ETH Price: $3,060.67 (-7.47%)

Contract Diff Checker

Contract Name:
Barn

Contract Source Code:

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

import "./interfaces/IDiamondCut.sol";
import "./interfaces/IDiamondLoupe.sol";
import "./libraries/LibDiamond.sol";
import "./libraries/LibOwnership.sol";
import "./libraries/LibDiamondStorage.sol";
import "./interfaces/IERC165.sol";
import "./interfaces/IERC173.sol";

contract Barn {
    constructor(IDiamondCut.FacetCut[] memory _diamondCut, address _owner) payable {
        require(_owner != address(0), "owner must not be 0x0");

        LibDiamond.diamondCut(_diamondCut, address(0), new bytes(0));
        LibOwnership.setContractOwner(_owner);

        LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage();

        // adding ERC165 data
        ds.supportedInterfaces[type(IERC165).interfaceId] = true;
        ds.supportedInterfaces[type(IDiamondCut).interfaceId] = true;
        ds.supportedInterfaces[type(IDiamondLoupe).interfaceId] = true;
        ds.supportedInterfaces[type(IERC173).interfaceId] = true;
    }

    // Find facet for function that is called and execute the
    // function if a facet is found and return any value.
    fallback() external payable {
        LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage();

        address facet = address(bytes20(ds.facets[msg.sig].facetAddress));
        require(facet != address(0), "Diamond: Function does not exist");

        assembly {
            calldatacopy(0, 0, calldatasize())
            let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
            returndatacopy(0, 0, returndatasize())
            switch result
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return (0, returndatasize())
            }
        }
    }

    receive() external payable {}
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

interface IDiamondCut {
    enum FacetCutAction {Add, Replace, Remove}
    // Add=0, Replace=1, Remove=2

    struct FacetCut {
        address facetAddress;
        FacetCutAction action;
        bytes4[] functionSelectors;
    }

    /// @notice Add/replace/remove any number of functions and optionally execute
    ///         a function with delegatecall
    /// @param _diamondCut Contains the facet addresses and function selectors
    /// @param _init The address of the contract or facet to execute _calldata
    /// @param _calldata A function call, including function selector and arguments
    ///                  _calldata is executed with delegatecall on _init
    function diamondCut(
        FacetCut[] calldata _diamondCut,
        address _init,
        bytes calldata _calldata
    ) external;

    event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

// A loupe is a small magnifying glass used to look at diamonds.
// These functions look at diamonds
interface IDiamondLoupe {
    /// These functions are expected to be called frequently
    /// by tools.

    struct Facet {
        address facetAddress;
        bytes4[] functionSelectors;
    }

    /// @notice Gets all facet addresses and their four byte function selectors.
    /// @return facets_ Facet
    function facets() external view returns (Facet[] memory facets_);

    /// @notice Gets all the function selectors supported by a specific facet.
    /// @param _facet The facet address.
    /// @return facetFunctionSelectors_
    function facetFunctionSelectors(address _facet) external view returns (bytes4[] memory facetFunctionSelectors_);

    /// @notice Get all the facet addresses used by a diamond.
    /// @return facetAddresses_
    function facetAddresses() external view returns (address[] memory facetAddresses_);

    /// @notice Gets the facet that supports the given selector.
    /// @dev If facet is not found return address(0).
    /// @param _functionSelector The function selector.
    /// @return facetAddress_ The facet address.
    function facetAddress(bytes4 _functionSelector) external view returns (address facetAddress_);
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

import "../interfaces/IDiamondCut.sol";
import "./LibDiamondStorage.sol";

library LibDiamond {
    event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);

    // Internal function version of diamondCut
    // This code is almost the same as the external diamondCut,
    // except it is using 'Facet[] memory _diamondCut' instead of
    // 'Facet[] calldata _diamondCut'.
    // The code is duplicated to prevent copying calldata to memory which
    // causes an error for a two dimensional array.
    function diamondCut(
        IDiamondCut.FacetCut[] memory _diamondCut,
        address _init,
        bytes memory _calldata
    ) internal {
        uint256 selectorCount = LibDiamondStorage.diamondStorage().selectors.length;

        for (uint256 facetIndex; facetIndex < _diamondCut.length; facetIndex++) {
            selectorCount = executeDiamondCut(selectorCount, _diamondCut[facetIndex]);
        }

        emit DiamondCut(_diamondCut, _init, _calldata);

        initializeDiamondCut(_init, _calldata);
    }

    // executeDiamondCut takes one single FacetCut action and executes it
    // if FacetCutAction can't be identified, it reverts
    function executeDiamondCut(uint256 selectorCount, IDiamondCut.FacetCut memory cut) internal returns (uint256) {
        require(cut.functionSelectors.length > 0, "LibDiamond: No selectors in facet to cut");

        if (cut.action == IDiamondCut.FacetCutAction.Add) {
            require(cut.facetAddress != address(0), "LibDiamond: add facet address can't be address(0)");
            enforceHasContractCode(cut.facetAddress, "LibDiamond: add facet must have code");

            return _handleAddCut(selectorCount, cut);
        }

        if (cut.action == IDiamondCut.FacetCutAction.Replace) {
            require(cut.facetAddress != address(0), "LibDiamond: remove facet address can't be address(0)");
            enforceHasContractCode(cut.facetAddress, "LibDiamond: remove facet must have code");

            return _handleReplaceCut(selectorCount, cut);
        }

        if (cut.action == IDiamondCut.FacetCutAction.Remove) {
            require(cut.facetAddress == address(0), "LibDiamond: remove facet address must be address(0)");

            return _handleRemoveCut(selectorCount, cut);
        }

        revert("LibDiamondCut: Incorrect FacetCutAction");
    }

    // _handleAddCut executes a cut with the type Add
    // it reverts if the selector already exists
    function _handleAddCut(uint256 selectorCount, IDiamondCut.FacetCut memory cut) internal returns (uint256) {
        LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage();

        for (uint256 selectorIndex; selectorIndex < cut.functionSelectors.length; selectorIndex++) {
            bytes4 selector = cut.functionSelectors[selectorIndex];

            address oldFacetAddress = ds.facets[selector].facetAddress;
            require(oldFacetAddress == address(0), "LibDiamondCut: Can't add function that already exists");

            ds.facets[selector] = LibDiamondStorage.Facet(
                cut.facetAddress,
                uint16(selectorCount)
            );
            ds.selectors.push(selector);

            selectorCount++;
        }

        return selectorCount;
    }

    // _handleReplaceCut executes a cut with the type Replace
    // it does not allow replacing immutable functions
    // it does not allow replacing with the same function
    // it does not allow replacing a function that does not exist
    function _handleReplaceCut(uint256 selectorCount, IDiamondCut.FacetCut memory cut) internal returns (uint256) {
        LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage();

        for (uint256 selectorIndex; selectorIndex < cut.functionSelectors.length; selectorIndex++) {
            bytes4 selector = cut.functionSelectors[selectorIndex];

            address oldFacetAddress = ds.facets[selector].facetAddress;

            // only useful if immutable functions exist
            require(oldFacetAddress != address(this), "LibDiamondCut: Can't replace immutable function");
            require(oldFacetAddress != cut.facetAddress, "LibDiamondCut: Can't replace function with same function");
            require(oldFacetAddress != address(0), "LibDiamondCut: Can't replace function that doesn't exist");

            // replace old facet address
            ds.facets[selector].facetAddress = cut.facetAddress;
        }

        return selectorCount;
    }

    // _handleRemoveCut executes a cut with the type Remove
    // for efficiency, the selector to be deleted is replaced with the last one and then the last one is popped
    // it reverts if the function doesn't exist or it's immutable
    function _handleRemoveCut(uint256 selectorCount, IDiamondCut.FacetCut memory cut) internal returns (uint256) {
        LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage();

        for (uint256 selectorIndex; selectorIndex < cut.functionSelectors.length; selectorIndex++) {
            bytes4 selector = cut.functionSelectors[selectorIndex];

            LibDiamondStorage.Facet memory oldFacet = ds.facets[selector];

            require(oldFacet.facetAddress != address(0), "LibDiamondCut: Can't remove function that doesn't exist");
            require(oldFacet.facetAddress != address(this), "LibDiamondCut: Can't remove immutable function.");

            // replace selector with last selector
            if (oldFacet.selectorPosition != selectorCount - 1) {
                bytes4 lastSelector = ds.selectors[selectorCount - 1];
                ds.selectors[oldFacet.selectorPosition] = lastSelector;
                ds.facets[lastSelector].selectorPosition = oldFacet.selectorPosition;
            }

            // delete last selector
            ds.selectors.pop();
            delete ds.facets[selector];

            selectorCount--;
        }

        return selectorCount;
    }

    function initializeDiamondCut(address _init, bytes memory _calldata) internal {
        if (_init == address(0)) {
            require(_calldata.length == 0, "LibDiamondCut: _init is address(0) but _calldata is not empty");
            return;
        }

        require(_calldata.length > 0, "LibDiamondCut: _calldata is empty but _init is not address(0)");
        if (_init != address(this)) {
            enforceHasContractCode(_init, "LibDiamondCut: _init address has no code");
        }

        (bool success, bytes memory error) = _init.delegatecall(_calldata);
        if (!success) {
            if (error.length > 0) {
                // bubble up the error
                revert(string(error));
            } else {
                revert("LibDiamondCut: _init function reverted");
            }
        }
    }

    function enforceHasContractCode(address _contract, string memory _errorMessage) internal view {
        uint256 contractSize;
        assembly {
            contractSize := extcodesize(_contract)
        }
        require(contractSize > 0, _errorMessage);
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

import "./LibDiamondStorage.sol";

library LibOwnership {
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    function setContractOwner(address _newOwner) internal {
        LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage();

        address previousOwner = ds.contractOwner;
        require(previousOwner != _newOwner, "Previous owner and new owner must be different");

        ds.contractOwner = _newOwner;

        emit OwnershipTransferred(previousOwner, _newOwner);
    }

    function contractOwner() internal view returns (address contractOwner_) {
        contractOwner_ = LibDiamondStorage.diamondStorage().contractOwner;
    }

    function enforceIsContractOwner() view internal {
        require(msg.sender == LibDiamondStorage.diamondStorage().contractOwner, "Must be contract owner");
    }

    modifier onlyOwner {
        require(msg.sender == LibDiamondStorage.diamondStorage().contractOwner, "Must be contract owner");
        _;
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

library LibDiamondStorage {
    bytes32 constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");

    struct Facet {
        address facetAddress;
        uint16 selectorPosition;
    }

    struct DiamondStorage {
        // function selector => facet address and selector position in selectors array
        mapping(bytes4 => Facet) facets;
        bytes4[] selectors;

        // ERC165
        mapping(bytes4 => bool) supportedInterfaces;

        // owner of the contract
        address contractOwner;
    }

    function diamondStorage() internal pure returns (DiamondStorage storage ds) {
        bytes32 position = DIAMOND_STORAGE_POSITION;
        assembly {
            ds.slot := position
        }
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

interface IERC165 {
    /// @notice Query if a contract implements an interface
    /// @param interfaceId The interface identifier, as specified in ERC-165
    /// @dev Interface identification is specified in ERC-165. This function
    ///  uses less than 30,000 gas.
    /// @return `true` if the contract implements `interfaceID` and
    ///  `interfaceID` is not 0xffffffff, `false` otherwise
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;

/// @title ERC-173 Contract Ownership Standard
///  Note: the ERC-165 identifier for this interface is 0x7f5828d0
/* is ERC165 */
interface IERC173 {
    /// @dev This emits when ownership of a contract changes.
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /// @notice Get the address of the owner
    /// @return owner_ The address of the owner.
    function owner() external view returns (address owner_);

    /// @notice Set the address of the new owner of the contract
    /// @dev Set _newOwner to address(0) to renounce any ownership.
    /// @param _newOwner The address of the new owner of the contract
    function transferOwnership(address _newOwner) external;
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;

import "../libraries/LibOwnership.sol";
import "../interfaces/IERC173.sol";

contract OwnershipFacet is IERC173 {
    function transferOwnership(address _newOwner) external override {
        LibOwnership.enforceIsContractOwner();
        LibOwnership.setContractOwner(_newOwner);
    }

    function owner() external override view returns (address owner_) {
        owner_ = LibOwnership.contractOwner();
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

import "../interfaces/IDiamondCut.sol";
import "../libraries/LibDiamond.sol";
import "../libraries/LibOwnership.sol";

contract DiamondCutFacet is IDiamondCut {
    /// @notice Add/replace/remove any number of functions and optionally execute
    ///         a function with delegatecall
    /// @param _diamondCut Contains the facet addresses and function selectors
    /// @param _init The address of the contract or facet to execute _calldata
    /// @param _calldata A function call, including function selector and arguments
    ///                  _calldata is executed with delegatecall on _init
    function diamondCut(
        FacetCut[] calldata _diamondCut,
        address _init,
        bytes calldata _calldata
    ) external override {
        LibOwnership.enforceIsContractOwner();

        uint256 selectorCount = LibDiamondStorage.diamondStorage().selectors.length;
        for (uint256 facetIndex; facetIndex < _diamondCut.length; facetIndex++) {
            FacetCut memory cut;
            cut.action = _diamondCut[facetIndex].action;
            cut.facetAddress = _diamondCut[facetIndex].facetAddress;
            cut.functionSelectors = _diamondCut[facetIndex].functionSelectors;

            selectorCount = LibDiamond.executeDiamondCut(selectorCount, cut);
        }

        emit DiamondCut(_diamondCut, _init, _calldata);

        LibDiamond.initializeDiamondCut(_init, _calldata);
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

import "../libraries/LibDiamondStorage.sol";
import "../interfaces/IDiamondLoupe.sol";
import "../interfaces/IERC165.sol";

contract DiamondLoupeFacet is IDiamondLoupe, IERC165 {
    // Diamond Loupe Functions
    ////////////////////////////////////////////////////////////////////
    /// These functions are expected to be called frequently by tools.
    //
    // struct Facet {
    //     address facetAddress;
    //     bytes4[] functionSelectors;
    // }
    /// @notice Gets all facets and their selectors.
    /// @return facets_ Facet
    function facets() external override view returns (Facet[] memory facets_) {
        LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage();
        uint256 selectorCount = ds.selectors.length;

        // create an array set to the maximum size possible
        facets_ = new Facet[](selectorCount);

        // create an array for counting the number of selectors for each facet
        uint8[] memory numFacetSelectors = new uint8[](selectorCount);

        // total number of facets
        uint256 numFacets;

        // loop through function selectors
        for (uint256 selectorIndex; selectorIndex < selectorCount; selectorIndex++) {
            bytes4 selector = ds.selectors[selectorIndex];
            address facetAddress_ = ds.facets[selector].facetAddress;
            bool continueLoop = false;

            // find the functionSelectors array for selector and add selector to it
            for (uint256 facetIndex; facetIndex < numFacets; facetIndex++) {
                if (facets_[facetIndex].facetAddress == facetAddress_) {
                    facets_[facetIndex].functionSelectors[numFacetSelectors[facetIndex]] = selector;
                    // probably will never have more than 256 functions from one facet contract
                    require(numFacetSelectors[facetIndex] < 255);
                    numFacetSelectors[facetIndex]++;
                    continueLoop = true;
                    break;
                }
            }

            // if functionSelectors array exists for selector then continue loop
            if (continueLoop) {
                continueLoop = false;
                continue;
            }

            // create a new functionSelectors array for selector
            facets_[numFacets].facetAddress = facetAddress_;
            facets_[numFacets].functionSelectors = new bytes4[](selectorCount);
            facets_[numFacets].functionSelectors[0] = selector;

            numFacetSelectors[numFacets] = 1;
            numFacets++;
        }

        for (uint256 facetIndex; facetIndex < numFacets; facetIndex++) {
            uint256 numSelectors = numFacetSelectors[facetIndex];
            bytes4[] memory selectors = facets_[facetIndex].functionSelectors;
            // setting the number of selectors
            assembly {
                mstore(selectors, numSelectors)
            }
        }

        // setting the number of facets
        assembly {
            mstore(facets_, numFacets)
        }
    }

    /// @notice Gets all the function selectors supported by a specific facet.
    /// @param _facet The facet address.
    /// @return _facetFunctionSelectors The selectors associated with a facet address.
    function facetFunctionSelectors(address _facet) external override view returns (bytes4[] memory _facetFunctionSelectors) {
        LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage();

        uint256 selectorCount = ds.selectors.length;
        uint256 numSelectors;
        _facetFunctionSelectors = new bytes4[](selectorCount);

        // loop through function selectors
        for (uint256 selectorIndex; selectorIndex < selectorCount; selectorIndex++) {
            bytes4 selector = ds.selectors[selectorIndex];
            address facetAddress_ = ds.facets[selector].facetAddress;
            if (_facet == facetAddress_) {
                _facetFunctionSelectors[numSelectors] = selector;
                numSelectors++;
            }
        }

        // Set the number of selectors in the array
        assembly {
            mstore(_facetFunctionSelectors, numSelectors)
        }
    }

    /// @notice Get all the facet addresses used by a diamond.
    /// @return facetAddresses_
    function facetAddresses() external override view returns (address[] memory facetAddresses_) {
        LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage();

        uint256 selectorCount = ds.selectors.length;
        // create an array set to the maximum size possible
        facetAddresses_ = new address[](selectorCount);
        uint256 numFacets;

        // loop through function selectors
        for (uint256 selectorIndex; selectorIndex < selectorCount; selectorIndex++) {
            bytes4 selector = ds.selectors[selectorIndex];
            address facetAddress_ = ds.facets[selector].facetAddress;
            bool continueLoop = false;

            // see if we have collected the address already and break out of loop if we have
            for (uint256 facetIndex; facetIndex < numFacets; facetIndex++) {
                if (facetAddress_ == facetAddresses_[facetIndex]) {
                    continueLoop = true;
                    break;
                }
            }

            // continue loop if we already have the address
            if (continueLoop) {
                continueLoop = false;
                continue;
            }

            // include address
            facetAddresses_[numFacets] = facetAddress_;
            numFacets++;
        }

        // Set the number of facet addresses in the array
        assembly {
            mstore(facetAddresses_, numFacets)
        }
    }

    /// @notice Gets the facet address that supports the given selector.
    /// @dev If facet is not found return address(0).
    /// @param _functionSelector The function selector.
    /// @return facetAddress_ The facet address.
    function facetAddress(bytes4 _functionSelector) external override view returns (address facetAddress_) {
        LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage();
        facetAddress_ = ds.facets[_functionSelector].facetAddress;
    }

    // This implements ERC-165.
    function supportsInterface(bytes4 _interfaceId) external override view returns (bool) {
        LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage();
        return ds.supportedInterfaces[_interfaceId];
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

import "../libraries/LibBarnStorage.sol";
import "../libraries/LibOwnership.sol";

contract ChangeRewardsFacet {
    function changeRewardsAddress(address _rewards) public {
        LibOwnership.enforceIsContractOwner();

        LibBarnStorage.Storage storage ds = LibBarnStorage.barnStorage();
        ds.rewards = IRewards(_rewards);
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "../interfaces/IRewards.sol";

library LibBarnStorage {
    bytes32 constant STORAGE_POSITION = keccak256("com.barnbridge.barn.storage");

    struct Checkpoint {
        uint256 timestamp;
        uint256 amount;
    }

    struct Stake {
        uint256 timestamp;
        uint256 amount;
        uint256 expiryTimestamp;
        address delegatedTo;
    }

    struct Storage {
        bool initialized;

        // mapping of user address to history of Stake objects
        // every user action creates a new object in the history
        mapping(address => Stake[]) userStakeHistory;

        // array of bond staked Checkpoint
        // deposits/withdrawals create a new object in the history (max one per block)
        Checkpoint[] bondStakedHistory;

        // mapping of user address to history of delegated power
        // every delegate/stopDelegate call create a new checkpoint (max one per block)
        mapping(address => Checkpoint[]) delegatedPowerHistory;

        IERC20 bond;
        IRewards rewards;
    }

    function barnStorage() internal pure returns (Storage storage ds) {
        bytes32 position = STORAGE_POSITION;
        assembly {
            ds.slot := position
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

interface IRewards {
    function registerUserAction(address user) external;
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;

import "../interfaces/IRewards.sol";

contract BarnMock {
    IRewards public r;
    uint256 public bondStaked;
    mapping(address => uint256) private balances;

    function setRewards(address rewards) public {
        r = IRewards(rewards);
    }

    function callRegisterUserAction(address user) public {
        return r.registerUserAction(user);
    }

    function deposit(address user, uint256 amount) public {
        callRegisterUserAction(user);

        balances[user] = balances[user] + amount;
        bondStaked = bondStaked + amount;
    }

    function withdraw(address user, uint256 amount) public {
        require(balances[user] >= amount, "insufficient balance");

        callRegisterUserAction(user);

        balances[user] = balances[user] - amount;
        bondStaked = bondStaked - amount;
    }

    function balanceOf(address user) public view returns (uint256) {
        return balances[user];
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./interfaces/IBarn.sol";

contract Rewards is Ownable {
    using SafeMath for uint256;

    uint256 constant decimals = 10 ** 18;

    struct Pull {
        address source;
        uint256 startTs;
        uint256 endTs;
        uint256 totalDuration;
        uint256 totalAmount;
    }

    Pull public pullFeature;
    bool public disabled;
    uint256 public lastPullTs;

    uint256 public balanceBefore;
    uint256 public currentMultiplier;

    mapping(address => uint256) public userMultiplier;
    mapping(address => uint256) public owed;

    IBarn public barn;
    IERC20 public rewardToken;

    event Claim(address indexed user, uint256 amount);

    constructor(address _owner, address _token, address _barn) {
        require(_token != address(0), "reward token must not be 0x0");
        require(_barn != address(0), "barn address must not be 0x0");

        transferOwnership(_owner);

        rewardToken = IERC20(_token);
        barn = IBarn(_barn);
    }

    // registerUserAction is called by the Barn every time the user does a deposit or withdrawal in order to
    // account for the changes in reward that the user should get
    // it updates the amount owed to the user without transferring the funds
    function registerUserAction(address user) public {
        require(msg.sender == address(barn), 'only callable by barn');

        _calculateOwed(user);
    }

    // claim calculates the currently owed reward and transfers the funds to the user
    function claim() public returns (uint256){
        _calculateOwed(msg.sender);

        uint256 amount = owed[msg.sender];
        require(amount > 0, "nothing to claim");

        owed[msg.sender] = 0;

        rewardToken.transfer(msg.sender, amount);

        // acknowledge the amount that was transferred to the user
        ackFunds();

        emit Claim(msg.sender, amount);

        return amount;
    }

    // ackFunds checks the difference between the last known balance of `token` and the current one
    // if it goes up, the multiplier is re-calculated
    // if it goes down, it only updates the known balance
    function ackFunds() public {
        uint256 balanceNow = rewardToken.balanceOf(address(this));

        if (balanceNow == 0 || balanceNow <= balanceBefore) {
            balanceBefore = balanceNow;
            return;
        }

        uint256 totalStakedBond = barn.bondStaked();
        // if there's no bond staked, it doesn't make sense to ackFunds because there's nobody to distribute them to
        // and the calculation would fail anyways due to division by 0
        if (totalStakedBond == 0) {
            return;
        }

        uint256 diff = balanceNow.sub(balanceBefore);
        uint256 multiplier = currentMultiplier.add(diff.mul(decimals).div(totalStakedBond));

        balanceBefore = balanceNow;
        currentMultiplier = multiplier;
    }

    // setupPullToken is used to setup the rewards system; only callable by contract owner
    // set source to address(0) to disable the functionality
    function setupPullToken(address source, uint256 startTs, uint256 endTs, uint256 amount) public {
        require(msg.sender == owner(), "!owner");
        require(!disabled, "contract is disabled");

        if (pullFeature.source != address(0)) {
            require(source == address(0), "contract is already set up, source must be 0x0");
            disabled = true;
        } else {
            require(source != address(0), "contract is not setup, source must be != 0x0");
        }

        if (source == address(0)) {
            require(startTs == 0, "disable contract: startTs must be 0");
            require(endTs == 0, "disable contract: endTs must be 0");
            require(amount == 0, "disable contract: amount must be 0");
        } else {
            require(endTs > startTs, "setup contract: endTs must be greater than startTs");
            require(amount > 0, "setup contract: amount must be greater than 0");
        }

        pullFeature.source = source;
        pullFeature.startTs = startTs;
        pullFeature.endTs = endTs;
        pullFeature.totalDuration = endTs.sub(startTs);
        pullFeature.totalAmount = amount;

        if (lastPullTs < startTs) {
            lastPullTs = startTs;
        }
    }

    // setBarn sets the address of the BarnBridge Barn into the state variable
    function setBarn(address _barn) public {
        require(_barn != address(0), 'barn address must not be 0x0');
        require(msg.sender == owner(), '!owner');

        barn = IBarn(_barn);
    }

    // _pullToken calculates the amount based on the time passed since the last pull relative
    // to the total amount of time that the pull functionality is active and executes a transferFrom from the
    // address supplied as `pullTokenFrom`, if enabled
    function _pullToken() internal {
        if (
            pullFeature.source == address(0) ||
            block.timestamp < pullFeature.startTs
        ) {
            return;
        }

        uint256 timestampCap = pullFeature.endTs;
        if (block.timestamp < pullFeature.endTs) {
            timestampCap = block.timestamp;
        }

        if (lastPullTs >= timestampCap) {
            return;
        }

        uint256 timeSinceLastPull = timestampCap.sub(lastPullTs);
        uint256 shareToPull = timeSinceLastPull.mul(decimals).div(pullFeature.totalDuration);
        uint256 amountToPull = pullFeature.totalAmount.mul(shareToPull).div(decimals);

        lastPullTs = block.timestamp;
        rewardToken.transferFrom(pullFeature.source, address(this), amountToPull);
    }

    // _calculateOwed calculates and updates the total amount that is owed to an user and updates the user's multiplier
    // to the current value
    // it automatically attempts to pull the token from the source and acknowledge the funds
    function _calculateOwed(address user) internal {
        _pullToken();
        ackFunds();

        uint256 reward = _userPendingReward(user);

        owed[user] = owed[user].add(reward);
        userMultiplier[user] = currentMultiplier;
    }

    // _userPendingReward calculates the reward that should be based on the current multiplier / anything that's not included in the `owed[user]` value
    // it does not represent the entire reward that's due to the user unless added on top of `owed[user]`
    function _userPendingReward(address user) internal view returns (uint256) {
        uint256 multiplier = currentMultiplier.sub(userMultiplier[user]);

        return barn.balanceOf(user).mul(multiplier).div(decimals);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../GSN/Context.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor () {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(_owner == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

import "../libraries/LibBarnStorage.sol";

interface IBarn {
    // deposit allows a user to add more bond to his staked balance
    function deposit(uint256 amount) external;

    // withdraw allows a user to withdraw funds if the balance is not locked
    function withdraw(uint256 amount) external;

    // lock a user's currently staked balance until timestamp & add the bonus to his voting power
    function lock(uint256 timestamp) external;

    // delegate allows a user to delegate his voting power to another user
    function delegate(address to) external;

    // stopDelegate allows a user to take back the delegated voting power
    function stopDelegate() external;

    // lock the balance of a proposal creator until the voting ends; only callable by DAO
    function lockCreatorBalance(address user, uint256 timestamp) external;

    // balanceOf returns the current BOND balance of a user (bonus not included)
    function balanceOf(address user) external view returns (uint256);

    // balanceAtTs returns the amount of BOND that the user currently staked (bonus NOT included)
    function balanceAtTs(address user, uint256 timestamp) external view returns (uint256);

    // stakeAtTs returns the Stake object of the user that was valid at `timestamp`
    function stakeAtTs(address user, uint256 timestamp) external view returns (LibBarnStorage.Stake memory);

    // votingPower returns the voting power (bonus included) + delegated voting power for a user at the current block
    function votingPower(address user) external view returns (uint256);

    // votingPowerAtTs returns the voting power (bonus included) + delegated voting power for a user at a point in time
    function votingPowerAtTs(address user, uint256 timestamp) external view returns (uint256);

    // bondStaked returns the total raw amount of BOND staked at the current block
    function bondStaked() external view returns (uint256);

    // bondStakedAtTs returns the total raw amount of BOND users have deposited into the contract
    // it does not include any bonus
    function bondStakedAtTs(uint256 timestamp) external view returns (uint256);

    // delegatedPower returns the total voting power that a user received from other users
    function delegatedPower(address user) external view returns (uint256);

    // delegatedPowerAtTs returns the total voting power that a user received from other users at a point in time
    function delegatedPowerAtTs(address user, uint256 timestamp) external view returns (uint256);

    // multiplierAtTs calculates the multiplier at a given timestamp based on the user's stake a the given timestamp
    // it includes the decay mechanism
    function multiplierAtTs(address user, uint256 timestamp) external view returns (uint256);

    // userLockedUntil returns the timestamp until the user's balance is locked
    function userLockedUntil(address user) external view returns (uint256);

    // userDidDelegate returns the address to which a user delegated their voting power; address(0) if not delegated
    function userDelegatedTo(address user) external view returns (address);

    // bondCirculatingSupply returns the current circulating supply of BOND
    function bondCirculatingSupply() external view returns (uint256);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;

import "../interfaces/IBarn.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";

contract MulticallMock {
    using SafeMath for uint256;

    IBarn barn;
    IERC20 bond;

    constructor(address _barn, address _bond) {
        barn = IBarn(_barn);
        bond = IERC20(_bond);
    }

    function multiDelegate(uint256 amount, address user1, address user2) public {
        bond.approve(address(barn), amount);

        barn.deposit(amount);
        barn.delegate(user1);
        barn.delegate(user2);
        barn.delegate(user1);
    }

    function multiDeposit(uint256 amount) public {
        bond.approve(address(barn), amount.mul(3));

        barn.deposit(amount);
        barn.deposit(amount);
        barn.deposit(amount);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../../GSN/Context.sol";
import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20 {
    using SafeMath for uint256;
    using Address for address;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor (string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20};
     *
     * Requirements:
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
        // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
        // for accounts without code, i.e. `keccak256('')`
        bytes32 codehash;
        bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
        // solhint-disable-next-line no-inline-assembly
        assembly { codehash := extcodehash(account) }
        return (codehash != accountHash && codehash != 0x0);
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return _functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        return _functionCallWithValue(target, data, value, errorMessage);
    }

    function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

contract ERC20Mock is ERC20("ERC20Mock", "MCK") {
    bool public transferFromCalled = false;

    bool public transferCalled = false;
    address public transferRecipient = address(0);
    uint256 public transferAmount = 0;

    function mint(address user, uint256 amount) public {
        _mint(user, amount);
    }

    function burnFrom(address user, uint256 amount) public {
        _burn(user, amount);
    }

    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        transferFromCalled = true;

        return super.transferFrom(sender, recipient, amount);
    }

    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        transferCalled = true;
        transferRecipient = recipient;
        transferAmount = amount;

        return super.transfer(recipient, amount);
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.7.6;
pragma experimental ABIEncoderV2;

import "../interfaces/IBarn.sol";
import "../libraries/LibBarnStorage.sol";
import "../libraries/LibOwnership.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

contract BarnFacet {
    using SafeMath for uint256;

    uint256 constant public MAX_LOCK = 365 days;
    uint256 constant BASE_MULTIPLIER = 1e18;

    event Deposit(address indexed user, uint256 amount, uint256 newBalance);
    event Withdraw(address indexed user, uint256 amountWithdrew, uint256 amountLeft);
    event Lock(address indexed user, uint256 timestamp);
    event Delegate(address indexed from, address indexed to);
    event DelegatedPowerIncreased(address indexed from, address indexed to, uint256 amount, uint256 to_newDelegatedPower);
    event DelegatedPowerDecreased(address indexed from, address indexed to, uint256 amount, uint256 to_newDelegatedPower);

    function initBarn(address _bond, address _rewards) public {
        require(_bond != address(0), "BOND address must not be 0x0");

        LibBarnStorage.Storage storage ds = LibBarnStorage.barnStorage();

        require(!ds.initialized, "Barn: already initialized");
        LibOwnership.enforceIsContractOwner();

        ds.initialized = true;

        ds.bond = IERC20(_bond);
        ds.rewards = IRewards(_rewards);
    }

    // deposit allows a user to add more bond to his staked balance
    function deposit(uint256 amount) public {
        require(amount > 0, "Amount must be greater than 0");

        LibBarnStorage.Storage storage ds = LibBarnStorage.barnStorage();
        uint256 allowance = ds.bond.allowance(msg.sender, address(this));
        require(allowance >= amount, "Token allowance too small");

        // this must be called before the user's balance is updated so the rewards contract can calculate
        // the amount owed correctly
        if (address(ds.rewards) != address(0)) {
            ds.rewards.registerUserAction(msg.sender);
        }

        uint256 newBalance = balanceOf(msg.sender).add(amount);
        _updateUserBalance(ds.userStakeHistory[msg.sender], newBalance);
        _updateLockedBond(bondStakedAtTs(block.timestamp).add(amount));

        address delegatedTo = userDelegatedTo(msg.sender);
        if (delegatedTo != address(0)) {
            uint256 newDelegatedPower = delegatedPower(delegatedTo).add(amount);
            _updateDelegatedPower(ds.delegatedPowerHistory[delegatedTo], newDelegatedPower);

            emit DelegatedPowerIncreased(msg.sender, delegatedTo, amount, newDelegatedPower);
        }

        ds.bond.transferFrom(msg.sender, address(this), amount);

        emit Deposit(msg.sender, amount, newBalance);
    }

    // withdraw allows a user to withdraw funds if the balance is not locked
    function withdraw(uint256 amount) public {
        require(amount > 0, "Amount must be greater than 0");
        require(userLockedUntil(msg.sender) <= block.timestamp, "User balance is locked");

        uint256 balance = balanceOf(msg.sender);
        require(balance >= amount, "Insufficient balance");

        LibBarnStorage.Storage storage ds = LibBarnStorage.barnStorage();

        // this must be called before the user's balance is updated so the rewards contract can calculate
        // the amount owed correctly
        if (address(ds.rewards) != address(0)) {
            ds.rewards.registerUserAction(msg.sender);
        }

        _updateUserBalance(ds.userStakeHistory[msg.sender], balance.sub(amount));
        _updateLockedBond(bondStakedAtTs(block.timestamp).sub(amount));

        address delegatedTo = userDelegatedTo(msg.sender);
        if (delegatedTo != address(0)) {
            uint256 newDelegatedPower = delegatedPower(delegatedTo).sub(amount);
            _updateDelegatedPower(ds.delegatedPowerHistory[delegatedTo], newDelegatedPower);

            emit DelegatedPowerDecreased(msg.sender, delegatedTo, amount, newDelegatedPower);
        }

        ds.bond.transfer(msg.sender, amount);

        emit Withdraw(msg.sender, amount, balance.sub(amount));
    }

    // lock a user's currently staked balance until timestamp & add the bonus to his voting power
    function lock(uint256 timestamp) public {
        require(timestamp > block.timestamp, "Timestamp must be in the future");
        require(timestamp <= block.timestamp + MAX_LOCK, "Timestamp too big");
        require(balanceOf(msg.sender) > 0, "Sender has no balance");

        LibBarnStorage.Storage storage ds = LibBarnStorage.barnStorage();
        LibBarnStorage.Stake[] storage checkpoints = ds.userStakeHistory[msg.sender];
        LibBarnStorage.Stake storage currentStake = checkpoints[checkpoints.length - 1];

        require(timestamp > currentStake.expiryTimestamp, "New timestamp lower than current lock timestamp");

        _updateUserLock(checkpoints, timestamp);

        emit Lock(msg.sender, timestamp);
    }

    function depositAndLock(uint256 amount, uint256 timestamp) public {
        deposit(amount);
        lock(timestamp);
    }

    // delegate allows a user to delegate his voting power to another user
    function delegate(address to) public {
        require(msg.sender != to, "Can't delegate to self");

        uint256 senderBalance = balanceOf(msg.sender);
        require(senderBalance > 0, "No balance to delegate");

        LibBarnStorage.Storage storage ds = LibBarnStorage.barnStorage();

        emit Delegate(msg.sender, to);

        address delegatedTo = userDelegatedTo(msg.sender);
        if (delegatedTo != address(0)) {
            uint256 newDelegatedPower = delegatedPower(delegatedTo).sub(senderBalance);
            _updateDelegatedPower(ds.delegatedPowerHistory[delegatedTo], newDelegatedPower);

            emit DelegatedPowerDecreased(msg.sender, delegatedTo, senderBalance, newDelegatedPower);
        }

        if (to != address(0)) {
            uint256 newDelegatedPower = delegatedPower(to).add(senderBalance);
            _updateDelegatedPower(ds.delegatedPowerHistory[to], newDelegatedPower);

            emit DelegatedPowerIncreased(msg.sender, to, senderBalance, newDelegatedPower);
        }

        _updateUserDelegatedTo(ds.userStakeHistory[msg.sender], to);
    }

    // stopDelegate allows a user to take back the delegated voting power
    function stopDelegate() public {
        return delegate(address(0));
    }

    // balanceOf returns the current BOND balance of a user (bonus not included)
    function balanceOf(address user) public view returns (uint256) {
        return balanceAtTs(user, block.timestamp);
    }

    // balanceAtTs returns the amount of BOND that the user currently staked (bonus NOT included)
    function balanceAtTs(address user, uint256 timestamp) public view returns (uint256) {
        LibBarnStorage.Stake memory stake = stakeAtTs(user, timestamp);

        return stake.amount;
    }

    // stakeAtTs returns the Stake object of the user that was valid at `timestamp`
    function stakeAtTs(address user, uint256 timestamp) public view returns (LibBarnStorage.Stake memory) {
        LibBarnStorage.Storage storage ds = LibBarnStorage.barnStorage();
        LibBarnStorage.Stake[] storage stakeHistory = ds.userStakeHistory[user];

        if (stakeHistory.length == 0 || timestamp < stakeHistory[0].timestamp) {
            return LibBarnStorage.Stake(block.timestamp, 0, block.timestamp, address(0));
        }

        uint256 min = 0;
        uint256 max = stakeHistory.length - 1;

        if (timestamp >= stakeHistory[max].timestamp) {
            return stakeHistory[max];
        }

        // binary search of the value in the array
        while (max > min) {
            uint256 mid = (max + min + 1) / 2;
            if (stakeHistory[mid].timestamp <= timestamp) {
                min = mid;
            } else {
                max = mid - 1;
            }
        }

        return stakeHistory[min];
    }

    // votingPower returns the voting power (bonus included) + delegated voting power for a user at the current block
    function votingPower(address user) public view returns (uint256) {
        return votingPowerAtTs(user, block.timestamp);
    }

    // votingPowerAtTs returns the voting power (bonus included) + delegated voting power for a user at a point in time
    function votingPowerAtTs(address user, uint256 timestamp) public view returns (uint256) {
        LibBarnStorage.Stake memory stake = stakeAtTs(user, timestamp);

        uint256 ownVotingPower;

        // if the user delegated his voting power to another user, then he doesn't have any voting power left
        if (stake.delegatedTo != address(0)) {
            ownVotingPower = 0;
        } else {
            uint256 balance = stake.amount;
            uint256 multiplier = _stakeMultiplier(stake, timestamp);
            ownVotingPower = balance.mul(multiplier).div(BASE_MULTIPLIER);
        }

        uint256 delegatedVotingPower = delegatedPowerAtTs(user, timestamp);

        return ownVotingPower.add(delegatedVotingPower);
    }

    // bondStaked returns the total raw amount of BOND staked at the current block
    function bondStaked() public view returns (uint256) {
        return bondStakedAtTs(block.timestamp);
    }

    // bondStakedAtTs returns the total raw amount of BOND users have deposited into the contract
    // it does not include any bonus
    function bondStakedAtTs(uint256 timestamp) public view returns (uint256) {
        return _checkpointsBinarySearch(LibBarnStorage.barnStorage().bondStakedHistory, timestamp);
    }

    // delegatedPower returns the total voting power that a user received from other users
    function delegatedPower(address user) public view returns (uint256) {
        return delegatedPowerAtTs(user, block.timestamp);
    }

    // delegatedPowerAtTs returns the total voting power that a user received from other users at a point in time
    function delegatedPowerAtTs(address user, uint256 timestamp) public view returns (uint256) {
        return _checkpointsBinarySearch(LibBarnStorage.barnStorage().delegatedPowerHistory[user], timestamp);
    }

    // same as multiplierAtTs but for the current block timestamp
    function multiplierOf(address user) public view returns (uint256) {
        return multiplierAtTs(user, block.timestamp);
    }

    // multiplierAtTs calculates the multiplier at a given timestamp based on the user's stake a the given timestamp
    // it includes the decay mechanism
    function multiplierAtTs(address user, uint256 timestamp) public view returns (uint256) {
        LibBarnStorage.Stake memory stake = stakeAtTs(user, timestamp);

        return _stakeMultiplier(stake, timestamp);
    }

    // userLockedUntil returns the timestamp until the user's balance is locked
    function userLockedUntil(address user) public view returns (uint256) {
        LibBarnStorage.Stake memory c = stakeAtTs(user, block.timestamp);

        return c.expiryTimestamp;
    }

    // userDelegatedTo returns the address to which a user delegated their voting power; address(0) if not delegated
    function userDelegatedTo(address user) public view returns (address) {
        LibBarnStorage.Stake memory c = stakeAtTs(user, block.timestamp);

        return c.delegatedTo;
    }

    // _checkpointsBinarySearch executes a binary search on a list of checkpoints that's sorted chronologically
    // looking for the closest checkpoint that matches the specified timestamp
    function _checkpointsBinarySearch(LibBarnStorage.Checkpoint[] storage checkpoints, uint256 timestamp) internal view returns (uint256) {
        if (checkpoints.length == 0 || timestamp < checkpoints[0].timestamp) {
            return 0;
        }

        uint256 min = 0;
        uint256 max = checkpoints.length - 1;

        if (timestamp >= checkpoints[max].timestamp) {
            return checkpoints[max].amount;
        }

        // binary search of the value in the array
        while (max > min) {
            uint256 mid = (max + min + 1) / 2;
            if (checkpoints[mid].timestamp <= timestamp) {
                min = mid;
            } else {
                max = mid - 1;
            }
        }

        return checkpoints[min].amount;
    }

    // _stakeMultiplier calculates the multiplier for the given stake at the given timestamp
    function _stakeMultiplier(LibBarnStorage.Stake memory stake, uint256 timestamp) internal view returns (uint256) {
        if (timestamp >= stake.expiryTimestamp) {
            return BASE_MULTIPLIER;
        }

        uint256 diff = stake.expiryTimestamp - timestamp;
        if (diff >= MAX_LOCK) {
            return BASE_MULTIPLIER.mul(2);
        }

        return BASE_MULTIPLIER.add(diff.mul(BASE_MULTIPLIER).div(MAX_LOCK));
    }

    // _updateUserBalance manages an array of checkpoints
    // if there's already a checkpoint for the same timestamp, the amount is updated
    // otherwise, a new checkpoint is inserted
    function _updateUserBalance(LibBarnStorage.Stake[] storage checkpoints, uint256 amount) internal {
        if (checkpoints.length == 0) {
            checkpoints.push(LibBarnStorage.Stake(block.timestamp, amount, block.timestamp, address(0)));
        } else {
            LibBarnStorage.Stake storage old = checkpoints[checkpoints.length - 1];

            if (old.timestamp == block.timestamp) {
                old.amount = amount;
            } else {
                checkpoints.push(LibBarnStorage.Stake(block.timestamp, amount, old.expiryTimestamp, old.delegatedTo));
            }
        }
    }

    // _updateUserLock updates the expiry timestamp on the user's stake
    // it assumes that if the user already has a balance, which is checked for in the lock function
    // then there must be at least 1 checkpoint
    function _updateUserLock(LibBarnStorage.Stake[] storage checkpoints, uint256 expiryTimestamp) internal {
        LibBarnStorage.Stake storage old = checkpoints[checkpoints.length - 1];

        if (old.timestamp < block.timestamp) {
            checkpoints.push(LibBarnStorage.Stake(block.timestamp, old.amount, expiryTimestamp, old.delegatedTo));
        } else {
            old.expiryTimestamp = expiryTimestamp;
        }
    }

    // _updateUserDelegatedTo updates the delegateTo property on the user's stake
    // it assumes that if the user already has a balance, which is checked for in the delegate function
    // then there must be at least 1 checkpoint
    function _updateUserDelegatedTo(LibBarnStorage.Stake[] storage checkpoints, address to) internal {
        LibBarnStorage.Stake storage old = checkpoints[checkpoints.length - 1];

        if (old.timestamp < block.timestamp) {
            checkpoints.push(LibBarnStorage.Stake(block.timestamp, old.amount, old.expiryTimestamp, to));
        } else {
            old.delegatedTo = to;
        }
    }

    // _updateDelegatedPower updates the power delegated TO the user in the checkpoints history
    function _updateDelegatedPower(LibBarnStorage.Checkpoint[] storage checkpoints, uint256 amount) internal {
        if (checkpoints.length == 0 || checkpoints[checkpoints.length - 1].timestamp < block.timestamp) {
            checkpoints.push(LibBarnStorage.Checkpoint(block.timestamp, amount));
        } else {
            LibBarnStorage.Checkpoint storage old = checkpoints[checkpoints.length - 1];
            old.amount = amount;
        }
    }

    // _updateLockedBond stores the new `amount` into the BOND locked history
    function _updateLockedBond(uint256 amount) internal {
        LibBarnStorage.Storage storage ds = LibBarnStorage.barnStorage();

        if (ds.bondStakedHistory.length == 0 || ds.bondStakedHistory[ds.bondStakedHistory.length - 1].timestamp < block.timestamp) {
            ds.bondStakedHistory.push(LibBarnStorage.Checkpoint(block.timestamp, amount));
        } else {
            LibBarnStorage.Checkpoint storage old = ds.bondStakedHistory[ds.bondStakedHistory.length - 1];
            old.amount = amount;
        }
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):