ETH Price: $3,426.18 (+6.26%)

Contract Diff Checker

Contract Name:
L1ERC721Bridge

Contract Source Code:

// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

import { IERC721 } from "@openzeppelin/contracts/token/ERC721/IERC721.sol";

import { L2ERC721Bridge } from "../L2/L2ERC721Bridge.sol";
import { ERC721Bridge } from "../universal/ERC721Bridge.sol";
import { Semver } from "../universal/Semver.sol";

/**
 * @title L1ERC721Bridge
 * @notice The L1 ERC721 bridge is a contract which works together with the L2 ERC721 bridge to
 *         make it possible to transfer ERC721 tokens from Ethereum to Kroma. This contract
 *         acts as an escrow for ERC721 tokens deposited into L2.
 */
contract L1ERC721Bridge is ERC721Bridge, Semver {
    /**
     * @notice Mapping of L1 token to L2 token to ID to boolean, indicating if the given L1 token
     *         by ID was deposited for a given L2 token.
     */
    mapping(address => mapping(address => mapping(uint256 => bool))) public deposits;

    /**
     * @custom:semver 1.0.0
     *
     * @param _messenger   Address of the CrossDomainMessenger on this network.
     * @param _otherBridge Address of the ERC721 bridge on the other network.
     */
    constructor(address _messenger, address _otherBridge)
        Semver(1, 0, 0)
        ERC721Bridge(_messenger, _otherBridge)
    {}

    /**
     * @notice Completes an ERC721 bridge from the other domain and sends the ERC721 token to the
     *         recipient on this domain.
     *
     * @param _localToken  Address of the ERC721 token on this domain.
     * @param _remoteToken Address of the ERC721 token on the other domain.
     * @param _from        Address that triggered the bridge on the other domain.
     * @param _to          Address to receive the token on this domain.
     * @param _tokenId     ID of the token being deposited.
     * @param _extraData   Optional data to forward to L2. Data supplied here will not be used to
     *                     execute any code on L2 and is only emitted as extra data for the
     *                     convenience of off-chain tooling.
     */
    function finalizeBridgeERC721(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _tokenId,
        bytes calldata _extraData
    ) external onlyOtherBridge {
        require(_localToken != address(this), "L1ERC721Bridge: local token cannot be self");

        // Checks that the L1/L2 NFT pair has a token ID that is escrowed in the L1 Bridge.
        require(
            deposits[_localToken][_remoteToken][_tokenId] == true,
            "L1ERC721Bridge: Token ID is not escrowed in the L1 Bridge"
        );

        // Mark that the token ID for this L1/L2 token pair is no longer escrowed in the L1
        // Bridge.
        deposits[_localToken][_remoteToken][_tokenId] = false;

        // When a withdrawal is finalized on L1, the L1 Bridge transfers the NFT to the
        // withdrawer.
        IERC721(_localToken).safeTransferFrom(address(this), _to, _tokenId);

        // slither-disable-next-line reentrancy-events
        emit ERC721BridgeFinalized(_localToken, _remoteToken, _from, _to, _tokenId, _extraData);
    }

    /**
     * @inheritdoc ERC721Bridge
     */
    function _initiateBridgeERC721(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _tokenId,
        uint32 _minGasLimit,
        bytes calldata _extraData
    ) internal override {
        require(_remoteToken != address(0), "L1ERC721Bridge: remote token cannot be address(0)");

        // Construct calldata for _l2Token.finalizeBridgeERC721(_to, _tokenId)
        bytes memory message = abi.encodeWithSelector(
            L2ERC721Bridge.finalizeBridgeERC721.selector,
            _remoteToken,
            _localToken,
            _from,
            _to,
            _tokenId,
            _extraData
        );

        // Lock token into bridge
        deposits[_localToken][_remoteToken][_tokenId] = true;
        IERC721(_localToken).transferFrom(_from, address(this), _tokenId);

        // Send calldata into L2
        MESSENGER.sendMessage(OTHER_BRIDGE, message, _minGasLimit);
        emit ERC721BridgeInitiated(_localToken, _remoteToken, _from, _to, _tokenId, _extraData);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";

import { L1ERC721Bridge } from "../L1/L1ERC721Bridge.sol";
import { ERC721Bridge } from "../universal/ERC721Bridge.sol";
import { IKromaMintableERC721 } from "../universal/IKromaMintableERC721.sol";
import { Semver } from "../universal/Semver.sol";

/**
 * @title L2ERC721Bridge
 * @notice The L2 ERC721 bridge is a contract which works together with the L1 ERC721 bridge to
 *         make it possible to transfer ERC721 tokens from Ethereum to Kroma. This contract
 *         acts as a minter for new tokens when it hears about deposits into the L1 ERC721 bridge.
 *         This contract also acts as a burner for tokens being withdrawn.
 *         **WARNING**: Do not bridge an ERC721 that was originally deployed on Kroma. This
 *         bridge ONLY supports ERC721s originally deployed on Ethereum. Users will need to
 *         wait for the one-week challenge period to elapse before their Kroma-native NFT
 *         can be refunded on L2.
 */
contract L2ERC721Bridge is ERC721Bridge, Semver {
    /**
     * @custom:semver 1.0.0
     *
     * @param _messenger   Address of the CrossDomainMessenger on this network.
     * @param _otherBridge Address of the ERC721 bridge on the other network.
     */
    constructor(address _messenger, address _otherBridge)
        Semver(1, 0, 0)
        ERC721Bridge(_messenger, _otherBridge)
    {}

    /**
     * @notice Completes an ERC721 bridge from the other domain and sends the ERC721 token to the
     *         recipient on this domain.
     *
     * @param _localToken  Address of the ERC721 token on this domain.
     * @param _remoteToken Address of the ERC721 token on the other domain.
     * @param _from        Address that triggered the bridge on the other domain.
     * @param _to          Address to receive the token on this domain.
     * @param _tokenId     ID of the token being deposited.
     * @param _extraData   Optional data to forward to L1. Data supplied here will not be used to
     *                     execute any code on L1 and is only emitted as extra data for the
     *                     convenience of off-chain tooling.
     */
    function finalizeBridgeERC721(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _tokenId,
        bytes calldata _extraData
    ) external onlyOtherBridge {
        require(_localToken != address(this), "L2ERC721Bridge: local token cannot be self");

        // Note that supportsInterface makes a callback to the _localToken address which is user
        // provided.
        require(
            ERC165Checker.supportsInterface(_localToken, type(IKromaMintableERC721).interfaceId),
            "L2ERC721Bridge: local token interface is not compliant"
        );

        require(
            _remoteToken == IKromaMintableERC721(_localToken).REMOTE_TOKEN(),
            "L2ERC721Bridge: wrong remote token for Kroma Mintable ERC721 local token"
        );

        // When a deposit is finalized, we give the NFT with the same tokenId to the account
        // on L2. Note that safeMint makes a callback to the _to address which is user provided.
        IKromaMintableERC721(_localToken).safeMint(_to, _tokenId);

        // slither-disable-next-line reentrancy-events
        emit ERC721BridgeFinalized(_localToken, _remoteToken, _from, _to, _tokenId, _extraData);
    }

    /**
     * @inheritdoc ERC721Bridge
     */
    function _initiateBridgeERC721(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _tokenId,
        uint32 _minGasLimit,
        bytes calldata _extraData
    ) internal override {
        require(_remoteToken != address(0), "L2ERC721Bridge: remote token cannot be address(0)");

        // Check that the withdrawal is being initiated by the NFT owner
        require(
            _from == IKromaMintableERC721(_localToken).ownerOf(_tokenId),
            "L2ERC721Bridge: Withdrawal is not being initiated by NFT owner"
        );

        // Construct calldata for l1ERC721Bridge.finalizeBridgeERC721(_to, _tokenId)
        // slither-disable-next-line reentrancy-events
        address remoteToken = IKromaMintableERC721(_localToken).REMOTE_TOKEN();
        require(
            remoteToken == _remoteToken,
            "L2ERC721Bridge: remote token does not match given value"
        );

        // When a withdrawal is initiated, we burn the withdrawer's NFT to prevent subsequent L2
        // usage
        // slither-disable-next-line reentrancy-events
        IKromaMintableERC721(_localToken).burn(_from, _tokenId);

        bytes memory message = abi.encodeWithSelector(
            L1ERC721Bridge.finalizeBridgeERC721.selector,
            remoteToken,
            _localToken,
            _from,
            _to,
            _tokenId,
            _extraData
        );

        // Send message to L1 bridge
        // slither-disable-next-line reentrancy-events
        MESSENGER.sendMessage(OTHER_BRIDGE, message, _minGasLimit);

        // slither-disable-next-line reentrancy-events
        emit ERC721BridgeInitiated(_localToken, remoteToken, _from, _to, _tokenId, _extraData);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

import { Address } from "@openzeppelin/contracts/utils/Address.sol";

import { CrossDomainMessenger } from "./CrossDomainMessenger.sol";

/**
 * @title ERC721Bridge
 * @notice ERC721Bridge is a base contract for the L1 and L2 ERC721 bridges.
 */
abstract contract ERC721Bridge {
    /**
     * @notice Messenger contract on this domain.
     */
    CrossDomainMessenger public immutable MESSENGER;

    /**
     * @notice Address of the bridge on the other network.
     */
    address public immutable OTHER_BRIDGE;

    /**
     * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
     */
    uint256[49] private __gap;

    /**
     * @notice Emitted when an ERC721 bridge to the other network is initiated.
     *
     * @param localToken  Address of the token on this domain.
     * @param remoteToken Address of the token on the remote domain.
     * @param from        Address that initiated bridging action.
     * @param to          Address to receive the token.
     * @param tokenId     ID of the specific token deposited.
     * @param extraData   Extra data for use on the client-side.
     */
    event ERC721BridgeInitiated(
        address indexed localToken,
        address indexed remoteToken,
        address indexed from,
        address to,
        uint256 tokenId,
        bytes extraData
    );

    /**
     * @notice Emitted when an ERC721 bridge from the other network is finalized.
     *
     * @param localToken  Address of the token on this domain.
     * @param remoteToken Address of the token on the remote domain.
     * @param from        Address that initiated bridging action.
     * @param to          Address to receive the token.
     * @param tokenId     ID of the specific token deposited.
     * @param extraData   Extra data for use on the client-side.
     */
    event ERC721BridgeFinalized(
        address indexed localToken,
        address indexed remoteToken,
        address indexed from,
        address to,
        uint256 tokenId,
        bytes extraData
    );

    /**
     * @notice Ensures that the caller is a cross-chain message from the other bridge.
     */
    modifier onlyOtherBridge() {
        require(
            msg.sender == address(MESSENGER) && MESSENGER.xDomainMessageSender() == OTHER_BRIDGE,
            "ERC721Bridge: function can only be called from the other bridge"
        );
        _;
    }

    /**
     * @param _messenger   Address of the CrossDomainMessenger on this network.
     * @param _otherBridge Address of the ERC721 bridge on the other network.
     */
    constructor(address _messenger, address _otherBridge) {
        require(_messenger != address(0), "ERC721Bridge: messenger cannot be address(0)");
        require(_otherBridge != address(0), "ERC721Bridge: other bridge cannot be address(0)");

        MESSENGER = CrossDomainMessenger(_messenger);
        OTHER_BRIDGE = _otherBridge;
    }

    /**
     * @notice Initiates a bridge of an NFT to the caller's account on the other chain. Note that
     *         this function can only be called by EOAs. Smart contract wallets should use the
     *         `bridgeERC721To` function after ensuring that the recipient address on the remote
     *         chain exists. Also note that the current owner of the token on this chain must
     *         approve this contract to operate the NFT before it can be bridged.
     *         **WARNING**: Do not bridge an ERC721 that was originally deployed on Kroma. This
     *         bridge only supports ERC721s originally deployed on Ethereum. Users will need to
     *         wait for the one-week challenge period to elapse before their Kroma-native NFT
     *         can be refunded on L2.
     *
     * @param _localToken  Address of the ERC721 on this domain.
     * @param _remoteToken Address of the ERC721 on the remote domain.
     * @param _tokenId     Token ID to bridge.
     * @param _minGasLimit Minimum gas limit for the bridge message on the other domain.
     * @param _extraData   Optional data to forward to the other chain. Data supplied here will not
     *                     be used to execute any code on the other chain and is only emitted as
     *                     extra data for the convenience of off-chain tooling.
     */
    function bridgeERC721(
        address _localToken,
        address _remoteToken,
        uint256 _tokenId,
        uint32 _minGasLimit,
        bytes calldata _extraData
    ) external {
        // Modifier requiring sender to be EOA. This prevents against a user error that would occur
        // if the sender is a smart contract wallet that has a different address on the remote chain
        // (or doesn't have an address on the remote chain at all). The user would fail to receive
        // the NFT if they use this function because it sends the NFT to the same address as the
        // caller. This check could be bypassed by a malicious contract via initcode, but it takes
        // care of the user error we want to avoid.
        require(!Address.isContract(msg.sender), "ERC721Bridge: account is not externally owned");

        _initiateBridgeERC721(
            _localToken,
            _remoteToken,
            msg.sender,
            msg.sender,
            _tokenId,
            _minGasLimit,
            _extraData
        );
    }

    /**
     * @notice Initiates a bridge of an NFT to some recipient's account on the other chain. Note
     *         that the current owner of the token on this chain must approve this contract to
     *         operate the NFT before it can be bridged.
     *         **WARNING**: Do not bridge an ERC721 that was originally deployed on Kroma. This
     *         bridge only supports ERC721s originally deployed on Ethereum. Users will need to
     *         wait for the one-week challenge period to elapse before their Kroma-native NFT
     *         can be refunded on L2.
     *
     * @param _localToken  Address of the ERC721 on this domain.
     * @param _remoteToken Address of the ERC721 on the remote domain.
     * @param _to          Address to receive the token on the other domain.
     * @param _tokenId     Token ID to bridge.
     * @param _minGasLimit Minimum gas limit for the bridge message on the other domain.
     * @param _extraData   Optional data to forward to the other chain. Data supplied here will not
     *                     be used to execute any code on the other chain and is only emitted as
     *                     extra data for the convenience of off-chain tooling.
     */
    function bridgeERC721To(
        address _localToken,
        address _remoteToken,
        address _to,
        uint256 _tokenId,
        uint32 _minGasLimit,
        bytes calldata _extraData
    ) external {
        require(_to != address(0), "ERC721Bridge: nft recipient cannot be address(0)");

        _initiateBridgeERC721(
            _localToken,
            _remoteToken,
            msg.sender,
            _to,
            _tokenId,
            _minGasLimit,
            _extraData
        );
    }

    /**
     * @notice Internal function for initiating a token bridge to the other domain.
     *
     * @param _localToken  Address of the ERC721 on this domain.
     * @param _remoteToken Address of the ERC721 on the remote domain.
     * @param _from        Address of the sender on this domain.
     * @param _to          Address to receive the token on the other domain.
     * @param _tokenId     Token ID to bridge.
     * @param _minGasLimit Minimum gas limit for the bridge message on the other domain.
     * @param _extraData   Optional data to forward to the other domain. Data supplied here will
     *                     not be used to execute any code on the other domain and is only emitted
     *                     as extra data for the convenience of off-chain tooling.
     */
    function _initiateBridgeERC721(
        address _localToken,
        address _remoteToken,
        address _from,
        address _to,
        uint256 _tokenId,
        uint32 _minGasLimit,
        bytes calldata _extraData
    ) internal virtual;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;

import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";

/**
 * @title Semver
 * @notice Semver is a simple contract for managing contract versions.
 */
contract Semver {
    /**
     * @notice Contract version number (major).
     */
    uint256 private immutable MAJOR_VERSION;

    /**
     * @notice Contract version number (minor).
     */
    uint256 private immutable MINOR_VERSION;

    /**
     * @notice Contract version number (patch).
     */
    uint256 private immutable PATCH_VERSION;

    /**
     * @param _major Version number (major).
     * @param _minor Version number (minor).
     * @param _patch Version number (patch).
     */
    constructor(
        uint256 _major,
        uint256 _minor,
        uint256 _patch
    ) {
        MAJOR_VERSION = _major;
        MINOR_VERSION = _minor;
        PATCH_VERSION = _patch;
    }

    /**
     * @notice Returns the full semver contract version.
     *
     * @return Semver contract version as a string.
     */
    function version() public view virtual returns (string memory) {
        return
            string(
                abi.encodePacked(
                    Strings.toString(MAJOR_VERSION),
                    ".",
                    Strings.toString(MINOR_VERSION),
                    ".",
                    Strings.toString(PATCH_VERSION)
                )
            );
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/introspection/ERC165Checker.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Library used to query support of an interface declared via {IERC165}.
 *
 * Note that these functions return the actual result of the query: they do not
 * `revert` if an interface is not supported. It is up to the caller to decide
 * what to do in these cases.
 */
library ERC165Checker {
    // As per the EIP-165 spec, no interface should ever match 0xffffffff
    bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;

    /**
     * @dev Returns true if `account` supports the {IERC165} interface.
     */
    function supportsERC165(address account) internal view returns (bool) {
        // Any contract that implements ERC165 must explicitly indicate support of
        // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
        return
            supportsERC165InterfaceUnchecked(account, type(IERC165).interfaceId) &&
            !supportsERC165InterfaceUnchecked(account, _INTERFACE_ID_INVALID);
    }

    /**
     * @dev Returns true if `account` supports the interface defined by
     * `interfaceId`. Support for {IERC165} itself is queried automatically.
     *
     * See {IERC165-supportsInterface}.
     */
    function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
        // query support of both ERC165 as per the spec and support of _interfaceId
        return supportsERC165(account) && supportsERC165InterfaceUnchecked(account, interfaceId);
    }

    /**
     * @dev Returns a boolean array where each value corresponds to the
     * interfaces passed in and whether they're supported or not. This allows
     * you to batch check interfaces for a contract where your expectation
     * is that some interfaces may not be supported.
     *
     * See {IERC165-supportsInterface}.
     *
     * _Available since v3.4._
     */
    function getSupportedInterfaces(
        address account,
        bytes4[] memory interfaceIds
    ) internal view returns (bool[] memory) {
        // an array of booleans corresponding to interfaceIds and whether they're supported or not
        bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);

        // query support of ERC165 itself
        if (supportsERC165(account)) {
            // query support of each interface in interfaceIds
            for (uint256 i = 0; i < interfaceIds.length; i++) {
                interfaceIdsSupported[i] = supportsERC165InterfaceUnchecked(account, interfaceIds[i]);
            }
        }

        return interfaceIdsSupported;
    }

    /**
     * @dev Returns true if `account` supports all the interfaces defined in
     * `interfaceIds`. Support for {IERC165} itself is queried automatically.
     *
     * Batch-querying can lead to gas savings by skipping repeated checks for
     * {IERC165} support.
     *
     * See {IERC165-supportsInterface}.
     */
    function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
        // query support of ERC165 itself
        if (!supportsERC165(account)) {
            return false;
        }

        // query support of each interface in interfaceIds
        for (uint256 i = 0; i < interfaceIds.length; i++) {
            if (!supportsERC165InterfaceUnchecked(account, interfaceIds[i])) {
                return false;
            }
        }

        // all interfaces supported
        return true;
    }

    /**
     * @notice Query if a contract implements an interface, does not check ERC165 support
     * @param account The address of the contract to query for support of an interface
     * @param interfaceId The interface identifier, as specified in ERC-165
     * @return true if the contract at account indicates support of the interface with
     * identifier interfaceId, false otherwise
     * @dev Assumes that account contains a contract that supports ERC165, otherwise
     * the behavior of this method is undefined. This precondition can be checked
     * with {supportsERC165}.
     *
     * Some precompiled contracts will falsely indicate support for a given interface, so caution
     * should be exercised when using this function.
     *
     * Interface identification is specified in ERC-165.
     */
    function supportsERC165InterfaceUnchecked(address account, bytes4 interfaceId) internal view returns (bool) {
        // prepare call
        bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);

        // perform static call
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly {
            success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0x00)
        }

        return success && returnSize >= 0x20 && returnValue > 0;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {
    IERC721Enumerable
} from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";

/**
 * @title IKromaMintableERC721
 * @notice Interface for contracts that are compatible with the KromaMintableERC721 standard.
 *         Tokens that follow this standard can be easily transferred across the ERC721 bridge.
 */
interface IKromaMintableERC721 is IERC721Enumerable {
    /**
     * @notice Emitted when a token is minted.
     *
     * @param account Address of the account the token was minted to.
     * @param tokenId Token ID of the minted token.
     */
    event Mint(address indexed account, uint256 tokenId);

    /**
     * @notice Emitted when a token is burned.
     *
     * @param account Address of the account the token was burned from.
     * @param tokenId Token ID of the burned token.
     */
    event Burn(address indexed account, uint256 tokenId);

    /**
     * @notice Mints some token ID for a user, checking first that contract recipients
     *         are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * @param _to      Address of the user to mint the token for.
     * @param _tokenId Token ID to mint.
     */
    function safeMint(address _to, uint256 _tokenId) external;

    /**
     * @notice Burns a token ID from a user.
     *
     * @param _from    Address of the user to burn the token from.
     * @param _tokenId Token ID to burn.
     */
    function burn(address _from, uint256 _tokenId) external;

    /**
     * @notice Chain ID of the chain where the remote token is deployed.
     */
    function REMOTE_CHAIN_ID() external view returns (uint256);

    /**
     * @notice Address of the token on the remote domain.
     */
    function REMOTE_TOKEN() external view returns (address);

    /**
     * @notice Address of the ERC721 bridge on this network.
     */
    function BRIDGE() external view returns (address);

    /**
     * @notice Chain ID of the chain where the remote token is deployed.
     */
    function remoteChainId() external view returns (uint256);

    /**
     * @notice Address of the token on the remote domain.
     */
    function remoteToken() external view returns (address);

    /**
     * @notice Address of the ERC721 bridge on this network.
     */
    function bridge() external view returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

import {
    PausableUpgradeable
} from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol";

import { Constants } from "../libraries/Constants.sol";
import { Encoding } from "../libraries/Encoding.sol";
import { Hashing } from "../libraries/Hashing.sol";
import { SafeCall } from "../libraries/SafeCall.sol";

/**
 * @custom:upgradeable
 * @title CrossDomainMessenger
 * @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
 *         cross-chain messenger contracts. It's designed to be a universal interface that only
 *         needs to be extended slightly to provide low-level message passing functionality on each
 *         chain it's deployed on. Currently only designed for message passing between two paired
 *         chains and does not support one-to-many interactions.
 *
 *         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
 */
abstract contract CrossDomainMessenger is PausableUpgradeable {
    /**
     * @notice Current message version identifier.
     */
    uint16 public constant MESSAGE_VERSION = 0;

    /**
     * @notice Constant overhead added to the base gas for a message.
     */
    uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;

    /**
     * @notice Numerator for dynamic overhead added to the base gas for a message.
     */
    uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;

    /**
     * @notice Denominator for dynamic overhead added to the base gas for a message.
     */
    uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;

    /**
     * @notice Extra gas added to base gas for each byte of calldata in a message.
     */
    uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;

    /**
     * @notice Gas reserved for performing the external call in `relayMessage`.
     */
    uint64 public constant RELAY_CALL_OVERHEAD = 40_000;

    /**
     * @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
     */
    uint64 public constant RELAY_RESERVED_GAS = 40_000;

    /**
     * @notice Gas reserved for the execution between the `hasMinGas` check and the external
     *         call in `relayMessage`.
     */
    uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;

    /**
     * @notice Address of the paired CrossDomainMessenger contract on the other chain.
     */
    address public immutable OTHER_MESSENGER;

    /**
     * @notice Mapping of message hashes to boolean receipt values. Note that a message will only
     *         be present in this mapping if it has successfully been relayed on this chain, and
     *         can therefore not be relayed again.
     */
    mapping(bytes32 => bool) public successfulMessages;

    /**
     * @notice Address of the sender of the currently executing message on the other chain. If the
     *         value of this variable is the default value (0x00000000...dead) then no message is
     *         currently being executed. Use the xDomainMessageSender getter which will throw an
     *         error if this is the case.
     */
    address internal xDomainMsgSender;

    /**
     * @notice Nonce for the next message to be sent, without the message version applied. Use the
     *         messageNonce getter which will insert the message version into the nonce to give you
     *         the actual nonce to be used for the message.
     */
    uint240 internal msgNonce;

    /**
     * @notice Mapping of message hashes to a boolean if and only if the message has failed to be
     *         executed at least once. A message will not be present in this mapping if it
     *         successfully executed on the first attempt.
     */
    mapping(bytes32 => bool) public failedMessages;

    /**
     * @notice Reserve extra slots in the storage layout for future upgrades.
     *         A gap size of 45 was chosen here, so that the first slot used in a child contract
     *         would be a multiple of 50.
     */
    uint256[45] private __gap;

    /**
     * @notice Emitted whenever a message is sent to the other chain.
     *
     * @param target       Address of the recipient of the message.
     * @param sender       Address of the sender of the message.
     * @param value        ETH value sent along with the message to the recipient.
     * @param message      Message to trigger the recipient address with.
     * @param messageNonce Unique nonce attached to the message.
     * @param gasLimit     Minimum gas limit that the message can be executed with.
     */
    event SentMessage(
        address indexed target,
        address indexed sender,
        uint256 value,
        bytes message,
        uint256 messageNonce,
        uint256 gasLimit
    );

    /**
     * @notice Emitted whenever a message is successfully relayed on this chain.
     *
     * @param msgHash Hash of the message that was relayed.
     */
    event RelayedMessage(bytes32 indexed msgHash);

    /**
     * @notice Emitted whenever a message fails to be relayed on this chain.
     *
     * @param msgHash Hash of the message that failed to be relayed.
     */
    event FailedRelayedMessage(bytes32 indexed msgHash);

    /**
     * @param _otherMessenger Address of the messenger on the paired chain.
     */
    constructor(address _otherMessenger) {
        OTHER_MESSENGER = _otherMessenger;
    }

    /**
     * @notice Sends a message to some target address on the other chain. Note that if the call
     *         always reverts, then the message will be unrelayable, and any ETH sent will be
     *         permanently locked. The same will occur if the target on the other chain is
     *         considered unsafe (see the _isUnsafeTarget() function).
     *
     * @param _target      Target contract or wallet address.
     * @param _message     Message to trigger the target address with.
     * @param _minGasLimit Minimum gas limit that the message can be executed with.
     */
    function sendMessage(
        address _target,
        bytes calldata _message,
        uint32 _minGasLimit
    ) external payable {
        // Triggers a message to the other messenger. Note that the amount of gas provided to the
        // message is the amount of gas requested by the user PLUS the base gas value. We want to
        // guarantee the property that the call to the target contract will always have at least
        // the minimum gas limit specified by the user.
        _sendMessage(
            OTHER_MESSENGER,
            baseGas(_message, _minGasLimit),
            msg.value,
            abi.encodeWithSelector(
                this.relayMessage.selector,
                messageNonce(),
                msg.sender,
                _target,
                msg.value,
                _minGasLimit,
                _message
            )
        );

        emit SentMessage(_target, msg.sender, msg.value, _message, messageNonce(), _minGasLimit);

        unchecked {
            ++msgNonce;
        }
    }

    /**
     * @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
     *         be executed via cross-chain call from the other messenger OR if the message was
     *         already received once and is currently being replayed.
     *
     * @param _nonce       Nonce of the message being relayed.
     * @param _sender      Address of the user who sent the message.
     * @param _target      Address that the message is targeted at.
     * @param _value       ETH value to send with the message.
     * @param _minGasLimit Minimum amount of gas that the message can be executed with.
     * @param _message     Message to send to the target.
     */
    function relayMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _minGasLimit,
        bytes calldata _message
    ) external payable {
        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
        require(
            version < 1,
            "CrossDomainMessenger: only version 0 messages is supported at this time"
        );

        // We use the v0 message hash as the unique identifier for the message because it commits
        // to the value and minimum gas limit of the message.
        bytes32 versionedHash = Hashing.hashCrossDomainMessageV0(
            _nonce,
            _sender,
            _target,
            _value,
            _minGasLimit,
            _message
        );

        if (_isOtherMessenger()) {
            // These properties should always hold when the message is first submitted (as
            // opposed to being replayed).
            assert(msg.value == _value);
            assert(!failedMessages[versionedHash]);
        } else {
            require(
                msg.value == 0,
                "CrossDomainMessenger: value must be zero unless message is from a system address"
            );

            require(
                failedMessages[versionedHash],
                "CrossDomainMessenger: message cannot be replayed"
            );
        }

        require(
            _isUnsafeTarget(_target) == false,
            "CrossDomainMessenger: cannot send message to blocked system address"
        );

        require(
            successfulMessages[versionedHash] == false,
            "CrossDomainMessenger: message has already been relayed"
        );

        // If there is not enough gas left to perform the external call and finish the execution,
        // return early and assign the message to the failedMessages mapping.
        // We are asserting that we have enough gas to:
        // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
        //   1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
        // 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
        //
        // If `xDomainMsgSender` is not the default L2 sender, this function
        // is being re-entered. This marks the message as failed to allow it to be replayed.
        if (
            !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER) ||
            xDomainMsgSender != Constants.DEFAULT_L2_SENDER
        ) {
            failedMessages[versionedHash] = true;
            emit FailedRelayedMessage(versionedHash);

            // Revert in this case if the transaction was triggered by the estimation address. This
            // should only be possible during gas estimation or we have bigger problems. Reverting
            // here will make the behavior of gas estimation change such that the gas limit
            // computed will be the amount required to relay the message, even if that amount is
            // greater than the minimum gas limit specified by the user.
            if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                revert("CrossDomainMessenger: failed to relay message");
            }

            return;
        }

        xDomainMsgSender = _sender;
        bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
        xDomainMsgSender = Constants.DEFAULT_L2_SENDER;

        if (success) {
            successfulMessages[versionedHash] = true;
            emit RelayedMessage(versionedHash);
        } else {
            failedMessages[versionedHash] = true;
            emit FailedRelayedMessage(versionedHash);

            // Revert in this case if the transaction was triggered by the estimation address. This
            // should only be possible during gas estimation or we have bigger problems. Reverting
            // here will make the behavior of gas estimation change such that the gas limit
            // computed will be the amount required to relay the message, even if that amount is
            // greater than the minimum gas limit specified by the user.
            if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                revert("CrossDomainMessenger: failed to relay message");
            }
        }
    }

    /**
     * @notice Retrieves the address of the contract or wallet that initiated the currently
     *         executing message on the other chain. Will throw an error if there is no message
     *         currently being executed. Allows the recipient of a call to see who triggered it.
     *
     * @return Address of the sender of the currently executing message on the other chain.
     */
    function xDomainMessageSender() external view returns (address) {
        require(
            xDomainMsgSender != Constants.DEFAULT_L2_SENDER,
            "CrossDomainMessenger: xDomainMessageSender is not set"
        );

        return xDomainMsgSender;
    }

    /**
     * @notice Retrieves the next message nonce. Message version will be added to the upper two
     *         bytes of the message nonce. Message version allows us to treat messages as having
     *         different structures.
     *
     * @return Nonce of the next message to be sent, with added message version.
     */
    function messageNonce() public view returns (uint256) {
        return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
    }

    /**
     * @notice Computes the amount of gas required to guarantee that a given message will be
     *         received on the other chain without running out of gas. Guaranteeing that a message
     *         will not run out of gas is important because this ensures that a message can always
     *         be replayed on the other chain if it fails to execute completely.
     *
     * @param _message     Message to compute the amount of required gas for.
     * @param _minGasLimit Minimum desired gas limit when message goes to target.
     *
     * @return Amount of gas required to guarantee message receipt.
     */
    function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
        return
            // Constant overhead
            RELAY_CONSTANT_OVERHEAD +
            // Calldata overhead
            (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD) +
            // Dynamic overhead (EIP-150)
            ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) /
                MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR) +
            // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas
            // factors. (Conservative)
            RELAY_CALL_OVERHEAD +
            // Relay reserved gas (to ensure execution of `relayMessage` completes after the
            // subcontext finishes executing) (Conservative)
            RELAY_RESERVED_GAS +
            // Gas reserved for the execution between the `hasMinGas` check and the `CALL`
            // opcode. (Conservative)
            RELAY_GAS_CHECK_BUFFER;
    }

    /**
     * @notice Intializer.
     */
    // solhint-disable-next-line func-name-mixedcase
    function __CrossDomainMessenger_init() internal onlyInitializing {
        xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
    }

    /**
     * @notice Sends a low-level message to the other messenger. Needs to be implemented by child
     *         contracts because the logic for this depends on the network where the messenger is
     *         being deployed.
     *
     * @param _to       Recipient of the message on the other chain.
     * @param _gasLimit Minimum gas limit the message can be executed with.
     * @param _value    Amount of ETH to send with the message.
     * @param _data     Message data.
     */
    function _sendMessage(
        address _to,
        uint64 _gasLimit,
        uint256 _value,
        bytes memory _data
    ) internal virtual;

    /**
     * @notice Checks whether the message is coming from the other messenger. Implemented by child
     *         contracts because the logic for this depends on the network where the messenger is
     *         being deployed.
     *
     * @return Whether the message is coming from the other messenger.
     */
    function _isOtherMessenger() internal view virtual returns (bool);

    /**
     * @notice Checks whether a given call target is a system address that could cause the
     *         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
     *         addresses. This is ONLY used to prevent the execution of messages to specific
     *         system addresses that could cause security issues, e.g., having the
     *         CrossDomainMessenger send messages to itself.
     *
     * @param _target Address of the contract to check.
     *
     * @return Whether or not the address is an unsafe system address.
     */
    function _isUnsafeTarget(address _target) internal view virtual returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    function __Pausable_init() internal onlyInitializing {
        __Pausable_init_unchained();
    }

    function __Pausable_init_unchained() internal onlyInitializing {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        require(!paused(), "Pausable: paused");
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        require(paused(), "Pausable: not paused");
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { ResourceMetering } from "../L1/ResourceMetering.sol";

/**
 * @title Constants
 * @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
 *         the stuff used in multiple contracts. Constants that only apply to a single contract
 *         should be defined in that contract instead.
 */
library Constants {
    /**
     * @notice Special address to be used as the tx origin for gas estimation calls in the
     *         KromaPortal and CrossDomainMessenger calls. You only need to use this address if
     *         the minimum gas limit specified by the user is not actually enough to execute the
     *         given message and you're attempting to estimate the actual necessary gas limit. We
     *         use address(1) because it's the ecrecover precompile and therefore guaranteed to
     *         never have any code on any EVM chain.
     */
    address internal constant ESTIMATION_ADDRESS = address(1);

    /**
     * @notice Value used for the L2 sender storage slot in both the KromaPortal and the
     *         CrossDomainMessenger contracts before an actual sender is set. This value is
     *         non-zero to reduce the gas cost of message passing transactions.
     */
    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;

    /**
     * @notice Returns the default values for the ResourceConfig. These are the recommended values
     *         for a production network.
     */
    function DEFAULT_RESOURCE_CONFIG()
        internal
        pure
        returns (ResourceMetering.ResourceConfig memory)
    {
        ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
            maxResourceLimit: 20_000_000,
            elasticityMultiplier: 10,
            baseFeeMaxChangeDenominator: 8,
            minimumBaseFee: 1 gwei,
            systemTxMaxGas: 1_000_000,
            maximumBaseFee: type(uint128).max
        });
        return config;
    }

    /**
     * @notice The denominator of the validator reward.
     *         DO NOT change this value if the L2 chain is already operational.
     */
    uint256 internal constant VALIDATOR_REWARD_DENOMINATOR = 10000;

    /**
     * @notice An address that identifies that current submission round is a public round.
     */
    address internal constant VALIDATOR_PUBLIC_ROUND_ADDRESS = address(type(uint160).max);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { Hashing } from "./Hashing.sol";
import { Types } from "./Types.sol";
import { RLPWriter } from "./rlp/RLPWriter.sol";

/**
 * @title Encoding
 * @notice Encoding handles Kroma's various different encoding schemes.
 */
library Encoding {
    /**
     * @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
     *         to the L2 system. Useful for searching for a deposit in the L2 system. The
     *         transaction is prefixed with 0x7e to identify its EIP-2718 type.
     *
     * @param _tx User deposit transaction to encode.
     *
     * @return RLP encoded L2 deposit transaction.
     */
    function encodeDepositTransaction(Types.UserDepositTransaction memory _tx)
        internal
        pure
        returns (bytes memory)
    {
        bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
        bytes[] memory raw = new bytes[](7);
        raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
        raw[1] = RLPWriter.writeAddress(_tx.from);
        raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
        raw[3] = RLPWriter.writeUint(_tx.mint);
        raw[4] = RLPWriter.writeUint(_tx.value);
        raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
        raw[6] = RLPWriter.writeBytes(_tx.data);
        return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
    }

    /**
     * @notice Encodes the cross domain message based on the version that is encoded into the
     *         message nonce.
     *
     * @param _nonce    Message nonce with version encoded into the first two bytes.
     * @param _sender   Address of the sender of the message.
     * @param _target   Address of the target of the message.
     * @param _value    ETH value to send to the target.
     * @param _gasLimit Gas limit to use for the message.
     * @param _data     Data to send with the message.
     *
     * @return Encoded cross domain message.
     */
    function encodeCrossDomainMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    ) internal pure returns (bytes memory) {
        (, uint16 version) = decodeVersionedNonce(_nonce);
        if (version == 0) {
            return encodeCrossDomainMessageV0(_nonce, _sender, _target, _value, _gasLimit, _data);
        } else {
            revert("Encoding: unknown cross domain message version");
        }
    }

    /**
     * @notice Encodes a cross domain message based on the V0 (current) encoding.
     *
     * @param _nonce    Message nonce.
     * @param _sender   Address of the sender of the message.
     * @param _target   Address of the target of the message.
     * @param _value    ETH value to send to the target.
     * @param _gasLimit Gas limit to use for the message.
     * @param _data     Data to send with the message.
     *
     * @return Encoded cross domain message.
     */
    function encodeCrossDomainMessageV0(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    ) internal pure returns (bytes memory) {
        return
            abi.encodeWithSignature(
                "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                _nonce,
                _sender,
                _target,
                _value,
                _gasLimit,
                _data
            );
    }

    /**
     * @notice Adds a version number into the first two bytes of a message nonce.
     *
     * @param _nonce   Message nonce to encode into.
     * @param _version Version number to encode into the message nonce.
     *
     * @return Message nonce with version encoded into the first two bytes.
     */
    function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
        uint256 nonce;
        assembly {
            nonce := or(shl(240, _version), _nonce)
        }
        return nonce;
    }

    /**
     * @notice Pulls the version out of a version-encoded nonce.
     *
     * @param _nonce Message nonce with version encoded into the first two bytes.
     *
     * @return Nonce without encoded version.
     * @return Version of the message.
     */
    function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
        uint240 nonce;
        uint16 version;
        assembly {
            nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
            version := shr(240, _nonce)
        }
        return (nonce, version);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { Encoding } from "./Encoding.sol";
import { RLPWriter } from "./rlp/RLPWriter.sol";
import { Types } from "./Types.sol";

/**
 * @title Hashing
 * @notice Hashing handles Kroma's various different hashing schemes.
 */
library Hashing {
    /**
     * @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
     *         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
     *         system.
     *
     * @param _tx User deposit transaction to hash.
     *
     * @return Hash of the RLP encoded L2 deposit transaction.
     */
    function hashDepositTransaction(Types.UserDepositTransaction memory _tx)
        internal
        pure
        returns (bytes32)
    {
        return keccak256(Encoding.encodeDepositTransaction(_tx));
    }

    /**
     * @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
     *         of the L2 transaction that corresponds to a deposit is unique and is
     *         deterministically generated from L1 transaction data.
     *
     * @param _l1BlockHash Hash of the L1 block where the deposit was included.
     * @param _logIndex    The index of the log that created the deposit transaction.
     *
     * @return Hash of the deposit transaction's "source hash".
     */
    function hashDepositSource(bytes32 _l1BlockHash, uint64 _logIndex)
        internal
        pure
        returns (bytes32)
    {
        bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
        return keccak256(abi.encode(bytes32(0), depositId));
    }

    /**
     * @notice Hashes the cross domain message based on the version that is encoded into the
     *         message nonce.
     *
     * @param _nonce    Message nonce with version encoded into the first two bytes.
     * @param _sender   Address of the sender of the message.
     * @param _target   Address of the target of the message.
     * @param _value    ETH value to send to the target.
     * @param _gasLimit Gas limit to use for the message.
     * @param _data     Data to send with the message.
     *
     * @return Hashed cross domain message.
     */
    function hashCrossDomainMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    ) internal pure returns (bytes32) {
        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
        if (version == 0) {
            return hashCrossDomainMessageV0(_nonce, _sender, _target, _value, _gasLimit, _data);
        } else {
            revert("Hashing: unknown cross domain message version");
        }
    }

    /**
     * @notice Hashes a cross domain message based on the V0 (current) encoding.
     *
     * @param _nonce    Message nonce.
     * @param _sender   Address of the sender of the message.
     * @param _target   Address of the target of the message.
     * @param _value    ETH value to send to the target.
     * @param _gasLimit Gas limit to use for the message.
     * @param _data     Data to send with the message.
     *
     * @return Hashed cross domain message.
     */
    function hashCrossDomainMessageV0(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    ) internal pure returns (bytes32) {
        return
            keccak256(
                Encoding.encodeCrossDomainMessageV0(
                    _nonce,
                    _sender,
                    _target,
                    _value,
                    _gasLimit,
                    _data
                )
            );
    }

    /**
     * @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
     *
     * @param _tx Withdrawal transaction to hash.
     *
     * @return Hashed withdrawal transaction.
     */
    function hashWithdrawal(Types.WithdrawalTransaction memory _tx)
        internal
        pure
        returns (bytes32)
    {
        return
            keccak256(
                abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data)
            );
    }

    /**
     * @notice Hashes the various elements of an output root proof into an output root hash which
     *         can be used to check if the proof is valid.
     *
     * @param _outputRootProof Output root proof which should be hashed to an output root.
     *
     * @return Hashed output root proof.
     */
    function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof)
        internal
        pure
        returns (bytes32)
    {
        if (_outputRootProof.version == bytes32(uint256(0))) {
            return hashOutputRootProofV0(_outputRootProof);
        } else {
            revert("Hashing: unknown output root proof version");
        }
    }

    /**
     * @notice Hashes the various elements of an output root proof into an output root hash which
     *         can be used to check if the proof is valid. (version 0)
     *
     * @param _outputRootProof Output root proof which should be hashed to an output root.
     *
     * @return Hashed output root proof.
     */
    function hashOutputRootProofV0(Types.OutputRootProof memory _outputRootProof)
        internal
        pure
        returns (bytes32)
    {
        return
            keccak256(
                abi.encode(
                    _outputRootProof.version,
                    _outputRootProof.stateRoot,
                    _outputRootProof.messagePasserStorageRoot,
                    _outputRootProof.blockHash,
                    _outputRootProof.nextBlockHash
                )
            );
    }

    /**
     * @notice Fills the values of the block hash fields to a given bytes.
     *
     * @param _publicInput Public input which should be hashed to a block hash.
     * @param _rlps        Pre-RLP encoded data which should be hashed to a block hash.
     * @param _raw         An array of bytes to be populated.
     */
    function _fillBlockHashFieldsToBytes(
        Types.PublicInput memory _publicInput,
        Types.BlockHeaderRLP memory _rlps,
        bytes[] memory _raw
    ) private pure {
        _raw[0] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.parentHash));
        _raw[1] = _rlps.uncleHash;
        _raw[2] = _rlps.coinbase;
        _raw[3] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.stateRoot));
        _raw[4] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.transactionsRoot));
        _raw[5] = _rlps.receiptsRoot;
        _raw[6] = _rlps.logsBloom;
        _raw[7] = _rlps.difficulty;
        _raw[8] = RLPWriter.writeUint(_publicInput.number);
        _raw[9] = RLPWriter.writeUint(_publicInput.gasLimit);
        _raw[10] = _rlps.gasUsed;
        _raw[11] = RLPWriter.writeUint(_publicInput.timestamp);
        _raw[12] = _rlps.extraData;
        _raw[13] = _rlps.mixHash;
        _raw[14] = _rlps.nonce;
        _raw[15] = RLPWriter.writeUint(_publicInput.baseFee);
    }

    /**
     * @notice Hashes the various elements of a block header into a block hash(before shanghai).
     *
     * @param _publicInput Public input which should be hashed to a block hash.
     * @param _rlps        Pre-RLP encoded data which should be hashed to a block hash.
     *
     * @return Hashed block header.
     */
    function hashBlockHeader(
        Types.PublicInput memory _publicInput,
        Types.BlockHeaderRLP memory _rlps
    ) internal pure returns (bytes32) {
        bytes[] memory raw = new bytes[](16);
        _fillBlockHashFieldsToBytes(_publicInput, _rlps, raw);
        return keccak256(RLPWriter.writeList(raw));
    }

    /**
     * @notice Hashes the various elements of a block header into a block hash(after shanghai).
     *
     * @param _publicInput Public input which should be hashed to a block hash.
     * @param _rlps        Pre-RLP encoded data which should be hashed to a block hash.
     *
     * @return Hashed block header.
     */
    function hashBlockHeaderShanghai(
        Types.PublicInput memory _publicInput,
        Types.BlockHeaderRLP memory _rlps
    ) internal pure returns (bytes32) {
        bytes[] memory raw = new bytes[](17);
        _fillBlockHashFieldsToBytes(_publicInput, _rlps, raw);
        raw[16] = RLPWriter.writeBytes(abi.encodePacked(_publicInput.withdrawalsRoot));
        return keccak256(RLPWriter.writeList(raw));
    }

    /**
     * @notice Hashes the various elements of a public input into a public input hash.
     *
     * @param _prevStateRoot Previous state root.
     * @param _publicInput   Public input which should be hashed to a public input hash.
     * @param _dummyHashes   Dummy hashes returned from generateDummyHashes().
     *
     * @return Hashed block header.
     */
    function hashPublicInput(
        bytes32 _prevStateRoot,
        Types.PublicInput memory _publicInput,
        bytes32[] memory _dummyHashes
    ) internal pure returns (bytes32) {
        return
            keccak256(
                abi.encodePacked(
                    _prevStateRoot,
                    _publicInput.stateRoot,
                    _publicInput.withdrawalsRoot,
                    _publicInput.blockHash,
                    _publicInput.parentHash,
                    _publicInput.number,
                    _publicInput.timestamp,
                    _publicInput.baseFee,
                    _publicInput.gasLimit,
                    uint16(_publicInput.txHashes.length),
                    _publicInput.txHashes,
                    _dummyHashes
                )
            );
    }

    /**
     * @notice Generates a bytes32 array filled with a dummy hash for the given length.
     *
     * @param _dummyHashes Dummy hash.
     * @param _length      A length of the array.
     *
     * @return Bytes32 array filled with dummy hash.
     */
    function generateDummyHashes(bytes32 _dummyHashes, uint256 _length)
        internal
        pure
        returns (bytes32[] memory)
    {
        bytes32[] memory hashes = new bytes32[](_length);
        for (uint256 i = 0; i < _length; i++) {
            hashes[i] = _dummyHashes;
        }
        return hashes;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

/**
 * @title SafeCall
 * @notice Perform low level safe calls
 */
library SafeCall {
    /**
     * @notice Perform a low level call without copying any returndata
     *
     * @param _target   Address to call
     * @param _gas      Amount of gas to pass to the call
     * @param _value    Amount of value to pass to the call
     * @param _calldata Calldata to pass to the call
     */
    function call(
        address _target,
        uint256 _gas,
        uint256 _value,
        bytes memory _calldata
    ) internal returns (bool) {
        bool _success;
        assembly {
            _success := call(
                _gas, // gas
                _target, // recipient
                _value, // ether value
                add(_calldata, 32), // inloc
                mload(_calldata), // inlen
                0, // outloc
                0 // outlen
            )
        }
        return _success;
    }

    /**
     * @notice Helper function to determine if there is sufficient gas remaining within the context
     *         to guarantee that the minimum gas requirement for a call will be met as well as
     *         optionally reserving a specified amount of gas for after the call has concluded.
     *
     * @param _minGas      The minimum amount of gas that may be passed to the target context.
     * @param _reservedGas Optional amount of gas to reserve for the caller after the execution
     *                     of the target context.
     *
     * @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
     *         context as well as reserve `_reservedGas` for the caller after the execution of
     *         the target context.
     *
     * @dev !!!!! FOOTGUN ALERT !!!!!
     *      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
     *          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
     *          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
     *          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
     *          that does not account for the `memory_expansion_cost` & `code_execution_cost`
     *          factors of the dynamic cost of the `CALL` opcode.
     *      2.) This function should *directly* precede the external call if possible. There is an
     *          added buffer to account for gas consumed between this check and the call, but it
     *          is only 5,700 gas.
     *      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
     *          frame may be passed to a subcontext, we need to ensure that the gas will not be
     *          truncated.
     *      4.) Use wisely. This function is not a silver bullet.
     */
    function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
        bool _hasMinGas;
        assembly {
            // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
            _hasMinGas := iszero(
                lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63)))
            )
        }
        return _hasMinGas;
    }

    /**
     * @notice Perform a low level call without copying any returndata. This function
     *         will revert if the call cannot be performed with the specified minimum
     *         gas.
     *
     * @param _target   Address to call
     * @param _minGas   The minimum amount of gas that may be passed to the call
     * @param _value    Amount of value to pass to the call
     * @param _calldata Calldata to pass to the call
     */
    function callWithMinGas(
        address _target,
        uint256 _minGas,
        uint256 _value,
        bytes memory _calldata
    ) internal returns (bool) {
        bool _success;
        bool _hasMinGas = hasMinGas(_minGas, 0);
        assembly {
            // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
            if iszero(_hasMinGas) {
                // Store the "Error(string)" selector in scratch space.
                mstore(0, 0x08c379a0)
                // Store the pointer to the string length in scratch space.
                mstore(32, 32)
                // Store the string.
                //
                // SAFETY:
                // - We pad the beginning of the string with two zero bytes as well as the
                // length (24) to ensure that we override the free memory pointer at offset
                // 0x40. This is necessary because the free memory pointer is likely to
                // be greater than 1 byte when this function is called, but it is incredibly
                // unlikely that it will be greater than 3 bytes. As for the data within
                // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                // - It's fine to clobber the free memory pointer, we're reverting.
                mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)

                // Revert with 'Error("SafeCall: Not enough gas")'
                revert(28, 100)
            }

            // The call will be supplied at least ((_minGas * 64) / 63 + 40_000 - 49) gas due to the
            // above assertion. This ensures that, in all circumstances (except for when the
            // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
            // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
            // the minimum amount of gas specified.
            _success := call(
                gas(), // gas
                _target, // recipient
                _value, // ether value
                add(_calldata, 32), // inloc
                mload(_calldata), // inlen
                0x00, // outloc
                0x00 // outlen
            )
        }
        return _success;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";

import { Arithmetic } from "../libraries/Arithmetic.sol";
import { Burn } from "../libraries/Burn.sol";

/**
 * @custom:upgradeable
 * @title ResourceMetering
 * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
 *         updates automatically based on current demand.
 */
abstract contract ResourceMetering is Initializable {
    /**
     * @notice Represents the various parameters that control the way in which resources are
     *         metered. Corresponds to the EIP-1559 resource metering system.
     *
     * @custom:field prevBaseFee   Base fee from the previous block(s).
     * @custom:field prevBoughtGas Amount of gas bought so far in the current block.
     * @custom:field prevBlockNum  Last block number that the base fee was updated.
     */
    struct ResourceParams {
        uint128 prevBaseFee;
        uint64 prevBoughtGas;
        uint64 prevBlockNum;
    }

    /**
     * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
     *         market. These values should be set with care as it is possible to set them in
     *         a way that breaks the deposit gas market. The target resource limit is defined as
     *         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
     *         single word. There is additional space for additions in the future.
     *
     * @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
     *                                            can be purchased per block.
     * @custom:field elasticityMultiplier         Determines the target resource limit along with
     *                                            the resource limit.
     * @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
     * @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
     *                                            value.
     * @custom:field systemTxMaxGas               The amount of gas supplied to the system
     *                                            transaction. This should be set to the same number
     *                                            that the kroma-node sets as the gas limit for the
     *                                            system transaction.
     * @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
     *                                            value.
     */
    struct ResourceConfig {
        uint32 maxResourceLimit;
        uint8 elasticityMultiplier;
        uint8 baseFeeMaxChangeDenominator;
        uint32 minimumBaseFee;
        uint32 systemTxMaxGas;
        uint128 maximumBaseFee;
    }

    /**
     * @notice EIP-1559 style gas parameters.
     */
    ResourceParams public params;

    /**
     * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
     */
    uint256[48] private __gap;

    /**
     * @notice Meters access to a function based an amount of a requested resource.
     *
     * @param _amount Amount of the resource requested.
     */
    modifier metered(uint64 _amount) {
        // Record initial gas amount so we can refund for it later.
        uint256 initialGas = gasleft();

        // Run the underlying function.
        _;

        // Run the metering function.
        _metered(_amount, initialGas);
    }

    /**
     * @notice An internal function that holds all of the logic for metering a resource.
     *
     * @param _amount     Amount of the resource requested.
     * @param _initialGas The amount of gas before any modifier execution.
     */
    function _metered(uint64 _amount, uint256 _initialGas) internal {
        // Update block number and base fee if necessary.
        uint256 blockDiff = block.number - params.prevBlockNum;

        ResourceConfig memory config = _resourceConfig();
        int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) /
            int256(uint256(config.elasticityMultiplier));

        if (blockDiff > 0) {
            // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
            // at which deposits can be created and therefore limit the potential for deposits to
            // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
            int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
            int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) /
                (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));

            // Update base fee by adding the base fee delta and clamp the resulting value between
            // min and max.
            int256 newBaseFee = Arithmetic.clamp({
                _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                _min: int256(uint256(config.minimumBaseFee)),
                _max: int256(uint256(config.maximumBaseFee))
            });

            // If we skipped more than one block, we also need to account for every empty block.
            // Empty block means there was no demand for deposits in that block, so we should
            // reflect this lack of demand in the fee.
            if (blockDiff > 1) {
                // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                // between min and max.
                newBaseFee = Arithmetic.clamp({
                    _value: Arithmetic.cdexp({
                        _coefficient: newBaseFee,
                        _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                        _exponent: int256(blockDiff - 1)
                    }),
                    _min: int256(uint256(config.minimumBaseFee)),
                    _max: int256(uint256(config.maximumBaseFee))
                });
            }

            // Update new base fee, reset bought gas, and update block number.
            params.prevBaseFee = uint128(uint256(newBaseFee));
            params.prevBoughtGas = 0;
            params.prevBlockNum = uint64(block.number);
        }

        // Make sure we can actually buy the resource amount requested by the user.
        params.prevBoughtGas += _amount;
        require(
            int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
            "ResourceMetering: cannot buy more gas than available gas limit"
        );

        // Determine the amount of ETH to be paid.
        uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);

        // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
        // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
        // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
        // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
        // during any 1 day period in the last 5 years, so should be fine.
        uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);

        // Give the user a refund based on the amount of gas they used to do all of the work up to
        // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
        // effectively like a dynamic stipend (with a minimum value).
        uint256 usedGas = _initialGas - gasleft();
        if (gasCost > usedGas) {
            Burn.gas(gasCost - usedGas);
        }
    }

    /**
     * @notice Virtual function that returns the resource config. Contracts that inherit this
     *         contract must implement this function.
     *
     * @return ResourceConfig
     */
    function _resourceConfig() internal virtual returns (ResourceConfig memory);

    /**
     * @notice Sets initial resource parameter values. This function must either be called by the
     *         initializer function of an upgradeable child contract.
     */
    // solhint-disable-next-line func-name-mixedcase
    function __ResourceMetering_init() internal onlyInitializing {
        params = ResourceParams({
            prevBaseFee: 1 gwei,
            prevBoughtGas: 0,
            prevBlockNum: uint64(block.number)
        });
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;

/**
 * @title Types
 * @notice Contains various types used throughout the Kroma contract system.
 */
library Types {
    /**
     * @notice CheckpointOutput represents a commitment to the state of L2 checkpoint. The timestamp
     *         is the L1 timestamp that the output root is posted. This timestamp is used to verify
     *         that the finalization period has passed since the output root was submitted.
     *
     * @custom:field submitter     Address of the output submitter.
     * @custom:field outputRoot    Hash of the L2 output.
     * @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
     * @custom:field l2BlockNumber L2 block number that the output corresponds to.
     */
    struct CheckpointOutput {
        address submitter;
        bytes32 outputRoot;
        uint128 timestamp;
        uint128 l2BlockNumber;
    }

    /**
     * @notice Struct representing the elements that are hashed together to generate an output root
     *         which itself represents a snapshot of the L2 state.
     *
     * @custom:field version                  Version of the output root.
     * @custom:field stateRoot                Root of the state trie at the block of this output.
     * @custom:field messagePasserStorageRoot Root of the message passer storage trie.
     * @custom:field blockHash                Hash of the block this output was generated from.
     * @custom:field nextBlockHash            Hash of the next block.
     */
    struct OutputRootProof {
        bytes32 version;
        bytes32 stateRoot;
        bytes32 messagePasserStorageRoot;
        bytes32 blockHash;
        bytes32 nextBlockHash;
    }

    /**
     * @notice Struct representing the elements that are hashed together to generate a public input.
     *
     * @custom:field blockHash        The hash of the block.
     * @custom:field parentHash       The hash of the previous block.
     * @custom:field timestamp        The block time.
     * @custom:field number           The block number.
     * @custom:field gasLimit         Maximum gas allowed.
     * @custom:field baseFee          The base fee per gas.
     * @custom:field transactionsRoot Root hash of the transactions.
     * @custom:field stateRoot        Root hash of the state trie.
     * @custom:field withdrawalsRoot  Root hash of the withdrawals.
     * @custom:field txHashes         Array of hash of the transaction.
     */
    struct PublicInput {
        bytes32 blockHash;
        bytes32 parentHash;
        uint64 timestamp;
        uint64 number;
        uint64 gasLimit;
        uint256 baseFee;
        bytes32 transactionsRoot;
        bytes32 stateRoot;
        bytes32 withdrawalsRoot;
        bytes32[] txHashes;
    }

    /**
     * @notice Struct representing the elements that are hashed together to generate a block hash.
     *         Some of fields that are contained in PublicInput are omitted.
     *
     * @custom:field uncleHash    RLP encoded uncle hash.
     * @custom:field coinbase     RLP encoded coinbase.
     * @custom:field receiptsRoot RLP encoded receipts root.
     * @custom:field logsBloom    RLP encoded logs bloom.
     * @custom:field difficulty   RLP encoded difficulty.
     * @custom:field gasUsed      RLP encoded gas used.
     * @custom:field extraData    RLP encoded extra data.
     * @custom:field mixHash      RLP encoded mix hash.
     * @custom:field nonce        RLP encoded nonce.
     */
    struct BlockHeaderRLP {
        bytes uncleHash;
        bytes coinbase;
        bytes receiptsRoot;
        bytes logsBloom;
        bytes difficulty;
        bytes gasUsed;
        bytes extraData;
        bytes mixHash;
        bytes nonce;
    }

    /**
     * @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
     *         user (as opposed to a system deposit transaction generated by the system).
     *
     * @custom:field from        Address of the sender of the transaction.
     * @custom:field to          Address of the recipient of the transaction.
     * @custom:field isCreation  True if the transaction is a contract creation.
     * @custom:field value       Value to send to the recipient.
     * @custom:field mint        Amount of ETH to mint.
     * @custom:field gasLimit    Gas limit of the transaction.
     * @custom:field data        Data of the transaction.
     * @custom:field l1BlockHash Hash of the block the transaction was submitted in.
     * @custom:field logIndex    Index of the log in the block the transaction was submitted in.
     */
    struct UserDepositTransaction {
        address from;
        address to;
        bool isCreation;
        uint256 value;
        uint256 mint;
        uint64 gasLimit;
        bytes data;
        bytes32 l1BlockHash;
        uint64 logIndex;
    }

    /**
     * @notice Struct representing a withdrawal transaction.
     *
     * @custom:field nonce    Nonce of the withdrawal transaction
     * @custom:field sender   Address of the sender of the transaction.
     * @custom:field target   Address of the recipient of the transaction.
     * @custom:field value    Value to send to the recipient.
     * @custom:field gasLimit Gas limit of the transaction.
     * @custom:field data     Data of the transaction.
     */
    struct WithdrawalTransaction {
        uint256 nonce;
        address sender;
        address target;
        uint256 value;
        uint256 gasLimit;
        bytes data;
    }

    /**
     * @notice Struct representing a challenge.
     *
     * @custom:field turn       The current turn.
     * @custom:field timeoutAt  Timeout timestamp of the next turn.
     * @custom:field asserter   Address of the asserter.
     * @custom:field challenger Address of the challenger.
     * @custom:field segments   Array of the segment.
     * @custom:field segStart   The L2 block number of the first segment.
     * @custom:field segSize    The number of L2 blocks.
     */
    struct Challenge {
        uint8 turn;
        uint64 timeoutAt;
        address asserter;
        address challenger;
        bytes32[] segments;
        uint256 segSize;
        uint256 segStart;
    }

    /**
     * @notice Struct representing a validator's bond.
     *
     * @custom:field amount    Amount of the lock.
     * @custom:field expiresAt The expiration timestamp of bond.
     */
    struct Bond {
        uint128 amount;
        uint128 expiresAt;
    }

    /**
     * @notice Struct representing multisig transaction data.
     *
     * @custom:field destination The destination address to run the transaction.
     * @custom:field executed    Record whether a transaction was executed or not.
     * @custom:field value       The value passed in while executing the transaction.
     * @custom:field data        Calldata for transaction.
     */
    struct MultiSigTransaction {
        address destination;
        bool executed;
        uint256 value;
        bytes data;
    }

    /**
     * @notice Struct representing the data for verifying the public input.
     *
     * @custom:field srcOutputRootProof          Proof of the source output root.
     * @custom:field dstOutputRootProof          Proof of the destination output root.
     * @custom:field publicInput                 Ingredients to compute the public input used by ZK proof verification.
     * @custom:field rlps                        Pre-encoded RLPs to compute the next block hash
     *                                           of the source output root proof.
     * @custom:field l2ToL1MessagePasserBalance  Balance of the L2ToL1MessagePasser account.
     * @custom:field l2ToL1MessagePasserCodeHash Codehash of the L2ToL1MessagePasser account.
     * @custom:field merkleProof                 Merkle proof of L2ToL1MessagePasser account against the state root.
     */
    struct PublicInputProof {
        OutputRootProof srcOutputRootProof;
        OutputRootProof dstOutputRootProof;
        PublicInput publicInput;
        BlockHeaderRLP rlps;
        bytes32 l2ToL1MessagePasserBalance;
        bytes32 l2ToL1MessagePasserCodeHash;
        bytes[] merkleProof;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
 * @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
 * @title RLPWriter
 * @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
 *         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
 *         modifications to improve legibility.
 */
library RLPWriter {
    /**
     * @notice RLP encodes a byte string.
     *
     * @param _in The byte string to encode.
     *
     * @return The RLP encoded string in bytes.
     */
    function writeBytes(bytes memory _in) internal pure returns (bytes memory) {
        bytes memory encoded;

        if (_in.length == 1 && uint8(_in[0]) < 128) {
            encoded = _in;
        } else {
            encoded = abi.encodePacked(_writeLength(_in.length, 128), _in);
        }

        return encoded;
    }

    /**
     * @notice RLP encodes a list of RLP encoded byte byte strings.
     *
     * @param _in The list of RLP encoded byte strings.
     *
     * @return The RLP encoded list of items in bytes.
     */
    function writeList(bytes[] memory _in) internal pure returns (bytes memory) {
        bytes memory list = _flatten(_in);
        return abi.encodePacked(_writeLength(list.length, 192), list);
    }

    /**
     * @notice RLP encodes a string.
     *
     * @param _in The string to encode.
     *
     * @return The RLP encoded string in bytes.
     */
    function writeString(string memory _in) internal pure returns (bytes memory) {
        return writeBytes(bytes(_in));
    }

    /**
     * @notice RLP encodes an address.
     *
     * @param _in The address to encode.
     *
     * @return The RLP encoded address in bytes.
     */
    function writeAddress(address _in) internal pure returns (bytes memory) {
        return writeBytes(abi.encodePacked(_in));
    }

    /**
     * @notice RLP encodes a uint.
     *
     * @param _in The uint256 to encode.
     *
     * @return The RLP encoded uint256 in bytes.
     */
    function writeUint(uint256 _in) internal pure returns (bytes memory) {
        return writeBytes(_toBinary(_in));
    }

    /**
     * @notice RLP encodes a bool.
     *
     * @param _in The bool to encode.
     *
     * @return The RLP encoded bool in bytes.
     */
    function writeBool(bool _in) internal pure returns (bytes memory) {
        bytes memory encoded = new bytes(1);
        encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80));
        return encoded;
    }

    /**
     * @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
     *
     * @param _len    The length of the string or the payload.
     * @param _offset 128 if item is string, 192 if item is list.
     *
     * @return RLP encoded bytes.
     */
    function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) {
        bytes memory encoded;

        if (_len < 56) {
            encoded = new bytes(1);
            encoded[0] = bytes1(uint8(_len) + uint8(_offset));
        } else {
            uint256 lenLen;
            uint256 i = 1;
            while (_len / i != 0) {
                lenLen++;
                i *= 256;
            }

            encoded = new bytes(lenLen + 1);
            encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
            for (i = 1; i <= lenLen; i++) {
                encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256));
            }
        }

        return encoded;
    }

    /**
     * @notice Encode integer in big endian binary form with no leading zeroes.
     *
     * @param _x The integer to encode.
     *
     * @return RLP encoded bytes.
     */
    function _toBinary(uint256 _x) private pure returns (bytes memory) {
        bytes memory b = abi.encodePacked(_x);

        uint256 i = 0;
        for (; i < 32; i++) {
            if (b[i] != 0) {
                break;
            }
        }

        bytes memory res = new bytes(32 - i);
        for (uint256 j = 0; j < res.length; j++) {
            res[j] = b[i++];
        }

        return res;
    }

    /**
     * @custom:attribution https://github.com/Arachnid/solidity-stringutils
     * @notice Copies a piece of memory to another location.
     *
     * @param _dest Destination location.
     * @param _src  Source location.
     * @param _len  Length of memory to copy.
     */
    function _memcpy(
        uint256 _dest,
        uint256 _src,
        uint256 _len
    ) private pure {
        uint256 dest = _dest;
        uint256 src = _src;
        uint256 len = _len;

        for (; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        uint256 mask;
        unchecked {
            mask = 256**(32 - len) - 1;
        }
        assembly {
            let srcpart := and(mload(src), not(mask))
            let destpart := and(mload(dest), mask)
            mstore(dest, or(destpart, srcpart))
        }
    }

    /**
     * @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
     * @notice Flattens a list of byte strings into one byte string.
     *
     * @param _list List of byte strings to flatten.
     *
     * @return The flattened byte string.
     */
    function _flatten(bytes[] memory _list) private pure returns (bytes memory) {
        if (_list.length == 0) {
            return new bytes(0);
        }

        uint256 len;
        uint256 i = 0;
        for (; i < _list.length; i++) {
            len += _list[i].length;
        }

        bytes memory flattened = new bytes(len);
        uint256 flattenedPtr;
        assembly {
            flattenedPtr := add(flattened, 0x20)
        }

        for (i = 0; i < _list.length; i++) {
            bytes memory item = _list[i];

            uint256 listPtr;
            assembly {
                listPtr := add(item, 0x20)
            }

            _memcpy(flattenedPtr, listPtr, item.length);
            flattenedPtr += _list[i].length;
        }

        return flattened;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/Address.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";

/**
 * @title Arithmetic
 * @notice Even more math than before.
 */
library Arithmetic {
    /**
     * @notice Clamps a value between a minimum and maximum.
     *
     * @param _value The value to clamp.
     * @param _min   The minimum value.
     * @param _max   The maximum value.
     *
     * @return The clamped value.
     */
    function clamp(
        int256 _value,
        int256 _min,
        int256 _max
    ) internal pure returns (int256) {
        return SignedMath.min(SignedMath.max(_value, _min), _max);
    }

    /**
     * @notice Clamps a value between a minimum and maximum.
     *
     * @param _value The value to clamp.
     * @param _min   The minimum value.
     * @param _max   The maximum value.
     *
     * @return The clamped value.
     */
    function clamp(
        uint256 _value,
        uint256 _min,
        uint256 _max
    ) internal pure returns (uint256) {
        return Math.min(Math.max(_value, _min), _max);
    }

    /**
     * @notice (c)oefficient (d)enominator (exp)onentiation function.
     *         Returns the result of: c * (1 - 1/d)^exp.
     *
     * @param _coefficient Coefficient of the function.
     * @param _denominator Fractional denominator.
     * @param _exponent    Power function exponent.
     *
     * @return Result of c * (1 - 1/d)^exp.
     */
    function cdexp(
        int256 _coefficient,
        int256 _denominator,
        int256 _exponent
    ) internal pure returns (int256) {
        return
            (_coefficient *
                (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

import { SafeCall } from "./SafeCall.sol";

/**
 * @title Burn
 * @notice Utilities for burning stuff.
 */
library Burn {
    /**
     * Burns a given amount of ETH.
     * Note that execution engine of Kroma does not support SELFDESTRUCT opcode, so it sends ETH to zero address.
     *
     * @param _amount Amount of ETH to burn.
     */
    function eth(uint256 _amount) internal {
        SafeCall.call(address(0), gasleft(), _amount, "");
    }

    /**
     * Burns a given amount of gas.
     *
     * @param _amount Amount of gas to burn.
     */
    function gas(uint256 _amount) internal view {
        uint256 i = 0;
        uint256 initialGas = gasleft();
        while (initialGas - gasleft() < _amount) {
            ++i;
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
        return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
    }

    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is < 0.5 we return zero. This happens when
            // x <= floor(log(0.5e18) * 1e18) ~ -42e18
            if (x <= -42139678854452767551) return 0;

            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
            if (x >= 135305999368893231589) revert("EXP_OVERFLOW");

            // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5**18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // k is in the range [-61, 195].

            // Evaluate using a (6, 7)-term rational approximation.
            // p is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r should be in the range (0.09, 0.25) * 2**96.

            // We now need to multiply r by:
            // * the scale factor s = ~6.031367120.
            // * the 2**k factor from the range reduction.
            // * the 1e18 / 2**96 factor for base conversion.
            // We do this all at once, with an intermediate result in 2**213
            // basis, so the final right shift is always by a positive amount.
            r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
        }
    }

    function lnWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            require(x > 0, "UNDEFINED");

            // We want to convert x from 10**18 fixed point to 2**96 fixed point.
            // We do this by multiplying by 2**96 / 10**18. But since
            // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
            // and add ln(2**96 / 10**18) at the end.

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            int256 k = int256(log2(uint256(x))) - 96;
            x <<= uint256(159 - k);
            x = int256(uint256(x) >> 159);

            // Evaluate using a (8, 8)-term rational approximation.
            // p is made monic, we will multiply by a scale factor later.
            int256 p = x + 3273285459638523848632254066296;
            p = ((p * x) >> 96) + 24828157081833163892658089445524;
            p = ((p * x) >> 96) + 43456485725739037958740375743393;
            p = ((p * x) >> 96) - 11111509109440967052023855526967;
            p = ((p * x) >> 96) - 45023709667254063763336534515857;
            p = ((p * x) >> 96) - 14706773417378608786704636184526;
            p = p * x - (795164235651350426258249787498 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            // q is monic by convention.
            int256 q = x + 5573035233440673466300451813936;
            q = ((q * x) >> 96) + 71694874799317883764090561454958;
            q = ((q * x) >> 96) + 283447036172924575727196451306956;
            q = ((q * x) >> 96) + 401686690394027663651624208769553;
            q = ((q * x) >> 96) + 204048457590392012362485061816622;
            q = ((q * x) >> 96) + 31853899698501571402653359427138;
            q = ((q * x) >> 96) + 909429971244387300277376558375;
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial is known not to have zeros in the domain.
                // No scaling required because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r is in the range (0, 0.125) * 2**96

            // Finalization, we need to:
            // * multiply by the scale factor s = 5.549…
            // * add ln(2**96 / 10**18)
            // * add k * ln(2)
            // * multiply by 10**18 / 2**96 = 5**18 >> 78

            // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
            r *= 1677202110996718588342820967067443963516166;
            // add ln(2) * k * 5e18 * 2**192
            r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
            // add ln(2**96 / 10**18) * 5e18 * 2**192
            r += 600920179829731861736702779321621459595472258049074101567377883020018308;
            // base conversion: mul 2**18 / 2**192
            r >>= 174;
        }
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // Divide z by the denominator.
            z := div(z, denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // First, divide z - 1 by the denominator and add 1.
            // We allow z - 1 to underflow if z is 0, because we multiply the
            // end result by 0 if z is zero, ensuring we return 0 if z is zero.
            z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function log2(uint256 x) internal pure returns (uint256 r) {
        require(x > 0, "UNDEFINED");

        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            r := or(r, shl(2, lt(0xf, shr(r, x))))
            r := or(r, shl(1, lt(0x3, shr(r, x))))
            r := or(r, lt(0x1, shr(r, x)))
        }
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):