Contract Name:
DemandMiner
Contract Source Code:
File 1 of 1 : DemandMiner
// SPDX-License-Identifier: MIT
pragma experimental ABIEncoderV2;
pragma solidity 0.6.12;
//
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
//
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
//
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
//
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
//
/******************
@title WadRayMath library
@author Aave
@dev Provides mul and div function for wads (decimal numbers with 18 digits precision) and rays (decimals with 27 digits)
*/
library WadRayMath {
using SafeMath for uint256;
uint256 internal constant _WAD = 1e18;
uint256 internal constant _HALF_WAD = _WAD / 2;
uint256 internal constant _RAY = 1e27;
uint256 internal constant _HALF_RAY = _RAY / 2;
uint256 internal constant _WAD_RAY_RATIO = 1e9;
function ray() internal pure returns (uint256) {
return _RAY;
}
function wad() internal pure returns (uint256) {
return _WAD;
}
function halfRay() internal pure returns (uint256) {
return _HALF_RAY;
}
function halfWad() internal pure returns (uint256) {
return _HALF_WAD;
}
function wadMul(uint256 a, uint256 b) internal pure returns (uint256) {
return _HALF_WAD.add(a.mul(b)).div(_WAD);
}
function wadDiv(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 halfB = b / 2;
return halfB.add(a.mul(_WAD)).div(b);
}
function rayMul(uint256 a, uint256 b) internal pure returns (uint256) {
return _HALF_RAY.add(a.mul(b)).div(_RAY);
}
function rayDiv(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 halfB = b / 2;
return halfB.add(a.mul(_RAY)).div(b);
}
function rayToWad(uint256 a) internal pure returns (uint256) {
uint256 halfRatio = _WAD_RAY_RATIO / 2;
return halfRatio.add(a).div(_WAD_RAY_RATIO);
}
function wadToRay(uint256 a) internal pure returns (uint256) {
return a.mul(_WAD_RAY_RATIO);
}
/**
* @dev calculates x^n, in ray. The code uses the ModExp precompile
* @param x base
* @param n exponent
* @return z = x^n, in ray
*/
function rayPow(uint256 x, uint256 n) internal pure returns (uint256 z) {
z = n % 2 != 0 ? x : _RAY;
for (n /= 2; n != 0; n /= 2) {
x = rayMul(x, x);
if (n % 2 != 0) {
z = rayMul(z, x);
}
}
}
}
//
interface IAccessController {
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
function grantRole(bytes32 role, address account) external;
function revokeRole(bytes32 role, address account) external;
function renounceRole(bytes32 role, address account) external;
function MANAGER_ROLE() external view returns (bytes32);
function MINTER_ROLE() external view returns (bytes32);
function hasRole(bytes32 role, address account) external view returns (bool);
function getRoleMemberCount(bytes32 role) external view returns (uint256);
function getRoleMember(bytes32 role, uint256 index) external view returns (address);
function getRoleAdmin(bytes32 role) external view returns (bytes32);
}
//
interface ISTABLEX is IERC20 {
function mint(address account, uint256 amount) external;
function burn(address account, uint256 amount) external;
function a() external view returns (IAddressProvider);
}
//
interface AggregatorV3Interface {
function decimals() external view returns (uint8);
function description() external view returns (string memory);
function version() external view returns (uint256);
function getRoundData(uint80 _roundId)
external
view
returns (
uint80 roundId,
int256 answer,
uint256 startedAt,
uint256 updatedAt,
uint80 answeredInRound
);
function latestRoundData()
external
view
returns (
uint80 roundId,
int256 answer,
uint256 startedAt,
uint256 updatedAt,
uint80 answeredInRound
);
}
//
interface IPriceFeed {
event OracleUpdated(address indexed asset, address oracle, address sender);
event EurOracleUpdated(address oracle, address sender);
function setAssetOracle(address _asset, address _oracle) external;
function setEurOracle(address _oracle) external;
function a() external view returns (IAddressProvider);
function assetOracles(address _asset) external view returns (AggregatorV3Interface);
function eurOracle() external view returns (AggregatorV3Interface);
function getAssetPrice(address _asset) external view returns (uint256);
function convertFrom(address _asset, uint256 _amount) external view returns (uint256);
function convertTo(address _asset, uint256 _amount) external view returns (uint256);
}
//
interface IRatesManager {
function a() external view returns (IAddressProvider);
//current annualized borrow rate
function annualizedBorrowRate(uint256 _currentBorrowRate) external pure returns (uint256);
//uses current cumulative rate to calculate totalDebt based on baseDebt at time T0
function calculateDebt(uint256 _baseDebt, uint256 _cumulativeRate) external pure returns (uint256);
//uses current cumulative rate to calculate baseDebt at time T0
function calculateBaseDebt(uint256 _debt, uint256 _cumulativeRate) external pure returns (uint256);
//calculate a new cumulative rate
function calculateCumulativeRate(
uint256 _borrowRate,
uint256 _cumulativeRate,
uint256 _timeElapsed
) external view returns (uint256);
}
//
interface ILiquidationManager {
function a() external view returns (IAddressProvider);
function calculateHealthFactor(
uint256 _collateralValue,
uint256 _vaultDebt,
uint256 _minRatio
) external view returns (uint256 healthFactor);
function liquidationBonus(address _collateralType, uint256 _amount) external view returns (uint256 bonus);
function applyLiquidationDiscount(address _collateralType, uint256 _amount)
external
view
returns (uint256 discountedAmount);
function isHealthy(
uint256 _collateralValue,
uint256 _vaultDebt,
uint256 _minRatio
) external view returns (bool);
}
//
interface IVaultsDataProvider {
struct Vault {
// borrowedType support USDX / PAR
address collateralType;
address owner;
uint256 collateralBalance;
uint256 baseDebt;
uint256 createdAt;
}
//Write
function createVault(address _collateralType, address _owner) external returns (uint256);
function setCollateralBalance(uint256 _id, uint256 _balance) external;
function setBaseDebt(uint256 _id, uint256 _newBaseDebt) external;
// Read
function a() external view returns (IAddressProvider);
function baseDebt(address _collateralType) external view returns (uint256);
function vaultCount() external view returns (uint256);
function vaults(uint256 _id) external view returns (Vault memory);
function vaultOwner(uint256 _id) external view returns (address);
function vaultCollateralType(uint256 _id) external view returns (address);
function vaultCollateralBalance(uint256 _id) external view returns (uint256);
function vaultBaseDebt(uint256 _id) external view returns (uint256);
function vaultId(address _collateralType, address _owner) external view returns (uint256);
function vaultExists(uint256 _id) external view returns (bool);
function vaultDebt(uint256 _vaultId) external view returns (uint256);
function debt() external view returns (uint256);
function collateralDebt(address _collateralType) external view returns (uint256);
}
//
interface IFeeDistributor {
event PayeeAdded(address indexed account, uint256 shares);
event FeeReleased(uint256 income, uint256 releasedAt);
function release() external;
function changePayees(address[] memory _payees, uint256[] memory _shares) external;
function a() external view returns (IAddressProvider);
function lastReleasedAt() external view returns (uint256);
function getPayees() external view returns (address[] memory);
function totalShares() external view returns (uint256);
function shares(address payee) external view returns (uint256);
}
//
interface IAddressProvider {
function setAccessController(IAccessController _controller) external;
function setConfigProvider(IConfigProvider _config) external;
function setVaultsCore(IVaultsCore _core) external;
function setStableX(ISTABLEX _stablex) external;
function setRatesManager(IRatesManager _ratesManager) external;
function setPriceFeed(IPriceFeed _priceFeed) external;
function setLiquidationManager(ILiquidationManager _liquidationManager) external;
function setVaultsDataProvider(IVaultsDataProvider _vaultsData) external;
function setFeeDistributor(IFeeDistributor _feeDistributor) external;
function controller() external view returns (IAccessController);
function config() external view returns (IConfigProvider);
function core() external view returns (IVaultsCore);
function stablex() external view returns (ISTABLEX);
function ratesManager() external view returns (IRatesManager);
function priceFeed() external view returns (IPriceFeed);
function liquidationManager() external view returns (ILiquidationManager);
function vaultsData() external view returns (IVaultsDataProvider);
function feeDistributor() external view returns (IFeeDistributor);
}
//
interface IConfigProviderV1 {
struct CollateralConfig {
address collateralType;
uint256 debtLimit;
uint256 minCollateralRatio;
uint256 borrowRate;
uint256 originationFee;
}
event CollateralUpdated(
address indexed collateralType,
uint256 debtLimit,
uint256 minCollateralRatio,
uint256 borrowRate,
uint256 originationFee
);
event CollateralRemoved(address indexed collateralType);
function setCollateralConfig(
address _collateralType,
uint256 _debtLimit,
uint256 _minCollateralRatio,
uint256 _borrowRate,
uint256 _originationFee
) external;
function removeCollateral(address _collateralType) external;
function setCollateralDebtLimit(address _collateralType, uint256 _debtLimit) external;
function setCollateralMinCollateralRatio(address _collateralType, uint256 _minCollateralRatio) external;
function setCollateralBorrowRate(address _collateralType, uint256 _borrowRate) external;
function setCollateralOriginationFee(address _collateralType, uint256 _originationFee) external;
function setLiquidationBonus(uint256 _bonus) external;
function a() external view returns (IAddressProviderV1);
function collateralConfigs(uint256 _id) external view returns (CollateralConfig memory);
function collateralIds(address _collateralType) external view returns (uint256);
function numCollateralConfigs() external view returns (uint256);
function liquidationBonus() external view returns (uint256);
function collateralDebtLimit(address _collateralType) external view returns (uint256);
function collateralMinCollateralRatio(address _collateralType) external view returns (uint256);
function collateralBorrowRate(address _collateralType) external view returns (uint256);
function collateralOriginationFee(address _collateralType) external view returns (uint256);
}
//
interface ILiquidationManagerV1 {
function a() external view returns (IAddressProviderV1);
function calculateHealthFactor(
address _collateralType,
uint256 _collateralValue,
uint256 _vaultDebt
) external view returns (uint256 healthFactor);
function liquidationBonus(uint256 _amount) external view returns (uint256 bonus);
function applyLiquidationDiscount(uint256 _amount) external view returns (uint256 discountedAmount);
function isHealthy(
address _collateralType,
uint256 _collateralValue,
uint256 _vaultDebt
) external view returns (bool);
}
//
interface IVaultsCoreV1 {
event Opened(uint256 indexed vaultId, address indexed collateralType, address indexed owner);
event Deposited(uint256 indexed vaultId, uint256 amount, address indexed sender);
event Withdrawn(uint256 indexed vaultId, uint256 amount, address indexed sender);
event Borrowed(uint256 indexed vaultId, uint256 amount, address indexed sender);
event Repaid(uint256 indexed vaultId, uint256 amount, address indexed sender);
event Liquidated(
uint256 indexed vaultId,
uint256 debtRepaid,
uint256 collateralLiquidated,
address indexed owner,
address indexed sender
);
event CumulativeRateUpdated(address indexed collateralType, uint256 elapsedTime, uint256 newCumulativeRate); //cumulative interest rate from deployment time T0
event InsurancePaid(uint256 indexed vaultId, uint256 insuranceAmount, address indexed sender);
function deposit(address _collateralType, uint256 _amount) external;
function withdraw(uint256 _vaultId, uint256 _amount) external;
function withdrawAll(uint256 _vaultId) external;
function borrow(uint256 _vaultId, uint256 _amount) external;
function repayAll(uint256 _vaultId) external;
function repay(uint256 _vaultId, uint256 _amount) external;
function liquidate(uint256 _vaultId) external;
//Refresh
function initializeRates(address _collateralType) external;
function refresh() external;
function refreshCollateral(address collateralType) external;
//upgrade
function upgrade(address _newVaultsCore) external;
//Read only
function a() external view returns (IAddressProviderV1);
function availableIncome() external view returns (uint256);
function cumulativeRates(address _collateralType) external view returns (uint256);
function lastRefresh(address _collateralType) external view returns (uint256);
}
//
interface IWETH {
function deposit() external payable;
function transfer(address to, uint256 value) external returns (bool);
function withdraw(uint256 wad) external;
}
//
interface IGovernorAlpha {
/// @notice Possible states that a proposal may be in
enum ProposalState {
Active,
Canceled,
Defeated,
Succeeded,
Queued,
Expired,
Executed
}
struct Proposal {
// Unique id for looking up a proposal
uint256 id;
// Creator of the proposal
address proposer;
// The timestamp that the proposal will be available for execution, set once the vote succeeds
uint256 eta;
// the ordered list of target addresses for calls to be made
address[] targets;
// The ordered list of values (i.e. msg.value) to be passed to the calls to be made
uint256[] values;
// The ordered list of function signatures to be called
string[] signatures;
// The ordered list of calldata to be passed to each call
bytes[] calldatas;
// The timestamp at which voting begins: holders must delegate their votes prior to this timestamp
uint256 startTime;
// The timestamp at which voting ends: votes must be cast prior to this timestamp
uint endTime;
// Current number of votes in favor of this proposal
uint256 forVotes;
// Current number of votes in opposition to this proposal
uint256 againstVotes;
// Flag marking whether the proposal has been canceled
bool canceled;
// Flag marking whether the proposal has been executed
bool executed;
// Receipts of ballots for the entire set of voters
mapping (address => Receipt) receipts;
}
/// @notice Ballot receipt record for a voter
struct Receipt {
// Whether or not a vote has been cast
bool hasVoted;
// Whether or not the voter supports the proposal
bool support;
// The number of votes the voter had, which were cast
uint votes;
}
/// @notice An event emitted when a new proposal is created
event ProposalCreated(uint256 id, address proposer, address[] targets, uint256[] values, string[] signatures, bytes[] calldatas, uint startTime, uint endTime, string description);
/// @notice An event emitted when a vote has been cast on a proposal
event VoteCast(address voter, uint256 proposalId, bool support, uint256 votes);
/// @notice An event emitted when a proposal has been canceled
event ProposalCanceled(uint256 id);
/// @notice An event emitted when a proposal has been queued in the Timelock
event ProposalQueued(uint256 id, uint256 eta);
/// @notice An event emitted when a proposal has been executed in the Timelock
event ProposalExecuted(uint256 id);
function propose(address[] memory targets, uint256[] memory values, string[] memory signatures, bytes[] memory calldatas, string memory description, uint256 endTime) external returns (uint);
function queue(uint256 proposalId) external;
function execute(uint256 proposalId) external payable;
function cancel(uint256 proposalId) external;
function castVote(uint256 proposalId, bool support) external;
function getActions(uint256 proposalId) external view returns (address[] memory targets, uint256[] memory values, string[] memory signatures, bytes[] memory calldatas);
function getReceipt(uint256 proposalId, address voter) external view returns (Receipt memory);
function state(uint proposalId) external view returns (ProposalState);
function quorumVotes() external view returns (uint256);
function proposalThreshold() external view returns (uint256);
}
//
interface ITimelock {
event NewAdmin(address indexed newAdmin);
event NewPendingAdmin(address indexed newPendingAdmin);
event NewDelay(uint256 indexed newDelay);
event CancelTransaction(
bytes32 indexed txHash,
address indexed target,
uint256 value,
string signature,
bytes data,
uint256 eta
);
event ExecuteTransaction(
bytes32 indexed txHash,
address indexed target,
uint256 value,
string signature,
bytes data,
uint256 eta
);
event QueueTransaction(
bytes32 indexed txHash,
address indexed target,
uint256 value,
string signature,
bytes data,
uint256 eta
);
function acceptAdmin() external;
function queueTransaction(
address target,
uint256 value,
string calldata signature,
bytes calldata data,
uint256 eta
) external returns (bytes32);
function cancelTransaction(
address target,
uint256 value,
string calldata signature,
bytes calldata data,
uint256 eta
) external;
function executeTransaction(
address target,
uint256 value,
string calldata signature,
bytes calldata data,
uint256 eta
) external payable returns (bytes memory);
function delay() external view returns (uint256);
function GRACE_PERIOD() external view returns (uint256);
function queuedTransactions(bytes32 hash) external view returns (bool);
}
//
interface IVotingEscrow {
enum LockAction { CREATE_LOCK, INCREASE_LOCK_AMOUNT, INCREASE_LOCK_TIME }
struct LockedBalance {
uint256 amount;
uint256 end;
}
/** Shared Events */
event Deposit(address indexed provider, uint256 value, uint256 locktime, LockAction indexed action, uint256 ts);
event Withdraw(address indexed provider, uint256 value, uint256 ts);
event Expired();
function createLock(uint256 _value, uint256 _unlockTime) external;
function increaseLockAmount(uint256 _value) external;
function increaseLockLength(uint256 _unlockTime) external;
function withdraw() external;
function expireContract() external;
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint256);
function balanceOf(address _owner) external view returns (uint256);
function balanceOfAt(address _owner, uint256 _blockTime) external view returns (uint256);
function stakingToken() external view returns (IERC20);
}
//
interface IMIMO is IERC20 {
function burn(address account, uint256 amount) external;
function mint(address account, uint256 amount) external;
}
//
interface ISupplyMiner {
function baseDebtChanged(address user, uint256 newBaseDebt) external;
}
//
interface IDebtNotifier {
function debtChanged(uint256 _vaultId) external;
function setCollateralSupplyMiner(address collateral, ISupplyMiner supplyMiner) external;
function a() external view returns (IGovernanceAddressProvider);
function collateralSupplyMinerMapping(address collateral) external view returns (ISupplyMiner);
}
//
interface IGovernanceAddressProvider {
function setParallelAddressProvider(IAddressProvider _parallel) external;
function setMIMO(IMIMO _mimo) external;
function setDebtNotifier(IDebtNotifier _debtNotifier) external;
function setGovernorAlpha(IGovernorAlpha _governorAlpha) external;
function setTimelock(ITimelock _timelock) external;
function setVotingEscrow(IVotingEscrow _votingEscrow) external;
function controller() external view returns (IAccessController);
function parallel() external view returns (IAddressProvider);
function mimo() external view returns (IMIMO);
function debtNotifier() external view returns (IDebtNotifier);
function governorAlpha() external view returns (IGovernorAlpha);
function timelock() external view returns (ITimelock);
function votingEscrow() external view returns (IVotingEscrow);
}
//
interface IVaultsCore {
event Opened(uint256 indexed vaultId, address indexed collateralType, address indexed owner);
event Deposited(uint256 indexed vaultId, uint256 amount, address indexed sender);
event Withdrawn(uint256 indexed vaultId, uint256 amount, address indexed sender);
event Borrowed(uint256 indexed vaultId, uint256 amount, address indexed sender);
event Repaid(uint256 indexed vaultId, uint256 amount, address indexed sender);
event Liquidated(
uint256 indexed vaultId,
uint256 debtRepaid,
uint256 collateralLiquidated,
address indexed owner,
address indexed sender
);
event InsurancePaid(uint256 indexed vaultId, uint256 insuranceAmount, address indexed sender);
function deposit(address _collateralType, uint256 _amount) external;
function depositETH() external payable;
function depositByVaultId(uint256 _vaultId, uint256 _amount) external;
function depositETHByVaultId(uint256 _vaultId) external payable;
function depositAndBorrow(
address _collateralType,
uint256 _depositAmount,
uint256 _borrowAmount
) external;
function depositETHAndBorrow(uint256 _borrowAmount) external payable;
function withdraw(uint256 _vaultId, uint256 _amount) external;
function withdrawETH(uint256 _vaultId, uint256 _amount) external;
function borrow(uint256 _vaultId, uint256 _amount) external;
function repayAll(uint256 _vaultId) external;
function repay(uint256 _vaultId, uint256 _amount) external;
function liquidate(uint256 _vaultId) external;
function liquidatePartial(uint256 _vaultId, uint256 _amount) external;
function upgrade(address payable _newVaultsCore) external;
function acceptUpgrade(address payable _oldVaultsCore) external;
function setDebtNotifier(IDebtNotifier _debtNotifier) external;
//Read only
function a() external view returns (IAddressProvider);
function WETH() external view returns (IWETH);
function debtNotifier() external view returns (IDebtNotifier);
function state() external view returns (IVaultsCoreState);
function cumulativeRates(address _collateralType) external view returns (uint256);
}
//
interface IAddressProviderV1 {
function setAccessController(IAccessController _controller) external;
function setConfigProvider(IConfigProviderV1 _config) external;
function setVaultsCore(IVaultsCoreV1 _core) external;
function setStableX(ISTABLEX _stablex) external;
function setRatesManager(IRatesManager _ratesManager) external;
function setPriceFeed(IPriceFeed _priceFeed) external;
function setLiquidationManager(ILiquidationManagerV1 _liquidationManager) external;
function setVaultsDataProvider(IVaultsDataProvider _vaultsData) external;
function setFeeDistributor(IFeeDistributor _feeDistributor) external;
function controller() external view returns (IAccessController);
function config() external view returns (IConfigProviderV1);
function core() external view returns (IVaultsCoreV1);
function stablex() external view returns (ISTABLEX);
function ratesManager() external view returns (IRatesManager);
function priceFeed() external view returns (IPriceFeed);
function liquidationManager() external view returns (ILiquidationManagerV1);
function vaultsData() external view returns (IVaultsDataProvider);
function feeDistributor() external view returns (IFeeDistributor);
}
//
interface IVaultsCoreState {
event CumulativeRateUpdated(address indexed collateralType, uint256 elapsedTime, uint256 newCumulativeRate); //cumulative interest rate from deployment time T0
function initializeRates(address _collateralType) external;
function refresh() external;
function refreshCollateral(address collateralType) external;
function syncState(IVaultsCoreState _stateAddress) external;
function syncStateFromV1(IVaultsCoreV1 _core) external;
//Read only
function a() external view returns (IAddressProvider);
function availableIncome() external view returns (uint256);
function cumulativeRates(address _collateralType) external view returns (uint256);
function lastRefresh(address _collateralType) external view returns (uint256);
function synced() external view returns (bool);
}
//
interface IConfigProvider {
struct CollateralConfig {
address collateralType;
uint256 debtLimit;
uint256 liquidationRatio;
uint256 minCollateralRatio;
uint256 borrowRate;
uint256 originationFee;
uint256 liquidationBonus;
uint256 liquidationFee;
}
event CollateralUpdated(
address indexed collateralType,
uint256 debtLimit,
uint256 liquidationRatio,
uint256 minCollateralRatio,
uint256 borrowRate,
uint256 originationFee,
uint256 liquidationBonus,
uint256 liquidationFee
);
event CollateralRemoved(address indexed collateralType);
function setCollateralConfig(
address _collateralType,
uint256 _debtLimit,
uint256 _liquidationRatio,
uint256 _minCollateralRatio,
uint256 _borrowRate,
uint256 _originationFee,
uint256 _liquidationBonus,
uint256 _liquidationFee
) external;
function removeCollateral(address _collateralType) external;
function setCollateralDebtLimit(address _collateralType, uint256 _debtLimit) external;
function setCollateralLiquidationRatio(address _collateralType, uint256 _liquidationRatio) external;
function setCollateralMinCollateralRatio(address _collateralType, uint256 _minCollateralRatio) external;
function setCollateralBorrowRate(address _collateralType, uint256 _borrowRate) external;
function setCollateralOriginationFee(address _collateralType, uint256 _originationFee) external;
function setCollateralLiquidationBonus(address _collateralType, uint256 _liquidationBonus) external;
function setCollateralLiquidationFee(address _collateralType, uint256 _liquidationFee) external;
function setMinVotingPeriod(uint256 _minVotingPeriod) external;
function setMaxVotingPeriod(uint256 _maxVotingPeriod) external;
function setVotingQuorum(uint256 _votingQuorum) external;
function setProposalThreshold(uint256 _proposalThreshold) external;
function a() external view returns (IAddressProvider);
function collateralConfigs(uint256 _id) external view returns (CollateralConfig memory);
function collateralIds(address _collateralType) external view returns (uint256);
function numCollateralConfigs() external view returns (uint256);
function minVotingPeriod() external view returns (uint256);
function maxVotingPeriod() external view returns (uint256);
function votingQuorum() external view returns (uint256);
function proposalThreshold() external view returns (uint256);
function collateralDebtLimit(address _collateralType) external view returns (uint256);
function collateralLiquidationRatio(address _collateralType) external view returns (uint256);
function collateralMinCollateralRatio(address _collateralType) external view returns (uint256);
function collateralBorrowRate(address _collateralType) external view returns (uint256);
function collateralOriginationFee(address _collateralType) external view returns (uint256);
function collateralLiquidationBonus(address _collateralType) external view returns (uint256);
function collateralLiquidationFee(address _collateralType) external view returns (uint256);
}
//
interface IGenericMiner {
struct UserInfo {
uint256 stake;
uint256 accAmountPerShare; // User's accAmountPerShare
}
/// @dev This emit when a users' productivity has changed
/// It emits with the user's address and the the value after the change.
event StakeIncreased(address indexed user, uint256 stake);
/// @dev This emit when a users' productivity has changed
/// It emits with the user's address and the the value after the change.
event StakeDecreased(address indexed user, uint256 stake);
function releaseMIMO(address _user) external;
function a() external view returns (IGovernanceAddressProvider);
function stake(address _user) external view returns (uint256);
function pendingMIMO(address _user) external view returns (uint256);
function totalStake() external view returns (uint256);
function userInfo(address _user) external view returns (UserInfo memory);
}
//
/*
GenericMiner is based on ERC2917. https://github.com/gnufoo/ERC2917-Proposal
The Objective of GenericMiner is to implement a decentralized staking mechanism, which calculates _users' share
by accumulating stake * time. And calculates _users revenue from anytime t0 to t1 by the formula below:
user_accumulated_stake(time1) - user_accumulated_stake(time0)
_____________________________________________________________________________ * (gross_stake(t1) - gross_stake(t0))
total_accumulated_stake(time1) - total_accumulated_stake(time0)
*/
contract GenericMiner is IGenericMiner {
using SafeMath for uint256;
using WadRayMath for uint256;
mapping(address => UserInfo) private _users;
uint256 public override totalStake;
IGovernanceAddressProvider public override a;
uint256 private _balanceTracker;
uint256 private _accAmountPerShare;
constructor(IGovernanceAddressProvider _addresses) public {
require(address(_addresses) != address(0));
a = _addresses;
}
/**
Releases the outstanding MIMO balance to the user.
@param _user the address of the user for which the MIMO tokens will be released.
*/
function releaseMIMO(address _user) public override {
UserInfo storage userInfo = _users[_user];
_refresh();
uint256 pending = userInfo.stake.rayMul(_accAmountPerShare.sub(userInfo.accAmountPerShare));
_balanceTracker = _balanceTracker.sub(pending);
userInfo.accAmountPerShare = _accAmountPerShare;
require(a.mimo().transfer(_user, pending));
}
/**
Returns the number of tokens a user has staked.
@param _user the address of the user.
@return number of staked tokens
*/
function stake(address _user) public view override returns (uint256) {
return _users[_user].stake;
}
/**
Returns the number of tokens a user can claim via `releaseMIMO`.
@param _user the address of the user.
@return number of MIMO tokens that the user can claim
*/
function pendingMIMO(address _user) public view override returns (uint256) {
uint256 currentBalance = a.mimo().balanceOf(address(this));
uint256 reward = currentBalance.sub(_balanceTracker);
uint256 accAmountPerShare = _accAmountPerShare.add(reward.rayDiv(totalStake));
return _users[_user].stake.rayMul(accAmountPerShare.sub(_users[_user].accAmountPerShare));
}
/**
Returns the userInfo stored of a user.
@param _user the address of the user.
@return `struct UserInfo {
uint256 stake;
uint256 rewardDebt;
}`
**/
function userInfo(address _user) public view override returns (UserInfo memory) {
return _users[_user];
}
/**
Refreshes the global state and subsequently decreases the stake a user has.
This is an internal call and meant to be called within derivative contracts.
@param user the address of the user
@param value the amount by which the stake will be reduced
*/
function _decreaseStake(address user, uint256 value) internal {
require(value > 0, "STAKE_MUST_BE_GREATER_THAN_ZERO"); //TODO cleanup error message
UserInfo storage userInfo = _users[user];
require(userInfo.stake >= value, "INSUFFICIENT_STAKE_FOR_USER"); //TODO cleanup error message
_refresh();
uint256 pending = userInfo.stake.rayMul(_accAmountPerShare.sub(userInfo.accAmountPerShare));
_balanceTracker = _balanceTracker.sub(pending);
userInfo.stake = userInfo.stake.sub(value);
userInfo.accAmountPerShare = _accAmountPerShare;
totalStake = totalStake.sub(value);
require(a.mimo().transfer(user, pending));
emit StakeDecreased(user, value);
}
/**
Refreshes the global state and subsequently increases a user's stake.
This is an internal call and meant to be called within derivative contracts.
@param user the address of the user
@param value the amount by which the stake will be increased
*/
function _increaseStake(address user, uint256 value) internal {
require(value > 0, "STAKE_MUST_BE_GREATER_THAN_ZERO"); //TODO cleanup error message
UserInfo storage userInfo = _users[user];
_refresh();
uint256 pending;
if (userInfo.stake > 0) {
pending = userInfo.stake.rayMul(_accAmountPerShare.sub(userInfo.accAmountPerShare));
_balanceTracker = _balanceTracker.sub(pending);
}
totalStake = totalStake.add(value);
userInfo.stake = userInfo.stake.add(value);
userInfo.accAmountPerShare = _accAmountPerShare;
if (pending > 0) {
require(a.mimo().transfer(user, pending));
}
emit StakeIncreased(user, value);
}
/**
Refreshes the global state and subsequently updates a user's stake.
This is an internal call and meant to be called within derivative contracts.
@param user the address of the user
@param stake the new amount of stake for the user
*/
function _updateStake(address user, uint256 stake) internal returns (bool) {
uint256 oldStake = _users[user].stake;
if (stake > oldStake) {
_increaseStake(user, stake.sub(oldStake));
}
if (stake < oldStake) {
_decreaseStake(user, oldStake.sub(stake));
}
}
/**
Internal read function to calculate the number of MIMO tokens that
have accumulated since the last token release.
@dev This is an internal call and meant to be called within derivative contracts.
@return newly accumulated token balance
*/
function _newTokensReceived() internal view returns (uint256) {
return a.mimo().balanceOf(address(this)).sub(_balanceTracker);
}
/**
Updates the internal state variables after accounting for newly received MIMO tokens.
*/
function _refresh() internal {
if (totalStake == 0) {
return;
}
uint256 currentBalance = a.mimo().balanceOf(address(this));
uint256 reward = currentBalance.sub(_balanceTracker);
_balanceTracker = currentBalance;
_accAmountPerShare = _accAmountPerShare.add(reward.rayDiv(totalStake));
}
}
//
interface IDemandMiner {
function deposit(uint256 amount) external;
function withdraw(uint256 amount) external;
function token() external view returns (IERC20);
}
//
contract DemandMiner is IDemandMiner, GenericMiner {
using SafeMath for uint256;
using SafeERC20 for IERC20;
IERC20 public override token;
constructor(IGovernanceAddressProvider _addresses, IERC20 _token) public GenericMiner(_addresses) {
require(address(_token) != address(0));
require(address(_token) != address(_addresses.mimo()));
token = _token;
}
/**
Deposit an ERC20 pool token for staking
@dev this function uses `transferFrom()` and requires pre-approval via `approve()` on the ERC20.
@param amount the amount of tokens to be deposited. Unit is in WEI.
**/
function deposit(uint256 amount) public override {
token.safeTransferFrom(msg.sender, address(this), amount);
_increaseStake(msg.sender, amount);
}
/**
Withdraw staked ERC20 pool tokens. Will fail if user does not have enough tokens staked.
@param amount the amount of tokens to be withdrawn. Unit is in WEI.
**/
function withdraw(uint256 amount) public override {
token.safeTransfer(msg.sender, amount);
_decreaseStake(msg.sender, amount);
}
}