b6380ac58cd60e01b811491508115612820575b811561280f575b50836127e7565b6301ffc9a760e01b14905083612808565b635b5e139f60e01b81149150612801565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b038216820361027b57565b602435906001600160a01b038216820361027b57565b606090600319011261027b576004356001600160a01b038116810361027b57906024356001600160a01b038116810361027b579060443590565b9181601f8401121561027b578235916001600160401b03831161027b576020838186019501011161027b57565b60243590811515820361027b57565b90600182811c92168015612925575b602083101461291157565b634e487b7160e01b5f52602260045260245ffd5b91607f1691612906565b61010081019081106001600160401b038211176111b357604052565b90601f801991011681019081106001600160401b038211176111b357604052565b604051905f825f549161297e836128f7565b8083529260018116908115612a0157506001146129a4575b6129a29250038361294b565b565b505f80805290917f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e5635b8183106129e55750509060206129a292820101612996565b60209193508060019154838589010152019101909184926129cd565b602092506129a294915060ff191682840152151560051b820101612996565b9060405191825f825492612a33846128f7565b8084529360018116908115612a9c5750600114612a58575b506129a29250038361294b565b90505f9291925260205f20905f915b818310612a805750509060206129a2928201015f612a4b565b6020919350806001915483858901015201910190918492612a67565b9050602092506129a294915060ff191682840152151560051b8201015f612a4b565b9181601f8401121561027b578235916001600160401b03831161027b576020808501948460051b01011161027b57565b6001600160401b0381116111b357601f01601f191660200190565b6002821015610a955701905f90565b60ff1660ff811461106e5760010190565b60405190612b3860408361294b565b60018252600b60fa1b6020830152565b5f9291815491612b57836128f7565b9260018116908115612b9f5750600114612b7057505050565b90919293505f5260205f205f905b838210612b8b5750500190565b600181602092548486015201910190612b7e565b60ff191683525050811515909102019150565b60405190612bc160408361294b565b600382526259657360e81b6020830152565b612bdc816137fd565b50805f52601260205260405f20612c72600760405192612bfb8461292f565b612c0481612a20565b8452612c1260018201612a20565b6020850152612c2360028201612a20565b6040850152612c3460038201612a20565b6060850152612c4560048201612a20565b6080850152612c5660058201612a20565b60a0850152612c6760068201612a20565b60c085015201612a20565b60e082015260606040938451612c88868261294b565b600d81526c6c657420706f696e74733d5b5b60981b6020820152905f5b60ff8116956002871015612e8e57805f949394526010602052612cca82895f20612b09565b5054945f5f19870197878911955b60ff83168c8a821015612db15787612cf991885f5260106020525f20612b09565b508054851015610a95575f5287612d2862ffffff60205f20600a880401546003600a89060260031b1c16613863565b9061106e57612d969260208f818f612d9095829791839214155f14612d9c57612d4f612b29565b935b519786899751918291018489015e8601908282015f8152815193849201905e0101905f8252805192839101825e015f815203601f19810183528261294b565b92612b18565b91612cd8565b8351612da8838261294b565b5f815293612d51565b5050929697509450506020929650612e1c9197155f14612e6c5782808a51612dd98c8261294b565b60038152625d2c5b60e81b828201525b8b519584879551918291018487015e8401908282015f8152815193849201905e01015f815203601f19810183528261294b565b916002851015610a955760016020612e6060ff93612e52838c519483869451918291018386015e8301015f81528a601501612b48565b03601f19810183528261294b565b95011693929093612ca5565b82808a51612e7a8c8261294b565b60038152625d5d3b60e81b82820152612de9565b939196955050825f526011602052845f2054918294865195612eb160808861294b565b6042875260208701946060368737875115610a955760308653875160011015610a95576078602189015360415b6001811161312d5750613116575051612ef5612bb2565b81518151908181149384613100575b505050505f146130dc578551612f1a878261294b565b60048152637472756560e01b6020820152935b5f526024602052855f205460ff16612f4490613863565b86519485946020860197696c657420686173683d2760b01b8952518091602a88015e8501602a810172272c70657266656374466f6c6c6f77696e673d60681b905281516020819301603d83015e01602a01601381016d2c66756c6c536574496e6465783d60901b905281516020819301602183015e01601301600e8101603b60f81b905281516020819301600f83015e01600e0160018101915f83528051926020849201905e016001015f815203601f1981018252613003908261294b565b8251918291602083017f3c68746d6c3e3c686561643e3c2f686561643e3c626f64793e3c7363726970749052848301601f60f91b9052518091604184015e8101604181017f3c2f7363726970743e3c2f626f64793e3c2f68746d6c3e00000000000000000090520360410160081981018252601701613082908261294b565b61308b906139ab565b90518091602082017519185d184e9d195e1d0bda1d1b5b0ed8985cd94d8d0b60521b905280516020819201603684015e8101603681015f905203603601601f19810182526130d9908261294b565b90565b85516130e8878261294b565b600581526466616c736560d81b602082015293612f2d565b602092939450820120920120145f808080612f04565b63e22e27eb60e01b5f52600452602060245260445ffd5b90600f81166010811015610a95578951831015610a95576f181899199a1a9b1b9c1cb0b131b232b360811b901a8983016020015360041c90801561106e575f1901612ede565b9091906001600160a01b038316801561126e575f838152600260205260409020546001600160a01b0316933315158061336b575b5084158015613338575b825f52600360205260405f2060018154019055845f52600260205260405f20836bffffffffffffffffffffffff60a01b8254161790558483877fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a4156132bb57600854845f5260096020528060405f2055600160401b8110156111b35784610fe18260016132449401600855613541565b81850361327b575b50506001600160a01b031680830361326357505050565b6364283d7b60e01b5f5260045260245260445260645ffd5b61328490613559565b5f1981019190821161106e575f52600660205260405f20815f526020528260405f2055825f52600760205260405f20555f8061324c565b848214613244576132cb85613559565b845f52600760205260405f205490865f52600660205260405f209181810361330d575b50855f5260076020525f60408120555f526020525f6040812055613244565b815f528260205260405f2054815f52836020528060405f20555f52600760205260405f20555f6132ee565b5f85815260046020526040902080546001600160a01b0319169055855f52600360205260405f205f1981540190556131b1565b806133aa575b1561337c575f6131a7565b838561339457637e27328960e01b5f5260045260245ffd5b63177e802f60e01b5f523360045260245260445ffd5b5033851480156133d9575b8061337157505f848152600460205260409020546001600160a01b03163314613371565b505f85815260056020908152604080832033845290915290205460ff166133b5565b818110613406575050565b5f81556001016133fb565b9190601f811161342057505050565b6129a2925f5260205f20906020601f840160051c8301931061344a575b601f0160051c01906133fb565b909150819061343d565b9092916001600160401b0381116111b3576134738161208084546128f7565b5f601f82116001146134b05781906134a19394955f926134a55750508160011b915f199060031b1c19161790565b9055565b013590505f80611d93565b601f19821694835f5260205f20915f5b8781106134f75750836001959697106134de575b505050811b019055565b01355f19600384901b60f8161c191690555f80806134d4565b909260206001819286860135815501940191016134c0565b903590601e198136030182121561027b57018035906001600160401b03821161027b5760200191813603831361027b57565b600854811015610a955760085f5260205f2001905f90565b6001600160a01b03168015613577575f52600360205260405f205490565b6322718ad960e21b5f525f60045260245ffd5b90604051916020830152602082526129a260408361294b565b929190926001600160401b0384116111b3578360051b9060206040516135cb8285018261294b565b809681520191810192831161027b57905b8282106135e857505050565b81358152602091820191016135dc565b903590601e198136030182121561027b57018035906001600160401b03821161027b57602001918160051b3603831361027b57565b6002821015610a95576136459160051b8101906135f8565b9091565b3562ffffff8116810361027b5790565b3d15613683573d9061366a82612aee565b91613678604051938461294b565b82523d5f602084013e565b606090565b613691816137fd565b50805f5260136020526136a760405f20546128f7565b15613748576004816020613701946130d9945f52601382526136cc60405f2093613863565b901561373157816040516136e160408261294b565b60038152625f616960e81b82820152915b60405197889583870190612b48565b90805192839101825e01905f8252805192839101825e01632e706e6760e01b815203601b1981018452018261294b565b8160405161373f828261294b565b5f8152916136f2565b5050604051602854815f61375b836128f7565b80835292600181169081156137de575060011461377f575b6130d99250038261294b565b5060285f90815290917fe16da923a2d88192e5070f37b4571d58682c0d66212ec634d495f33de3f77ab55b8183106137c25750509060206130d992820101613773565b60209193508060019154838588010152019101909183926137aa565b602092506130d994915060ff191682840152151560051b820101613773565b5f818152600260205260409020546001600160a01b031690811561381f575090565b637e27328960e01b5f5260045260245ffd5b9061383b82612aee565b613848604051918261294b565b8281528092613859601f1991612aee565b0190602036910137565b805f9172184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b821015613988575b806d04ee2d6d415b85acef8100000000600a92101561396d575b662386f26fc10000811015613959575b6305f5e100811015613948575b612710811015613939575b606481101561392b575b1015613920575b600a60216138e860018501613831565b938401015b5f1901916f181899199a1a9b1b9c1cb0b131b232b360811b8282061a835304801561391b57600a90916138ed565b505090565b6001909101906138d8565b6064600291049301926138d1565b612710600491049301926138c7565b6305f5e100600891049301926138bc565b662386f26fc10000601091049301926138af565b6d04ee2d6d415b85acef81000000006020910493019261389f565b506040915072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b8104613885565b6040516130d9916139bd60608361294b565b604082527f4142434445464748494a4b4c4d4e4f505152535455565758595a61626364656660208301527f6768696a6b6c6d6e6f707172737475767778797a303132333435363738392b2f6040830152613b99565b600a546001600160a01b03163303613a2657565b63118cdaa760e01b5f523360045260245ffd5b929091905f915b8451831015613a825760208360051b86010151908181105f14613a71575f52602052600160405f205b920191613a40565b905f52602052600160405f20613a69565b915092501490565b823b613a98575b5050505050565b604051630a85bd0160e11b81526001600160a01b039182166004820152918116602483015260448201939093526080606482015291169160209082908190613ae4906084830190612831565b03815f865af15f9181613b54575b50613b205750613b00613659565b80519081613b1b5782633250574960e11b5f5260045260245ffd5b602001fd5b6001600160e01b03191663757a42ff60e11b01613b4257505f80808080613a91565b633250574960e11b5f5260045260245ffd5b9091506020813d602011613b91575b81613b706020938361294b565b8101031261027b57516001600160e01b03198116810361027b57905f613af2565b3d9150613b63565b919091805115613c7a5780516002810180911161106e5760039004600281901b906001600160fe1b0381160361106e57613bd290613831565b90602082019080815182019560208701908151925f83525b888110613c2c5750506003939495965052510680600114613c1a57600214613c10575090565b603d905f19015390565b50603d90815f19820153600119015390565b600360049199969901986001603f8b5182828260121c16870101518453828282600c1c16870101518385015382828260061c1687010151600285015316840101516003820153019497613bea565b509050604051613c8b60208261294b565b5f81529056fea2646970667358221220a935f952471824cb18f617cb8b642eb4d0e7c505ef44a0a09f30a9c0efed2ca264736f6c634300081d0033000000000000000000000000b033daedca113b0386eb3e8f4c72c79fc50ae32e00000000000000000000000000000000000000000000000000f523226980800000000000000000000000000000000000000000000000000001550f7dca7000000000000000000000000000002202cb9c00487e7e8ef21e6d8e914b32e709f43d00000000000000000000000000000000000000000000000000000000000000c0000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000064c756d656e73000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044c554d4e00000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x6080806040526004361015610012575f80fd5b5f3560e01c90816301ffc9a7146127ac5750806306fdde0314612791578063081812fc14612755578063095ea7b31461266b578063102581d21461264c57806318160ddd1461262f57806323b872dd146126185780632f745c59146125a657806330f4f6db146124ba578063358bc027146123ce578063393d5445146122545780633b38a93414612237578063403e16781461221a578063426e3714146121bf57806342842e0e146121905780634f6ccce714612142578063528538e8146120265780635d8bcf1114611fd15780636352211e14611fa157806370a0823114611f76578063715018a614611f1b5780637284e41614611e765780638da5cb5b14611e4e578063905e067314611e1657806390c3f38f14611d1e57806395d89b4114611c795780639b4e17cd14611c4a578063a22cb46514611ba9578063a5f4c6ff14611b8c578063ab864ad914611b65578063ad394cc514611add578063aeeca09214611ac1578063b4958cfd14610cff578063b88d4fde14610c6a578063bfd342bd14610c43578063c87b56dd146106e5578063d5abeb01146106c9578063ddf6b58e146105eb578063dff1b304146105b0578063e1dc0761146103d0578063e59af534146102d6578063e985e9c51461027f5763f2fde38b146101f5575f80fd5b3461027b57602036600319011261027b5761020e612855565b610216613a12565b6001600160a01b0316801561026857600a80546001600160a01b0319811683179091556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3005b631e4fbdf760e01b5f525f60045260245ffd5b5f80fd5b3461027b57604036600319011261027b57610298612855565b6102a061286b565b9060018060a01b03165f52600560205260405f209060018060a01b03165f52602052602060ff60405f2054166040519015158152f35b3461027b57604036600319011261027b576004356102f26128e8565b6102fb826137fd565b336001600160a01b039091160361038b57817f8f4be82dcf2b6154d151de1b772b51514f758eba001fc2d3498261b06726e7dd925f52600f60205261034f8260405f209060ff801983541691151516179055565b7ff8e1a15aba9398e019f0b49df1a4fde98ee17ae345cb5f6b5e2c27f5033e8ce76020604051838152a1604080519182529115156020820152a1005b60405162461bcd60e51b815260206004820152601b60248201527f4f6e6c79206f776e6572206f6620746f6b656e20616c6c6f77656400000000006044820152606490fd5b3461027b57602036600319011261027b576004356040516103f08161292f565b60608152602081016060905260408101606090526060810160609052608081016060905260a081016060905260c081016060905260e00160609052610434816137fd565b505f52601260205260405f2060405161044c8161292f565b61045582612a20565b815261046360018301612a20565b602082019081529161047760028201612a20565b604083019081529061048b60038201612a20565b6060840190815261049e60048301612a20565b608085019081526104b160058401612a20565b60a08601908152916104c560068501612a20565b9360c087019485526007016104d990612a20565b9460e087019586526040519788976020895251602089016101009052610120890161050391612831565b9051888203601f190160408a015261051b9190612831565b9051878203601f190160608901526105339190612831565b9051868203601f1901608088015261054b9190612831565b9051858203601f190160a08701526105639190612831565b9051848203601f190160c086015261057b9190612831565b9051838203601f190160e08501526105939190612831565b9051828203601f19016101008401526105ac9190612831565b0390f35b3461027b57602036600319011261027b576001600160a01b036105d1612855565b165f526022602052602060ff60405f205416604051908152f35b3461027b575f36600319011261027b576040515f60275461060b816128f7565b80845290600181169081156106a55750600114610647575b6105ac836106338185038261294b565b604051918291602083526020830190612831565b60275f9081527f98a476f1687bc3d60a2da2adbcba2c46958e61fa2fb4042cd7bc5816a710195b939250905b80821061068b57509091508101602001610633610623565b919260018160209254838588010152019101909291610673565b60ff191660208086019190915291151560051b840190910191506106339050610623565b3461027b575f36600319011261027b5760206040516103848152f35b3461027b57602036600319011261027b57600435610702816137fd565b5061070c81612bd3565b6040519061075960016030846020808201956f1132bc3a32b93730b62fbab936111d1160811b87528051918291018484015e8101601160f91b838201520301601e1981018552018361294b565b825f52600f60205261077260ff60405f20541684613688565b91604051916107b96001602985602080820198681134b6b0b3b2911d1160b91b8a528051918291018484015e8101601160f91b838201520301601e1981018652018461294b565b6107c161296c565b602061082b600160026107d38a613863565b6028604051958692818085019967113730b6b2911d1160c11b8b528051918291018587015e84019061202360f01b84830152805192839101602a83015e0101601160f91b838201520301601e1981018452018261294b565b6040519260208401946e113232b9b1b934b83a34b7b7111d1160891b86525f98601454610857816128f7565b9060018116908115610c1f5750600114610bc5575b50610890600187610945999a9b9c601160f91b815203601e1981018952018761294b565b5f52601260205260405f20604051906108a88261292f565b6108b181612a20565b82526108bf60018201612a20565b602083019081526108d260028301612a20565b604084019081526108e560038401612a20565b606085019081526108f860048501612a20565b916080860192835261090c60058601612a20565b9360a08701948552610933600761092560068901612a20565b9760c08a0198895201612a20565b9660e081019788526040519d8e61292f565b518d525160208d01525160408c01525160608b01525160808a01525160a08901525160c08801525160e087015260409889516109818b8261294b565b600e81526d2261747472696275746573223a5b60901b60208201525f99905b60ff8b16906008821015610aa95760088c1015610a95576020610a7c60028f938f848f968160ff99610a32600b95600760019c611fe08360051b16015193145f14610a8557602f85516109f3878261294b565b8d8152605d60f81b86820152955b519b898d9a5191829101878c015e89016e3d913a3930b4ba2fba3cb832911d1160891b868201520190601701612b48565b6a1116113b30b63ab2911d1160a91b815281519290918391018683015e019061227d60f01b84830152805192839101600d83015e01015f838201520301601f19810183528261294b565b9b0116996109a0565b602f610a8f612b29565b95610a01565b634e487b7160e01b5f52603260045260245ffd5b9596978c99508a9150895198899860208a01607b60f81b905251809160218b015e88019060218201600b60fa1b9052518092602283015e016021019060018201600b60fa1b9052518092600283015e016001019060018201600b60fa1b9052518092600283015e0160010160018101600b60fa1b905281516020819301600283015e0160010160018101607d60f81b905203600101601e1981018252600101610b52908261294b565b610b5b906139ab565b9080518092602082017f646174613a6170706c69636174696f6e2f6a736f6e3b6261736536342c000000905280516020819201603d84015e8101603d81015f905203603d01601f1981018352610bb1908361294b565b51809160208252602082016105ac91612831565b60145f908152909a507fce6d7b5282bd9a3661ae061feed1dbda4e52ab073b1f9285be6e155d9c38d4ec5b8b8210610c08575050988501602f019861089061086c565b60018160209254602f858c01015201910190610bf0565b60ff1916602f8981019190915282151590920288019091019a50610890905061086c565b3461027b57604036600319011261027b576105ac610633610c626128e8565b600435613688565b3461027b57608036600319011261027b57610c83612855565b610c8b61286b565b90604435606435926001600160401b03841161027b573660238501121561027b57836004013592610cbb84612aee565b93610cc9604051958661294b565b808552366024828801011161027b576020815f926024610cfd99018389013786010152610cf7838383613173565b33613a8a565b005b61016036600319011261027b576004356001600160401b03811161027b57806004019060443691011161027b57610d346128e8565b604435801515810361027b576064356001600160a01b038116939084810361027b576084356001600160a01b0381169081900361027b5760a43560ff811680910361027b5760c4356001600160401b03811161027b57610d98903690600401612abe565b9060e4359160ff831680930361027b57610104356001600160401b03811161027b57610dc8903690600401612abe565b939092610124359760ff891680990361027b57610144359660ff881680980361027b576002600b5414611ab2576002600b5560ff6029541615611a77576025548015159081611a6c575b5015611a2e576008549d6103848f10156119fc57339981611830575b50505050602654421061172f575b50505082611653575b5050505050600d5492845f52601260205260405f20610e6481546128f7565b601f8111611633575b506004614e6f60f01b019055611351575b5081341061131657610ee47f8f4be82dcf2b6154d151de1b772b51514f758eba001fc2d3498261b06726e7dd91845f52600f602052610ecc8160405f209060ff801983541691151516179055565b60408051868152911515602083015290918291820190565b0390a15f8080808460018060a01b03600c54165af1610f01613659565b50156112da578034039034821161106e573403611281575b50602090604051610f2a838261294b565b5f8152331561126e575f8281526002845260409020546001600160a01b03168015801591908261123d575b335f8181526003885260408082208054600101905587825260028952812080546001600160a01b0319168317905586919084907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9080a4156111c757600854845f52600986528060405f2055600160401b8110156111b35784610fe1826001610ff99401600855613541565b90919082549060031b91821b915f19901b1916179055565b338103611178575b506111655782333b611082575b50505f19430143811161106e57604051838101918383524060408201524360608201523360601b60808201524160601b60948201526088815261105260a88261294b565b519020815f526011835260405f20556001600b55604051908152f35b634e487b7160e01b5f52601160045260245ffd5b6110ba9160405180938192630a85bd0160e11b83523360048401525f6024840152866044840152608060648401526084830190612831565b03815f335af15f9181611125575b506110f457826110d6613659565b805191826110f157633250574960e11b5f523360045260245ffd5b01fd5b6001600160e01b03191663757a42ff60e11b0161111257828261100e565b633250574960e11b5f523360045260245ffd5b9091508381813d831161115e575b61113d818361294b565b8101031261027b57516001600160e01b03198116810361027b5790846110c8565b503d611133565b6339e3563760e11b5f525f60045260245ffd5b61118133613559565b5f19810190811161106e57335f526006865260405f20815f5286528460405f2055845f526007865260405f2055611001565b634e487b7160e01b5f52604160045260245ffd5b338114610ff9576111d781613559565b845f526007865260405f205490825f526006875260405f2091818103611215575b50855f52600787525f60408120555f5285525f6040812055610ff9565b815f5282885260405f2054815f528389528060405f20555f526007885260405f2055876111f8565b5f8581526004602052604080822080546001600160a01b031916905583825260038852902080545f19019055610f55565b633250574960e11b5f525f60045260245ffd5b5f80808093335af1611291613659565b501561129d5781610f19565b60405162461bcd60e51b815260206004820152601560248201527411985a5b1959081d1bc81cd95b99081c99599d5b99605a1b6044820152606490fd5b60405162461bcd60e51b81526020600482015260146024820152734661696c656420746f2073656e642066756e647360601b6044820152606490fd5b60405162461bcd60e51b8152602060048201526013602482015272125b9cdd59999a58da595b9d08185b5bdd5b9d606a1b6044820152606490fd5b9150600e5491835f52601260205260405f2061136d81546128f7565b601f8111611613575b5060066259657360e81b0190555f5b6002811061150b5750835f52601060205260405f2090805f905b600282106113af57505050610e7e565b6113b981846135f8565b906001600160401b0382116111b357600160401b82116111b35785548287558083106114bd575b50855f5260205f20600a8304915f5b83811061146f5750600a8302808503940361141b575b505050506001602081920194019101909261139f565b5f935f905b80821061143757505050015560016020818a611405565b909194602061146560019261144b89613649565b908660030262ffffff809160031b9316831b921b19161790565b9601920190611420565b5f5f5b600a81106114875750838201556001016113ef565b929060206114b460019261149a85613649565b908760030262ffffff809160031b9316831b921b19161790565b92019301611472565b6114ea90875f5260205f20600a60098181880104830193600383890602806114f0575b50010401906133fb565b896113e0565b5f198601908154905f199060200360031b1c1690558f6114e0565b611515818361362d565b9050600181166115dc57603281116115a5575f5b81811061153a575050600101611385565b611544838561362d565b821015610a955762ffffff611561620186a0928460051b01613649565b16101561157057600101611529565b60405162461bcd60e51b815260206004820152600d60248201526c125b9d985b1a59081c1bda5b9d609a1b6044820152606490fd5b60405162461bcd60e51b815260206004820152600f60248201526e546f6f206d616e7920706f696e747360881b6044820152606490fd5b60405162461bcd60e51b815260206004820152600f60248201526e0a0ded2dce8e640dad2e6dac2e8c6d608b1b6044820152606490fd5b61162d90825f52601f60205f20910160051c8101906133fb565b85611376565b61164d90825f52601f60205f20910160051c8101906133fb565b86610e6d565b6116ad916116a861169560405196602088019060018060a01b0316978882528960408201528760608201526060815261168d60808261294b565b51902061358a565b60208151910120926021549236916135a3565b613a39565b908161170c575b506116c2575b808080610e45565b5f52602360205260405f20815f5260205260405f2060ff6116e581835416612b18565b1660ff19825416179055845f52602460205260405f209060ff1982541617905584806116ba565b9050815f52602360205260405f20835f5260205260ff60405f20541610876116b4565b61177690604051936116a86117636020870160018060a01b038c16978882528760408201526040815261168d60608261294b565b60208151910120926020549236916135a3565b156117f957815f52602260205260ff60405f20541610156117bc575f52602260205260405f2060ff6117aa81835416612b18565b1660ff19825416179055898080610e3c565b60405162461bcd60e51b8152602060048201526015602482015274139bc81b5bdc99481053081b5a5b9d1cc81b19599d605a1b6044820152606490fd5b60405162461bcd60e51b815260206004820152600f60248201526e139bdd081dda1a5d195b1a5cdd1959608a1b6044820152606490fd5b909192939950738888888888888888888888888888888888888888811415806119f2575b61199f57600183141580611994575b61194f5760a460209260018060a01b03601f5416604051958694859363234dd63960e01b85526004850152602484015233604484015242606484015260848301525afa908115611944575f91611909575b50156118c457958c808080610e2e565b60405162461bcd60e51b815260206004820152601860248201527f44656c65676174696f6e206973206e6f742061637469766500000000000000006044820152606490fd5b90506020813d60201161193c575b816119246020938361294b565b8101031261027b5751801515810361027b578d6118b4565b3d9150611917565b6040513d5f823e3d90fd5b60405162461bcd60e51b815260206004820152601b60248201527f496e76616c69642064656c65676174696f6e20757365206361736500000000006044820152606490fd5b506002831415611863565b60405162461bcd60e51b815260206004820152602560248201527f496e76616c69642064656c65676174696f6e20636f6c6c656374696f6e206164604482015264647265737360d81b6064820152608490fd5b5030811415611854565b60405162461bcd60e51b815260206004820152600a602482015269135a5b9d1959081bdd5d60b21b6044820152606490fd5b60405162461bcd60e51b8152602060048201526016602482015275135a5b9d08191a59081b9bdd081cdd185c9d081e595d60521b6044820152606490fd5b90504210158f610e12565b60405162461bcd60e51b8152602060048201526013602482015272135a5b9d1a5b99c81a5cc8191a5cd8589b1959606a1b6044820152606490fd5b633ee5aeb560e01b5f5260045ffd5b3461027b575f36600319011261027b5760208054604051908152f35b3461027b57604036600319011261027b57602435600435611afc613a12565b80821115611b0c57602555602655005b60405162461bcd60e51b815260206004820152602b60248201527f5075626c69632073746172742063616e2774206265206561726c69657220746860448201526a185b881053081cdd185c9d60aa1b6064820152608490fd5b3461027b57604036600319011261027b57611b7e613a12565b600435602055602435602155005b3461027b575f36600319011261027b576020602654604051908152f35b3461027b57604036600319011261027b57611bc2612855565b611bca6128e8565b6001600160a01b03909116908115611c3757335f52600560205260405f20825f52602052611c078160405f209060ff801983541691151516179055565b60405190151581527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c3160203392a3005b50630b61174360e31b5f5260045260245ffd5b3461027b57602036600319011261027b576004355f52600f602052602060ff60405f2054166040519015158152f35b3461027b575f36600319011261027b576040515f600154611c99816128f7565b80845290600181169081156106a55750600114611cc0576105ac836106338185038261294b565b60015f9081527fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6939250905b808210611d0457509091508101602001610633610623565b919260018160209254838588010152019101909291611cec565b3461027b57602036600319011261027b576004356001600160401b03811161027b57611d4e9036906004016128bb565b611d56613a12565b6001600160401b0381116111b357611d7a81611d736014546128f7565b6014613411565b5f601f8211600114611db7578190611da7935f92611dac575b50508160011b915f199060031b1c19161790565b601455005b013590508380611d93565b601f1982169260145f5260205f20915f5b858110611dfe57508360019510611de5575b505050811b01601455005b01355f19600384901b60f8161c19169055828080611dda565b90926020600181928686013581550194019101611dc8565b3461027b57602036600319011261027b5760043580151580910361027b57611e3c613a12565b60ff8019602954169116176029555f80f35b3461027b575f36600319011261027b57600a546040516001600160a01b039091168152602090f35b3461027b575f36600319011261027b576040515f601454611e96816128f7565b80845290600181169081156106a55750600114611ebd576105ac836106338185038261294b565b60145f9081527fce6d7b5282bd9a3661ae061feed1dbda4e52ab073b1f9285be6e155d9c38d4ec939250905b808210611f0157509091508101602001610633610623565b919260018160209254838588010152019101909291611ee9565b3461027b575f36600319011261027b57611f33613a12565b600a80546001600160a01b031981169091555f906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b3461027b57602036600319011261027b576020611f99611f94612855565b613559565b604051908152f35b3461027b57602036600319011261027b576020611fbf6004356137fd565b6040516001600160a01b039091168152f35b3461027b57604036600319011261027b57611fea612855565b6024359060ff8216820361027b5760018060a01b03165f52602360205260ff60405f2091165f52602052602060ff60405f205416604051908152f35b3461027b57604036600319011261027b5761203f6128e8565b612047613a12565b1561212057612054612bb2565b6004355f52601260205260405f2081516001600160401b0381116111b3576120868161208084546128f7565b84613411565b602092601f82116001146120c4576120b5929382915f926120b95750508160011b915f199060031b1c19161790565b9055005b015190508480611d93565b601f19821693835f52805f20915f5b86811061210857508360019596106120f0575b505050811b019055005b01515f1960f88460031b161c191690558380806120e6565b919260206001819286850151815501940192016120d3565b60405161212e60408261294b565b60028152614e6f60f01b6020820152612054565b3461027b57602036600319011261027b5760043560085481101561217a5761216b602091613541565b90549060031b1c604051908152f35b63295f44f760e21b5f525f60045260245260445ffd5b3461027b57610cfd6121a136612881565b90604051926121b160208561294b565b5f8452610cf7838383613173565b3461027b57604036600319011261027b5760043560ff8116810361027b576024356001600160401b03811161027b576121fc9036906004016128bb565b90612205613a12565b6002831015610a9557610cfd92601501613454565b3461027b575f36600319011261027b576020602554604051908152f35b3461027b575f36600319011261027b576020602154604051908152f35b3461027b57606036600319011261027b576024356004356001600160401b03821161027b578160040191610100600319823603011261027b57604435916001600160401b03831161027b576123be6123a9610cfd956122b960e49636906004016128bb565b9690956122c4613a12565b6122e96122d4602483018561350f565b90885f526012602052600160405f2001613454565b61230e6122f9604483018561350f565b90885f526012602052600260405f2001613454565b61233361231e606483018561350f565b90885f526012602052600360405f2001613454565b612358612343608483018561350f565b90885f526012602052600460405f2001613454565b61237d61236860a483018561350f565b90885f526012602052600560405f2001613454565b6123a261238d60c483018561350f565b90885f526012602052600660405f2001613454565b019061350f565b90835f526012602052600760405f2001613454565b5f52601360205260405f20613454565b3461027b57602036600319011261027b576004356001600160401b03811161027b576123fe9036906004016128bb565b612406613a12565b6001600160401b0381116111b35761242a816124236028546128f7565b6028613411565b5f601f821160011461245b578190612456935f92611dac5750508160011b915f199060031b1c19161790565b602855005b601f1982169260285f5260205f20915f5b8581106124a257508360019510612489575b505050811b01602855005b01355f19600384901b60f8161c1916905582808061247e565b9092602060018192868601358155019401910161246c565b3461027b57602036600319011261027b576004356001600160401b03811161027b576124ea9036906004016128bb565b6124f2613a12565b6001600160401b0381116111b3576125168161250f6027546128f7565b6027613411565b5f601f8211600114612547578190612542935f92611dac5750508160011b915f199060031b1c19161790565b602755005b601f1982169260275f5260205f20915f5b85811061258e57508360019510612575575b505050811b01602755005b01355f19600384901b60f8161c1916905582808061256a565b90926020600181928686013581550194019101612558565b3461027b57604036600319011261027b576125bf612855565b602435906125cc81613559565b8210156125fb5760018060a01b03165f52600660205260405f20905f52602052602060405f2054604051908152f35b63295f44f760e21b5f5260018060a01b031660045260245260445ffd5b3461027b57610cfd61262936612881565b91613173565b3461027b575f36600319011261027b576020600854604051908152f35b3461027b57602036600319011261027b576105ac610633600435612bd3565b3461027b57604036600319011261027b57612684612855565b602435612690816137fd565b33151580612742575b80612715575b6127025781906001600160a01b0384811691167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9255f80a45f90815260046020526040902080546001600160a01b0319166001600160a01b03909216919091179055005b63a9fbf51f60e01b5f523360045260245ffd5b506001600160a01b0381165f90815260056020908152604080832033845290915290205460ff161561269f565b506001600160a01b038116331415612699565b3461027b57602036600319011261027b57600435612772816137fd565b505f526004602052602060018060a01b0360405f205416604051908152f35b3461027b575f36600319011261027b576105ac61063361296c565b3461027b57602036600319011261027b576004359063ffffffff60e01b821680920361027b5760209163780e9d6360e01b81149081156127ee575b5015158152f35b6380ac58cd60e01b811491508115612820575b811561280f575b50836127e7565b6301ffc9a760e01b14905083612808565b635b5e139f60e01b81149150612801565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b038216820361027b57565b602435906001600160a01b038216820361027b57565b606090600319011261027b576004356001600160a01b038116810361027b57906024356001600160a01b038116810361027b579060443590565b9181601f8401121561027b578235916001600160401b03831161027b576020838186019501011161027b57565b60243590811515820361027b57565b90600182811c92168015612925575b602083101461291157565b634e487b7160e01b5f52602260045260245ffd5b91607f1691612906565b61010081019081106001600160401b038211176111b357604052565b90601f801991011681019081106001600160401b038211176111b357604052565b604051905f825f549161297e836128f7565b8083529260018116908115612a0157506001146129a4575b6129a29250038361294b565b565b505f80805290917f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e5635b8183106129e55750509060206129a292820101612996565b60209193508060019154838589010152019101909184926129cd565b602092506129a294915060ff191682840152151560051b820101612996565b9060405191825f825492612a33846128f7565b8084529360018116908115612a9c5750600114612a58575b506129a29250038361294b565b90505f9291925260205f20905f915b818310612a805750509060206129a2928201015f612a4b565b6020919350806001915483858901015201910190918492612a67565b9050602092506129a294915060ff191682840152151560051b8201015f612a4b565b9181601f8401121561027b578235916001600160401b03831161027b576020808501948460051b01011161027b57565b6001600160401b0381116111b357601f01601f191660200190565b6002821015610a955701905f90565b60ff1660ff811461106e5760010190565b60405190612b3860408361294b565b60018252600b60fa1b6020830152565b5f9291815491612b57836128f7565b9260018116908115612b9f5750600114612b7057505050565b90919293505f5260205f205f905b838210612b8b5750500190565b600181602092548486015201910190612b7e565b60ff191683525050811515909102019150565b60405190612bc160408361294b565b600382526259657360e81b6020830152565b612bdc816137fd565b50805f52601260205260405f20612c72600760405192612bfb8461292f565b612c0481612a20565b8452612c1260018201612a20565b6020850152612c2360028201612a20565b6040850152612c3460038201612a20565b6060850152612c4560048201612a20565b6080850152612c5660058201612a20565b60a0850152612c6760068201612a20565b60c085015201612a20565b60e082015260606040938451612c88868261294b565b600d81526c6c657420706f696e74733d5b5b60981b6020820152905f5b60ff8116956002871015612e8e57805f949394526010602052612cca82895f20612b09565b5054945f5f19870197878911955b60ff83168c8a821015612db15787612cf991885f5260106020525f20612b09565b508054851015610a95575f5287612d2862ffffff60205f20600a880401546003600a89060260031b1c16613863565b9061106e57612d969260208f818f612d9095829791839214155f14612d9c57612d4f612b29565b935b519786899751918291018489015e8601908282015f8152815193849201905e0101905f8252805192839101825e015f815203601f19810183528261294b565b92612b18565b91612cd8565b8351612da8838261294b565b5f815293612d51565b5050929697509450506020929650612e1c9197155f14612e6c5782808a51612dd98c8261294b565b60038152625d2c5b60e81b828201525b8b519584879551918291018487015e8401908282015f8152815193849201905e01015f815203601f19810183528261294b565b916002851015610a955760016020612e6060ff93612e52838c519483869451918291018386015e8301015f81528a601501612b48565b03601f19810183528261294b565b95011693929093612ca5565b82808a51612e7a8c8261294b565b60038152625d5d3b60e81b82820152612de9565b939196955050825f526011602052845f2054918294865195612eb160808861294b565b6042875260208701946060368737875115610a955760308653875160011015610a95576078602189015360415b6001811161312d5750613116575051612ef5612bb2565b81518151908181149384613100575b505050505f146130dc578551612f1a878261294b565b60048152637472756560e01b6020820152935b5f526024602052855f205460ff16612f4490613863565b86519485946020860197696c657420686173683d2760b01b8952518091602a88015e8501602a810172272c70657266656374466f6c6c6f77696e673d60681b905281516020819301603d83015e01602a01601381016d2c66756c6c536574496e6465783d60901b905281516020819301602183015e01601301600e8101603b60f81b905281516020819301600f83015e01600e0160018101915f83528051926020849201905e016001015f815203601f1981018252613003908261294b565b8251918291602083017f3c68746d6c3e3c686561643e3c2f686561643e3c626f64793e3c7363726970749052848301601f60f91b9052518091604184015e8101604181017f3c2f7363726970743e3c2f626f64793e3c2f68746d6c3e00000000000000000090520360410160081981018252601701613082908261294b565b61308b906139ab565b90518091602082017519185d184e9d195e1d0bda1d1b5b0ed8985cd94d8d0b60521b905280516020819201603684015e8101603681015f905203603601601f19810182526130d9908261294b565b90565b85516130e8878261294b565b600581526466616c736560d81b602082015293612f2d565b602092939450820120920120145f808080612f04565b63e22e27eb60e01b5f52600452602060245260445ffd5b90600f81166010811015610a95578951831015610a95576f181899199a1a9b1b9c1cb0b131b232b360811b901a8983016020015360041c90801561106e575f1901612ede565b9091906001600160a01b038316801561126e575f838152600260205260409020546001600160a01b0316933315158061336b575b5084158015613338575b825f52600360205260405f2060018154019055845f52600260205260405f20836bffffffffffffffffffffffff60a01b8254161790558483877fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a4156132bb57600854845f5260096020528060405f2055600160401b8110156111b35784610fe18260016132449401600855613541565b81850361327b575b50506001600160a01b031680830361326357505050565b6364283d7b60e01b5f5260045260245260445260645ffd5b61328490613559565b5f1981019190821161106e575f52600660205260405f20815f526020528260405f2055825f52600760205260405f20555f8061324c565b848214613244576132cb85613559565b845f52600760205260405f205490865f52600660205260405f209181810361330d575b50855f5260076020525f60408120555f526020525f6040812055613244565b815f528260205260405f2054815f52836020528060405f20555f52600760205260405f20555f6132ee565b5f85815260046020526040902080546001600160a01b0319169055855f52600360205260405f205f1981540190556131b1565b806133aa575b1561337c575f6131a7565b838561339457637e27328960e01b5f5260045260245ffd5b63177e802f60e01b5f523360045260245260445ffd5b5033851480156133d9575b8061337157505f848152600460205260409020546001600160a01b03163314613371565b505f85815260056020908152604080832033845290915290205460ff166133b5565b818110613406575050565b5f81556001016133fb565b9190601f811161342057505050565b6129a2925f5260205f20906020601f840160051c8301931061344a575b601f0160051c01906133fb565b909150819061343d565b9092916001600160401b0381116111b3576134738161208084546128f7565b5f601f82116001146134b05781906134a19394955f926134a55750508160011b915f199060031b1c19161790565b9055565b013590505f80611d93565b601f19821694835f5260205f20915f5b8781106134f75750836001959697106134de575b505050811b019055565b01355f19600384901b60f8161c191690555f80806134d4565b909260206001819286860135815501940191016134c0565b903590601e198136030182121561027b57018035906001600160401b03821161027b5760200191813603831361027b57565b600854811015610a955760085f5260205f2001905f90565b6001600160a01b03168015613577575f52600360205260405f205490565b6322718ad960e21b5f525f60045260245ffd5b90604051916020830152602082526129a260408361294b565b929190926001600160401b0384116111b3578360051b9060206040516135cb8285018261294b565b809681520191810192831161027b57905b8282106135e857505050565b81358152602091820191016135dc565b903590601e198136030182121561027b57018035906001600160401b03821161027b57602001918160051b3603831361027b57565b6002821015610a95576136459160051b8101906135f8565b9091565b3562ffffff8116810361027b5790565b3d15613683573d9061366a82612aee565b91613678604051938461294b565b82523d5f602084013e565b606090565b613691816137fd565b50805f5260136020526136a760405f20546128f7565b15613748576004816020613701946130d9945f52601382526136cc60405f2093613863565b901561373157816040516136e160408261294b565b60038152625f616960e81b82820152915b60405197889583870190612b48565b90805192839101825e01905f8252805192839101825e01632e706e6760e01b815203601b1981018452018261294b565b8160405161373f828261294b565b5f8152916136f2565b5050604051602854815f61375b836128f7565b80835292600181169081156137de575060011461377f575b6130d99250038261294b565b5060285f90815290917fe16da923a2d88192e5070f37b4571d58682c0d66212ec634d495f33de3f77ab55b8183106137c25750509060206130d992820101613773565b60209193508060019154838588010152019101909183926137aa565b602092506130d994915060ff191682840152151560051b820101613773565b5f818152600260205260409020546001600160a01b031690811561381f575090565b637e27328960e01b5f5260045260245ffd5b9061383b82612aee565b613848604051918261294b565b8281528092613859601f1991612aee565b0190602036910137565b805f9172184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b821015613988575b806d04ee2d6d415b85acef8100000000600a92101561396d575b662386f26fc10000811015613959575b6305f5e100811015613948575b612710811015613939575b606481101561392b575b1015613920575b600a60216138e860018501613831565b938401015b5f1901916f181899199a1a9b1b9c1cb0b131b232b360811b8282061a835304801561391b57600a90916138ed565b505090565b6001909101906138d8565b6064600291049301926138d1565b612710600491049301926138c7565b6305f5e100600891049301926138bc565b662386f26fc10000601091049301926138af565b6d04ee2d6d415b85acef81000000006020910493019261389f565b506040915072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b8104613885565b6040516130d9916139bd60608361294b565b604082527f4142434445464748494a4b4c4d4e4f505152535455565758595a61626364656660208301527f6768696a6b6c6d6e6f707172737475767778797a303132333435363738392b2f6040830152613b99565b600a546001600160a01b03163303613a2657565b63118cdaa760e01b5f523360045260245ffd5b929091905f915b8451831015613a825760208360051b86010151908181105f14613a71575f52602052600160405f205b920191613a40565b905f52602052600160405f20613a69565b915092501490565b823b613a98575b5050505050565b604051630a85bd0160e11b81526001600160a01b039182166004820152918116602483015260448201939093526080606482015291169160209082908190613ae4906084830190612831565b03815f865af15f9181613b54575b50613b205750613b00613659565b80519081613b1b5782633250574960e11b5f5260045260245ffd5b602001fd5b6001600160e01b03191663757a42ff60e11b01613b4257505f80808080613a91565b633250574960e11b5f5260045260245ffd5b9091506020813d602011613b91575b81613b706020938361294b565b8101031261027b57516001600160e01b03198116810361027b57905f613af2565b3d9150613b63565b919091805115613c7a5780516002810180911161106e5760039004600281901b906001600160fe1b0381160361106e57613bd290613831565b90602082019080815182019560208701908151925f83525b888110613c2c5750506003939495965052510680600114613c1a57600214613c10575090565b603d905f19015390565b50603d90815f19820153600119015390565b600360049199969901986001603f8b5182828260121c16870101518453828282600c1c16870101518385015382828260061c1687010151600285015316840101516003820153019497613bea565b509050604051613c8b60208261294b565b5f81529056fea2646970667358221220a935f952471824cb18f617cb8b642eb4d0e7c505ef44a0a09f30a9c0efed2ca264736f6c634300081d0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000b033daedca113b0386eb3e8f4c72c79fc50ae32e00000000000000000000000000000000000000000000000000f523226980800000000000000000000000000000000000000000000000000001550f7dca7000000000000000000000000000002202cb9c00487e7e8ef21e6d8e914b32e709f43d00000000000000000000000000000000000000000000000000000000000000c0000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000064c756d656e73000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044c554d4e00000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : _address (address): 0xb033DaEdCA113b0386EB3E8f4C72c79fC50Ae32e
Arg [1] : _mintPrices (uint256[2]): 69000000000000000,96000000000000000
Arg [2] : _delegationsManagerAddress (address): 0x2202CB9c00487e7e8EF21e6d8E914B32e709f43d
Arg [3] : _name (string): Lumens
Arg [4] : _symbol (string): LUMN
-----Encoded View---------------
10 Constructor Arguments found :
Arg [0] : 000000000000000000000000b033daedca113b0386eb3e8f4c72c79fc50ae32e
Arg [1] : 00000000000000000000000000000000000000000000000000f5232269808000
Arg [2] : 00000000000000000000000000000000000000000000000001550f7dca700000
Arg [3] : 0000000000000000000000002202cb9c00487e7e8ef21e6d8e914b32e709f43d
Arg [4] : 00000000000000000000000000000000000000000000000000000000000000c0
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000100
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000006
Arg [7] : 4c756d656e730000000000000000000000000000000000000000000000000000
Arg [8] : 0000000000000000000000000000000000000000000000000000000000000004
Arg [9] : 4c554d4e00000000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value | 
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
            [ Download: CSV Export  ]
        
        
        
            [ Download: CSV Export  ]
        
        
        A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.