ETH Price: $3,474.74 (+2.17%)

Contract Diff Checker

Contract Name:
Coliseum

Contract Source Code:

// SPDX-License-Identifier: MIT

/* @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@&#BG5G#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@&BG555GYB#P#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@#P55YGBBGPG@&PB@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@&B5YPBG5BB&#P@@@&5PGB@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@BYYPYGYGP@@@B5BBBGGPYYB@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@PJJ5G5B5B5BPPPPPPPPPP55G@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@57YYG@5BBP5P5PP5GGGPPGP5P@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G!?JYBGY5P55GGPPGGPPGYBG#5G@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@P~5PYY555PPPPP5YBYY#@GBB&&5#&#BB&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G!YJY55YY5YPYY#PBP5#&555##GGBPPJ5#@@@@#&#B&G#########&&&&&@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G7JYJY55YYJGP5BYYGGGGPGPGGGGGGG55YB###B##BBB&&&##@@@#PGB&&###&&&@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G7?J5Y55P5JYPPPPPGGGGGPGBBBB#BBP5BG#####B###BB##P&@@&GGP&@@@&YG####&@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@?!JYY5YYPPPPGGGPG#BBGBB#BGY?J5#G55###&BGB&#B##BGP@###@@P#####GG#@BBG##&@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@Y?JYJ55PPGPBBG5GBPP7^J#PY!:.:5#G#5G5J5#B#Y!~7P#BG##&#@&G#G5G#@BG&PGG@B5B@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G?Y555PPP5GP5J^PP5J..5#G5^.::G#B&&7.^~Y#Y!J?^^5BGGB@BYG#&BPB@&###GB#BGPP&@@@@@@@@@@@@@
@@@@@@@@@@@@@&JJJYYY5Y57P5P7:BBPJ..YBG5^::^PPP#&P~GB5GY&@@G^P#B&Y#!.!PB^?GB5G#G#&##BGY&@@@@@@@@@@@@@
@@@@@@@@@@@@@#7?JY55PPP75PP?~55P5JY55PBGGBBPPP#####BGGYPGBPPPBB&B#7^7GB.!G5^YP!555PPG5#@@@@@@@@@@@@@
@@@@@@@@@@@@@@5JYYY5Y5G5YPBBGPPBBBBGPGGBGBGGGGGBBBBBBBP5@@@G&@@@@@@@&P#:!BP:5G7PY55YJ7#@@@@@@@@@@@@@
@@@@@@@@@@@@@@J?JY5G5PGGPPGGGGPGGGBGGGBBBB#BGG####B#GGP5###G#&#&&&&&#P#GBBBPGB5GPPP557#@@@@@@@@@@@@@
@@@@@@@@@@@@@#?5PPPPPPPGPGBGGGG#BPPBB##G5JPBB&&PJ?JGB#B5GGB&#G##GB&BPP###B###B#BBBGGP?B@@@@@@@@@@@@@
@@@@@@@@@@@@@@YJYY55P55YGPPJ~GB5Y^:J#G57..^Y#BY:...!5#PJ::^?BBP^:^5BBG&7J##?G#YGGPGGGYB@@@@@@@@@@@@@
@@@@@@@@@@@@@@5JYY5YP557P55~:GG5J.:Y#P5^:::G#BJ:::.~B#B#?.::Y#J.:.?GBGG.!BP:5G7GY5P5Y?B@@@@@@@@@@@@@
@@@@@@@@&&&&&&YJY55PGPP7PPP!:BBPJ::5#GP~:::B#BJ:::.~##B&@!.:5#Y.::JGB#P.!BP:5G7PY555YJB&&&&&@@@@@@@@
@@@@@@@@&&&&&&BPPP5P55P?55P!:GGPJ..Y#GP^..:B#BJ....~##B&@#~:5#J...?GGB#!?GP?PG5GGBBB##&&&&&@@@@@@@@@
@@@@@@@@@@@@&&&&&&&&####BBBBGGGGPYYPPPPJ???PPPY777!?GPGB##PJPGP555GBBBB####&&&&&&&&&&&&@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@&&&&&&&&&&&&&&&####&&&#################&###&&&&&&&&&&&&&&&&&@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@R@@@ */

pragma solidity ^0.8.13;

import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "./src/DefaultOperatorFilterer.sol";
import "./ColiseumReservations.sol";
import "./ColiseumReservationsNormal.sol";
import "./ERC721A.sol";
import "./IERC721A.sol";

contract Coliseum is
    ERC721A,
    Ownable,
    ReentrancyGuard,
    DefaultOperatorFilterer
{
    using Strings for uint256;
    using SafeMath for uint256;

    error MaxSupplyExceeded();
    error NotAllowlisted();
    error MaxPerWalletExceeded();
    error InsufficientValue();
    error PreSaleNotActive();
    error PublicSaleNotActive();
    error NoContracts();
    error NotReserved();
    error SettingMaxSupplyIsFrozen();
    error SoulBoundTokensMayOnlyBeBurned();
    error NotAController();
    error SaleSupplyExceeded();
    error LockedUpPeriodNotOverForToken();
    error PreSaleReservationAlreadyClaimed();
    error PreSaleAlreadyClaimed();
    error NormalReservationAlreadyClaimed();
    error NormalAlreadyClaimed();
    error HighTierAlreadyClaimed();
    error LocksAreFrozen();
    error NotAnOwner();

    ColiseumReservations public reservationContract =
        ColiseumReservations(0x262428D0F12366a486dA19A123FAb4528B6a2bf4);

    ColiseumReservationsNormal public reservationNormalContract =
        ColiseumReservationsNormal(0xcE7f5ABB916b2fcC9505f58aA988cA0C4ED6E34B);

    uint256 public totalReservedPreSale;
    uint256 public totalReservedNormalSale;
    uint256 public presaleCost = 0.5 ether;
    uint256 public normalCost = 0.5 ether;
    uint256 public highTierCost = 3 ether;
    uint256 public publicCost = 3 ether;
    uint256 public deployTime;
    uint256 public deadlineTime;
    uint256 public deployTimeLater;
    uint256 public deadlineTimeLater;
    uint256 public presaleMintedAmount = 0;
    uint256 public normalMintedAmount = 0;
    uint256 public highTierMintedAmount = 0;
    uint256 public soulBoundedAmount = 0;

    uint16 public maxSupplyForPresale = 205;
    uint16 public maxSupplyForNormal = 205;
    uint16 public maxSupplyForHighTier = 123;
    uint16 public maxSupply = 533;

    uint8 public maxMintAmount = 2;

    string private _baseTokenURI =
        "https://nftstorage.link/ipfs/bafybeicksu2nga5i2kwuc5wu2ovbsouwsaisgdyp2rhtrkfu7augoen76y/";

    bool public presaleActive;
    bool public normalActive;
    bool public highTierActive;
    bool public publicSaleActive;
    bool public LocksFrozen;

    bool public soulBoundLockActive = true;
    bool public setMaxSupplyFrozen;

    mapping(address => bool) private _controller;

    mapping(address => bool) private _preSaleReservationClaimed;
    mapping(address => bool) private _normalReservationClaimed;
    mapping(address => bool) private _preSaleClaimed;
    mapping(address => bool) private _normalClaimed;
    mapping(address => bool) private _highTierClaimed;

    mapping(uint256 => bool) private _lockedTokenId;
    mapping(uint256 => bool) private _lockedTokenIdLater;

    bytes32 private presaleMerkleRoot;
    bytes32 private normalMerkleRoot;
    bytes32 private highTierMerkleRoot;

    mapping(uint256 => address) private _soulBoundList;

    mapping(address => uint8) private _amountAddressSoulbounded;
    mapping(uint256 => uint8) private _tokenToTier;

    constructor() ERC721A("Coliseum", "COLISEUM") {
        _mint(msg.sender, 1);
        _tokenToTier[1] = 1;
        deployTime = block.timestamp;
        deadlineTime = 201600;
    }

    modifier onlyController() {
        if (_controller[msg.sender] == false) revert NotAController();
        _;
    }

    modifier callerIsUser() {
        if (msg.sender != tx.origin) revert NoContracts();
        _;
    }

    function freezeSetMaxSupply() external onlyOwner {
        setMaxSupplyFrozen = true;
    }

    function setMaxSupply(uint16 _maxSupply) external onlyOwner {
        if (setMaxSupplyFrozen == true) revert SettingMaxSupplyIsFrozen();
        maxSupply = _maxSupply;
    }

    function setToNormalReservationAmountOfContract() external onlyOwner {
        totalReservedNormalSale = reservationNormalContract.reservedCounter();
    }

    function setToPresaleReservationAmountOfContract() external onlyOwner {
        totalReservedPreSale = reservationNormalContract.reservedCounter();
    }

    function setToNormalReservationAmount(uint256 _amount) external onlyOwner {
        totalReservedNormalSale = _amount;
    }

    function setToPresaleReservationAmount(uint256 _amount) external onlyOwner {
        totalReservedPreSale = _amount;
    }

    function setMaxSupplyForPresale(
        uint16 _maxSupplyForPresale
    ) external onlyOwner {
        maxSupplyForPresale = _maxSupplyForPresale;
    }

    function setMaxSupplyForNormalMint(
        uint16 _maxSupplyForNormal
    ) external onlyOwner {
        maxSupplyForNormal = _maxSupplyForNormal;
    }

    function setMaxSupplyForHighTierMint(
        uint16 _maxSupplyForHighTier
    ) external onlyOwner {
        maxSupplyForHighTier = _maxSupplyForHighTier;
    }

    function setPreSaleCost(uint256 _newPreSaleCost) external onlyOwner {
        presaleCost = _newPreSaleCost;
    }

    function setNormalCost(uint256 _newNormalCost) external onlyOwner {
        normalCost = _newNormalCost;
    }

    function setHighTierCost(uint256 _newHighTierCost) external onlyOwner {
        highTierCost = _newHighTierCost;
    }

    function setPublicSaleCost(uint256 _newPublicCost) external onlyOwner {
        publicCost = _newPublicCost;
    }

    function setReservationContractPreSale(
        ColiseumReservations _contractAddress
    ) external onlyOwner {
        reservationContract = _contractAddress;
    }

    function setReservationContractNormal(
        ColiseumReservationsNormal _contractAddress
    ) external onlyOwner {
        reservationNormalContract = _contractAddress;
    }

    function setTierForTokens(
        uint256[] calldata _tokenIds,
        uint8 _tokenTier
    ) external onlyController {
        for (uint256 i = 0; i < _tokenIds.length; i++) {
            _tokenToTier[_tokenIds[i]] = _tokenTier;
        }
    }

    function setTierForToken(
        uint256 _tokenId,
        uint8 _tokenTier
    ) external onlyController {
        _tokenToTier[_tokenId] = _tokenTier;
    }

    function setTiersForTokens(
        uint256[] calldata _tokenIds,
        uint8[] calldata _tokenTier
    ) external onlyController {
        for (uint256 i = 0; i < _tokenIds.length; i++) {
            _tokenToTier[_tokenIds[i]] = _tokenTier[i];
        }
    }

    function presaleReservedMint() external callerIsUser {
        if (!presaleActive) revert PreSaleNotActive();
        if (reservationContract.userReserved(msg.sender) == false)
            revert NotReserved();
        if (presaleMintedAmount + 2 > maxSupplyForPresale)
            revert SaleSupplyExceeded();
        if (totalSupply() - soulBoundedAmount + 2 > maxSupply)
            revert MaxSupplyExceeded();
        if (_preSaleReservationClaimed[msg.sender])
            revert PreSaleReservationAlreadyClaimed();

        _preSaleReservationClaimed[msg.sender] = true;

        _mint(msg.sender, 2);
        presaleMintedAmount += 2;
        _lockedTokenId[totalMinted()] = true;
        _tokenToTier[totalMinted() - 1] = 2;
        _tokenToTier[totalMinted()] = 2;
    }

    function presaleMint(
        bytes32[] calldata _proof
    ) external payable callerIsUser {
        if (!presaleActive) revert PreSaleNotActive();
        if (
            presaleMintedAmount + 2 >
            maxSupplyForPresale - (totalReservedPreSale * 2)
        ) revert SaleSupplyExceeded();
        if (totalSupply() - soulBoundedAmount + 2 > maxSupply)
            revert MaxSupplyExceeded();
        if (
            !MerkleProof.verify(
                _proof,
                presaleMerkleRoot,
                keccak256(abi.encodePacked(msg.sender))
            )
        ) revert NotAllowlisted();
        if (msg.value != presaleCost) revert InsufficientValue();
        if (_preSaleClaimed[msg.sender]) revert PreSaleAlreadyClaimed();

        _preSaleClaimed[msg.sender] = true;
        _mint(msg.sender, 2);

        _lockedTokenIdLater[totalMinted()] = true;
        _lockedTokenIdLater[totalMinted() - 1] = true;
        _tokenToTier[totalMinted() - 1] = 2;
        _tokenToTier[totalMinted()] = 2;
    }

    function normalReservedMint() external callerIsUser {
        if (!normalActive) revert PreSaleNotActive();
        if (reservationNormalContract.userReserved(msg.sender) == false)
            revert NotReserved();
        if (
            normalMintedAmount + 1 >
            maxSupplyForNormal - totalReservedNormalSale
        ) revert SaleSupplyExceeded();
        if (totalSupply() - soulBoundedAmount + 1 > maxSupply)
            revert MaxSupplyExceeded();
        if (_normalReservationClaimed[msg.sender])
            revert NormalReservationAlreadyClaimed();

        _normalReservationClaimed[msg.sender] = true;
        normalMintedAmount++;

        _mint(msg.sender, 1);

        _tokenToTier[totalMinted()] = 2;
    }

    function normalMint(
        bytes32[] calldata _proof
    ) external payable callerIsUser {
        if (!normalActive) revert PreSaleNotActive();
        if (normalMintedAmount + 1 > maxSupplyForNormal)
            revert SaleSupplyExceeded();
        if (totalSupply() - soulBoundedAmount + 1 > maxSupply)
            revert MaxSupplyExceeded();
        if (
            !MerkleProof.verify(
                _proof,
                normalMerkleRoot,
                keccak256(abi.encodePacked(msg.sender))
            )
        ) revert NotAllowlisted();
        if (msg.value != normalCost) revert InsufficientValue();
        if (_normalClaimed[msg.sender]) revert NormalAlreadyClaimed();

        _normalClaimed[msg.sender] = true;

        normalMintedAmount++;
        _mint(msg.sender, 1);

        _lockedTokenIdLater[totalMinted()] = true;
        _tokenToTier[totalMinted()] = 2;
    }

    function highTierMint(
        bytes32[] calldata _proof
    ) external payable callerIsUser {
        if (!highTierActive) revert PreSaleNotActive();
        if (highTierMintedAmount + 1 > maxSupplyForHighTier)
            revert SaleSupplyExceeded();
        if (totalSupply() - soulBoundedAmount + 1 > maxSupply)
            revert MaxSupplyExceeded();
        if (
            !MerkleProof.verify(
                _proof,
                highTierMerkleRoot,
                keccak256(abi.encodePacked(msg.sender))
            )
        ) revert NotAllowlisted();
        if (msg.value != highTierCost) revert InsufficientValue();
        if (_highTierClaimed[msg.sender]) revert HighTierAlreadyClaimed();

        _highTierClaimed[msg.sender] = true;

        highTierMintedAmount++;
        _mint(msg.sender, 1);

        _lockedTokenIdLater[totalMinted()] = true;
        _tokenToTier[totalMinted()] = 1;
    }

    function mint(uint8 _amount) external payable callerIsUser {
        if (!publicSaleActive) revert PublicSaleNotActive();
        if (totalSupply() - soulBoundedAmount + _amount > maxSupply)
            revert MaxSupplyExceeded();

        if (_numberMinted(msg.sender) + _amount > maxMintAmount)
            revert MaxPerWalletExceeded();

        if (msg.value != publicCost * _amount) revert InsufficientValue();

        _mint(msg.sender, _amount);
        _lockedTokenIdLater[totalMinted()] = true;
    }

    function airDrop(address[] calldata targets) external {
        require(
            (_controller[msg.sender] == true) || (owner() == _msgSender()),
            "Caller is not authorized"
        );
        if (targets.length + totalSupply() - soulBoundedAmount > maxSupply)
            revert MaxSupplyExceeded();

        for (uint256 i = 0; i < targets.length; i++) {
            _mint(targets[i], 1);
            _tokenToTier[totalMinted()] = 2;
        }
    }

    function airDropAndSoulbound(
        address[] calldata targets
    ) external onlyOwner {
        for (uint256 i = 0; i < targets.length; i++) {
            soulBoundedAmount++;
            _amountAddressSoulbounded[targets[i]] += 1;
            _mint(targets[i], 1);
            _soulBoundList[totalMinted()] = targets[i];
        }
    }

    function soulboundTokensToAddresses(
        uint256[] calldata tokenIds,
        address[] calldata targets
    ) external onlyOwner {
        for (uint256 i = 0; i < targets.length; i++) {
            if (targets[i] != ownerOf(tokenIds[i])) revert NotAnOwner();
            if (_soulBoundList[tokenIds[i]] == address(0)) {
                _soulBoundList[tokenIds[i]] = targets[i];
                _amountAddressSoulbounded[targets[i]] += 1;
                soulBoundedAmount++;
            }
        }
    }

    function unSoulboundTokens(uint256[] calldata tokenIds) external onlyOwner {
        for (uint256 i = 0; i < tokenIds.length; i++) {
            if (_soulBoundList[tokenIds[i]] != address(0)) {
                _amountAddressSoulbounded[_soulBoundList[tokenIds[i]]] -= 1;
                _soulBoundList[tokenIds[i]] = address(0);
                soulBoundedAmount--;
            }
        }
    }

    function hasUserSoulbounded(address _user) public view returns (bool) {
        bool result = false;
        for (uint256 i = 1; i <= totalMinted(); i++) {
            if (_soulBoundList[i] == _user) {
                result = true;
            }
        }
        return result;
    }

    function getSoulboundTokensOfUser(
        address _user
    ) public view returns (uint256[] memory) {
        uint256[] memory tokenIds = new uint256[](totalMinted());
        uint256 tokenCount = 0;
        for (uint256 i = 1; i <= totalMinted(); i++) {
            if (_soulBoundList[i] == _user) {
                tokenIds[tokenCount] = i;
                tokenCount++;
            }
        }
        uint256[] memory result = new uint256[](tokenCount);
        for (uint256 j = 0; j < tokenCount; j++) {
            result[j] = tokenIds[j];
        }
        return result;
    }

    function getAllSoulboundedTokens() public view returns (uint256[] memory) {
        uint256[] memory tokenIds = new uint256[](totalMinted());
        uint256 tokenCount = 0;
        for (uint256 i = 1; i <= totalMinted(); i++) {
            if (_soulBoundList[i] != address(0)) {
                tokenIds[tokenCount] = i;
                tokenCount++;
            }
        }
        uint256[] memory result = new uint256[](tokenCount);
        for (uint256 j = 0; j < tokenCount; j++) {
            result[j] = tokenIds[j];
        }
        return result;
    }

    function burn(uint256[] calldata tokenIds) external onlyController {
        for (uint256 i = 0; i < tokenIds.length; i++) {
            _soulBoundList[i] = address(0);
            _burn(tokenIds[i]);
        }
    }

    function setMaxMintAmount(uint8 _maxMintAmount) external onlyOwner {
        maxMintAmount = _maxMintAmount;
    }

    function _baseURI() internal view virtual override returns (string memory) {
        return _baseTokenURI;
    }

    function setBaseURI(string calldata baseURI) external onlyOwner {
        _baseTokenURI = baseURI;
    }

    function togglePublicSale() external onlyOwner {
        publicSaleActive = !publicSaleActive;
    }

    function togglePresale() external onlyOwner {
        presaleActive = !presaleActive;
    }

    function toggleNormal() external onlyOwner {
        normalActive = !normalActive;
    }

    function toggleHighTier() external onlyOwner {
        highTierActive = !highTierActive;
    }

    function toggleSoulboundLock() external onlyOwner {
        soulBoundLockActive = !soulBoundLockActive;
    }

    function addControllers(address[] calldata _addresses) external onlyOwner {
        for (uint256 i = 0; i < _addresses.length; i++) {
            _controller[_addresses[i]] = true;
        }
    }

    function removeControllers(
        address[] calldata _addresses
    ) external onlyOwner {
        for (uint256 i = 0; i < _addresses.length; i++) {
            _controller[_addresses[i]] = false;
        }
    }

    function isController(address _address) external view returns (bool) {
        return _controller[_address];
    }

    function setPreSaleMerkleRoot(bytes32 _newMerkleRoot) external onlyOwner {
        presaleMerkleRoot = _newMerkleRoot;
    }

    function setNormalMerkleRoot(bytes32 _newMerkleRoot) external onlyOwner {
        normalMerkleRoot = _newMerkleRoot;
    }

    function setHighTierMerkleRoot(bytes32 _newMerkleRoot) external onlyOwner {
        highTierMerkleRoot = _newMerkleRoot;
    }

    function getSoulboundAmount(address _user) external view returns (uint256) {
        return _amountAddressSoulbounded[_user];
    }

    function isPreSaleValid(
        address _user,
        bytes32[] calldata _proof
    ) external view returns (bool) {
        return
            MerkleProof.verify(
                _proof,
                presaleMerkleRoot,
                keccak256(abi.encodePacked(_user))
            );
    }

    function isNormalValid(
        address _user,
        bytes32[] calldata _proof
    ) external view returns (bool) {
        return
            MerkleProof.verify(
                _proof,
                normalMerkleRoot,
                keccak256(abi.encodePacked(_user))
            );
    }

    function isHighTierValid(
        address _user,
        bytes32[] calldata _proof
    ) external view returns (bool) {
        return
            MerkleProof.verify(
                _proof,
                highTierMerkleRoot,
                keccak256(abi.encodePacked(_user))
            );
    }

    function getTokenTier(uint256 _tokenId) public view returns (uint8) {
        return _tokenToTier[_tokenId];
    }

    function freezeLock() external onlyOwner {
        if (LocksFrozen) revert LocksAreFrozen();
        LocksFrozen = true;
    }

    function setLock(
        uint256 _delayTime,
        bool _updateDeployTime
    ) external onlyOwner {
        if (LocksFrozen) revert LocksAreFrozen();
        if (_updateDeployTime) {
            deployTime = block.timestamp;
            deadlineTime = _delayTime;
        } else {
            deadlineTime = _delayTime;
        }
    }

    function setLockForLater(
        uint256 _delayTime,
        bool _updateDeployTime
    ) external onlyOwner {
        if (LocksFrozen) revert LocksAreFrozen();
        if (_updateDeployTime) {
            deployTimeLater = block.timestamp;
            deadlineTimeLater = _delayTime;
        } else {
            deadlineTimeLater = _delayTime;
        }
    }

    function hasClaimedPreSaleReservation(
        address _user
    ) public view returns (bool) {
        return _preSaleReservationClaimed[_user];
    }

    function hasClaimedPreSaleMint(address _user) public view returns (bool) {
        return _preSaleClaimed[_user];
    }

    function hasClaimedNormalReservation(
        address _user
    ) public view returns (bool) {
        return _normalReservationClaimed[_user];
    }

    function hasClaimedNormalMint(address _user) public view returns (bool) {
        return _normalClaimed[_user];
    }

    function hasClaimedHighTierMint(address _user) public view returns (bool) {
        return _highTierClaimed[_user];
    }

    function islockedTokenId(uint256 _tokenId) public view returns (bool) {
        if (_lockedTokenId[_tokenId] == false) {
            return false;
        } else {
            if (deployTime + deadlineTime > block.timestamp) {
                return true;
            } else {
                return false;
            }
        }
    }

    function islockedTokenIdForLater(
        uint256 _tokenId
    ) public view returns (bool) {
        if (_lockedTokenIdLater[_tokenId] == false) {
            return false;
        } else {
            if (deployTimeLater + deadlineTimeLater > block.timestamp) {
                return true;
            } else {
                return false;
            }
        }
    }

    function _beforeTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal virtual override {
        if (soulBoundLockActive) {
            if (_soulBoundList[startTokenId] != address(0)) {
                if (!_controller[msg.sender]) {
                    if (to != address(0))
                        revert SoulBoundTokensMayOnlyBeBurned();
                }
            }
        }
    }

    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable override onlyAllowedOperator(from) {
        if (_lockedTokenId[tokenId]) {
            if (deployTime + deadlineTime > block.timestamp)
                revert LockedUpPeriodNotOverForToken();
            _lockedTokenId[tokenId] = false;
        }
        if (_lockedTokenIdLater[tokenId]) {
            if (deployTimeLater + deadlineTimeLater > block.timestamp)
                revert LockedUpPeriodNotOverForToken();
            _lockedTokenIdLater[tokenId] = false;
        }
        super.transferFrom(from, to, tokenId);
    }

    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable override onlyAllowedOperator(from) {
        if (_lockedTokenId[tokenId]) {
            if (deployTime + deadlineTime > block.timestamp)
                revert LockedUpPeriodNotOverForToken();
            _lockedTokenId[tokenId] = false;
        }
        if (_lockedTokenIdLater[tokenId]) {
            if (deployTimeLater + deadlineTimeLater > block.timestamp)
                revert LockedUpPeriodNotOverForToken();
            _lockedTokenIdLater[tokenId] = false;
        }
        super.safeTransferFrom(from, to, tokenId);
    }

    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) public payable override onlyAllowedOperator(from) {
        if (_lockedTokenId[tokenId]) {
            if (deployTime + deadlineTime > block.timestamp)
                revert LockedUpPeriodNotOverForToken();
            _lockedTokenId[tokenId] = false;
        }
        if (_lockedTokenIdLater[tokenId]) {
            if (deployTimeLater + deadlineTimeLater > block.timestamp)
                revert LockedUpPeriodNotOverForToken();
            _lockedTokenIdLater[tokenId] = false;
        }
        super.safeTransferFrom(from, to, tokenId, data);
    }

    function withdraw() external onlyOwner nonReentrant {
        uint256 balance = address(this).balance;
        payable(msg.sender).transfer(balance);
    }
}

// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

/**
 * @dev Interface of ERC721A.
 */
interface IERC721A {
    /**
     * The caller must own the token or be an approved operator.
     */
    error ApprovalCallerNotOwnerNorApproved();

    /**
     * The token does not exist.
     */
    error ApprovalQueryForNonexistentToken();

    /**
     * Cannot query the balance for the zero address.
     */
    error BalanceQueryForZeroAddress();

    /**
     * Cannot mint to the zero address.
     */
    error MintToZeroAddress();

    /**
     * The quantity of tokens minted must be more than zero.
     */
    error MintZeroQuantity();

    /**
     * The token does not exist.
     */
    error OwnerQueryForNonexistentToken();

    /**
     * The caller must own the token or be an approved operator.
     */
    error TransferCallerNotOwnerNorApproved();

    /**
     * The token must be owned by `from`.
     */
    error TransferFromIncorrectOwner();

    /**
     * Cannot safely transfer to a contract that does not implement the
     * ERC721Receiver interface.
     */
    error TransferToNonERC721ReceiverImplementer();

    /**
     * Cannot transfer to the zero address.
     */
    error TransferToZeroAddress();

    /**
     * The token does not exist.
     */
    error URIQueryForNonexistentToken();

    /**
     * The `quantity` minted with ERC2309 exceeds the safety limit.
     */
    error MintERC2309QuantityExceedsLimit();

    /**
     * The `extraData` cannot be set on an unintialized ownership slot.
     */
    error OwnershipNotInitializedForExtraData();

    // =============================================================
    //                            STRUCTS
    // =============================================================

    struct TokenOwnership {
        // The address of the owner.
        address addr;
        // Stores the start time of ownership with minimal overhead for tokenomics.
        uint64 startTimestamp;
        // Whether the token has been burned.
        bool burned;
        // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
        uint24 extraData;
    }

    // =============================================================
    //                         TOKEN COUNTERS
    // =============================================================

    /**
     * @dev Returns the total number of tokens in existence.
     * Burned tokens will reduce the count.
     * To get the total number of tokens minted, please see {_totalMinted}.
     */
    function totalSupply() external view returns (uint256);

    // =============================================================
    //                            IERC165
    // =============================================================

    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);

    // =============================================================
    //                            IERC721
    // =============================================================

    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(
        address indexed from,
        address indexed to,
        uint256 indexed tokenId
    );

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(
        address indexed owner,
        address indexed approved,
        uint256 indexed tokenId
    );

    /**
     * @dev Emitted when `owner` enables or disables
     * (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(
        address indexed owner,
        address indexed operator,
        bool approved
    );

    /**
     * @dev Returns the number of tokens in `owner`'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`,
     * checking first that contract recipients are aware of the ERC721 protocol
     * to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be have been allowed to move
     * this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external payable;

    /**
     * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external payable;

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {safeTransferFrom}
     * whenever possible.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external payable;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the
     * zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external payable;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom}
     * for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId)
        external
        view
        returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address owner, address operator)
        external
        view
        returns (bool);

    // =============================================================
    //                        IERC721Metadata
    // =============================================================

    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);

    // =============================================================
    //                           IERC2309
    // =============================================================

    /**
     * @dev Emitted when tokens in `fromTokenId` to `toTokenId`
     * (inclusive) is transferred from `from` to `to`, as defined in the
     * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
     *
     * See {_mintERC2309} for more details.
     */
    event ConsecutiveTransfer(
        uint256 indexed fromTokenId,
        uint256 toTokenId,
        address indexed from,
        address indexed to
    );
}

// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

import './IERC721A.sol';

/**
 * @dev Interface of ERC721 token receiver.
 */
interface ERC721A__IERC721Receiver {
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

/**
 * @title ERC721A
 *
 * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
 * Non-Fungible Token Standard, including the Metadata extension.
 * Optimized for lower gas during batch mints.
 *
 * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
 * starting from `_startTokenId()`.
 *
 * Assumptions:
 *
 * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
 * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
 */
contract ERC721A is IERC721A {
    // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
    struct TokenApprovalRef {
        address value;
    }

    // =============================================================
    //                           CONSTANTS
    // =============================================================

    // Mask of an entry in packed address data.
    uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;

    // The bit position of `numberMinted` in packed address data.
    uint256 private constant _BITPOS_NUMBER_MINTED = 64;

    // The bit position of `numberBurned` in packed address data.
    uint256 private constant _BITPOS_NUMBER_BURNED = 128;

    // The bit position of `aux` in packed address data.
    uint256 private constant _BITPOS_AUX = 192;

    // Mask of all 256 bits in packed address data except the 64 bits for `aux`.
    uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;

    // The bit position of `startTimestamp` in packed ownership.
    uint256 private constant _BITPOS_START_TIMESTAMP = 160;

    // The bit mask of the `burned` bit in packed ownership.
    uint256 private constant _BITMASK_BURNED = 1 << 224;

    // The bit position of the `nextInitialized` bit in packed ownership.
    uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;

    // The bit mask of the `nextInitialized` bit in packed ownership.
    uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;

    // The bit position of `extraData` in packed ownership.
    uint256 private constant _BITPOS_EXTRA_DATA = 232;

    // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
    uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;

    // The mask of the lower 160 bits for addresses.
    uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

    // The maximum `quantity` that can be minted with {_mintERC2309}.
    // This limit is to prevent overflows on the address data entries.
    // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
    // is required to cause an overflow, which is unrealistic.
    uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;

    // The `Transfer` event signature is given by:
    // `keccak256(bytes("Transfer(address,address,uint256)"))`.
    bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
        0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;

    // =============================================================
    //                            STORAGE
    // =============================================================

    // The next token ID to be minted.
    uint256 private _currentIndex;

    // The number of tokens burned.
    uint256 private _burnCounter;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    // Mapping from token ID to ownership details
    // An empty struct value does not necessarily mean the token is unowned.
    // See {_packedOwnershipOf} implementation for details.
    //
    // Bits Layout:
    // - [0..159]   `addr`
    // - [160..223] `startTimestamp`
    // - [224]      `burned`
    // - [225]      `nextInitialized`
    // - [232..255] `extraData`
    mapping(uint256 => uint256) private _packedOwnerships;

    // Mapping owner address to address data.
    //
    // Bits Layout:
    // - [0..63]    `balance`
    // - [64..127]  `numberMinted`
    // - [128..191] `numberBurned`
    // - [192..255] `aux`
    mapping(address => uint256) private _packedAddressData;

    // Mapping from token ID to approved address.
    mapping(uint256 => TokenApprovalRef) private _tokenApprovals;

    // Mapping from owner to operator approvals
    mapping(address => mapping(address => bool)) private _operatorApprovals;

    // =============================================================
    //                          CONSTRUCTOR
    // =============================================================

    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        _currentIndex = _startTokenId();
    }

    // =============================================================
    //                   TOKEN COUNTING OPERATIONS
    // =============================================================

    /**
     * @dev Returns the starting token ID.
     * To change the starting token ID, please override this function.
     */
    function _startTokenId() internal view virtual returns (uint256) {
        return 1;
    }

    /**
     * @dev Returns the next token ID to be minted.
     */
    function _nextTokenId() internal view virtual returns (uint256) {
        return _currentIndex;
    }

    /**
     * @dev Returns the total number of tokens in existence.
     * Burned tokens will reduce the count.
     * To get the total number of tokens minted, please see {_totalMinted}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        // Counter underflow is impossible as _burnCounter cannot be incremented
        // more than `_currentIndex - _startTokenId()` times.
        unchecked {
            return _currentIndex - _burnCounter - _startTokenId();
        }
    }
    /**
     * @dev Returns the total amount of tokens minted in the contract.
     */
    function totalMinted() public view virtual returns (uint256) {
        // Counter underflow is impossible as `_currentIndex` does not decrement,
        // and it is initialized to `_startTokenId()`.
        unchecked {
            return _currentIndex - _startTokenId();
        }
    }
    /**
     * @dev Returns the total amount of tokens minted in the contract.
     */
    function _totalMinted() internal view virtual returns (uint256) {
        // Counter underflow is impossible as `_currentIndex` does not decrement,
        // and it is initialized to `_startTokenId()`.
        unchecked {
            return _currentIndex - _startTokenId();
        }
    }

    /**
     * @dev Returns the total number of tokens burned.
     */
    function _totalBurned() internal view virtual returns (uint256) {
        return _burnCounter;
    }

    // =============================================================
    //                    ADDRESS DATA OPERATIONS
    // =============================================================

    /**
     * @dev Returns the number of tokens in `owner`'s account.
     */
    function balanceOf(address owner) public view virtual override returns (uint256) {
        if (owner == address(0)) revert BalanceQueryForZeroAddress();
        return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the number of tokens minted by `owner`.
     */
    function _numberMinted(address owner) internal view returns (uint256) {
        return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the number of tokens burned by or on behalf of `owner`.
     */
    function _numberBurned(address owner) internal view returns (uint256) {
        return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
     */
    function _getAux(address owner) internal view returns (uint64) {
        return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
    }

    /**
     * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
     * If there are multiple variables, please pack them into a uint64.
     */
    function _setAux(address owner, uint64 aux) internal virtual {
        uint256 packed = _packedAddressData[owner];
        uint256 auxCasted;
        // Cast `aux` with assembly to avoid redundant masking.
        assembly {
            auxCasted := aux
        }
        packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
        _packedAddressData[owner] = packed;
    }

    // =============================================================
    //                            IERC165
    // =============================================================

    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30000 gas.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        // The interface IDs are constants representing the first 4 bytes
        // of the XOR of all function selectors in the interface.
        // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
        // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
        return
            interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
            interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
            interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
    }

    // =============================================================
    //                        IERC721Metadata
    // =============================================================

    /**
     * @dev Returns the token collection name.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        if (!_exists(tokenId)) revert URIQueryForNonexistentToken();

        string memory baseURI = _baseURI();
        return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, it can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return '';
    }

    // =============================================================
    //                     OWNERSHIPS OPERATIONS
    // =============================================================

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) public view virtual override returns (address) {
        return address(uint160(_packedOwnershipOf(tokenId)));
    }

    /**
     * @dev Gas spent here starts off proportional to the maximum mint batch size.
     * It gradually moves to O(1) as tokens get transferred around over time.
     */
    function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
        return _unpackedOwnership(_packedOwnershipOf(tokenId));
    }

    /**
     * @dev Returns the unpacked `TokenOwnership` struct at `index`.
     */
    function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
        return _unpackedOwnership(_packedOwnerships[index]);
    }

    /**
     * @dev Initializes the ownership slot minted at `index` for efficiency purposes.
     */
    function _initializeOwnershipAt(uint256 index) internal virtual {
        if (_packedOwnerships[index] == 0) {
            _packedOwnerships[index] = _packedOwnershipOf(index);
        }
    }

    /**
     * Returns the packed ownership data of `tokenId`.
     */
    function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) {
        uint256 curr = tokenId;

        unchecked {
            if (_startTokenId() <= curr)
                if (curr < _currentIndex) {
                    uint256 packed = _packedOwnerships[curr];
                    // If not burned.
                    if (packed & _BITMASK_BURNED == 0) {
                        // Invariant:
                        // There will always be an initialized ownership slot
                        // (i.e. `ownership.addr != address(0) && ownership.burned == false`)
                        // before an unintialized ownership slot
                        // (i.e. `ownership.addr == address(0) && ownership.burned == false`)
                        // Hence, `curr` will not underflow.
                        //
                        // We can directly compare the packed value.
                        // If the address is zero, packed will be zero.
                        while (packed == 0) {
                            packed = _packedOwnerships[--curr];
                        }
                        return packed;
                    }
                }
        }
        revert OwnerQueryForNonexistentToken();
    }

    /**
     * @dev Returns the unpacked `TokenOwnership` struct from `packed`.
     */
    function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
        ownership.addr = address(uint160(packed));
        ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
        ownership.burned = packed & _BITMASK_BURNED != 0;
        ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
    }

    /**
     * @dev Packs ownership data into a single uint256.
     */
    function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
        assembly {
            // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
            owner := and(owner, _BITMASK_ADDRESS)
            // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
            result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
        }
    }

    /**
     * @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
     */
    function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
        // For branchless setting of the `nextInitialized` flag.
        assembly {
            // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
            result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
        }
    }

    // =============================================================
    //                      APPROVAL OPERATIONS
    // =============================================================

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the
     * zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) public payable virtual override {
        address owner = ownerOf(tokenId);

        if (_msgSenderERC721A() != owner)
            if (!isApprovedForAll(owner, _msgSenderERC721A())) {
                revert ApprovalCallerNotOwnerNorApproved();
            }

        _tokenApprovals[tokenId].value = to;
        emit Approval(owner, to, tokenId);
    }

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) public view virtual override returns (address) {
        if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();

        return _tokenApprovals[tokenId].value;
    }

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom}
     * for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) public virtual override {
        _operatorApprovals[_msgSenderERC721A()][operator] = approved;
        emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
    }

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev Returns whether `tokenId` exists.
     *
     * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
     *
     * Tokens start existing when they are minted. See {_mint}.
     */
    function _exists(uint256 tokenId) internal view virtual returns (bool) {
        return
            _startTokenId() <= tokenId &&
            tokenId < _currentIndex && // If within bounds,
            _packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
    }

    /**
     * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
     */
    function _isSenderApprovedOrOwner(
        address approvedAddress,
        address owner,
        address msgSender
    ) private pure returns (bool result) {
        assembly {
            // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
            owner := and(owner, _BITMASK_ADDRESS)
            // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
            msgSender := and(msgSender, _BITMASK_ADDRESS)
            // `msgSender == owner || msgSender == approvedAddress`.
            result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
        }
    }

    /**
     * @dev Returns the storage slot and value for the approved address of `tokenId`.
     */
    function _getApprovedSlotAndAddress(uint256 tokenId)
        private
        view
        returns (uint256 approvedAddressSlot, address approvedAddress)
    {
        TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
        // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
        assembly {
            approvedAddressSlot := tokenApproval.slot
            approvedAddress := sload(approvedAddressSlot)
        }
    }

    // =============================================================
    //                      TRANSFER OPERATIONS
    // =============================================================

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable virtual override {
        uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);

        if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();

        (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);

        // The nested ifs save around 20+ gas over a compound boolean condition.
        if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
            if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();

        if (to == address(0)) revert TransferToZeroAddress();

        _beforeTokenTransfers(from, to, tokenId, 1);

        // Clear approvals from the previous owner.
        assembly {
            if approvedAddress {
                // This is equivalent to `delete _tokenApprovals[tokenId]`.
                sstore(approvedAddressSlot, 0)
            }
        }

        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
        unchecked {
            // We can directly increment and decrement the balances.
            --_packedAddressData[from]; // Updates: `balance -= 1`.
            ++_packedAddressData[to]; // Updates: `balance += 1`.

            // Updates:
            // - `address` to the next owner.
            // - `startTimestamp` to the timestamp of transfering.
            // - `burned` to `false`.
            // - `nextInitialized` to `true`.
            _packedOwnerships[tokenId] = _packOwnershipData(
                to,
                _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
            );

            // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
            if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                uint256 nextTokenId = tokenId + 1;
                // If the next slot's address is zero and not burned (i.e. packed value is zero).
                if (_packedOwnerships[nextTokenId] == 0) {
                    // If the next slot is within bounds.
                    if (nextTokenId != _currentIndex) {
                        // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                        _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                    }
                }
            }
        }

        emit Transfer(from, to, tokenId);
        _afterTokenTransfers(from, to, tokenId, 1);
    }

    /**
     * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable virtual override {
        safeTransferFrom(from, to, tokenId, '');
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) public payable virtual override {
        transferFrom(from, to, tokenId);
        if (to.code.length != 0)
            if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
                revert TransferToNonERC721ReceiverImplementer();
            }
    }

    /**
     * @dev Hook that is called before a set of serially-ordered token IDs
     * are about to be transferred. This includes minting.
     * And also called before burning one token.
     *
     * `startTokenId` - the first token ID to be transferred.
     * `quantity` - the amount to be transferred.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
     * transferred to `to`.
     * - When `from` is zero, `tokenId` will be minted for `to`.
     * - When `to` is zero, `tokenId` will be burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _beforeTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal virtual {}

    /**
     * @dev Hook that is called after a set of serially-ordered token IDs
     * have been transferred. This includes minting.
     * And also called after one token has been burned.
     *
     * `startTokenId` - the first token ID to be transferred.
     * `quantity` - the amount to be transferred.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
     * transferred to `to`.
     * - When `from` is zero, `tokenId` has been minted for `to`.
     * - When `to` is zero, `tokenId` has been burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _afterTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal virtual {}

    /**
     * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
     *
     * `from` - Previous owner of the given token ID.
     * `to` - Target address that will receive the token.
     * `tokenId` - Token ID to be transferred.
     * `_data` - Optional data to send along with the call.
     *
     * Returns whether the call correctly returned the expected magic value.
     */
    function _checkContractOnERC721Received(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) private returns (bool) {
        try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
            bytes4 retval
        ) {
            return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
        } catch (bytes memory reason) {
            if (reason.length == 0) {
                revert TransferToNonERC721ReceiverImplementer();
            } else {
                assembly {
                    revert(add(32, reason), mload(reason))
                }
            }
        }
    }

    // =============================================================
    //                        MINT OPERATIONS
    // =============================================================

    /**
     * @dev Mints `quantity` tokens and transfers them to `to`.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `quantity` must be greater than 0.
     *
     * Emits a {Transfer} event for each mint.
     */
    function _mint(address to, uint256 quantity) internal virtual {
        uint256 startTokenId = _currentIndex;
        if (quantity == 0) revert MintZeroQuantity();

        _beforeTokenTransfers(address(0), to, startTokenId, quantity);

        // Overflows are incredibly unrealistic.
        // `balance` and `numberMinted` have a maximum limit of 2**64.
        // `tokenId` has a maximum limit of 2**256.
        unchecked {
            // Updates:
            // - `balance += quantity`.
            // - `numberMinted += quantity`.
            //
            // We can directly add to the `balance` and `numberMinted`.
            _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);

            // Updates:
            // - `address` to the owner.
            // - `startTimestamp` to the timestamp of minting.
            // - `burned` to `false`.
            // - `nextInitialized` to `quantity == 1`.
            _packedOwnerships[startTokenId] = _packOwnershipData(
                to,
                _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
            );

            uint256 toMasked;
            uint256 end = startTokenId + quantity;

            // Use assembly to loop and emit the `Transfer` event for gas savings.
            // The duplicated `log4` removes an extra check and reduces stack juggling.
            // The assembly, together with the surrounding Solidity code, have been
            // delicately arranged to nudge the compiler into producing optimized opcodes.
            assembly {
                // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
                toMasked := and(to, _BITMASK_ADDRESS)
                // Emit the `Transfer` event.
                log4(
                    0, // Start of data (0, since no data).
                    0, // End of data (0, since no data).
                    _TRANSFER_EVENT_SIGNATURE, // Signature.
                    0, // `address(0)`.
                    toMasked, // `to`.
                    startTokenId // `tokenId`.
                )

                // The `iszero(eq(,))` check ensures that large values of `quantity`
                // that overflows uint256 will make the loop run out of gas.
                // The compiler will optimize the `iszero` away for performance.
                for {
                    let tokenId := add(startTokenId, 1)
                } iszero(eq(tokenId, end)) {
                    tokenId := add(tokenId, 1)
                } {
                    // Emit the `Transfer` event. Similar to above.
                    log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
                }
            }
            if (toMasked == 0) revert MintToZeroAddress();

            _currentIndex = end;
        }
        _afterTokenTransfers(address(0), to, startTokenId, quantity);
    }

    /**
     * @dev Mints `quantity` tokens and transfers them to `to`.
     *
     * This function is intended for efficient minting only during contract creation.
     *
     * It emits only one {ConsecutiveTransfer} as defined in
     * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
     * instead of a sequence of {Transfer} event(s).
     *
     * Calling this function outside of contract creation WILL make your contract
     * non-compliant with the ERC721 standard.
     * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
     * {ConsecutiveTransfer} event is only permissible during contract creation.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `quantity` must be greater than 0.
     *
     * Emits a {ConsecutiveTransfer} event.
     */
    function _mintERC2309(address to, uint256 quantity) internal virtual {
        uint256 startTokenId = _currentIndex;
        if (to == address(0)) revert MintToZeroAddress();
        if (quantity == 0) revert MintZeroQuantity();
        if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();

        _beforeTokenTransfers(address(0), to, startTokenId, quantity);

        // Overflows are unrealistic due to the above check for `quantity` to be below the limit.
        unchecked {
            // Updates:
            // - `balance += quantity`.
            // - `numberMinted += quantity`.
            //
            // We can directly add to the `balance` and `numberMinted`.
            _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);

            // Updates:
            // - `address` to the owner.
            // - `startTimestamp` to the timestamp of minting.
            // - `burned` to `false`.
            // - `nextInitialized` to `quantity == 1`.
            _packedOwnerships[startTokenId] = _packOwnershipData(
                to,
                _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
            );

            emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);

            _currentIndex = startTokenId + quantity;
        }
        _afterTokenTransfers(address(0), to, startTokenId, quantity);
    }

    /**
     * @dev Safely mints `quantity` tokens and transfers them to `to`.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
     * - `quantity` must be greater than 0.
     *
     * See {_mint}.
     *
     * Emits a {Transfer} event for each mint.
     */
    function _safeMint(
        address to,
        uint256 quantity,
        bytes memory _data
    ) internal virtual {
        _mint(to, quantity);

        unchecked {
            if (to.code.length != 0) {
                uint256 end = _currentIndex;
                uint256 index = end - quantity;
                do {
                    if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
                        revert TransferToNonERC721ReceiverImplementer();
                    }
                } while (index < end);
                // Reentrancy protection.
                if (_currentIndex != end) revert();
            }
        }
    }

    /**
     * @dev Equivalent to `_safeMint(to, quantity, '')`.
     */
    function _safeMint(address to, uint256 quantity) internal virtual {
        _safeMint(to, quantity, '');
    }

    // =============================================================
    //                        BURN OPERATIONS
    // =============================================================

    /**
     * @dev Equivalent to `_burn(tokenId, false)`.
     */
    function _burn(uint256 tokenId) internal virtual {
        _burn(tokenId, false);
    }
    
    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
        uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);

        address from = address(uint160(prevOwnershipPacked));

        (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);

        if (approvalCheck) {
            // The nested ifs save around 20+ gas over a compound boolean condition.
            if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
        }

        _beforeTokenTransfers(from, address(0), tokenId, 1);

        // Clear approvals from the previous owner.
        assembly {
            if approvedAddress {
                // This is equivalent to `delete _tokenApprovals[tokenId]`.
                sstore(approvedAddressSlot, 0)
            }
        }

        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
        unchecked {
            // Updates:
            // - `balance -= 1`.
            // - `numberBurned += 1`.
            //
            // We can directly decrement the balance, and increment the number burned.
            // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
            _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;

            // Updates:
            // - `address` to the last owner.
            // - `startTimestamp` to the timestamp of burning.
            // - `burned` to `true`.
            // - `nextInitialized` to `true`.
            _packedOwnerships[tokenId] = _packOwnershipData(
                from,
                (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
            );

            // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
            if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                uint256 nextTokenId = tokenId + 1;
                // If the next slot's address is zero and not burned (i.e. packed value is zero).
                if (_packedOwnerships[nextTokenId] == 0) {
                    // If the next slot is within bounds.
                    if (nextTokenId != _currentIndex) {
                        // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                        _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                    }
                }
            }
        }

        emit Transfer(from, address(0), tokenId);
        _afterTokenTransfers(from, address(0), tokenId, 1);

        // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
        unchecked {
            _burnCounter++;
        }
    }

    // =============================================================
    //                     EXTRA DATA OPERATIONS
    // =============================================================

    /**
     * @dev Directly sets the extra data for the ownership data `index`.
     */
    function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
        uint256 packed = _packedOwnerships[index];
        if (packed == 0) revert OwnershipNotInitializedForExtraData();
        uint256 extraDataCasted;
        // Cast `extraData` with assembly to avoid redundant masking.
        assembly {
            extraDataCasted := extraData
        }
        packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
        _packedOwnerships[index] = packed;
    }

    /**
     * @dev Called during each token transfer to set the 24bit `extraData` field.
     * Intended to be overridden by the cosumer contract.
     *
     * `previousExtraData` - the value of `extraData` before transfer.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
     * transferred to `to`.
     * - When `from` is zero, `tokenId` will be minted for `to`.
     * - When `to` is zero, `tokenId` will be burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _extraData(
        address from,
        address to,
        uint24 previousExtraData
    ) internal view virtual returns (uint24) {}

    /**
     * @dev Returns the next extra data for the packed ownership data.
     * The returned result is shifted into position.
     */
    function _nextExtraData(
        address from,
        address to,
        uint256 prevOwnershipPacked
    ) private view returns (uint256) {
        uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
        return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
    }

    // =============================================================
    //                       OTHER OPERATIONS
    // =============================================================

    /**
     * @dev Returns the message sender (defaults to `msg.sender`).
     *
     * If you are writing GSN compatible contracts, you need to override this function.
     */
    function _msgSenderERC721A() internal view virtual returns (address) {
        return msg.sender;
    }

    /**
     * @dev Converts a uint256 to its ASCII string decimal representation.
     */
    function _toString(uint256 value) internal pure virtual returns (string memory str) {
        assembly {
            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
            // We will need 1 word for the trailing zeros padding, 1 word for the length,
            // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
            let m := add(mload(0x40), 0xa0)
            // Update the free memory pointer to allocate.
            mstore(0x40, m)
            // Assign the `str` to the end.
            str := sub(m, 0x20)
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end of the memory to calculate the length later.
            let end := str

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            // prettier-ignore
            for { let temp := value } 1 {} {
                str := sub(str, 1)
                // Write the character to the pointer.
                // The ASCII index of the '0' character is 48.
                mstore8(str, add(48, mod(temp, 10)))
                // Keep dividing `temp` until zero.
                temp := div(temp, 10)
                // prettier-ignore
                if iszero(temp) { break }
            }

            let length := sub(end, str)
            // Move the pointer 32 bytes leftwards to make room for the length.
            str := sub(str, 0x20)
            // Store the length.
            mstore(str, length)
        }
    }
}

// SPDX-License-Identifier: MIT

/* @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@&#BG5G#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@&BG555GYB#P#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@#P55YGBBGPG@&PB@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@&B5YPBG5BB&#P@@@&5PGB@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@BYYPYGYGP@@@B5BBBGGPYYB@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@PJJ5G5B5B5BPPPPPPPPPP55G@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@57YYG@5BBP5P5PP5GGGPPGP5P@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G!?JYBGY5P55GGPPGGPPGYBG#5G@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@P~5PYY555PPPPP5YBYY#@GBB&&5#&#BB&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G!YJY55YY5YPYY#PBP5#&555##GGBPPJ5#@@@@#&#B&G#########&&&&&@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G7JYJY55YYJGP5BYYGGGGPGPGGGGGGG55YB###B##BBB&&&##@@@#PGB&&###&&&@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G7?J5Y55P5JYPPPPPGGGGGPGBBBB#BBP5BG#####B###BB##P&@@&GGP&@@@&YG####&@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@?!JYY5YYPPPPGGGPG#BBGBB#BGY?J5#G55###&BGB&#B##BGP@###@@P#####GG#@BBG##&@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@Y?JYJ55PPGPBBG5GBPP7^J#PY!:.:5#G#5G5J5#B#Y!~7P#BG##&#@&G#G5G#@BG&PGG@B5B@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G?Y555PPP5GP5J^PP5J..5#G5^.::G#B&&7.^~Y#Y!J?^^5BGGB@BYG#&BPB@&###GB#BGPP&@@@@@@@@@@@@@
@@@@@@@@@@@@@&JJJYYY5Y57P5P7:BBPJ..YBG5^::^PPP#&P~GB5GY&@@G^P#B&Y#!.!PB^?GB5G#G#&##BGY&@@@@@@@@@@@@@
@@@@@@@@@@@@@#7?JY55PPP75PP?~55P5JY55PBGGBBPPP#####BGGYPGBPPPBB&B#7^7GB.!G5^YP!555PPG5#@@@@@@@@@@@@@
@@@@@@@@@@@@@@5JYYY5Y5G5YPBBGPPBBBBGPGGBGBGGGGGBBBBBBBP5@@@G&@@@@@@@&P#:!BP:5G7PY55YJ7#@@@@@@@@@@@@@
@@@@@@@@@@@@@@J?JY5G5PGGPPGGGGPGGGBGGGBBBB#BGG####B#GGP5###G#&#&&&&&#P#GBBBPGB5GPPP557#@@@@@@@@@@@@@
@@@@@@@@@@@@@#?5PPPPPPPGPGBGGGG#BPPBB##G5JPBB&&PJ?JGB#B5GGB&#G##GB&BPP###B###B#BBBGGP?B@@@@@@@@@@@@@
@@@@@@@@@@@@@@YJYY55P55YGPPJ~GB5Y^:J#G57..^Y#BY:...!5#PJ::^?BBP^:^5BBG&7J##?G#YGGPGGGYB@@@@@@@@@@@@@
@@@@@@@@@@@@@@5JYY5YP557P55~:GG5J.:Y#P5^:::G#BJ:::.~B#B#?.::Y#J.:.?GBGG.!BP:5G7GY5P5Y?B@@@@@@@@@@@@@
@@@@@@@@&&&&&&YJY55PGPP7PPP!:BBPJ::5#GP~:::B#BJ:::.~##B&@!.:5#Y.::JGB#P.!BP:5G7PY555YJB&&&&&@@@@@@@@
@@@@@@@@&&&&&&BPPP5P55P?55P!:GGPJ..Y#GP^..:B#BJ....~##B&@#~:5#J...?GGB#!?GP?PG5GGBBB##&&&&&@@@@@@@@@
@@@@@@@@@@@@&&&&&&&&####BBBBGGGGPYYPPPPJ???PPPY777!?GPGB##PJPGP555GBBBB####&&&&&&&&&&&&@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@&&&&&&&&&&&&&&&####&&&#################&###&&&&&&&&&&&&&&&&&@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@R@@@ */

pragma solidity ^0.8.13;

import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";

contract ColiseumReservationsNormal is Ownable, ReentrancyGuard {
    error NoContracts();
    error InvalidAmount();
    error AlreadyReserved();
    error AllocationWouldExceedMax();
    error NotQualified();

    uint256 private reservationPrice = 0.5 ether;

    uint256 public reservedCounter = 1;
    uint256 public maxReservable = 205;

    bytes32 private qualifiedMerkleRoot;

    mapping(address => bool) private _reserved;

    constructor() {
    _reserved[msg.sender] = true;
    }

    modifier callerIsUser() {
        if (msg.sender != tx.origin) revert NoContracts();
        _;
    }

    function setQualifiedMerkleRoot(bytes32 _qualifiedMerkleRoot)
        external
        onlyOwner
    {
        qualifiedMerkleRoot = _qualifiedMerkleRoot;
    }

    function isValid(address _user, bytes32[] calldata _proof)
        external
        view
        returns (bool)
    {
        return
            MerkleProof.verify(
                _proof,
                qualifiedMerkleRoot,
                keccak256(abi.encodePacked(_user))
            );
    }

    function setReservationPrice(uint256 _reservationPrice) external onlyOwner {
        reservationPrice = _reservationPrice;
    }

    function reserve(bytes32[] calldata _proof) external payable callerIsUser {
        if (_reserved[msg.sender]) revert AlreadyReserved();
        if (msg.value != reservationPrice) revert InvalidAmount();
        if (
            !MerkleProof.verify(
                _proof,
                qualifiedMerkleRoot,
                keccak256(abi.encodePacked(msg.sender))
            )
        ) revert NotQualified();
        if (reservedCounter + 1 > maxReservable)
            revert AllocationWouldExceedMax();
        _reserved[msg.sender] = true;
        reservedCounter++;
    }

    function addAddressesReserved(address[] calldata _addresses)
        external
        onlyOwner
    {
        for (uint256 i = 0; i < _addresses.length; i++) {
            if (_reserved[_addresses[i]] == false) {
                reservedCounter++;
                _reserved[_addresses[i]] = true;
            }
        }
    }

    function removeAddressesReserved(address[] calldata _addresses)
        external
        onlyOwner
    {
        for (uint256 i = 0; i < _addresses.length; i++) {
            if (_reserved[_addresses[i]] == true) {
                reservedCounter = reservedCounter - 1;
                _reserved[_addresses[i]] = false;
            }
        }
    }

    function setMaxReservable(uint256 _newMaxReservable) external onlyOwner {
        maxReservable = _newMaxReservable;
    }

    function getReservationPrice() external view returns (uint256) {
        return reservationPrice;
    }

    function userReserved(address _user) external view returns (bool) {
        return _reserved[_user];
    }

    function withdraw() external onlyOwner nonReentrant {
        uint256 balance = address(this).balance;
        payable(msg.sender).transfer(balance);
    }
}

// SPDX-License-Identifier: MIT

/* @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@&#BG5G#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@&BG555GYB#P#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@#P55YGBBGPG@&PB@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@&B5YPBG5BB&#P@@@&5PGB@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@BYYPYGYGP@@@B5BBBGGPYYB@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@PJJ5G5B5B5BPPPPPPPPPP55G@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@57YYG@5BBP5P5PP5GGGPPGP5P@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G!?JYBGY5P55GGPPGGPPGYBG#5G@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@P~5PYY555PPPPP5YBYY#@GBB&&5#&#BB&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G!YJY55YY5YPYY#PBP5#&555##GGBPPJ5#@@@@#&#B&G#########&&&&&@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G7JYJY55YYJGP5BYYGGGGPGPGGGGGGG55YB###B##BBB&&&##@@@#PGB&&###&&&@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G7?J5Y55P5JYPPPPPGGGGGPGBBBB#BBP5BG#####B###BB##P&@@&GGP&@@@&YG####&@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@?!JYY5YYPPPPGGGPG#BBGBB#BGY?J5#G55###&BGB&#B##BGP@###@@P#####GG#@BBG##&@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@Y?JYJ55PPGPBBG5GBPP7^J#PY!:.:5#G#5G5J5#B#Y!~7P#BG##&#@&G#G5G#@BG&PGG@B5B@@@@@@@@@@@@@@
@@@@@@@@@@@@@@G?Y555PPP5GP5J^PP5J..5#G5^.::G#B&&7.^~Y#Y!J?^^5BGGB@BYG#&BPB@&###GB#BGPP&@@@@@@@@@@@@@
@@@@@@@@@@@@@&JJJYYY5Y57P5P7:BBPJ..YBG5^::^PPP#&P~GB5GY&@@G^P#B&Y#!.!PB^?GB5G#G#&##BGY&@@@@@@@@@@@@@
@@@@@@@@@@@@@#7?JY55PPP75PP?~55P5JY55PBGGBBPPP#####BGGYPGBPPPBB&B#7^7GB.!G5^YP!555PPG5#@@@@@@@@@@@@@
@@@@@@@@@@@@@@5JYYY5Y5G5YPBBGPPBBBBGPGGBGBGGGGGBBBBBBBP5@@@G&@@@@@@@&P#:!BP:5G7PY55YJ7#@@@@@@@@@@@@@
@@@@@@@@@@@@@@J?JY5G5PGGPPGGGGPGGGBGGGBBBB#BGG####B#GGP5###G#&#&&&&&#P#GBBBPGB5GPPP557#@@@@@@@@@@@@@
@@@@@@@@@@@@@#?5PPPPPPPGPGBGGGG#BPPBB##G5JPBB&&PJ?JGB#B5GGB&#G##GB&BPP###B###B#BBBGGP?B@@@@@@@@@@@@@
@@@@@@@@@@@@@@YJYY55P55YGPPJ~GB5Y^:J#G57..^Y#BY:...!5#PJ::^?BBP^:^5BBG&7J##?G#YGGPGGGYB@@@@@@@@@@@@@
@@@@@@@@@@@@@@5JYY5YP557P55~:GG5J.:Y#P5^:::G#BJ:::.~B#B#?.::Y#J.:.?GBGG.!BP:5G7GY5P5Y?B@@@@@@@@@@@@@
@@@@@@@@&&&&&&YJY55PGPP7PPP!:BBPJ::5#GP~:::B#BJ:::.~##B&@!.:5#Y.::JGB#P.!BP:5G7PY555YJB&&&&&@@@@@@@@
@@@@@@@@&&&&&&BPPP5P55P?55P!:GGPJ..Y#GP^..:B#BJ....~##B&@#~:5#J...?GGB#!?GP?PG5GGBBB##&&&&&@@@@@@@@@
@@@@@@@@@@@@&&&&&&&&####BBBBGGGGPYYPPPPJ???PPPY777!?GPGB##PJPGP555GBBBB####&&&&&&&&&&&&@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@&&&&&&&&&&&&&&&####&&&#################&###&&&&&&&&&&&&&&&&&@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@R@@@ */

pragma solidity ^0.8.13;

import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";

contract ColiseumReservations is Ownable, ReentrancyGuard {
    error NoContracts();
    error InvalidAmount();
    error AlreadyReserved();
    error AllocationWouldExceedMax();
    error NotQualified();

    uint256 private reservationPrice = 0.5 ether;

    uint256 public reservedCounter = 1;
    uint256 public maxReservable = 102;

    bytes32 private qualifiedMerkleRoot;

    mapping(address => bool) private _reserved;

    constructor() {
    _reserved[msg.sender] = true;
    }

    modifier callerIsUser() {
        if (msg.sender != tx.origin) revert NoContracts();
        _;
    }

    function setQualifiedMerkleRoot(bytes32 _qualifiedMerkleRoot)
        external
        onlyOwner
    {
        qualifiedMerkleRoot = _qualifiedMerkleRoot;
    }

    function isValid(address _user, bytes32[] calldata _proof)
        external
        view
        returns (bool)
    {
        return
            MerkleProof.verify(
                _proof,
                qualifiedMerkleRoot,
                keccak256(abi.encodePacked(_user))
            );
    }

    function setReservationPrice(uint256 _reservationPrice) external onlyOwner {
        reservationPrice = _reservationPrice;
    }

    function reserve(bytes32[] calldata _proof) external payable callerIsUser {
        if (_reserved[msg.sender]) revert AlreadyReserved();
        if (msg.value != reservationPrice) revert InvalidAmount();
        if (
            !MerkleProof.verify(
                _proof,
                qualifiedMerkleRoot,
                keccak256(abi.encodePacked(msg.sender))
            )
        ) revert NotQualified();
        if (reservedCounter + 1 > maxReservable)
            revert AllocationWouldExceedMax();
        _reserved[msg.sender] = true;
        reservedCounter++;
    }

    function addAddressesReserved(address[] calldata _addresses)
        external
        onlyOwner
    {
        for (uint256 i = 0; i < _addresses.length; i++) {
            if (_reserved[_addresses[i]] == false) {
                reservedCounter++;
                _reserved[_addresses[i]] = true;
            }
        }
    }

    function removeAddressesReserved(address[] calldata _addresses)
        external
        onlyOwner
    {
        for (uint256 i = 0; i < _addresses.length; i++) {
            if (_reserved[_addresses[i]] == true) {
                reservedCounter = reservedCounter - 1;
                _reserved[_addresses[i]] = false;
            }
        }
    }

    function setMaxReservable(uint256 _newMaxReservable) external onlyOwner {
        maxReservable = _newMaxReservable;
    }

    function getReservationPrice() external view returns (uint256) {
        return reservationPrice;
    }

    function userReserved(address _user) external view returns (bool) {
        return _reserved[_user];
    }

    function withdraw() external onlyOwner nonReentrant {
        uint256 balance = address(this).balance;
        payable(msg.sender).transfer(balance);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import {OperatorFilterer} from "./OperatorFilterer.sol";

abstract contract DefaultOperatorFilterer is OperatorFilterer {
    address constant DEFAULT_SUBSCRIPTION = address(0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6);

    constructor() OperatorFilterer(DEFAULT_SUBSCRIPTION, true) {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import {IOperatorFilterRegistry} from "./IOperatorFilterRegistry.sol";

abstract contract OperatorFilterer {
    error OperatorNotAllowed(address operator);

    IOperatorFilterRegistry constant operatorFilterRegistry =
        IOperatorFilterRegistry(0x000000000000AAeB6D7670E522A718067333cd4E);

    constructor(address subscriptionOrRegistrantToCopy, bool subscribe) {
        // If an inheriting token contract is deployed to a network without the registry deployed, the modifier
        // will not revert, but the contract will need to be registered with the registry once it is deployed in
        // order for the modifier to filter addresses.
        if (address(operatorFilterRegistry).code.length > 0) {
            if (subscribe) {
                operatorFilterRegistry.registerAndSubscribe(address(this), subscriptionOrRegistrantToCopy);
            } else {
                if (subscriptionOrRegistrantToCopy != address(0)) {
                    operatorFilterRegistry.registerAndCopyEntries(address(this), subscriptionOrRegistrantToCopy);
                } else {
                    operatorFilterRegistry.register(address(this));
                }
            }
        }
    }

    modifier onlyAllowedOperator(address from) virtual {
        // Check registry code length to facilitate testing in environments without a deployed registry.
        if (address(operatorFilterRegistry).code.length > 0) {
            // Allow spending tokens from addresses with balance
            // Note that this still allows listings and marketplaces with escrow to transfer tokens if transferred
            // from an EOA.
            if (from == msg.sender) {
                _;
                return;
            }
            if (
                !(
                    operatorFilterRegistry.isOperatorAllowed(address(this), msg.sender)
                        && operatorFilterRegistry.isOperatorAllowed(address(this), from)
                )
            ) {
                revert OperatorNotAllowed(msg.sender);
            }
        }
        _;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     *
     * _Available since v4.7._
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     *
     * _Available since v4.7._
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * _Available since v4.7._
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

interface IOperatorFilterRegistry {
    function isOperatorAllowed(address registrant, address operator) external view returns (bool);
    function register(address registrant) external;
    function registerAndSubscribe(address registrant, address subscription) external;
    function registerAndCopyEntries(address registrant, address registrantToCopy) external;
    function updateOperator(address registrant, address operator, bool filtered) external;
    function updateOperators(address registrant, address[] calldata operators, bool filtered) external;
    function updateCodeHash(address registrant, bytes32 codehash, bool filtered) external;
    function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external;
    function subscribe(address registrant, address registrantToSubscribe) external;
    function unsubscribe(address registrant, bool copyExistingEntries) external;
    function subscriptionOf(address addr) external returns (address registrant);
    function subscribers(address registrant) external returns (address[] memory);
    function subscriberAt(address registrant, uint256 index) external returns (address);
    function copyEntriesOf(address registrant, address registrantToCopy) external;
    function isOperatorFiltered(address registrant, address operator) external returns (bool);
    function isCodeHashOfFiltered(address registrant, address operatorWithCode) external returns (bool);
    function isCodeHashFiltered(address registrant, bytes32 codeHash) external returns (bool);
    function filteredOperators(address addr) external returns (address[] memory);
    function filteredCodeHashes(address addr) external returns (bytes32[] memory);
    function filteredOperatorAt(address registrant, uint256 index) external returns (address);
    function filteredCodeHashAt(address registrant, uint256 index) external returns (bytes32);
    function isRegistered(address addr) external returns (bool);
    function codeHashOf(address addr) external returns (bytes32);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):