Contract Name:
MaverickV2Position
Contract Source Code:
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
interface IMulticall {
function multicall(bytes[] calldata data) external returns (bytes[] memory results);
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {IMulticall} from "./IMulticall.sol";
import {Address} from "@openzeppelin/contracts/utils/Address.sol";
// Modified from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/6ba452dea4258afe77726293435f10baf2bed265/contracts/utils/Multicall.sol
/*
* @notice Multicall
*/
abstract contract Multicall is IMulticall {
/**
* @notice This function allows multiple calls to different contract functions
* in a single transaction.
* @param data An array of encoded function call data.
* @return results An array of the results of the function calls.
*/
function multicall(bytes[] calldata data) external returns (bytes[] memory results) {
results = new bytes[](data.length);
for (uint256 i = 0; i < data.length; i++) {
results[i] = Address.functionDelegateCall(address(this), data[i]);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IMaverickV2Pool} from "./IMaverickV2Pool.sol";
interface IMaverickV2Factory {
error FactoryInvalidProtocolFeeRatio(uint8 protocolFeeRatioD3);
error FactoryInvalidLendingFeeRate(uint256 protocolLendingFeeRateD18);
error FactoryProtocolFeeOnRenounce(uint8 protocolFeeRatioD3);
error FactorAlreadyInitialized();
error FactorNotInitialized();
error FactoryInvalidTokenOrder(IERC20 _tokenA, IERC20 _tokenB);
error FactoryInvalidFee();
error FactoryInvalidKinds(uint8 kinds);
error FactoryInvalidTickSpacing(uint256 tickSpacing);
error FactoryInvalidLookback(uint256 lookback);
error FactoryInvalidTokenDecimals(uint8 decimalsA, uint8 decimalsB);
error FactoryPoolAlreadyExists(
uint256 feeAIn,
uint256 feeBIn,
uint256 tickSpacing,
uint256 lookback,
IERC20 tokenA,
IERC20 tokenB,
uint8 kinds,
address accessor
);
error FactoryAccessorMustBeNonZero();
event PoolCreated(
IMaverickV2Pool poolAddress,
uint8 protocolFeeRatio,
uint256 feeAIn,
uint256 feeBIn,
uint256 tickSpacing,
uint256 lookback,
int32 activeTick,
IERC20 tokenA,
IERC20 tokenB,
uint8 kinds,
address accessor
);
event SetFactoryProtocolFeeRatio(uint8 protocolFeeRatioD3);
event SetFactoryProtocolLendingFeeRate(uint256 lendingFeeRateD18);
event SetFactoryProtocolFeeReceiver(address receiver);
struct DeployParameters {
uint64 feeAIn;
uint64 feeBIn;
uint32 lookback;
int32 activeTick;
uint64 tokenAScale;
uint64 tokenBScale;
// slot
IERC20 tokenA;
// slot
IERC20 tokenB;
// slot
uint16 tickSpacing;
uint8 options;
address accessor;
}
/**
* @notice Called by deployer library to initialize a pool.
*/
function deployParameters()
external
view
returns (
uint64 feeAIn,
uint64 feeBIn,
uint32 lookback,
int32 activeTick,
uint64 tokenAScale,
uint64 tokenBScale,
// slot
IERC20 tokenA,
// slot
IERC20 tokenB,
// slot
uint16 tickSpacing,
uint8 options,
address accessor
);
/**
* @notice Create a new MaverickV2Pool with symmetric swap fees.
* @param fee Fraction of the pool swap amount that is retained as an LP in
* D18 scale.
* @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
* bin width.
* @param lookback Pool lookback in seconds.
* @param tokenA Address of tokenA.
* @param tokenB Address of tokenB.
* @param activeTick Tick position that contains the active bins.
* @param kinds 1-15 number to represent the active kinds
* 0b0001 = static;
* 0b0010 = right;
* 0b0100 = left;
* 0b1000 = both.
* E.g. a pool with all 4 modes will have kinds = b1111 = 15
*/
function create(
uint64 fee,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds
) external returns (IMaverickV2Pool);
/**
* @notice Create a new MaverickV2Pool.
* @param feeAIn Fraction of the pool swap amount for tokenA-input swaps
* that is retained as an LP in D18 scale.
* @param feeBIn Fraction of the pool swap amount for tokenB-input swaps
* that is retained as an LP in D18 scale.
* @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
* bin width.
* @param lookback Pool lookback in seconds.
* @param tokenA Address of tokenA.
* @param tokenB Address of tokenB.
* @param activeTick Tick position that contains the active bins.
* @param kinds 1-15 number to represent the active kinds
* 0b0001 = static;
* 0b0010 = right;
* 0b0100 = left;
* 0b1000 = both.
* e.g. a pool with all 4 modes will have kinds = b1111 = 15
*/
function create(
uint64 feeAIn,
uint64 feeBIn,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds
) external returns (IMaverickV2Pool);
/**
* @notice Create a new MaverickV2PoolPermissioned with symmetric swap fees
* with all functions permissioned. Set fee to zero to make the pool fee settable by the accessor.
* @param fee Fraction of the pool swap amount that is retained as an LP in
* D18 scale.
* @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
* bin width.
* @param lookback Pool lookback in seconds.
* @param tokenA Address of tokenA.
* @param tokenB Address of tokenB.
* @param activeTick Tick position that contains the active bins.
* @param kinds 1-15 number to represent the active kinds
* 0b0001 = static;
* 0b0010 = right;
* 0b0100 = left;
* 0b1000 = both.
* E.g. a pool with all 4 modes will have kinds = b1111 = 15
* @param accessor Only address that can access the pool's public write functions.
*/
function createPermissioned(
uint64 fee,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds,
address accessor
) external returns (IMaverickV2Pool);
/**
* @notice Create a new MaverickV2PoolPermissioned with all functions
* permissioned. Set fees to zero to make the pool fee settable by the
* accessor.
* @param feeAIn Fraction of the pool swap amount for tokenA-input swaps
* that is retained as an LP in D18 scale.
* @param feeBIn Fraction of the pool swap amount for tokenB-input swaps
* that is retained as an LP in D18 scale.
* @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
* bin width.
* @param lookback Pool lookback in seconds.
* @param tokenA Address of tokenA.
* @param tokenB Address of tokenB.
* @param activeTick Tick position that contains the active bins.
* @param kinds 1-15 number to represent the active kinds
* 0b0001 = static;
* 0b0010 = right;
* 0b0100 = left;
* 0b1000 = both.
* E.g. a pool with all 4 modes will have kinds = b1111 = 15
* @param accessor only address that can access the pool's public write functions.
*/
function createPermissioned(
uint64 feeAIn,
uint64 feeBIn,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds,
address accessor
) external returns (IMaverickV2Pool);
/**
* @notice Create a new MaverickV2PoolPermissioned with the option to make
* a subset of function permissionless. Set fee to zero to make the pool
* fee settable by the accessor.
* @param feeAIn Fraction of the pool swap amount for tokenA-input swaps
* that is retained as an LP in D18 scale.
* @param feeBIn Fraction of the pool swap amount for tokenB-input swaps
* that is retained as an LP in D18 scale.
* @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
* bin width.
* @param lookback Pool lookback in seconds.
* @param tokenA Address of tokenA.
* @param tokenB Address of tokenB.
* @param activeTick Tick position that contains the active bins.
* @param kinds 1-15 number to represent the active kinds
* 0b0001 = static;
* 0b0010 = right;
* 0b0100 = left;
* 0b1000 = both.
* E.g. a pool with all 4 modes will have kinds = b1111 = 15
* @param accessor only address that can access the pool's public permissioned write functions.
* @param permissionedLiquidity If true, then only accessor can call
* pool's liquidity management functions: `flashLoan`,
* `migrateBinsUpstack`, `addLiquidity`, `removeLiquidity`.
* @param permissionedSwap If true, then only accessor can call
* pool's swap function.
*/
function createPermissioned(
uint64 feeAIn,
uint64 feeBIn,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds,
address accessor,
bool permissionedLiquidity,
bool permissionedSwap
) external returns (IMaverickV2Pool pool);
/**
* @notice Update the protocol fee ratio for a pool. Can be called
* permissionlessly allowing any user to sync the pool protocol fee value
* with the factory protocol fee value.
* @param pool The pool for which to update.
*/
function updateProtocolFeeRatioForPool(IMaverickV2Pool pool) external;
/**
* @notice Update the protocol lending fee rate for a pool. Can be called
* permissionlessly allowing any user to sync the pool protocol lending fee
* rate value with the factory value.
* @param pool The pool for which to update.
*/
function updateProtocolLendingFeeRateForPool(IMaverickV2Pool pool) external;
/**
* @notice Claim protocol fee for a pool and transfer it to the protocolFeeReceiver.
* @param pool The pool from which to claim the protocol fee.
* @param isTokenA A boolean indicating whether tokenA (true) or tokenB
* (false) is being collected.
*/
function claimProtocolFeeForPool(IMaverickV2Pool pool, bool isTokenA) external;
/**
* @notice Claim protocol fee for a pool and transfer it to the protocolFeeReceiver.
* @param pool The pool from which to claim the protocol fee.
*/
function claimProtocolFeeForPool(IMaverickV2Pool pool) external;
/**
* @notice Bool indicating whether the pool was deployed from this factory.
*/
function isFactoryPool(IMaverickV2Pool pool) external view returns (bool);
/**
* @notice Address that receives the protocol fee when users call
* `claimProtocolFeeForPool`.
*/
function protocolFeeReceiver() external view returns (address);
/**
* @notice Lookup a pool for given parameters.
*
* @dev options bit map of kinds and function permissions
* 0b000001 = static;
* 0b000010 = right;
* 0b000100 = left;
* 0b001000 = both;
* 0b010000 = liquidity functions are permissioned
* 0b100000 = swap function is permissioned
*/
function lookupPermissioned(
uint256 feeAIn,
uint256 feeBIn,
uint256 tickSpacing,
uint256 lookback,
IERC20 tokenA,
IERC20 tokenB,
uint8 options,
address accessor
) external view returns (IMaverickV2Pool);
/**
* @notice Lookup a pool for given parameters.
*/
function lookupPermissioned(
IERC20 _tokenA,
IERC20 _tokenB,
address accessor,
uint256 startIndex,
uint256 endIndex
) external view returns (IMaverickV2Pool[] memory pools);
/**
* @notice Lookup a pool for given parameters.
*/
function lookupPermissioned(
uint256 startIndex,
uint256 endIndex
) external view returns (IMaverickV2Pool[] memory pools);
/**
* @notice Lookup a pool for given parameters.
*/
function lookup(
uint256 feeAIn,
uint256 feeBIn,
uint256 tickSpacing,
uint256 lookback,
IERC20 tokenA,
IERC20 tokenB,
uint8 kinds
) external view returns (IMaverickV2Pool);
/**
* @notice Lookup a pool for given parameters.
*/
function lookup(
IERC20 _tokenA,
IERC20 _tokenB,
uint256 startIndex,
uint256 endIndex
) external view returns (IMaverickV2Pool[] memory pools);
/**
* @notice Lookup a pool for given parameters.
*/
function lookup(uint256 startIndex, uint256 endIndex) external view returns (IMaverickV2Pool[] memory pools);
/**
* @notice Count of permissionless pools.
*/
function poolCount() external view returns (uint256 _poolCount);
/**
* @notice Count of permissioned pools.
*/
function poolPermissionedCount() external view returns (uint256 _poolCount);
/**
* @notice Count of pools for a given accessor and token pair. For
* permissionless pools, pass `accessor = address(0)`.
*/
function poolByTokenCount(
IERC20 _tokenA,
IERC20 _tokenB,
address accessor
) external view returns (uint256 _poolCount);
/**
* @notice Get the current factory owner.
*/
function owner() external view returns (address);
/**
* @notice Proportion of protocol fee to collect on each swap. Value is in
* 3-decimal format with a maximum value of 0.25e3.
*/
function protocolFeeRatioD3() external view returns (uint8);
/**
* @notice Fee rate charged by the protocol for flashloans. Value is in
* 18-decimal format with a maximum value of 0.02e18.
*/
function protocolLendingFeeRateD18() external view returns (uint256);
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IMaverickV2Factory} from "./IMaverickV2Factory.sol";
interface IMaverickV2Pool {
error PoolZeroLiquidityAdded();
error PoolMinimumLiquidityNotMet();
error PoolLocked();
error PoolInvalidFee();
error PoolTicksNotSorted(uint256 index, int256 previousTick, int256 tick);
error PoolTicksAmountsLengthMismatch(uint256 ticksLength, uint256 amountsLength);
error PoolBinIdsAmountsLengthMismatch(uint256 binIdsLength, uint256 amountsLength);
error PoolKindNotSupported(uint256 kinds, uint256 kind);
error PoolInsufficientBalance(uint256 deltaLpAmount, uint256 accountBalance);
error PoolReservesExceedMaximum(uint256 amount);
error PoolValueExceedsBits(uint256 amount, uint256 bits);
error PoolTickMaxExceeded(uint256 tick);
error PoolMigrateBinFirst();
error PoolCurrentTickBeyondSwapLimit(int32 startingTick);
error PoolSenderNotAccessor(address sender_, address accessor);
error PoolSenderNotFactory(address sender_, address accessor);
error PoolFunctionNotImplemented();
error PoolTokenNotSolvent(uint256 internalReserve, uint256 tokenBalance, IERC20 token);
event PoolSwap(address sender, address recipient, SwapParams params, uint256 amountIn, uint256 amountOut);
event PoolAddLiquidity(
address sender,
address recipient,
uint256 subaccount,
AddLiquidityParams params,
uint256 tokenAAmount,
uint256 tokenBAmount,
uint32[] binIds
);
event PoolMigrateBinsUpStack(address sender, uint32 binId, uint32 maxRecursion);
event PoolRemoveLiquidity(
address sender,
address recipient,
uint256 subaccount,
RemoveLiquidityParams params,
uint256 tokenAOut,
uint256 tokenBOut
);
event PoolSetVariableFee(uint256 newFeeAIn, uint256 newFeeBIn);
/**
* @notice Tick state parameters.
*/
struct TickState {
uint128 reserveA;
uint128 reserveB;
uint128 totalSupply;
uint32[4] binIdsByTick;
}
/**
* @notice Tick data parameters.
* @param currentReserveA Current reserve of token A.
* @param currentReserveB Current reserve of token B.
* @param currentLiquidity Current liquidity amount.
*/
struct TickData {
uint256 currentReserveA;
uint256 currentReserveB;
uint256 currentLiquidity;
}
/**
* @notice Bin state parameters.
* @param mergeBinBalance LP token balance that this bin possesses of the merge bin.
* @param mergeId Bin ID of the bin that this bin has merged into.
* @param totalSupply Total amount of LP tokens in this bin.
* @param kind One of the 4 kinds (0=static, 1=right, 2=left, 3=both).
* @param tick The lower price tick of the bin in its current state.
* @param tickBalance Balance of the tick.
*/
struct BinState {
uint128 mergeBinBalance;
uint128 tickBalance;
uint128 totalSupply;
uint8 kind;
int32 tick;
uint32 mergeId;
}
/**
* @notice Parameters for swap.
* @param amount Amount of the token that is either the input if exactOutput is false
* or the output if exactOutput is true.
* @param tokenAIn Boolean indicating whether tokenA is the input.
* @param exactOutput Boolean indicating whether the amount specified is
* the exact output amount (true).
* @param tickLimit The furthest tick a swap will execute in. If no limit
* is desired, value should be set to type(int32).max for a tokenAIn swap
* and type(int32).min for a swap where tokenB is the input.
*/
struct SwapParams {
uint256 amount;
bool tokenAIn;
bool exactOutput;
int32 tickLimit;
}
/**
* @notice Parameters associated with adding liquidity.
* @param kind One of the 4 kinds (0=static, 1=right, 2=left, 3=both).
* @param ticks Array of ticks to add liquidity to.
* @param amounts Array of bin LP amounts to add.
*/
struct AddLiquidityParams {
uint8 kind;
int32[] ticks;
uint128[] amounts;
}
/**
* @notice Parameters for each bin that will have liquidity removed.
* @param binIds Index array of the bins losing liquidity.
* @param amounts Array of bin LP amounts to remove.
*/
struct RemoveLiquidityParams {
uint32[] binIds;
uint128[] amounts;
}
/**
* @notice State of the pool.
* @param reserveA Pool tokenA balanceOf at end of last operation
* @param reserveB Pool tokenB balanceOf at end of last operation
* @param lastTwaD8 Value of log time weighted average price at last block.
* Value is 8-decimal scale and is in the fractional tick domain. E.g. a
* value of 12.3e8 indicates the TWAP was 3/10ths of the way into the 12th
* tick.
* @param lastLogPriceD8 Value of log price at last block. Value is
* 8-decimal scale and is in the fractional tick domain. E.g. a value of
* 12.3e8 indicates the price was 3/10ths of the way into the 12th tick.
* @param lastTimestamp Last block.timestamp value in seconds for latest
* swap transaction.
* @param activeTick Current tick position that contains the active bins.
* @param isLocked Pool isLocked, E.g., locked or unlocked; isLocked values
* defined in Pool.sol.
* @param binCounter Index of the last bin created.
* @param protocolFeeRatioD3 Ratio of the swap fee that is kept for the
* protocol.
*/
struct State {
uint128 reserveA;
uint128 reserveB;
int64 lastTwaD8;
int64 lastLogPriceD8;
uint40 lastTimestamp;
int32 activeTick;
bool isLocked;
uint32 binCounter;
uint8 protocolFeeRatioD3;
}
/**
* @notice Internal data used for data passing between Pool and Bin code.
*/
struct BinDelta {
uint128 deltaA;
uint128 deltaB;
}
/**
* @notice 1-15 number to represent the active kinds.
* @notice 0b0001 = static;
* @notice 0b0010 = right;
* @notice 0b0100 = left;
* @notice 0b1000 = both;
*
* E.g. a pool with all 4 modes will have kinds = b1111 = 15
*/
function kinds() external view returns (uint8 _kinds);
/**
* @notice Returns whether a pool has permissioned functions. If true, the
* `accessor()` of the pool can set the pool fees. Other functions in the
* pool may also be permissioned; whether or not they are can be determined
* through calls to `permissionedLiquidity()` and `permissionedSwap()`.
*/
function permissionedPool() external view returns (bool _permissionedPool);
/**
* @notice Returns whether a pool has permissioned liquidity management
* functions. If true, the pool is incompatible with permissioned pool
* liquidity management infrastructure.
*/
function permissionedLiquidity() external view returns (bool _permissionedLiquidity);
/**
* @notice Returns whether a pool has a permissioned swap functions. If
* true, the pool is incompatible with permissioned pool swap router
* infrastructure.
*/
function permissionedSwap() external view returns (bool _permissionedSwap);
/**
* @notice Pool swap fee for the given direction (A-in or B-in swap) in
* 18-decimal format. E.g. 0.01e18 is a 1% swap fee.
*/
function fee(bool tokenAIn) external view returns (uint256);
/**
* @notice TickSpacing of pool where 1.0001^tickSpacing is the bin width.
*/
function tickSpacing() external view returns (uint256);
/**
* @notice Lookback period of pool in seconds.
*/
function lookback() external view returns (uint256);
/**
* @notice Address of Pool accessor. This is Zero address for
* permissionless pools.
*/
function accessor() external view returns (address);
/**
* @notice Pool tokenA. Address of tokenA is such that tokenA < tokenB.
*/
function tokenA() external view returns (IERC20);
/**
* @notice Pool tokenB.
*/
function tokenB() external view returns (IERC20);
/**
* @notice Deploying factory of the pool and also contract that has ability
* to set and collect protocol fees for the pool.
*/
function factory() external view returns (IMaverickV2Factory);
/**
* @notice Most significant bit of scale value is a flag to indicate whether
* tokenA has more or less than 18 decimals. Scale is used in conjuction
* with Math.toScale/Math.fromScale functions to convert from token amounts
* to D18 scale internal pool accounting.
*/
function tokenAScale() external view returns (uint256);
/**
* @notice Most significant bit of scale value is a flag to indicate whether
* tokenA has more or less than 18 decimals. Scale is used in conjuction
* with Math.toScale/Math.fromScale functions to convert from token amounts
* to D18 scale internal pool accounting.
*/
function tokenBScale() external view returns (uint256);
/**
* @notice ID of bin at input tick position and kind.
*/
function binIdByTickKind(int32 tick, uint256 kind) external view returns (uint32);
/**
* @notice Accumulated tokenA protocol fee.
*/
function protocolFeeA() external view returns (uint128);
/**
* @notice Accumulated tokenB protocol fee.
*/
function protocolFeeB() external view returns (uint128);
/**
* @notice Lending fee rate on flash loans.
*/
function lendingFeeRateD18() external view returns (uint256);
/**
* @notice External function to get the current time-weighted average price.
*/
function getCurrentTwa() external view returns (int256);
/**
* @notice External function to get the state of the pool.
*/
function getState() external view returns (State memory);
/**
* @notice Return state of Bin at input binId.
*/
function getBin(uint32 binId) external view returns (BinState memory bin);
/**
* @notice Return state of Tick at input tick position.
*/
function getTick(int32 tick) external view returns (TickState memory tickState);
/**
* @notice Retrieves the balance of a user within a bin.
* @param user The user's address.
* @param subaccount The subaccount for the user.
* @param binId The ID of the bin.
*/
function balanceOf(address user, uint256 subaccount, uint32 binId) external view returns (uint128 lpToken);
/**
* @notice Add liquidity to a pool. This function allows users to deposit
* tokens into a liquidity pool.
* @dev This function will call `maverickV2AddLiquidityCallback` on the
* calling contract to collect the tokenA/tokenB payment.
* @param recipient The account that will receive credit for the added liquidity.
* @param subaccount The account that will receive credit for the added liquidity.
* @param params Parameters containing the details for adding liquidity,
* such as token types and amounts.
* @param data Bytes information that gets passed to the callback.
* @return tokenAAmount The amount of token A added to the pool.
* @return tokenBAmount The amount of token B added to the pool.
* @return binIds An array of bin IDs where the liquidity is stored.
*/
function addLiquidity(
address recipient,
uint256 subaccount,
AddLiquidityParams calldata params,
bytes calldata data
) external returns (uint256 tokenAAmount, uint256 tokenBAmount, uint32[] memory binIds);
/**
* @notice Removes liquidity from the pool.
* @dev Liquidy can only be removed from a bin that is either unmerged or
* has a mergeId of an unmerged bin. If a bin is merged more than one
* level deep, it must be migrated up the merge stack to the root bin
* before liquidity removal.
* @param recipient The address to receive the tokens.
* @param subaccount The subaccount for the recipient.
* @param params The parameters for removing liquidity.
* @return tokenAOut The amount of token A received.
* @return tokenBOut The amount of token B received.
*/
function removeLiquidity(
address recipient,
uint256 subaccount,
RemoveLiquidityParams calldata params
) external returns (uint256 tokenAOut, uint256 tokenBOut);
/**
* @notice Migrate bins up the linked list of merged bins so that its
* mergeId is the currrent active bin.
* @dev Liquidy can only be removed from a bin that is either unmerged or
* has a mergeId of an unmerged bin. If a bin is merged more than one
* level deep, it must be migrated up the merge stack to the root bin
* before liquidity removal.
* @param binId The ID of the bin to migrate.
* @param maxRecursion The maximum recursion depth for the migration.
*/
function migrateBinUpStack(uint32 binId, uint32 maxRecursion) external;
/**
* @notice Swap tokenA/tokenB assets in the pool. The swap user has two
* options for funding their swap.
* - The user can push the input token amount to the pool before calling
* the swap function. In order to avoid having the pool call the callback,
* the user should pass a zero-length `data` bytes object with the swap
* call.
* - The user can send the input token amount to the pool when the pool
* calls the `maverickV2SwapCallback` function on the calling contract.
* That callback has input parameters that specify the token address of the
* input token, the input and output amounts, and the bytes data sent to
* the swap function.
* @dev If the users elects to do a callback-based swap, the output
* assets will be sent before the callback is called, allowing the user to
* execute flash swaps. However, the pool does have reentrancy protection,
* so a swapper will not be able to interact with the same pool again
* while they are in the callback function.
* @param recipient The address to receive the output tokens.
* @param params Parameters containing the details of the swap
* @param data Bytes information that gets passed to the callback.
*/
function swap(
address recipient,
SwapParams memory params,
bytes calldata data
) external returns (uint256 amountIn, uint256 amountOut);
/**
* @notice Loan tokenA/tokenB assets from the pool to recipient. The fee
* rate of a loan is determined by `lendingFeeRateD18`, which is set at the
* protocol level by the factory. This function calls
* `maverickV2FlashLoanCallback` on the calling contract. At the end of
* the callback, the caller must pay back the loan with fee (if there is a
* fee).
* @param recipient The address to receive the loaned tokens.
* @param amountB Loan amount of tokenA sent to recipient.
* @param amountB Loan amount of tokenB sent to recipient.
* @param data Bytes information that gets passed to the callback.
*/
function flashLoan(
address recipient,
uint256 amountA,
uint256 amountB,
bytes calldata data
) external returns (uint128 lendingFeeA, uint128 lendingFeeB);
/**
* @notice Sets fee for permissioned pools. May only be called by the
* accessor.
*/
function setFee(uint256 newFeeAIn, uint256 newFeeBIn) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
library ArrayOperations {
error ArrayElementsNotUnique(uint256 index, uint256 duplicateEntry);
/**
* @notice Checks that array of numbers are unique.
* @param array Array of numbers to check.
* @param maxArrayElementValue Maximum value possible in Array.
*/
function checkUnique(uint32[] memory array, uint256 maxArrayElementValue) internal pure {
// for pool with few bins (less than ~100k), the bitmap approach is
// more gas efficient than exhaustive search of a 10-bin list. As the
// bin count in a pool grows beyond this, the gas cost of the bitmap
// memory allocation quickly overtakes the exhaustive search cost.
if (maxArrayElementValue < 100_000) {
// allocate bitmap and set indexes to check uniqueness
checkUniqueViaBitMap(array, maxArrayElementValue);
} else {
// search to check uniqueness
checkUniqueViaSearch(array);
}
}
/**
* @notice Search all pair-wise combinations; low memory, but quadratic
* comparison cost.
*/
function checkUniqueViaSearch(uint32[] memory array) internal pure {
uint256 length = array.length;
if (length <= 1) return;
for (uint256 i = 0; i < length - 1; i++) {
for (uint256 j = i + 1; j < length; j++) {
if (array[i] == array[j]) revert ArrayElementsNotUnique(j, array[j]);
}
}
}
/**
* @notice Fill bitmap with values and revert on collision; memory is
* proportional to pool bin count while comparison costs are linear in
* array length.
*/
function checkUniqueViaBitMap(uint32[] memory array, uint256 maxArrayElementValue) internal pure {
uint256 length = array.length;
if (length <= 1) return;
uint256[] memory bitMap = new uint256[]((maxArrayElementValue >> 8) + 1);
for (uint256 i; i < length; i++) {
if (get(bitMap, array[i])) revert ArrayElementsNotUnique(i, array[i]);
set(bitMap, array[i]);
}
}
/**
* @notice Gets the bit at `index`.
*/
function get(uint256[] memory bitmap, uint256 index) private pure returns (bool) {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
return bitmap[bucket] & mask != 0;
}
/**
* @notice Sets the bit at `index`.
*/
function set(uint256[] memory bitmap, uint256 index) private pure {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
bitmap[bucket] |= mask;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
// factory contraints on pools
uint8 constant MAX_PROTOCOL_FEE_RATIO_D3 = 0.25e3; // 25%
uint256 constant MAX_PROTOCOL_LENDING_FEE_RATE_D18 = 0.02e18; // 2%
uint64 constant MAX_POOL_FEE_D18 = 0.9e18; // 90%
uint64 constant MIN_LOOKBACK = 1 seconds;
uint64 constant MAX_TICK_SPACING = 10_000;
// pool constraints
uint8 constant NUMBER_OF_KINDS = 4;
int32 constant NUMBER_OF_KINDS_32 = int32(int8(NUMBER_OF_KINDS));
uint256 constant MAX_TICK = 322_378; // max price 1e14 in D18 scale
int32 constant MAX_TICK_32 = int32(int256(MAX_TICK));
int32 constant MIN_TICK_32 = int32(-int256(MAX_TICK));
uint256 constant MAX_BINS_TO_MERGE = 3;
uint128 constant MINIMUM_LIQUIDITY = 1e8;
// accessor named constants
uint8 constant ALL_KINDS_MASK = 0xF; // 0b1111
uint8 constant PERMISSIONED_LIQUIDITY_MASK = 0x10; // 0b010000
uint8 constant PERMISSIONED_SWAP_MASK = 0x20; // 0b100000
uint8 constant OPTIONS_MASK = ALL_KINDS_MASK | PERMISSIONED_LIQUIDITY_MASK | PERMISSIONED_SWAP_MASK; // 0b111111
// named values
address constant MERGED_LP_BALANCE_ADDRESS = address(0);
uint256 constant MERGED_LP_BALANCE_SUBACCOUNT = 0;
uint128 constant ONE = 1e18;
uint128 constant ONE_SQUARED = 1e36;
int256 constant INT256_ONE = 1e18;
uint256 constant ONE_D8 = 1e8;
uint256 constant ONE_D3 = 1e3;
int40 constant INT_ONE_D8 = 1e8;
int40 constant HALF_TICK_D8 = 0.5e8;
uint8 constant DEFAULT_DECIMALS = 18;
uint256 constant DEFAULT_SCALE = 1;
bytes constant EMPTY_PRICE_BREAKS = hex"010000000000000000000000";
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {Math as OzMath} from "@openzeppelin/contracts/utils/math/Math.sol";
import {ONE, DEFAULT_SCALE, DEFAULT_DECIMALS, INT_ONE_D8, ONE_SQUARED} from "./Constants.sol";
/**
* @notice Math functions.
*/
library Math {
/**
* @notice Returns the lesser of two values.
* @param x First uint256 value.
* @param y Second uint256 value.
*/
function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
assembly ("memory-safe") {
z := xor(x, mul(xor(x, y), lt(y, x)))
}
}
/**
* @notice Returns the lesser of two uint128 values.
* @param x First uint128 value.
* @param y Second uint128 value.
*/
function min128(uint128 x, uint128 y) internal pure returns (uint128 z) {
assembly ("memory-safe") {
z := xor(x, mul(xor(x, y), lt(y, x)))
}
}
/**
* @notice Returns the lesser of two int256 values.
* @param x First int256 value.
* @param y Second int256 value.
*/
function min(int256 x, int256 y) internal pure returns (int256 z) {
assembly ("memory-safe") {
z := xor(x, mul(xor(x, y), slt(y, x)))
}
}
/**
* @notice Returns the greater of two uint256 values.
* @param x First uint256 value.
* @param y Second uint256 value.
*/
function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
assembly ("memory-safe") {
z := xor(x, mul(xor(x, y), gt(y, x)))
}
}
/**
* @notice Returns the greater of two int256 values.
* @param x First int256 value.
* @param y Second int256 value.
*/
function max(int256 x, int256 y) internal pure returns (int256 z) {
assembly ("memory-safe") {
z := xor(x, mul(xor(x, y), sgt(y, x)))
}
}
/**
* @notice Returns the greater of two uint128 values.
* @param x First uint128 value.
* @param y Second uint128 value.
*/
function max128(uint128 x, uint128 y) internal pure returns (uint128 z) {
assembly ("memory-safe") {
z := xor(x, mul(xor(x, y), gt(y, x)))
}
}
/**
* @notice Thresholds a value to be within the specified bounds.
* @param value The value to bound.
* @param lowerLimit The minimum allowable value.
* @param upperLimit The maximum allowable value.
*/
function boundValue(
uint256 value,
uint256 lowerLimit,
uint256 upperLimit
) internal pure returns (uint256 outputValue) {
outputValue = min(max(value, lowerLimit), upperLimit);
}
/**
* @notice Returns the difference between two uint128 values or zero if the result would be negative.
* @param x The minuend.
* @param y The subtrahend.
*/
function clip128(uint128 x, uint128 y) internal pure returns (uint128) {
unchecked {
return x < y ? 0 : x - y;
}
}
/**
* @notice Returns the difference between two uint256 values or zero if the result would be negative.
* @param x The minuend.
* @param y The subtrahend.
*/
function clip(uint256 x, uint256 y) internal pure returns (uint256) {
unchecked {
return x < y ? 0 : x - y;
}
}
/**
* @notice Divides one uint256 by another, rounding down to the nearest
* integer.
* @param x The dividend.
* @param y The divisor.
*/
function divFloor(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivFloor(x, ONE, y);
}
/**
* @notice Divides one uint256 by another, rounding up to the nearest integer.
* @param x The dividend.
* @param y The divisor.
*/
function divCeil(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivCeil(x, ONE, y);
}
/**
* @notice Multiplies two uint256 values and then divides by ONE, rounding down.
* @param x The multiplicand.
* @param y The multiplier.
*/
function mulFloor(uint256 x, uint256 y) internal pure returns (uint256) {
return OzMath.mulDiv(x, y, ONE);
}
/**
* @notice Multiplies two uint256 values and then divides by ONE, rounding up.
* @param x The multiplicand.
* @param y The multiplier.
*/
function mulCeil(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivCeil(x, y, ONE);
}
/**
* @notice Calculates the multiplicative inverse of a uint256, rounding down.
* @param x The value to invert.
*/
function invFloor(uint256 x) internal pure returns (uint256) {
unchecked {
return ONE_SQUARED / x;
}
}
/**
* @notice Calculates the multiplicative inverse of a uint256, rounding up.
* @param denominator The value to invert.
*/
function invCeil(uint256 denominator) internal pure returns (uint256 z) {
assembly ("memory-safe") {
// divide z - 1 by the denominator and add 1.
z := add(div(sub(ONE_SQUARED, 1), denominator), 1)
}
}
/**
* @notice Multiplies two uint256 values and divides by a third, rounding down.
* @param x The multiplicand.
* @param y The multiplier.
* @param k The divisor.
*/
function mulDivFloor(uint256 x, uint256 y, uint256 k) internal pure returns (uint256 result) {
result = OzMath.mulDiv(x, y, max(1, k));
}
/**
* @notice Multiplies two uint256 values and divides by a third, rounding up if there's a remainder.
* @param x The multiplicand.
* @param y The multiplier.
* @param k The divisor.
*/
function mulDivCeil(uint256 x, uint256 y, uint256 k) internal pure returns (uint256 result) {
result = mulDivFloor(x, y, k);
if (mulmod(x, y, max(1, k)) != 0) result = result + 1;
}
/**
* @notice Multiplies two uint256 values and divides by a third, rounding
* down. Will revert if `x * y` is larger than `type(uint256).max`.
* @param x The first operand for multiplication.
* @param y The second operand for multiplication.
* @param denominator The divisor after multiplication.
*/
function mulDivDown(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 z) {
assembly ("memory-safe") {
// Store x * y in z for now.
z := mul(x, y)
if iszero(denominator) {
denominator := 1
}
if iszero(or(iszero(x), eq(div(z, x), y))) {
revert(0, 0)
}
// Divide z by the denominator.
z := div(z, denominator)
}
}
/**
* @notice Multiplies two uint256 values and divides by a third, rounding
* up. Will revert if `x * y` is larger than `type(uint256).max`.
* @param x The first operand for multiplication.
* @param y The second operand for multiplication.
* @param denominator The divisor after multiplication.
*/
function mulDivUp(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 z) {
assembly ("memory-safe") {
// Store x * y in z for now.
z := mul(x, y)
if iszero(denominator) {
denominator := 1
}
if iszero(or(iszero(x), eq(div(z, x), y))) {
revert(0, 0)
}
// First, divide z - 1 by the denominator and add 1.
// We allow z - 1 to underflow if z is 0, because we multiply the
// end result by 0 if z is zero, ensuring we return 0 if z is zero.
z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
}
}
/**
* @notice Multiplies a uint256 by another and divides by a constant,
* rounding down. Will revert if `x * y` is larger than
* `type(uint256).max`.
* @param x The multiplicand.
* @param y The multiplier.
*/
function mulDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, ONE);
}
/**
* @notice Divides a uint256 by another, rounding down the result. Will
* revert if `x * 1e18` is larger than `type(uint256).max`.
* @param x The dividend.
* @param y The divisor.
*/
function divDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, ONE, y);
}
/**
* @notice Divides a uint256 by another, rounding up the result. Will
* revert if `x * 1e18` is larger than `type(uint256).max`.
* @param x The dividend.
* @param y The divisor.
*/
function divUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, ONE, y);
}
/**
* @notice Scales a number based on a difference in decimals from a default.
* @param decimals The new decimal precision.
*/
function scale(uint8 decimals) internal pure returns (uint256) {
unchecked {
if (decimals == DEFAULT_DECIMALS) {
return DEFAULT_SCALE;
} else {
return 10 ** (DEFAULT_DECIMALS - decimals);
}
}
}
/**
* @notice Adjusts a scaled amount to the token decimal scale.
* @param amount The scaled amount.
* @param scaleFactor The scaling factor to adjust by.
* @param ceil Whether to round up (true) or down (false).
*/
function ammScaleToTokenScale(uint256 amount, uint256 scaleFactor, bool ceil) internal pure returns (uint256 z) {
unchecked {
if (scaleFactor == DEFAULT_SCALE || amount == 0) {
return amount;
} else {
if (!ceil) return amount / scaleFactor;
assembly ("memory-safe") {
z := add(div(sub(amount, 1), scaleFactor), 1)
}
}
}
}
/**
* @notice Adjusts a token amount to the D18 AMM scale.
* @param amount The amount in token scale.
* @param scaleFactor The scale factor for adjustment.
*/
function tokenScaleToAmmScale(uint256 amount, uint256 scaleFactor) internal pure returns (uint256) {
if (scaleFactor == DEFAULT_SCALE) {
return amount;
} else {
return amount * scaleFactor;
}
}
/**
* @notice Returns the absolute value of a signed 32-bit integer.
* @param x The integer to take the absolute value of.
*/
function abs32(int32 x) internal pure returns (uint32) {
unchecked {
return uint32(x < 0 ? -x : x);
}
}
/**
* @notice Returns the absolute value of a signed 256-bit integer.
* @param x The integer to take the absolute value of.
*/
function abs(int256 x) internal pure returns (uint256) {
unchecked {
return uint256(x < 0 ? -x : x);
}
}
/**
* @notice Calculates the integer square root of a uint256 rounded down.
* @param x The number to take the square root of.
*/
function sqrt(uint256 x) internal pure returns (uint256 z) {
// from https://github.com/transmissions11/solmate/blob/e8f96f25d48fe702117ce76c79228ca4f20206cb/src/utils/FixedPointMathLib.sol
assembly ("memory-safe") {
let y := x
z := 181
if iszero(lt(y, 0x10000000000000000000000000000000000)) {
y := shr(128, y)
z := shl(64, z)
}
if iszero(lt(y, 0x1000000000000000000)) {
y := shr(64, y)
z := shl(32, z)
}
if iszero(lt(y, 0x10000000000)) {
y := shr(32, y)
z := shl(16, z)
}
if iszero(lt(y, 0x1000000)) {
y := shr(16, y)
z := shl(8, z)
}
z := shr(18, mul(z, add(y, 65536)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := sub(z, lt(div(x, z), z))
}
}
/**
* @notice Computes the floor of a D8-scaled number as an int32, ignoring
* potential overflow in the cast.
* @param val The D8-scaled number.
*/
function floorD8Unchecked(int256 val) internal pure returns (int32) {
int32 val32;
bool check;
unchecked {
val32 = int32(val / INT_ONE_D8);
check = (val < 0 && val % INT_ONE_D8 != 0);
}
return check ? val32 - 1 : val32;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {SafeCast as Cast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {IMaverickV2Pool} from "../interfaces/IMaverickV2Pool.sol";
import {TickMath} from "./TickMath.sol";
import {Math} from "./Math.sol";
/**
* @notice Library of pool functions.
*/
library PoolLib {
using Cast for uint256;
struct AddLiquidityInfo {
uint256 deltaA;
uint256 deltaB;
bool tickLtActive;
uint256 tickSpacing;
int32 tick;
}
/**
* @notice Check to ensure that the ticks are in ascending order and amount
* array is same length as tick array.
* @param ticks An array of int32 values representing ticks to be checked.
* @param amountsLength Amount array length.
*/
function uniqueOrderedTicksCheck(int32[] memory ticks, uint256 amountsLength) internal pure {
unchecked {
if (ticks.length != amountsLength)
revert IMaverickV2Pool.PoolTicksAmountsLengthMismatch(ticks.length, amountsLength);
int32 lastTick = type(int32).min;
for (uint256 i; i < ticks.length; ) {
if (ticks[i] <= lastTick) revert IMaverickV2Pool.PoolTicksNotSorted(i, lastTick, ticks[i]);
lastTick = ticks[i];
i = i + 1;
}
}
}
/**
* @notice Compute bin reserves assuming the bin is not merged; not accurate
* reflection of reserves for merged bins.
* @param bin The storage reference to the state for this bin.
* @param tick The memory reference to the state for this tick.
* @return reserveA The reserve amount for token A.
* @return reserveB The reserve amount for token B.
*/
function binReserves(
IMaverickV2Pool.BinState storage bin,
IMaverickV2Pool.TickState memory tick
) internal view returns (uint128 reserveA, uint128 reserveB) {
return binReserves(bin.tickBalance, tick.reserveA, tick.reserveB, tick.totalSupply);
}
/**
* @notice Compute bin reserves assuming the bin is not merged; not accurate
* reflection of reserves for merged bins.
* @param tickBalance Bin's balance in the tick.
* @param tickReserveA Tick's tokenA reserves.
* @param tickReserveB Tick's tokenB reserves.
* @param tickTotalSupply Tick total supply of bin balances.
*/
function binReserves(
uint128 tickBalance,
uint128 tickReserveA,
uint128 tickReserveB,
uint128 tickTotalSupply
) internal pure returns (uint128 reserveA, uint128 reserveB) {
if (tickTotalSupply != 0) {
reserveA = reserveValue(tickReserveA, tickBalance, tickTotalSupply);
reserveB = reserveValue(tickReserveB, tickBalance, tickTotalSupply);
}
}
/**
* @notice Reserves of a bin in a tick.
* @param tickReserve Tick reserve amount in a given token.
* @param tickBalance Bin's balance in the tick.
* @param tickTotalSupply Tick total supply of bin balances.
*/
function reserveValue(
uint128 tickReserve,
uint128 tickBalance,
uint128 tickTotalSupply
) internal pure returns (uint128 reserve) {
reserve = Math.mulDivFloor(tickReserve, tickBalance, tickTotalSupply).toUint128();
reserve = Math.min128(tickReserve, reserve);
}
/**
* @notice Calculate delta A, delta B, and delta Tick Balance based on delta
* LP balance and the Tick/Bin state.
*/
function deltaTickBalanceFromDeltaLpBalance(
uint256 binTickBalance,
uint256 binTotalSupply,
IMaverickV2Pool.TickState memory tickState,
uint128 deltaLpBalance,
AddLiquidityInfo memory addLiquidityInfo
) internal pure returns (uint256 deltaTickBalance) {
unchecked {
if (tickState.reserveA != 0 || tickState.reserveB != 0) {
// if there are already reserves, then we just contribute pro rata
// deltaLiquidity = deltaBinLP / binTS * binTickBalance / tickTS * tickL
uint256 numerator = Math.max(1, binTickBalance) * uint256(deltaLpBalance);
uint256 denominator = Math.max(1, tickState.totalSupply) * Math.max(1, binTotalSupply);
addLiquidityInfo.deltaA = Math.mulDivCeil(tickState.reserveA, numerator, denominator);
addLiquidityInfo.deltaB = Math.mulDivCeil(tickState.reserveB, numerator, denominator);
} else {
_setRequiredDeltaReservesForEmptyTick(deltaLpBalance, addLiquidityInfo);
}
// round down the amount credited to the tick; this could lead to a
// small add amount getting zero reserves credit.
deltaTickBalance = tickState.totalSupply == 0
? deltaLpBalance
: Math.mulDivDown(deltaLpBalance, Math.max(1, binTickBalance), binTotalSupply);
}
}
/**
* @notice Calculates deltaA = liquidity * (sqrt(upper) - sqrt(lower))
* @notice Calculates deltaB = liquidity / sqrt(lower) - liquidity / sqrt(upper),
* @notice i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
* @notice we set liquidity = deltaLpBalance / (1.0001^(tick * tickspacing) - 1)
* @notice which simplifies the A/B amounts to:
* @notice deltaA = deltaLpBalance * sqrt(lower)
* @notice deltaB = deltaLpBalance / sqrt(upper)
*/
function _setRequiredDeltaReservesForEmptyTick(
uint128 deltaLpBalance,
AddLiquidityInfo memory addLiquidityInfo
) internal pure {
// No reserves, so we will use deltaLpBalance as liquidity to be added.
// In this logic branch, the tick is empty, so we know the tick will be
// a one-asset add.
(uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(
addLiquidityInfo.tickSpacing,
addLiquidityInfo.tick
);
addLiquidityInfo.deltaA = addLiquidityInfo.tickLtActive ? Math.mulCeil(deltaLpBalance, sqrtLowerTickPrice) : 0;
addLiquidityInfo.deltaB = addLiquidityInfo.tickLtActive ? 0 : Math.divCeil(deltaLpBalance, sqrtUpperTickPrice);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {Math as OzMath} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Math} from "./Math.sol";
import {MAX_TICK, ONE} from "./Constants.sol";
/**
* @notice Math functions related to tick operations.
*/
library TickMath {
using Math for uint256;
error TickMaxExceeded(int256 tick);
/**
* @notice Compute the lower and upper sqrtPrice of a tick.
* @param tickSpacing The tick spacing used for calculations.
* @param _tick The input tick value.
*/
function tickSqrtPrices(
uint256 tickSpacing,
int32 _tick
) internal pure returns (uint256 sqrtLowerPrice, uint256 sqrtUpperPrice) {
unchecked {
sqrtLowerPrice = tickSqrtPrice(tickSpacing, _tick);
sqrtUpperPrice = tickSqrtPrice(tickSpacing, _tick + 1);
}
}
/**
* @notice Compute the base tick value from the pool tick and the
* tickSpacing. Revert if base tick is beyond the max tick boundary.
* @param tickSpacing The tick spacing used for calculations.
* @param _tick The input tick value.
*/
function subTickIndex(uint256 tickSpacing, int32 _tick) internal pure returns (uint32 subTick) {
subTick = Math.abs32(_tick);
subTick *= uint32(tickSpacing);
if (subTick > MAX_TICK) {
revert TickMaxExceeded(_tick);
}
}
/**
* @notice Calculate the square root price for a given tick and tick spacing.
* @param tickSpacing The tick spacing used for calculations.
* @param _tick The input tick value.
* @return _result The square root price.
*/
function tickSqrtPrice(uint256 tickSpacing, int32 _tick) internal pure returns (uint256 _result) {
unchecked {
uint256 tick = subTickIndex(tickSpacing, _tick);
uint256 ratio = tick & 0x1 != 0 ? 0xfffcb933bd6fad9d3af5f0b9f25db4d6 : 0x100000000000000000000000000000000;
if (tick & 0x2 != 0) ratio = (ratio * 0xfff97272373d41fd789c8cb37ffcaa1c) >> 128;
if (tick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656ac9229c67059486f389) >> 128;
if (tick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e81259b3cddc7a064941) >> 128;
if (tick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f67b19e8887e0bd251eb7) >> 128;
if (tick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98cd2e57b660be99eb2c4a) >> 128;
if (tick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c9838804e327cb417cafcb) >> 128;
if (tick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99d51e2cc356c2f617dbe0) >> 128;
if (tick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900aecf64236ab31f1f9dcb5) >> 128;
if (tick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac4d9194200696907cf2e37) >> 128;
if (tick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b88206f8abe8a3b44dd9be) >> 128;
if (tick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c578ef4f1d17b2b235d480) >> 128;
if (tick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd254ee83bdd3f248e7e785e) >> 128;
if (tick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d8f7dd10e744d913d033333) >> 128;
if (tick & 0x4000 != 0) ratio = (ratio * 0x70d869a156ddd32a39e257bc3f50aa9b) >> 128;
if (tick & 0x8000 != 0) ratio = (ratio * 0x31be135f97da6e09a19dc367e3b6da40) >> 128;
if (tick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7e5a9780b0cc4e25d61a56) >> 128;
if (tick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedbcb3a6ccb7ce618d14225) >> 128;
if (tick & 0x40000 != 0) ratio = (ratio * 0x2216e584f630389b2052b8db590e) >> 128;
if (_tick > 0) ratio = type(uint256).max / ratio;
_result = (ratio * ONE) >> 128;
}
}
/**
* @notice Calculate liquidity of a tick.
* @param reserveA Tick reserve of token A.
* @param reserveB Tick reserve of token B.
* @param sqrtLowerTickPrice The square root price of the lower tick edge.
* @param sqrtUpperTickPrice The square root price of the upper tick edge.
*/
function getTickL(
uint256 reserveA,
uint256 reserveB,
uint256 sqrtLowerTickPrice,
uint256 sqrtUpperTickPrice
) internal pure returns (uint256 liquidity) {
// known:
// - sqrt price values are different
// - reserveA and reserveB fit in 128 bit
// - sqrt price is in (1e-7, 1e7)
// - D18 max for uint256 is 1.15e59
// - D18 min is 1e-18
unchecked {
// diff is in (5e-12, 4e6); max tick spacing is 10_000
uint256 diff = sqrtUpperTickPrice - sqrtLowerTickPrice;
// Need to maximize precision by shifting small values A and B up so
// that they use more of the available bit range. Two constraints to
// consider: we need A * B * diff / sqrtPrice to be bigger than 1e-18
// when the bump is not in play. This constrains the threshold for
// bumping to be at least 77 bit; ie, either a or b needs 2^77 which
// means that term A * B * diff / sqrtPrice > 1e-18.
//
// At the other end, the second constraint is that b^2 needs to fit in
// a 256-bit number, so, post bump, the max reserve value needs to be
// less than 6e22. With a 78-bit threshold and a 57-bit bump, we have A
// and B are in (1.4e-1, 4.4e22 (2^(78+57))) with bump, and one of A or
// B is at least 2^78 without the bump, but the other reserve value may
// be as small as 1 wei.
uint256 precisionBump = 0;
if ((reserveA >> 78) == 0 && (reserveB >> 78) == 0) {
precisionBump = 57;
reserveA <<= precisionBump;
reserveB <<= precisionBump;
}
if (reserveB == 0) return Math.divDown(reserveA, diff) >> precisionBump;
if (reserveA == 0)
return Math.mulDivDown(reserveB.mulDown(sqrtLowerTickPrice), sqrtUpperTickPrice, diff) >> precisionBump;
// b is in (7.2e-9 (2^57 / 1e7 / 2), 2.8e29 (2^(78+57) * 1e7 / 2)) with bump
// b is in a subset of the same range without bump
uint256 b = (reserveA.divDown(sqrtUpperTickPrice) + reserveB.mulDown(sqrtLowerTickPrice)) >> 1;
// b^2 is in (5.1e-17, 4.8e58); and will not overflow on either end;
// A*B is in (3e-13 (2^78 / 1e18 * 1e-18), 1.9e45) without bump and is in a subset range with bump
// A*B*diff/sqrtUpper is in (1.5e-17 (3e-13 * 5e-12 * 1e7), 7.6e58);
// Since b^2 is at the upper edge of the precision range, we are not
// able to multiply the argument of the sqrt by 1e18, instead, we move
// this factor outside of the sqrt. The resulting loss of precision
// means that this liquidity value is a lower bound on the tick
// liquidity
return
OzMath.mulDiv(
b +
Math.sqrt(
(OzMath.mulDiv(b, b, ONE) +
OzMath.mulDiv(reserveB.mulFloor(reserveA), diff, sqrtUpperTickPrice))
) *
1e9,
sqrtUpperTickPrice,
diff
) >> precisionBump;
}
}
/**
* @notice Calculate square root price of a tick. Returns left edge of the
* tick if the tick has no reserves.
* @param reserveA Tick reserve of token A.
* @param reserveB Tick reserve of token B.
* @param sqrtLowerTickPrice The square root price of the lower tick edge.
* @param sqrtUpperTickPrice The square root price of the upper tick edge.
* @return sqrtPrice The calculated square root price.
*/
function getSqrtPrice(
uint256 reserveA,
uint256 reserveB,
uint256 sqrtLowerTickPrice,
uint256 sqrtUpperTickPrice,
uint256 liquidity
) internal pure returns (uint256 sqrtPrice) {
unchecked {
if (reserveA == 0) {
return sqrtLowerTickPrice;
}
if (reserveB == 0) {
return sqrtUpperTickPrice;
}
sqrtPrice = Math.sqrt(
ONE *
(reserveA + liquidity.mulDown(sqrtLowerTickPrice)).divDown(
reserveB + liquidity.divDown(sqrtUpperTickPrice)
)
);
sqrtPrice = Math.boundValue(sqrtPrice, sqrtLowerTickPrice, sqrtUpperTickPrice);
}
}
/**
* @notice Calculate square root price of a tick. Returns left edge of the
* tick if the tick has no reserves.
* @param reserveA Tick reserve of token A.
* @param reserveB Tick reserve of token B.
* @param sqrtLowerTickPrice The square root price of the lower tick edge.
* @param sqrtUpperTickPrice The square root price of the upper tick edge.
* @return sqrtPrice The calculated square root price.
* @return liquidity The calculated liquidity.
*/
function getTickSqrtPriceAndL(
uint256 reserveA,
uint256 reserveB,
uint256 sqrtLowerTickPrice,
uint256 sqrtUpperTickPrice
) internal pure returns (uint256 sqrtPrice, uint256 liquidity) {
liquidity = getTickL(reserveA, reserveB, sqrtLowerTickPrice, sqrtUpperTickPrice);
sqrtPrice = getSqrtPrice(reserveA, reserveB, sqrtLowerTickPrice, sqrtUpperTickPrice, liquidity);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IChecks} from "./IChecks.sol";
import {PoolInspection} from "../libraries/PoolInspection.sol";
abstract contract Checks is IChecks {
/// @inheritdoc IChecks
function checkSqrtPrice(IMaverickV2Pool pool, uint256 minSqrtPrice, uint256 maxSqrtPrice) public payable {
uint256 sqrtPrice = PoolInspection.poolSqrtPrice(pool);
if (sqrtPrice < minSqrtPrice || sqrtPrice > maxSqrtPrice)
revert PositionExceededPriceBounds(sqrtPrice, minSqrtPrice, maxSqrtPrice);
}
/// @inheritdoc IChecks
function checkDeadline(uint256 deadline) public payable {
if (block.timestamp > deadline) revert PositionDeadlinePassed(deadline, block.timestamp);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
interface IChecks {
error PositionExceededPriceBounds(uint256 sqrtPrice, uint256 minSqrtPrice, uint256 maxSqrtPrice);
error PositionDeadlinePassed(uint256 deadline, uint256 blockTimestamp);
/**
* @notice Function to check if the price of a pool is within specified bounds.
* @param pool The MaverickV2Pool contract to check.
* @param minSqrtPrice The minimum acceptable square root price.
* @param maxSqrtPrice The maximum acceptable square root price.
*/
function checkSqrtPrice(IMaverickV2Pool pool, uint256 minSqrtPrice, uint256 maxSqrtPrice) external payable;
/**
* @notice Function to check if a given deadline has passed.
* @param deadline The timestamp representing the deadline.
*/
function checkDeadline(uint256 deadline) external payable;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
interface IMigrateBins {
function migrateBinsUpStack(IMaverickV2Pool pool, uint32[] calldata binIds, uint32 maxRecursion) external payable;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IMigrateBins} from "./IMigrateBins.sol";
abstract contract MigrateBins is IMigrateBins {
/**
* @dev Migrates bins up the stack in the pool.
* @param pool The MaverickV2Pool contract.
* @param binIds An array of bin IDs to migrate.
* @param maxRecursion The maximum recursion depth.
*/
function migrateBinsUpStack(IMaverickV2Pool pool, uint32[] memory binIds, uint32 maxRecursion) public payable {
for (uint256 i = 0; i < binIds.length; i++) {
pool.migrateBinUpStack(binIds[i], maxRecursion);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Factory} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Factory.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IMulticall} from "@maverick/v2-common/contracts/base/IMulticall.sol";
import {IPositionImage} from "./IPositionImage.sol";
import {INft} from "../positionbase/INft.sol";
import {IMigrateBins} from "../base/IMigrateBins.sol";
import {IChecks} from "../base/IChecks.sol";
interface IMaverickV2Position is INft, IMigrateBins, IMulticall, IChecks {
event PositionClearData(uint256 indexed tokenId);
event PositionSetData(uint256 indexed tokenId, uint256 index, PositionPoolBinIds newData);
error PositionDuplicatePool(uint256 index, IMaverickV2Pool pool);
error PositionNotFactoryPool();
error PositionPermissionedLiquidityPool();
struct PositionPoolBinIds {
IMaverickV2Pool pool;
uint32[] binIds;
}
struct PositionFullInformation {
PositionPoolBinIds poolBinIds;
uint256 amountA;
uint256 amountB;
uint256[] binAAmounts;
uint256[] binBAmounts;
int32[] ticks;
uint256[] liquidities;
}
/**
* @notice Contract that renders the position nft svg image.
*/
function positionImage() external view returns (IPositionImage);
/**
* @notice Pool factory.
*/
function factory() external view returns (IMaverickV2Factory);
/**
* @notice Mint NFT that holds liquidity in a Maverick V2 Pool. To mint
* liquidity to an NFT, add liquidity to bins in a pool where the
* add liquidity recipient is this contract and the subaccount is the
* tokenId. LiquidityManager can be used to simplify minting Position NFTs.
*/
function mint(address recipient, IMaverickV2Pool pool, uint32[] memory binIds) external returns (uint256 tokenId);
/**
* @notice Overwrites tokenId pool/binId information for a given data index.
*/
function setTokenIdData(uint256 tokenId, uint256 index, IMaverickV2Pool pool, uint32[] memory binIds) external;
/**
* @notice Overwrites entire pool/binId data set for a given tokenId.
*/
function setTokenIdData(uint256 tokenId, PositionPoolBinIds[] memory data) external;
/**
* @notice Append new pool/binIds data array to tokenId.
*/
function appendTokenIdData(uint256 tokenId, IMaverickV2Pool pool, uint32[] memory binIds) external;
/**
* @notice Get array pool/binIds data for a given tokenId.
*/
function getTokenIdData(uint256 tokenId) external view returns (PositionPoolBinIds[] memory);
/**
* @notice Get value from array of pool/binIds data for a given tokenId.
*/
function getTokenIdData(uint256 tokenId, uint256 index) external view returns (PositionPoolBinIds memory);
/**
* @notice Length of array of pool/binIds data for a given tokenId.
*/
function tokenIdDataLength(uint256 tokenId) external view returns (uint256 length);
/**
* @notice Remove liquidity from tokenId for a given pool. User can
* specify arbitrary bins to remove from for their subaccount in the pool
* even if those bins are not in the tokenIdData set.
*/
function removeLiquidity(
uint256 tokenId,
address recipient,
IMaverickV2Pool pool,
IMaverickV2Pool.RemoveLiquidityParams memory params
) external returns (uint256 tokenAAmount, uint256 tokenBAmount);
/**
* @notice Remove liquidity from tokenId for a given pool to sender. User
* can specify arbitrary bins to remove from for their subaccount in the
* pool even if those bins are not in the tokenIdData set.
*/
function removeLiquidityToSender(
uint256 tokenId,
IMaverickV2Pool pool,
IMaverickV2Pool.RemoveLiquidityParams memory params
) external returns (uint256 tokenAAmount, uint256 tokenBAmount);
/**
* @notice NFT asset information for a given range of pool/binIds indexes.
* This function only returns the liquidity in the pools/binIds stored as
* part of the tokenIdData, but it is possible that the NFT has additional
* liquidity in pools/binIds that have not been recorded.
*/
function tokenIdPositionInformation(
uint256 tokenId,
uint256 startIndex,
uint256 stopIndex
) external view returns (PositionFullInformation[] memory output);
/**
* @notice NFT asset information for a given pool/binIds index. This
* function only returns the liquidity in the pools/binIds stored as part
* of the tokenIdData, but it is possible that the NFT has additional
* liquidity in pools/binIds that have not been recorded.
*/
function tokenIdPositionInformation(
uint256 tokenId,
uint256 index
) external view returns (PositionFullInformation memory output);
/**
* @notice Get remove paramters for removing a fractional part of the
* liquidity owned by a given tokenId. The fractional factor to remove is
* given by proporationD18 in 18-decimal scale.
*/
function getRemoveParams(
uint256 tokenId,
uint256 index,
uint256 proportionD18
) external view returns (IMaverickV2Pool.RemoveLiquidityParams memory params);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Position} from "./IMaverickV2Position.sol";
interface IPositionImage {
error PositionImageSetPositionError(address sender, address deployer, IMaverickV2Position currentPosition);
function position() external view returns (IMaverickV2Position _position);
function setPosition(IMaverickV2Position _position) external;
function image(uint256 tokenId, address tokenOwner) external view returns (string memory);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {SafeCast as Cast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {Math} from "@maverick/v2-common/contracts/libraries/Math.sol";
import {PoolLib} from "@maverick/v2-common/contracts/libraries/PoolLib.sol";
import {TickMath} from "@maverick/v2-common/contracts/libraries/TickMath.sol";
library PoolInspection {
using Cast for uint256;
/**
* @dev Calculates the square root price of a given Maverick V2 pool.
* @param pool The Maverick V2 pool to inspect.
* @return sqrtPrice The square root price of the pool.
*/
function poolSqrtPrice(IMaverickV2Pool pool) internal view returns (uint256 sqrtPrice) {
int32 activeTick = pool.getState().activeTick;
IMaverickV2Pool.TickState memory tickState = pool.getTick(activeTick);
(uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(
pool.tickSpacing(),
activeTick
);
(sqrtPrice, ) = TickMath.getTickSqrtPriceAndL(
tickState.reserveA,
tickState.reserveB,
sqrtLowerTickPrice,
sqrtUpperTickPrice
);
}
/**
* @dev Retrieves the reserves of a user's subaccount for a specific bin.
*/
function userSubaccountBinReserves(
IMaverickV2Pool pool,
address user,
uint256 subaccount,
uint32 binId
) internal view returns (uint256 amountA, uint256 amountB, int32 tick, uint256 liquidity) {
IMaverickV2Pool.BinState memory bin = pool.getBin(binId);
uint256 userBinLpBalance = pool.balanceOf(user, subaccount, binId);
while (bin.mergeId != 0) {
userBinLpBalance = bin.totalSupply == 0
? 0
: Math.mulDivFloor(userBinLpBalance, bin.mergeBinBalance, bin.totalSupply);
bin = pool.getBin(bin.mergeId);
}
tick = bin.tick;
IMaverickV2Pool.TickState memory tickState = pool.getTick(tick);
uint256 activeBinDeltaLpBalance = Math.min(userBinLpBalance, bin.totalSupply);
uint128 deltaTickBalance = Math
.mulDivDown(activeBinDeltaLpBalance, bin.tickBalance, bin.totalSupply)
.toUint128();
deltaTickBalance = Math.min128(deltaTickBalance, tickState.totalSupply);
(amountA, amountB) = PoolLib.binReserves(
deltaTickBalance,
tickState.reserveA,
tickState.reserveB,
tickState.totalSupply
);
{
(uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(
pool.tickSpacing(),
tick
);
liquidity = TickMath.getTickL(amountA, amountB, sqrtLowerTickPrice, sqrtUpperTickPrice);
}
}
/**
* @dev Retrieves the reserves of a token for all bins associated with it.
* Bin reserve amounts are in pool D18 scale units.
*/
function subaccountPositionInformation(
IMaverickV2Pool pool,
address user,
uint256 subaccount,
uint32[] memory binIds
)
internal
view
returns (
uint256 amountA,
uint256 amountB,
uint256[] memory binAAmounts,
uint256[] memory binBAmounts,
int32[] memory ticks,
uint256[] memory liquidities
)
{
binAAmounts = new uint256[](binIds.length);
binBAmounts = new uint256[](binIds.length);
ticks = new int32[](binIds.length);
liquidities = new uint256[](binIds.length);
for (uint256 i; i < binIds.length; i++) {
(binAAmounts[i], binBAmounts[i], ticks[i], liquidities[i]) = userSubaccountBinReserves(
pool,
user,
subaccount,
binIds[i]
);
amountA += binAAmounts[i];
amountB += binBAmounts[i];
}
{
uint256 tokenAScale = pool.tokenAScale();
uint256 tokenBScale = pool.tokenBScale();
amountA = Math.ammScaleToTokenScale(amountA, tokenAScale, false);
amountB = Math.ammScaleToTokenScale(amountB, tokenBScale, false);
}
}
function binLpBalances(
IMaverickV2Pool pool,
uint32[] memory binIds,
uint256 subaccount
) internal view returns (uint128[] memory amounts) {
amounts = new uint128[](binIds.length);
for (uint256 i = 0; i < binIds.length; i++) {
amounts[i] = pool.balanceOf(address(this), subaccount, binIds[i]);
}
}
function lpBalanceForTargetReserveAmounts(
IMaverickV2Pool pool,
uint32 binId,
uint256 amountA,
uint256 amountB,
uint256 scaleA,
uint256 scaleB
) internal view returns (IMaverickV2Pool.AddLiquidityParams memory addParams) {
amountA = Math.tokenScaleToAmmScale(amountA, scaleA);
amountB = Math.tokenScaleToAmmScale(amountB, scaleB);
IMaverickV2Pool.BinState memory bin = pool.getBin(binId);
uint128[] memory amounts = new uint128[](1);
IMaverickV2Pool.TickState memory tickState = pool.getTick(bin.tick);
uint256 numerator = Math.max(1, uint256(tickState.totalSupply)) * Math.max(1, uint256(bin.totalSupply));
if (amountA != 0) {
uint256 denominator = Math.max(1, uint256(bin.tickBalance)) * uint256(tickState.reserveA);
amounts[0] = Math.mulDivFloor(amountA, numerator, denominator).toUint128();
}
if (amountB != 0) {
uint256 denominator = Math.max(1, uint256(bin.tickBalance)) * uint256(tickState.reserveB);
if (amountA != 0) {
amounts[0] = Math.min128(amounts[0], Math.mulDivFloor(amountB, numerator, denominator).toUint128());
} else {
amounts[0] = Math.mulDivFloor(amountB, numerator, denominator).toUint128();
}
}
{
int32[] memory ticks = new int32[](1);
ticks[0] = bin.tick;
addParams = IMaverickV2Pool.AddLiquidityParams({kind: bin.kind, ticks: ticks, amounts: amounts});
}
}
function maxRemoveParams(
IMaverickV2Pool pool,
uint32 binId,
address user,
uint256 subaccount
) internal view returns (IMaverickV2Pool.RemoveLiquidityParams memory params) {
uint32[] memory binIds = new uint32[](1);
uint128[] memory amounts = new uint128[](1);
binIds[0] = binId;
amounts[0] = pool.balanceOf(user, subaccount, binId);
params = IMaverickV2Pool.RemoveLiquidityParams({binIds: binIds, amounts: amounts});
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {SafeCast as Cast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {IMaverickV2Factory} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Factory.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {Math} from "@maverick/v2-common/contracts/libraries/Math.sol";
import {Multicall} from "@maverick/v2-common/contracts/base/Multicall.sol";
import {ONE} from "@maverick/v2-common/contracts/libraries/Constants.sol";
import {ArrayOperations} from "@maverick/v2-common/contracts/libraries/ArrayOperations.sol";
import {IMaverickV2Position} from "./interfaces/IMaverickV2Position.sol";
import {IPositionImage} from "./interfaces/IPositionImage.sol";
import {PoolInspection} from "./libraries/PoolInspection.sol";
import {Nft, INft} from "./positionbase/Nft.sol";
import {MigrateBins} from "./base/MigrateBins.sol";
import {Checks} from "./base/Checks.sol";
/**
* @notice ERC-721 contract that stores user NFTs that contain Maverick V2 pool
* liquidity.
*
* @dev The Maverick V2 pool has a concept of storing liquidity according to an
* address and a "subaccount". When liquidity is minted to an NFT, it is
* stored in the pool to the address of this Position contract to the
* subaccount that corresponds to the NFT tokenId. The mechanism of liquidity
* management is that the tokenId owner is the only user who can remove pool
* liquidity in the subaccount corresponding to their tokenId.
*
* @dev Additionally, this position NFT has data about the pools and binIds
* that a given tokenId has liquidity in. But these binId/pool values are
* essentially self reported and can be updated by the token owner by calling
* setTokenIdData.
*/
contract MaverickV2Position is Nft, Checks, MigrateBins, Multicall, IMaverickV2Position {
using Cast for uint256;
using ArrayOperations for uint32[];
IPositionImage public immutable positionImage;
IMaverickV2Factory public immutable factory;
mapping(uint256 => PositionPoolBinIds[]) private dataByTokenId;
constructor(IPositionImage _positionImage, IMaverickV2Factory _factory) Nft("Maverick v2 Position", "MPv2") {
factory = _factory;
positionImage = _positionImage;
}
/// @inheritdoc IMaverickV2Position
function mint(address recipient, IMaverickV2Pool pool, uint32[] memory binIds) public returns (uint256 tokenId) {
tokenId = _mint(recipient);
PositionPoolBinIds memory data = PositionPoolBinIds(pool, binIds);
_checkData(data);
dataByTokenId[tokenId].push(data);
emit PositionSetData(tokenId, 0, data);
}
/// @inheritdoc IMaverickV2Position
function removeLiquidity(
uint256 tokenId,
address recipient,
IMaverickV2Pool pool,
IMaverickV2Pool.RemoveLiquidityParams memory params
) external onlyTokenIdAuthorizedUser(tokenId) returns (uint256 tokenAAmount, uint256 tokenBAmount) {
(tokenAAmount, tokenBAmount) = pool.removeLiquidity(recipient, tokenId, params);
}
/// @inheritdoc IMaverickV2Position
function removeLiquidityToSender(
uint256 tokenId,
IMaverickV2Pool pool,
IMaverickV2Pool.RemoveLiquidityParams memory params
) external onlyTokenIdAuthorizedUser(tokenId) returns (uint256 tokenAAmount, uint256 tokenBAmount) {
(tokenAAmount, tokenBAmount) = pool.removeLiquidity(msg.sender, tokenId, params);
}
/// @inheritdoc IMaverickV2Position
function setTokenIdData(
uint256 tokenId,
uint256 index,
IMaverickV2Pool pool,
uint32[] memory binIds
) external onlyTokenIdAuthorizedUser(tokenId) {
PositionPoolBinIds memory data = PositionPoolBinIds(pool, binIds);
_checkData(data);
dataByTokenId[tokenId][index] = data;
_checkNoDuplicatePool(tokenId);
emit PositionSetData(tokenId, index, data);
}
/// @inheritdoc IMaverickV2Position
function setTokenIdData(
uint256 tokenId,
PositionPoolBinIds[] memory data
) external onlyTokenIdAuthorizedUser(tokenId) {
delete dataByTokenId[tokenId];
emit PositionClearData(tokenId);
for (uint256 k; k < data.length; k++) {
_checkData(data[k]);
dataByTokenId[tokenId].push(data[k]);
emit PositionSetData(tokenId, k, data[k]);
}
_checkNoDuplicatePool(tokenId);
}
/// @inheritdoc IMaverickV2Position
function appendTokenIdData(
uint256 tokenId,
IMaverickV2Pool pool,
uint32[] memory binIds
) external onlyTokenIdAuthorizedUser(tokenId) {
PositionPoolBinIds memory data = PositionPoolBinIds(pool, binIds);
_checkData(data);
dataByTokenId[tokenId].push(data);
_checkNoDuplicatePool(tokenId);
emit PositionSetData(tokenId, dataByTokenId[tokenId].length - 1, data);
}
/// @inheritdoc IMaverickV2Position
function getTokenIdData(uint256 tokenId) external view returns (PositionPoolBinIds[] memory) {
return dataByTokenId[tokenId];
}
/// @inheritdoc IMaverickV2Position
function getTokenIdData(uint256 tokenId, uint256 index) external view returns (PositionPoolBinIds memory) {
return dataByTokenId[tokenId][index];
}
/// @inheritdoc IMaverickV2Position
function tokenIdDataLength(uint256 tokenId) external view returns (uint256 length) {
return dataByTokenId[tokenId].length;
}
/// @inheritdoc IMaverickV2Position
function tokenIdPositionInformation(
uint256 tokenId,
uint256 startIndex,
uint256 stopIndex
) public view returns (PositionFullInformation[] memory output) {
stopIndex = Math.min(dataByTokenId[tokenId].length, stopIndex);
uint256 count = stopIndex - startIndex;
output = new PositionFullInformation[](count);
for (uint256 k; k < count; k++) {
uint256 index = k + startIndex;
output[index] = tokenIdPositionInformation(tokenId, index);
}
}
/// @inheritdoc IMaverickV2Position
function tokenIdPositionInformation(
uint256 tokenId,
uint256 index
) public view returns (PositionFullInformation memory output) {
output.poolBinIds = dataByTokenId[tokenId][index];
(
output.amountA,
output.amountB,
output.binAAmounts,
output.binBAmounts,
output.ticks,
output.liquidities
) = PoolInspection.subaccountPositionInformation(
output.poolBinIds.pool,
address(this),
tokenId,
output.poolBinIds.binIds
);
}
/// @inheritdoc IMaverickV2Position
function getRemoveParams(
uint256 tokenId,
uint256 index,
uint256 proportionD18
) public view returns (IMaverickV2Pool.RemoveLiquidityParams memory params) {
PositionPoolBinIds memory data = dataByTokenId[tokenId][index];
params.binIds = data.binIds;
params.amounts = PoolInspection.binLpBalances(data.pool, params.binIds, tokenId);
if (proportionD18 < ONE) {
for (uint256 k; k < params.amounts.length; k++) {
params.amounts[k] = Math.mulFloor(params.amounts[k], proportionD18).toUint128();
}
}
}
/**
* @notice Checks that binIds are unique.
*/
function _checkData(PositionPoolBinIds memory data) internal view {
uint256 binCount = data.pool.getState().binCounter;
// if not factory pool, revert
// if permissioned liquidity, revert
if (!factory.isFactoryPool(data.pool)) revert PositionNotFactoryPool();
if (data.pool.permissionedLiquidity()) revert PositionPermissionedLiquidityPool();
data.binIds.checkUnique(binCount);
}
/**
* @notice Checks that token data does not contain duplicate pool.
*/
function _checkNoDuplicatePool(uint256 tokenId) internal view {
uint256 length = dataByTokenId[tokenId].length;
if (length <= 1) return;
// hold list of pools as they are pulled from storage
IMaverickV2Pool[] memory poolList = new IMaverickV2Pool[](length);
for (uint256 k; k < length; k++) {
poolList[k] = dataByTokenId[tokenId][k].pool;
for (uint256 j; j < k; j++) {
// loop through all pools so far to compare to this new pool in the list
if (poolList[k] == poolList[j]) revert PositionDuplicatePool(k, poolList[k]);
}
}
}
function tokenURI(uint256 tokenId) public view virtual override(Nft, INft) returns (string memory) {
address owner = ownerOf(tokenId);
return positionImage.image(tokenId, owner);
}
function name() public view override(INft, Nft) returns (string memory) {
return super.name();
}
function symbol() public view override(INft, Nft) returns (string memory) {
return super.symbol();
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC721Enumerable} from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";
interface INft is IERC721Enumerable {
/**
* @notice Check if an NFT exists for a given owner and index.
*/
function tokenOfOwnerByIndexExists(address owner, uint256 index) external view returns (bool);
/**
* @notice Return Id of the next token minted.
*/
function nextTokenId() external view returns (uint256 nextTokenId_);
/**
* @notice Check if the caller has access to a specific NFT by tokenId.
*/
function checkAuthorized(address spender, uint256 tokenId) external view returns (address owner);
/**
* @notice List of tokenIds by owner.
*/
function tokenIdsOfOwner(address owner) external view returns (uint256[] memory tokenIds);
/**
* @notice Get the token URI for a given tokenId.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {ERC721, IERC165} from "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import {ERC721Enumerable} from "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol";
import {INft} from "./INft.sol";
/**
* @notice Extensions to ECR-721 to support an image contract and owner
* enumeration.
*/
abstract contract Nft is ERC721Enumerable, INft {
uint256 private _nextTokenId = 1;
constructor(string memory __name, string memory __symbol) ERC721(__name, __symbol) {}
/**
* @notice Internal function to mint a new NFT and assign it to the
* specified address.
* @param to The address to which the NFT will be minted.
* @return tokenId The ID of the newly minted NFT.
*/
function _mint(address to) internal returns (uint256 tokenId) {
super._mint(to, _nextTokenId);
tokenId = _nextTokenId++;
}
/**
* @notice Modifier to restrict access to functions to the owner of a
* specific NFT by its tokenId.
*/
modifier onlyTokenIdAuthorizedUser(uint256 tokenId) {
checkAuthorized(msg.sender, tokenId);
_;
}
/// @inheritdoc INft
function nextTokenId() public view returns (uint256 nextTokenId_) {
return _nextTokenId;
}
/// @inheritdoc INft
function tokenOfOwnerByIndexExists(address ownerToCheck, uint256 index) public view returns (bool exists) {
return index < balanceOf(ownerToCheck);
}
/// @inheritdoc INft
function tokenIdsOfOwner(address owner) public view returns (uint256[] memory tokenIds) {
uint256 tokenCount = balanceOf(owner);
tokenIds = new uint256[](tokenCount);
for (uint256 k; k < tokenCount; k++) {
tokenIds[k] = tokenOfOwnerByIndex(owner, k);
}
}
/// @inheritdoc INft
function checkAuthorized(address spender, uint256 tokenId) public view returns (address owner) {
owner = ownerOf(tokenId);
_checkAuthorized(owner, spender, tokenId);
}
// ************************************************************
// The following functions are overrides required by Solidity.
function _update(address to, uint256 tokenId, address auth) internal override(ERC721Enumerable) returns (address) {
return super._update(to, tokenId, auth);
}
function _increaseBalance(address account, uint128 value) internal override(ERC721Enumerable) {
super._increaseBalance(account, value);
}
function name() public view virtual override(INft, ERC721) returns (string memory) {
return super.name();
}
function symbol() public view virtual override(INft, ERC721) returns (string memory) {
return super.symbol();
}
function supportsInterface(bytes4 interfaceId) public view override(ERC721Enumerable, IERC165) returns (bool) {
return super.supportsInterface(interfaceId);
}
function tokenURI(uint256 tokenId) public view virtual override(INft, ERC721) returns (string memory) {
return super.tokenURI(tokenId);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/ERC721.sol)
pragma solidity ^0.8.20;
import {IERC721} from "./IERC721.sol";
import {IERC721Receiver} from "./IERC721Receiver.sol";
import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {Strings} from "../../utils/Strings.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension, which is available separately as
* {ERC721Enumerable}.
*/
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
using Strings for uint256;
// Token name
string private _name;
// Token symbol
string private _symbol;
mapping(uint256 tokenId => address) private _owners;
mapping(address owner => uint256) private _balances;
mapping(uint256 tokenId => address) private _tokenApprovals;
mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC721).interfaceId ||
interfaceId == type(IERC721Metadata).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual returns (uint256) {
if (owner == address(0)) {
revert ERC721InvalidOwner(address(0));
}
return _balances[owner];
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual returns (address) {
return _requireOwned(tokenId);
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
_requireOwned(tokenId);
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual {
_approve(to, tokenId, _msgSender());
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual returns (address) {
_requireOwned(tokenId);
return _getApproved(tokenId);
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(address from, address to, uint256 tokenId) public virtual {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
// Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
// (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
address previousOwner = _update(to, tokenId, _msgSender());
if (previousOwner != from) {
revert ERC721IncorrectOwner(from, tokenId, previousOwner);
}
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) public {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
transferFrom(from, to, tokenId);
_checkOnERC721Received(from, to, tokenId, data);
}
/**
* @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
*
* IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
* core ERC721 logic MUST be matched with the use of {_increaseBalance} to keep balances
* consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
* `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
*/
function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
return _owners[tokenId];
}
/**
* @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
*/
function _getApproved(uint256 tokenId) internal view virtual returns (address) {
return _tokenApprovals[tokenId];
}
/**
* @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
* particular (ignoring whether it is owned by `owner`).
*
* WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
* assumption.
*/
function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
return
spender != address(0) &&
(owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
}
/**
* @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
* Reverts if `spender` does not have approval from the provided `owner` for the given token or for all its assets
* the `spender` for the specific `tokenId`.
*
* WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
* assumption.
*/
function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
if (!_isAuthorized(owner, spender, tokenId)) {
if (owner == address(0)) {
revert ERC721NonexistentToken(tokenId);
} else {
revert ERC721InsufficientApproval(spender, tokenId);
}
}
}
/**
* @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
*
* NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
* a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
*
* WARNING: Increasing an account's balance using this function tends to be paired with an override of the
* {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
* remain consistent with one another.
*/
function _increaseBalance(address account, uint128 value) internal virtual {
unchecked {
_balances[account] += value;
}
}
/**
* @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
* (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
*
* The `auth` argument is optional. If the value passed is non 0, then this function will check that
* `auth` is either the owner of the token, or approved to operate on the token (by the owner).
*
* Emits a {Transfer} event.
*
* NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
*/
function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
address from = _ownerOf(tokenId);
// Perform (optional) operator check
if (auth != address(0)) {
_checkAuthorized(from, auth, tokenId);
}
// Execute the update
if (from != address(0)) {
// Clear approval. No need to re-authorize or emit the Approval event
_approve(address(0), tokenId, address(0), false);
unchecked {
_balances[from] -= 1;
}
}
if (to != address(0)) {
unchecked {
_balances[to] += 1;
}
}
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
return from;
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
address previousOwner = _update(to, tokenId, address(0));
if (previousOwner != address(0)) {
revert ERC721InvalidSender(address(0));
}
}
/**
* @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
*
* Requirements:
*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
_mint(to, tokenId);
_checkOnERC721Received(address(0), to, tokenId, data);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
* This is an internal function that does not check if the sender is authorized to operate on the token.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal {
address previousOwner = _update(address(0), tokenId, address(0));
if (previousOwner == address(0)) {
revert ERC721NonexistentToken(tokenId);
}
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(address from, address to, uint256 tokenId) internal {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
address previousOwner = _update(to, tokenId, address(0));
if (previousOwner == address(0)) {
revert ERC721NonexistentToken(tokenId);
} else if (previousOwner != from) {
revert ERC721IncorrectOwner(from, tokenId, previousOwner);
}
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
* are aware of the ERC721 standard to prevent tokens from being forever locked.
*
* `data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is like {safeTransferFrom} in the sense that it invokes
* {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `tokenId` token must exist and be owned by `from`.
* - `to` cannot be the zero address.
* - `from` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(address from, address to, uint256 tokenId) internal {
_safeTransfer(from, to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
_transfer(from, to, tokenId);
_checkOnERC721Received(from, to, tokenId, data);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
* either the owner of the token, or approved to operate on all tokens held by this owner.
*
* Emits an {Approval} event.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address to, uint256 tokenId, address auth) internal {
_approve(to, tokenId, auth, true);
}
/**
* @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
* emitted in the context of transfers.
*/
function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
// Avoid reading the owner unless necessary
if (emitEvent || auth != address(0)) {
address owner = _requireOwned(tokenId);
// We do not use _isAuthorized because single-token approvals should not be able to call approve
if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
revert ERC721InvalidApprover(auth);
}
if (emitEvent) {
emit Approval(owner, to, tokenId);
}
}
_tokenApprovals[tokenId] = to;
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Requirements:
* - operator can't be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
if (operator == address(0)) {
revert ERC721InvalidOperator(operator);
}
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
* Returns the owner.
*
* Overrides to ownership logic should be done to {_ownerOf}.
*/
function _requireOwned(uint256 tokenId) internal view returns (address) {
address owner = _ownerOf(tokenId);
if (owner == address(0)) {
revert ERC721NonexistentToken(tokenId);
}
return owner;
}
/**
* @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target address. This will revert if the
* recipient doesn't accept the token transfer. The call is not executed if the target address is not a contract.
*
* @param from address representing the previous owner of the given token ID
* @param to target address that will receive the tokens
* @param tokenId uint256 ID of the token to be transferred
* @param data bytes optional data to send along with the call
*/
function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory data) private {
if (to.code.length > 0) {
try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
if (retval != IERC721Receiver.onERC721Received.selector) {
revert ERC721InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
revert ERC721InvalidReceiver(to);
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/ERC721Enumerable.sol)
pragma solidity ^0.8.20;
import {ERC721} from "../ERC721.sol";
import {IERC721Enumerable} from "./IERC721Enumerable.sol";
import {IERC165} from "../../../utils/introspection/ERC165.sol";
/**
* @dev This implements an optional extension of {ERC721} defined in the EIP that adds enumerability
* of all the token ids in the contract as well as all token ids owned by each account.
*
* CAUTION: `ERC721` extensions that implement custom `balanceOf` logic, such as `ERC721Consecutive`,
* interfere with enumerability and should not be used together with `ERC721Enumerable`.
*/
abstract contract ERC721Enumerable is ERC721, IERC721Enumerable {
mapping(address owner => mapping(uint256 index => uint256)) private _ownedTokens;
mapping(uint256 tokenId => uint256) private _ownedTokensIndex;
uint256[] private _allTokens;
mapping(uint256 tokenId => uint256) private _allTokensIndex;
/**
* @dev An `owner`'s token query was out of bounds for `index`.
*
* NOTE: The owner being `address(0)` indicates a global out of bounds index.
*/
error ERC721OutOfBoundsIndex(address owner, uint256 index);
/**
* @dev Batch mint is not allowed.
*/
error ERC721EnumerableForbiddenBatchMint();
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC721) returns (bool) {
return interfaceId == type(IERC721Enumerable).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721Enumerable-tokenOfOwnerByIndex}.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual returns (uint256) {
if (index >= balanceOf(owner)) {
revert ERC721OutOfBoundsIndex(owner, index);
}
return _ownedTokens[owner][index];
}
/**
* @dev See {IERC721Enumerable-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _allTokens.length;
}
/**
* @dev See {IERC721Enumerable-tokenByIndex}.
*/
function tokenByIndex(uint256 index) public view virtual returns (uint256) {
if (index >= totalSupply()) {
revert ERC721OutOfBoundsIndex(address(0), index);
}
return _allTokens[index];
}
/**
* @dev See {ERC721-_update}.
*/
function _update(address to, uint256 tokenId, address auth) internal virtual override returns (address) {
address previousOwner = super._update(to, tokenId, auth);
if (previousOwner == address(0)) {
_addTokenToAllTokensEnumeration(tokenId);
} else if (previousOwner != to) {
_removeTokenFromOwnerEnumeration(previousOwner, tokenId);
}
if (to == address(0)) {
_removeTokenFromAllTokensEnumeration(tokenId);
} else if (previousOwner != to) {
_addTokenToOwnerEnumeration(to, tokenId);
}
return previousOwner;
}
/**
* @dev Private function to add a token to this extension's ownership-tracking data structures.
* @param to address representing the new owner of the given token ID
* @param tokenId uint256 ID of the token to be added to the tokens list of the given address
*/
function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private {
uint256 length = balanceOf(to) - 1;
_ownedTokens[to][length] = tokenId;
_ownedTokensIndex[tokenId] = length;
}
/**
* @dev Private function to add a token to this extension's token tracking data structures.
* @param tokenId uint256 ID of the token to be added to the tokens list
*/
function _addTokenToAllTokensEnumeration(uint256 tokenId) private {
_allTokensIndex[tokenId] = _allTokens.length;
_allTokens.push(tokenId);
}
/**
* @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that
* while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for
* gas optimizations e.g. when performing a transfer operation (avoiding double writes).
* This has O(1) time complexity, but alters the order of the _ownedTokens array.
* @param from address representing the previous owner of the given token ID
* @param tokenId uint256 ID of the token to be removed from the tokens list of the given address
*/
function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private {
// To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and
// then delete the last slot (swap and pop).
uint256 lastTokenIndex = balanceOf(from);
uint256 tokenIndex = _ownedTokensIndex[tokenId];
// When the token to delete is the last token, the swap operation is unnecessary
if (tokenIndex != lastTokenIndex) {
uint256 lastTokenId = _ownedTokens[from][lastTokenIndex];
_ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
_ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
}
// This also deletes the contents at the last position of the array
delete _ownedTokensIndex[tokenId];
delete _ownedTokens[from][lastTokenIndex];
}
/**
* @dev Private function to remove a token from this extension's token tracking data structures.
* This has O(1) time complexity, but alters the order of the _allTokens array.
* @param tokenId uint256 ID of the token to be removed from the tokens list
*/
function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private {
// To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and
// then delete the last slot (swap and pop).
uint256 lastTokenIndex = _allTokens.length - 1;
uint256 tokenIndex = _allTokensIndex[tokenId];
// When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so
// rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding
// an 'if' statement (like in _removeTokenFromOwnerEnumeration)
uint256 lastTokenId = _allTokens[lastTokenIndex];
_allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
_allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
// This also deletes the contents at the last position of the array
delete _allTokensIndex[tokenId];
_allTokens.pop();
}
/**
* See {ERC721-_increaseBalance}. We need that to account tokens that were minted in batch
*/
function _increaseBalance(address account, uint128 amount) internal virtual override {
if (amount > 0) {
revert ERC721EnumerableForbiddenBatchMint();
}
super._increaseBalance(account, amount);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.20;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be
* reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}