ETH Price: $2,617.34 (-0.38%)

Contract Diff Checker

Contract Name:
SaleClockAuction

Contract Source Code:

File 1 of 1 : SaleClockAuction

pragma solidity ^0.4.25;

/// @title ERC-721 Non-Fungible Token Standard
/// @dev See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
///  Note: the ERC-165 identifier for this interface is 0x80ac58cd.
interface ERC721 /* is ERC165 */ {
    /// @dev This emits when ownership of any NFT changes by any mechanism.
    ///  This event emits when NFTs are created (`from` == 0) and destroyed
    ///  (`to` == 0). Exception: during contract creation, any number of NFTs
    ///  may be created and assigned without emitting Transfer. At the time of
    ///  any transfer, the approved address for that NFT (if any) is reset to none.
    ///
    /// MOVED THIS TO CSportsBase because of how class structure is derived.
    ///
    event Transfer(address indexed _from, address indexed _to, uint256 indexed _tokenId);

    /// @dev This emits when the approved address for an NFT is changed or
    ///  reaffirmed. The zero address indicates there is no approved address.
    ///  When a Transfer event emits, this also indicates that the approved
    ///  address for that NFT (if any) is reset to none.
    event Approval(address indexed _owner, address indexed _approved, uint256 indexed _tokenId);

    /// @dev This emits when an operator is enabled or disabled for an owner.
    ///  The operator can manage all NFTs of the owner.
    event ApprovalForAll(address indexed _owner, address indexed _operator, bool _approved);

    /// @notice Count all NFTs assigned to an owner
    /// @dev NFTs assigned to the zero address are considered invalid, and this
    ///  function throws for queries about the zero address.
    /// @param _owner An address for whom to query the balance
    /// @return The number of NFTs owned by `_owner`, possibly zero
    function balanceOf(address _owner) external view returns (uint256);

    /// @notice Find the owner of an NFT
    /// @dev NFTs assigned to zero address are considered invalid, and queries
    ///  about them do throw.
    /// @param _tokenId The identifier for an NFT
    /// @return The address of the owner of the NFT
    function ownerOf(uint256 _tokenId) external view returns (address);

    /// @notice Transfers the ownership of an NFT from one address to another address
    /// @dev Throws unless `msg.sender` is the current owner, an authorized
    ///  operator, or the approved address for this NFT. Throws if `_from` is
    ///  not the current owner. Throws if `_to` is the zero address. Throws if
    ///  `_tokenId` is not a valid NFT. When transfer is complete, this function
    ///  checks if `_to` is a smart contract (code size > 0). If so, it calls
    ///  `onERC721Received` on `_to` and throws if the return value is not
    ///  `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`.
    /// @param _from The current owner of the NFT
    /// @param _to The new owner
    /// @param _tokenId The NFT to transfer
    /// @param data Additional data with no specified format, sent in call to `_to`
    function safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes data) external payable;

    /// @notice Transfers the ownership of an NFT from one address to another address
    /// @dev This works identically to the other function with an extra data parameter,
    ///  except this function just sets data to "".
    /// @param _from The current owner of the NFT
    /// @param _to The new owner
    /// @param _tokenId The NFT to transfer
    function safeTransferFrom(address _from, address _to, uint256 _tokenId) external payable;

    /// @notice Transfer ownership of an NFT -- THE CALLER IS RESPONSIBLE
    ///  TO CONFIRM THAT `_to` IS CAPABLE OF RECEIVING NFTS OR ELSE
    ///  THEY MAY BE PERMANENTLY LOST
    /// @dev Throws unless `msg.sender` is the current owner, an authorized
    ///  operator, or the approved address for this NFT. Throws if `_from` is
    ///  not the current owner. Throws if `_to` is the zero address. Throws if
    ///  `_tokenId` is not a valid NFT.
    /// @param _from The current owner of the NFT
    /// @param _to The new owner
    /// @param _tokenId The NFT to transfer
    function transferFrom(address _from, address _to, uint256 _tokenId) external payable;

    /// @notice Change or reaffirm the approved address for an NFT
    /// @dev The zero address indicates there is no approved address.
    ///  Throws unless `msg.sender` is the current NFT owner, or an authorized
    ///  operator of the current owner.
    /// @param _approved The new approved NFT controller
    /// @param _tokenId The NFT to approve
    function approve(address _approved, uint256 _tokenId) external payable;

    /// @notice Enable or disable approval for a third party ("operator") to manage
    ///  all of `msg.sender`'s assets
    /// @dev Emits the ApprovalForAll event. The contract MUST allow
    ///  multiple operators per owner.
    /// @param _operator Address to add to the set of authorized operators
    /// @param _approved True if the operator is approved, false to revoke approval
    function setApprovalForAll(address _operator, bool _approved) external;

    /// @notice Get the approved address for a single NFT
    /// @dev Throws if `_tokenId` is not a valid NFT.
    /// @param _tokenId The NFT to find the approved address for
    /// @return The approved address for this NFT, or the zero address if there is none
    function getApproved(uint256 _tokenId) external view returns (address);

    /// @notice Query if an address is an authorized operator for another address
    /// @param _owner The address that owns the NFTs
    /// @param _operator The address that acts on behalf of the owner
    /// @return True if `_operator` is an approved operator for `_owner`, false otherwise
    function isApprovedForAll(address _owner, address _operator) external view returns (bool);
}

/// @title ERC-721 Non-Fungible Token Standard, optional metadata extension
/// @dev See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
///  Note: the ERC-165 identifier for this interface is 0x5b5e139f.
interface ERC721Metadata /* is ERC721 */ {
    /// @notice A descriptive name for a collection of NFTs in this contract
    function name() external view returns (string _name);

    /// @notice An abbreviated name for NFTs in this contract
    function symbol() external view returns (string _symbol);

    /// @notice A distinct Uniform Resource Identifier (URI) for a given asset.
    /// @dev Throws if `_tokenId` is not a valid NFT. URIs are defined in RFC
    ///  3986. The URI may point to a JSON file that conforms to the "ERC721
    ///  Metadata JSON Schema".
    function tokenURI(uint256 _tokenId) external view returns (string);
}

/// @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
/// @dev See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
///  Note: the ERC-165 identifier for this interface is 0x780e9d63.
interface ERC721Enumerable /* is ERC721 */ {
    /// @notice Count NFTs tracked by this contract
    /// @return A count of valid NFTs tracked by this contract, where each one of
    ///  them has an assigned and queryable owner not equal to the zero address
    function totalSupply() external view returns (uint256);

    /// @notice Enumerate valid NFTs
    /// @dev Throws if `_index` >= `totalSupply()`.
    /// @param _index A counter less than `totalSupply()`
    /// @return The token identifier for the `_index`th NFT,
    ///  (sort order not specified)
    function tokenByIndex(uint256 _index) external view returns (uint256);

    /// @notice Enumerate NFTs assigned to an owner
    /// @dev Throws if `_index` >= `balanceOf(_owner)` or if
    ///  `_owner` is the zero address, representing invalid NFTs.
    /// @param _owner An address where we are interested in NFTs owned by them
    /// @param _index A counter less than `balanceOf(_owner)`
    /// @return The token identifier for the `_index`th NFT assigned to `_owner`,
    ///   (sort order not specified)
    function tokenOfOwnerByIndex(address _owner, uint256 _index) external view returns (uint256);
}

/// @dev Note: the ERC-165 identifier for this interface is 0x150b7a02.
interface ERC721TokenReceiver {
    /// @notice Handle the receipt of an NFT
    /// @dev The ERC721 smart contract calls this function on the recipient
    ///  after a `transfer`. This function MAY throw to revert and reject the
    ///  transfer. Return of other than the magic value MUST result in the
    ///  transaction being reverted.
    ///  Note: the contract address is always the message sender.
    /// @param _operator The address which called `safeTransferFrom` function
    /// @param _from The address which previously owned the token
    /// @param _tokenId The NFT identifier which is being transferred
    /// @param _data Additional data with no specified format
    /// @return `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
    ///  unless throwing
    function onERC721Received(address _operator, address _from, uint256 _tokenId, bytes _data) external returns(bytes4);
}

interface ERC165 {
    /// @notice Query if a contract implements an interface
    /// @param interfaceID The interface identifier, as specified in ERC-165
    /// @dev Interface identification is specified in ERC-165. This function
    ///  uses less than 30,000 gas.
    /// @return `true` if the contract implements `interfaceID` and
    ///  `interfaceID` is not 0xffffffff, `false` otherwise
    function supportsInterface(bytes4 interfaceID) external view returns (bool);
}

/// @title Auction Core
/// @dev Contains models, variables, and internal methods for the auction.
contract TimeAuctionBase {

    // Represents an auction on an NFT
    struct Auction {
        // Current owner of NFT
        address seller;
        // Price (in wei) at beginning of auction
        uint128 startingPrice;
        // Price (in wei) at end of auction
        uint128 endingPrice;
        // Duration (in seconds) of auction
        uint64 duration;
        // Time when auction started
        // NOTE: 0 if this auction has been concluded
        uint64 startedAt;
    }

    // Reference to contract tracking NFT ownership
    ERC721 public nonFungibleContract;

    // Cut owner takes on each auction, measured in basis points (1/100 of a percent).
    // Values 0-10,000 map to 0%-100%
    uint256 public ownerCut;

    // Map from token ID to their corresponding auction.
    mapping (uint256 => Auction) tokenIdToAuction;

    event AuctionCreated(uint256 tokenId, address seller, uint256 startingPrice, uint256 endingPrice, uint256 duration);
    event AuctionSuccessful(uint256 tokenId, uint256 totalPrice, address winner);
    event AuctionCancelled(uint256 tokenId);
    event AuctionSettled(uint256 tokenId, uint256 price, uint256 sellerProceeds, address seller, address buyer);
    event AuctionRepriced(uint256 tokenId, uint256 startingPrice, uint256 endingPrice, uint64 duration, uint64 startedAt);

    /// @dev DON'T give me your money.
    function() external {}

    // Modifiers to check that inputs can be safely stored with a certain
    // number of bits. We use constants and multiple modifiers to save gas.
    modifier canBeStoredWith32Bits(uint256 _value) {
        require(_value <= 4294967295);
        _;
    }

    // Modifiers to check that inputs can be safely stored with a certain
    // number of bits. We use constants and multiple modifiers to save gas.
    modifier canBeStoredWith64Bits(uint256 _value) {
        require(_value <= 18446744073709551615);
        _;
    }

    modifier canBeStoredWith128Bits(uint256 _value) {
        require(_value < 340282366920938463463374607431768211455);
        _;
    }

    /// @dev Returns true if the claimant owns the token.
    /// @param _claimant - Address claiming to own the token.
    /// @param _tokenId - ID of token whose ownership to verify.
    function _owns(address _claimant, uint256 _tokenId) internal view returns (bool) {
        return (nonFungibleContract.ownerOf(_tokenId) == _claimant);
    }

    /// @dev Escrows the NFT, assigning ownership to this contract.
    /// Throws if the escrow fails.
    /// @param _owner - Current owner address of token to escrow.
    /// @param _tokenId - ID of token whose approval to verify.
    function _escrow(address _owner, uint256 _tokenId) internal {
        // it will throw if transfer fails
        nonFungibleContract.transferFrom(_owner, this, _tokenId);
    }

    /// @dev Transfers an NFT owned by this contract to another address.
    /// Returns true if the transfer succeeds.
    /// @param _receiver - Address to transfer NFT to.
    /// @param _tokenId - ID of token to transfer.
    function _transfer(address _receiver, uint256 _tokenId) internal {
        // it will throw if transfer fails
        nonFungibleContract.approve(_receiver, _tokenId);
        nonFungibleContract.transferFrom(address(this), _receiver, _tokenId);
    }

    /// @dev Adds an auction to the list of open auctions. Also fires the
    ///  AuctionCreated event.
    /// @param _tokenId The ID of the token to be put on auction.
    /// @param _auction Auction to add.
    function _addAuction(uint256 _tokenId, Auction _auction) internal {
        // Require that all auctions have a duration of
        // at least one minute. (Keeps our math from getting hairy!)
        require(_auction.duration >= 1 minutes);

        tokenIdToAuction[_tokenId] = _auction;

        emit AuctionCreated(
            uint256(_tokenId),
            address(_auction.seller),
            uint256(_auction.startingPrice),
            uint256(_auction.endingPrice),
            uint256(_auction.duration)
        );
    }

    /// @dev Cancels an auction unconditionally.
    function _cancelAuction(uint256 _tokenId, address _seller) internal {
        _removeAuction(_tokenId);
        _transfer(_seller, _tokenId);
        emit AuctionCancelled(_tokenId);
    }

    /// @dev Computes the price and transfers winnings.
    /// Does NOT transfer ownership of token.
    function _bid(uint256 _tokenId, uint256 _bidAmount)
        internal
        returns (uint256)
    {
        // Get a reference to the auction struct
        Auction storage auction = tokenIdToAuction[_tokenId];

        // Explicitly check that this auction is currently live.
        // (Because of how Ethereum mappings work, we can't just count
        // on the lookup above failing. An invalid _tokenId will just
        // return an auction object that is all zeros.)
        require(_isOnAuction(auction));

        // Check that the incoming bid is higher than the current
        // price
        uint256 price = _currentPrice(auction);
        require(_bidAmount >= price);

        // Grab a reference to the seller before the auction struct
        // gets deleted.
        address seller = auction.seller;

        // The bid is good! Remove the auction before sending the fees
        // to the sender so we can't have a reentrancy attack.
        _removeAuction(_tokenId);

        // Transfer proceeds to seller (if there are any!)
        if (price > 0) {
            //  Calculate the auctioneer's cut.
            // (NOTE: _computeCut() is guaranteed to return a
            //  value <= price, so this subtraction can't go negative.)
            uint256 auctioneerCut = _computeCut(price);
            uint256 sellerProceeds = price - auctioneerCut;

            // NOTE: Doing a transfer() in the middle of a complex
            // method like this is generally discouraged because of
            // reentrancy attacks and DoS attacks if the seller is
            // a contract with an invalid fallback function. We explicitly
            // guard against reentrancy attacks by removing the auction
            // before calling transfer(), and the only thing the seller
            // can DoS is the sale of their own asset! (And if it's an
            // accident, they can call cancelAuction(). )
            seller.transfer(sellerProceeds);
            emit AuctionSettled(_tokenId, price, sellerProceeds, seller, msg.sender);
        }

        // Tell the world!
        emit AuctionSuccessful(_tokenId, price, msg.sender);

        return price;
    }

    /// @dev Removes an auction from the list of open auctions.
    /// @param _tokenId - ID of NFT on auction.
    function _removeAuction(uint256 _tokenId) internal {
        delete tokenIdToAuction[_tokenId];
    }

    /// @dev Returns true if the NFT is on auction.
    /// @param _auction - Auction to check.
    function _isOnAuction(Auction storage _auction) internal view returns (bool) {
        return (_auction.startedAt > 0);
    }

    /// @dev Returns current price of an NFT on auction. Broken into two
    ///  functions (this one, that computes the duration from the auction
    ///  structure, and the other that does the price computation) so we
    ///  can easily test that the price computation works correctly.
    function _currentPrice(Auction storage _auction)
        internal
        view
        returns (uint256)
    {
        uint256 secondsPassed = 0;

        // A bit of insurance against negative values (or wraparound).
        // Probably not necessary (since Ethereum guarnatees that the
        // now variable doesn't ever go backwards).
        if (now > _auction.startedAt) {
            secondsPassed = now - _auction.startedAt;
        }

        return _computeCurrentPrice(
            _auction.startingPrice,
            _auction.endingPrice,
            _auction.duration,
            secondsPassed
        );
    }

    /// @dev Computes the current price of an auction. Factored out
    ///  from _currentPrice so we can run extensive unit tests.
    ///  When testing, make this function public and turn on
    ///  `Current price computation` test suite.
    function _computeCurrentPrice(
        uint256 _startingPrice,
        uint256 _endingPrice,
        uint256 _duration,
        uint256 _secondsPassed
    )
        internal
        pure
        returns (uint256)
    {
        // NOTE: We don't use SafeMath (or similar) in this function because
        //  all of our public functions carefully cap the maximum values for
        //  time (at 64-bits) and currency (at 128-bits). _duration is
        //  also known to be non-zero (see the require() statement in
        //  _addAuction())
        if (_secondsPassed >= _duration) {
            // We've reached the end of the dynamic pricing portion
            // of the auction, just return the end price.
            return _endingPrice;
        } else {
            // Starting price can be higher than ending price (and often is!), so
            // this delta can be negative.
            int256 totalPriceChange = int256(_endingPrice) - int256(_startingPrice);

            // This multiplication can't overflow, _secondsPassed will easily fit within
            // 64-bits, and totalPriceChange will easily fit within 128-bits, their product
            // will always fit within 256-bits.
            int256 currentPriceChange = totalPriceChange * int256(_secondsPassed) / int256(_duration);

            // currentPriceChange can be negative, but if so, will have a magnitude
            // less that _startingPrice. Thus, this result will always end up positive.
            int256 currentPrice = int256(_startingPrice) + currentPriceChange;

            return uint256(currentPrice);
        }
    }

    /// @dev Computes owner's cut of a sale.
    /// @param _price - Sale price of NFT.
    function _computeCut(uint256 _price) internal view returns (uint256) {
        // NOTE: We don't use SafeMath (or similar) in this function because
        //  all of our entry functions carefully cap the maximum values for
        //  currency (at 128-bits), and ownerCut <= 10000 (see the require()
        //  statement in the TimeAuction constructor). The result of this
        //  function is always guaranteed to be <= _price.
        return _price * ownerCut / 10000;
    }

}

/**
 * @title Ownable
 * @dev The Ownable contract has an owner address, and provides basic authorization control
 * functions, this simplifies the implementation of "user permissions".
 */
contract Ownable {
  address public owner;

  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

  /**
   * @dev The Ownable constructor sets the original `owner` of the contract to the sender
   * account.
   */
  constructor() public {
    owner = msg.sender;
  }

  /**
   * @dev Throws if called by any account other than the owner.
   */
  modifier onlyOwner() {
    require(msg.sender == owner);
    _;
  }

  /**
   * @dev Allows the current owner to transfer control of the contract to a newOwner.
   * @param newOwner The address to transfer ownership to.
   */
  function transferOwnership(address newOwner) public onlyOwner {
    require(newOwner != address(0));
    emit OwnershipTransferred(owner, newOwner);
    owner = newOwner;
  }

}

/**
 * @title Pausable
 * @dev Base contract which allows children to implement an emergency stop mechanism.
 */
contract Pausable is Ownable {
  event Pause();
  event Unpause();

  bool public paused = false;

  /**
   * @dev Modifier to make a function callable only when the contract is not paused.
   */
  modifier whenNotPaused() {
    require(!paused);
    _;
  }

  /**
   * @dev Modifier to make a function callable only when the contract is paused.
   */
  modifier whenPaused() {
    require(paused);
    _;
  }

  /**
   * @dev called by the owner to pause, triggers stopped state
   */
  function pause() onlyOwner whenNotPaused public {
    paused = true;
    emit Pause();
  }

  /**
   * @dev called by the owner to unpause, returns to normal state
   */
  function unpause() onlyOwner whenPaused public {
    paused = false;
    emit Unpause();
  }
}

/// @title Clock auction for non-fungible tokens.
contract TimeAuction is Pausable, TimeAuctionBase {

    /// @dev Constructor creates a reference to the NFT ownership contract
    ///  and verifies the owner cut is in the valid range.
    /// @param _nftAddress - address of a deployed contract implementing
    ///  the Nonfungible Interface.
    /// @param _cut - 100*(percent cut) the owner takes on each auction, must be
    ///  between 0-10,000.
    constructor(address _nftAddress, uint256 _cut) public {
        require(_cut <= 10000);
        ownerCut = _cut;

        ERC721 candidateContract = ERC721(_nftAddress);
        nonFungibleContract = candidateContract;
    }

    /// @dev Remove all Ether from the contract, which is the owner's cuts
    ///  as well as any Ether sent directly to the contract address.
    ///  Always transfers to the NFT contract, and can only be called from
    ///  the NFT contract.
    function withdrawBalance() external {
        address nftAddress = address(nonFungibleContract);
        require(msg.sender == nftAddress);
        nftAddress.transfer(address(this).balance);
    }

    /// @dev Creates and begins a new auction.
    /// @param _tokenId - ID of token to auction, sender must be owner.
    /// @param _startingPrice - Price of item (in wei) at beginning of auction.
    /// @param _endingPrice - Price of item (in wei) at end of auction.
    /// @param _duration - Length of time to move between starting
    ///  price and ending price (in seconds).
    /// @param _seller - Seller, if not the message sender
    function createAuction(
        uint256 _tokenId,
        uint256 _startingPrice,
        uint256 _endingPrice,
        uint256 _duration,
        address _seller
    )
        public
        whenNotPaused
        canBeStoredWith128Bits(_startingPrice)
        canBeStoredWith128Bits(_endingPrice)
        canBeStoredWith64Bits(_duration)
    {
        require(_owns(msg.sender, _tokenId));
        _escrow(msg.sender, _tokenId);
        Auction memory auction = Auction(
            _seller,
            uint128(_startingPrice),
            uint128(_endingPrice),
            uint64(_duration),
            uint64(now)
        );
        _addAuction(_tokenId, auction);
    }

    /// @dev Bids on an open auction, completing the auction and transferring
    ///  ownership of the NFT if enough Ether is supplied.
    /// @param _tokenId - ID of token to bid on.
    function bid(uint256 _tokenId)
        public
        payable
        whenNotPaused
    {
        // _bid will throw if the bid or funds transfer fails
        _bid(_tokenId, msg.value);
        _transfer(msg.sender, _tokenId);
    }

    /// @dev Cancels an auction that hasn't been won yet.
    ///  Returns the NFT to original owner.
    /// @notice This is a state-modifying function that can
    ///  be called while the contract is paused. An auction can
    ///  only be cancelled by the seller.
    /// @param _tokenId - ID of token on auction
    function cancelAuction(uint256 _tokenId)
        public
    {
        Auction storage auction = tokenIdToAuction[_tokenId];
        require(_isOnAuction(auction));
        address seller = auction.seller;
        require(msg.sender == seller);
        _cancelAuction(_tokenId, seller);
    }

    /// @dev Cancels an auction when the contract is paused.
    ///  Only the owner (account that created the contract)
    ///  may do this, and NFTs are returned to
    ///  the seller. This should only be used in emergencies.
    /// @param _tokenId - ID of the NFT on auction to cancel.
    function cancelAuctionWhenPaused(uint256 _tokenId)
        whenPaused
        onlyOwner
        public
    {
        Auction storage auction = tokenIdToAuction[_tokenId];
        require(_isOnAuction(auction));
        _cancelAuction(_tokenId, auction.seller);
    }

    /// @dev Returns auction info for an NFT on auction.
    /// @param _tokenId - ID of NFT on auction.
    function getAuction(uint256 _tokenId)
        public
        view
        returns
    (
        address seller,
        uint256 startingPrice,
        uint256 endingPrice,
        uint256 currentPrice,
        uint256 duration,
        uint256 startedAt
    ) {
        Auction storage auction = tokenIdToAuction[_tokenId];
        require(_isOnAuction(auction));
        uint256 price = _currentPrice(auction);
        return (
            auction.seller,
            auction.startingPrice,
            auction.endingPrice,
            price,
            auction.duration,
            auction.startedAt
        );
    }

    /// @dev Returns current auction prices for up to 50 auctions
    /// @param _tokenIds - up to 50 IDs of NFT on auction that we want the prices of
    function getCurrentAuctionPrices(uint128[] _tokenIds) public view returns (uint128[50]) {

        require (_tokenIds.length <= 50);

        /// @dev A fixed array we can return current auction price information in.
        uint128[50] memory currentPricesArray;

        for (uint8 i = 0; i < _tokenIds.length; i++) {
          Auction storage auction = tokenIdToAuction[_tokenIds[i]];
          if (_isOnAuction(auction)) {
            uint256 price = _currentPrice(auction);
            currentPricesArray[i] = uint128(price);
          }
        }

        return currentPricesArray;
    }

    /// @dev Returns the current price of an auction.
    /// @param _tokenId - ID of the token price we are checking.
    function getCurrentPrice(uint256 _tokenId)
        public
        view
        returns (uint256)
    {
        Auction storage auction = tokenIdToAuction[_tokenId];
        require(_isOnAuction(auction));
        return _currentPrice(auction);
    }

}

/// @title Interface to allow a contract to listen to auction events.
contract SaleClockAuctionListener {
    function implementsSaleClockAuctionListener() public pure returns (bool);
    function auctionCreated(uint256 tokenId, address seller, uint128 startingPrice, uint128 endingPrice, uint64 duration) public;
    function auctionSuccessful(uint256 tokenId, uint128 totalPrice, address seller, address buyer) public;
    function auctionCancelled(uint256 tokenId, address seller) public;
}

/// @title Clock auction modified for sale of kitties
contract SaleClockAuction is TimeAuction {

    // @dev A listening contract that wants notifications of auction creation,
    //  completion, and cancellation
    SaleClockAuctionListener public listener;

    // Delegate constructor
    constructor(address _nftAddr, uint256 _cut) public TimeAuction(_nftAddr, _cut) {

    }

    /// @dev Sanity check that allows us to ensure that we are pointing to the
    ///  right auction in our setSaleAuctionAddress() call.
    function isSaleClockAuction() public pure returns (bool) {
        return true;
    }

    // @dev Method used to add a listener for auction events. This can only be called
    //  if the listener has not already been set (i.e. once). This limitation is in place to prevent
    //  malicious attempt to hijack the listening contract and perhaps try to do
    //  something bad (like throw). Since the listener methods are called inline with our
    //  createAuction(...), bid(...), and cancelAuction(...) methods, we need to make
    //  sure none of the listener methods causes a revert/throw/out of gas/etc.
    // @param _listener - Address of a SaleClockAuctionListener compatible contract
    function setListener(address _listener) public {
      require(listener == address(0));
      SaleClockAuctionListener candidateContract = SaleClockAuctionListener(_listener);
      require(candidateContract.implementsSaleClockAuctionListener());
      listener = candidateContract;
    }

    /// @dev Creates and begins a new auction. We override the base class
    ///   so we can add the listener capability.
    ///
    /// CALLABLE ONLY BY NFT CONTRACT
    ///
    /// @param _tokenId - ID of token to auction, sender must be owner.
    /// @param _startingPrice - Price of item (in wei) at beginning of auction.
    /// @param _endingPrice - Price of item (in wei) at end of auction.
    /// @param _duration - Length of auction (in seconds).
    /// @param _seller - Seller, if not the message sender
    function createAuction(
        uint256 _tokenId,
        uint256 _startingPrice,
        uint256 _endingPrice,
        uint256 _duration,
        address _seller
    )
        public
        canBeStoredWith128Bits(_startingPrice)
        canBeStoredWith128Bits(_endingPrice)
        canBeStoredWith64Bits(_duration)
    {
        require(msg.sender == address(nonFungibleContract));
        _escrow(_seller, _tokenId);
        Auction memory auction = Auction(
            _seller,
            uint128(_startingPrice),
            uint128(_endingPrice),
            uint64(_duration),
            uint64(now)
        );
        _addAuction(_tokenId, auction);

        if (listener != address(0)) {
          listener.auctionCreated(_tokenId, _seller, uint128(_startingPrice), uint128(_endingPrice), uint64(_duration));
        }
    }

    /// @dev Reprices (and updates duration) of an array of tokens that are currently
    /// being auctioned by this contract.
    ///
    /// CALLABLE ONLY BY NFT CONTRACT
    ///
    /// @param _tokenIds Array of tokenIds corresponding to auctions being updated
    /// @param _startingPrices New starting prices
    /// @param _endingPrices New ending prices
    /// @param _duration New duration
    /// @param _seller Address of the seller in all specified auctions to be updated
    function repriceAuctions(
        uint256[] _tokenIds,
        uint256[] _startingPrices,
        uint256[] _endingPrices,
        uint256 _duration,
        address _seller
    )
    public
    canBeStoredWith64Bits(_duration)
    {
        require(msg.sender == address(nonFungibleContract));

        uint64 timeNow = uint64(now);
        for (uint32 i = 0; i < _tokenIds.length; i++) {
            uint256 _tokenId = _tokenIds[i];
            uint256 _startingPrice = _startingPrices[i];
            uint256 _endingPrice = _endingPrices[i];

            // Must be able to be stored in 128 bits
            require(_startingPrice < 340282366920938463463374607431768211455);
            require(_endingPrice < 340282366920938463463374607431768211455);

            Auction storage auction = tokenIdToAuction[_tokenId];

            // Here is where we make sure the seller in the auction is correct.
            // Since this method can only be called by the NFT, the NFT controls
            // what happens here by passing in the _seller we are to require.
            if (auction.seller == _seller) {
                // Update the auction parameters
                auction.startingPrice = uint128(_startingPrice);
                auction.endingPrice = uint128(_endingPrice);
                auction.duration = uint64(_duration);
                auction.startedAt = timeNow;
                emit AuctionRepriced(_tokenId, _startingPrice, _endingPrice, uint64(_duration), timeNow);
            }
        }
    }

    /// @dev Place a bid to purchase multiple tokens in a single call.
    /// @param _tokenIds Array of IDs of tokens to bid on.
    function batchBid(uint256[] _tokenIds) public payable whenNotPaused
    {
        // Check to make sure the bid amount is sufficient to purchase
        // all of the auctions specified.
        uint256 totalPrice = 0;
        for (uint32 i = 0; i < _tokenIds.length; i++) {
          uint256 _tokenId = _tokenIds[i];
          Auction storage auction = tokenIdToAuction[_tokenId];
          totalPrice += _currentPrice(auction);
        }
        require(msg.value >= totalPrice);

        // Loop through auctions, placing bids to buy
        //
        for (i = 0; i < _tokenIds.length; i++) {

          _tokenId = _tokenIds[i];
          auction = tokenIdToAuction[_tokenId];

          // Need to store this before the _bid & _transfer calls
          // so we can fire our auctionSuccessful events
          address seller = auction.seller;

          uint256 bid = _currentPrice(auction);
          uint256 price = _bid(_tokenId, bid);
          _transfer(msg.sender, _tokenId);

          if (listener != address(0)) {
            listener.auctionSuccessful(_tokenId, uint128(price), seller, msg.sender);
          }
        }
    }

    /// @dev Does exactly what the parent does, but also notifies any
    ///   listener of the successful bid.
    /// @param _tokenId - ID of token to bid on.
    function bid(uint256 _tokenId) public payable whenNotPaused
    {
        Auction storage auction = tokenIdToAuction[_tokenId];

        // Need to store this before the _bid & _transfer calls
        // so we can fire our auctionSuccessful events
        address seller = auction.seller;

        // _bid will throw if the bid or funds transfer fails
        uint256 price = _bid(_tokenId, msg.value);
        _transfer(msg.sender, _tokenId);

        if (listener != address(0)) {
          listener.auctionSuccessful(_tokenId, uint128(price), seller, msg.sender);
        }
    }

    /// @dev Cancels an auction that hasn't been won yet by calling
    ///   the super(...) and then notifying any listener.
    /// @param _tokenId - ID of token on auction
    function cancelAuction(uint256 _tokenId) public
    {
      super.cancelAuction(_tokenId);
      if (listener != address(0)) {
        listener.auctionCancelled(_tokenId, msg.sender);
      }
    }

}

Please enter a contract address above to load the contract details and source code.

Context size (optional):