ETH Price: $2,438.94 (-0.68%)

Contract Diff Checker

Contract Name:
MaverickV2Position

Contract Source Code:

// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;

interface IMulticall {
    function multicall(bytes[] calldata data) external returns (bytes[] memory results);
}

// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {IMulticall} from "./IMulticall.sol";
import {Address} from "@openzeppelin/contracts/utils/Address.sol";

// Modified from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/6ba452dea4258afe77726293435f10baf2bed265/contracts/utils/Multicall.sol

/*
 * @notice Multicall
 */
abstract contract Multicall is IMulticall {
    /**
     * @notice This function allows multiple calls to different contract functions
     * in a single transaction.
     * @param data An array of encoded function call data.
     * @return results An array of the results of the function calls.
     */
    function multicall(bytes[] calldata data) external returns (bytes[] memory results) {
        results = new bytes[](data.length);
        for (uint256 i = 0; i < data.length; i++) {
            results[i] = Address.functionDelegateCall(address(this), data[i]);
        }
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import {IMaverickV2Pool} from "./IMaverickV2Pool.sol";

interface IMaverickV2Factory {
    error FactoryInvalidProtocolFeeRatio(uint8 protocolFeeRatioD3);
    error FactoryInvalidLendingFeeRate(uint256 protocolLendingFeeRateD18);
    error FactoryProtocolFeeOnRenounce(uint8 protocolFeeRatioD3);
    error FactorAlreadyInitialized();
    error FactorNotInitialized();
    error FactoryInvalidTokenOrder(IERC20 _tokenA, IERC20 _tokenB);
    error FactoryInvalidFee();
    error FactoryInvalidKinds(uint8 kinds);
    error FactoryInvalidTickSpacing(uint256 tickSpacing);
    error FactoryInvalidLookback(uint256 lookback);
    error FactoryInvalidTokenDecimals(uint8 decimalsA, uint8 decimalsB);
    error FactoryPoolAlreadyExists(
        uint256 feeAIn,
        uint256 feeBIn,
        uint256 tickSpacing,
        uint256 lookback,
        IERC20 tokenA,
        IERC20 tokenB,
        uint8 kinds,
        address accessor
    );
    error FactoryAccessorMustBeNonZero();

    event PoolCreated(
        IMaverickV2Pool poolAddress,
        uint8 protocolFeeRatio,
        uint256 feeAIn,
        uint256 feeBIn,
        uint256 tickSpacing,
        uint256 lookback,
        int32 activeTick,
        IERC20 tokenA,
        IERC20 tokenB,
        uint8 kinds,
        address accessor
    );
    event SetFactoryProtocolFeeRatio(uint8 protocolFeeRatioD3);
    event SetFactoryProtocolLendingFeeRate(uint256 lendingFeeRateD18);
    event SetFactoryProtocolFeeReceiver(address receiver);

    struct DeployParameters {
        uint64 feeAIn;
        uint64 feeBIn;
        uint32 lookback;
        int32 activeTick;
        uint64 tokenAScale;
        uint64 tokenBScale;
        // slot
        IERC20 tokenA;
        // slot
        IERC20 tokenB;
        // slot
        uint16 tickSpacing;
        uint8 options;
        address accessor;
    }

    /**
     * @notice Called by deployer library to initialize a pool.
     */
    function deployParameters()
        external
        view
        returns (
            uint64 feeAIn,
            uint64 feeBIn,
            uint32 lookback,
            int32 activeTick,
            uint64 tokenAScale,
            uint64 tokenBScale,
            // slot
            IERC20 tokenA,
            // slot
            IERC20 tokenB,
            // slot
            uint16 tickSpacing,
            uint8 options,
            address accessor
        );

    /**
     * @notice Create a new MaverickV2Pool with symmetric swap fees.
     * @param fee Fraction of the pool swap amount that is retained as an LP in
     * D18 scale.
     * @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
     * bin width.
     * @param lookback Pool lookback in seconds.
     * @param tokenA Address of tokenA.
     * @param tokenB Address of tokenB.
     * @param activeTick Tick position that contains the active bins.
     * @param kinds 1-15 number to represent the active kinds
     * 0b0001 = static;
     * 0b0010 = right;
     * 0b0100 = left;
     * 0b1000 = both.
     * E.g. a pool with all 4 modes will have kinds = b1111 = 15
     */
    function create(
        uint64 fee,
        uint16 tickSpacing,
        uint32 lookback,
        IERC20 tokenA,
        IERC20 tokenB,
        int32 activeTick,
        uint8 kinds
    ) external returns (IMaverickV2Pool);

    /**
     * @notice Create a new MaverickV2Pool.
     * @param feeAIn Fraction of the pool swap amount for tokenA-input swaps
     * that is retained as an LP in D18 scale.
     * @param feeBIn Fraction of the pool swap amount for tokenB-input swaps
     * that is retained as an LP in D18 scale.
     * @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
     * bin width.
     * @param lookback Pool lookback in seconds.
     * @param tokenA Address of tokenA.
     * @param tokenB Address of tokenB.
     * @param activeTick Tick position that contains the active bins.
     * @param kinds 1-15 number to represent the active kinds
     * 0b0001 = static;
     * 0b0010 = right;
     * 0b0100 = left;
     * 0b1000 = both.
     * e.g. a pool with all 4 modes will have kinds = b1111 = 15
     */
    function create(
        uint64 feeAIn,
        uint64 feeBIn,
        uint16 tickSpacing,
        uint32 lookback,
        IERC20 tokenA,
        IERC20 tokenB,
        int32 activeTick,
        uint8 kinds
    ) external returns (IMaverickV2Pool);

    /**
     * @notice Create a new MaverickV2PoolPermissioned with symmetric swap fees
     * with all functions permissioned.  Set fee to zero to make the pool fee settable by the accessor.
     * @param fee Fraction of the pool swap amount that is retained as an LP in
     * D18 scale.
     * @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
     * bin width.
     * @param lookback Pool lookback in seconds.
     * @param tokenA Address of tokenA.
     * @param tokenB Address of tokenB.
     * @param activeTick Tick position that contains the active bins.
     * @param kinds 1-15 number to represent the active kinds
     * 0b0001 = static;
     * 0b0010 = right;
     * 0b0100 = left;
     * 0b1000 = both.
     * E.g. a pool with all 4 modes will have kinds = b1111 = 15
     * @param accessor Only address that can access the pool's public write functions.
     */
    function createPermissioned(
        uint64 fee,
        uint16 tickSpacing,
        uint32 lookback,
        IERC20 tokenA,
        IERC20 tokenB,
        int32 activeTick,
        uint8 kinds,
        address accessor
    ) external returns (IMaverickV2Pool);

    /**
     * @notice Create a new MaverickV2PoolPermissioned with all functions
     * permissioned. Set fees to zero to make the pool fee settable by the
     * accessor.
     * @param feeAIn Fraction of the pool swap amount for tokenA-input swaps
     * that is retained as an LP in D18 scale.
     * @param feeBIn Fraction of the pool swap amount for tokenB-input swaps
     * that is retained as an LP in D18 scale.
     * @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
     * bin width.
     * @param lookback Pool lookback in seconds.
     * @param tokenA Address of tokenA.
     * @param tokenB Address of tokenB.
     * @param activeTick Tick position that contains the active bins.
     * @param kinds 1-15 number to represent the active kinds
     * 0b0001 = static;
     * 0b0010 = right;
     * 0b0100 = left;
     * 0b1000 = both.
     * E.g. a pool with all 4 modes will have kinds = b1111 = 15
     * @param accessor only address that can access the pool's public write functions.
     */
    function createPermissioned(
        uint64 feeAIn,
        uint64 feeBIn,
        uint16 tickSpacing,
        uint32 lookback,
        IERC20 tokenA,
        IERC20 tokenB,
        int32 activeTick,
        uint8 kinds,
        address accessor
    ) external returns (IMaverickV2Pool);

    /**
     * @notice Create a new MaverickV2PoolPermissioned with the option to make
     * a subset of function permissionless. Set fee to zero to make the pool
     * fee settable by the accessor.
     * @param feeAIn Fraction of the pool swap amount for tokenA-input swaps
     * that is retained as an LP in D18 scale.
     * @param feeBIn Fraction of the pool swap amount for tokenB-input swaps
     * that is retained as an LP in D18 scale.
     * @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
     * bin width.
     * @param lookback Pool lookback in seconds.
     * @param tokenA Address of tokenA.
     * @param tokenB Address of tokenB.
     * @param activeTick Tick position that contains the active bins.
     * @param kinds 1-15 number to represent the active kinds
     * 0b0001 = static;
     * 0b0010 = right;
     * 0b0100 = left;
     * 0b1000 = both.
     * E.g. a pool with all 4 modes will have kinds = b1111 = 15
     * @param accessor only address that can access the pool's public permissioned write functions.
     * @param  permissionedLiquidity If true, then only accessor can call
     * pool's liquidity management functions: `flashLoan`,
     * `migrateBinsUpstack`, `addLiquidity`, `removeLiquidity`.
     * @param  permissionedSwap If true, then only accessor can call
     * pool's swap function.
     */
    function createPermissioned(
        uint64 feeAIn,
        uint64 feeBIn,
        uint16 tickSpacing,
        uint32 lookback,
        IERC20 tokenA,
        IERC20 tokenB,
        int32 activeTick,
        uint8 kinds,
        address accessor,
        bool permissionedLiquidity,
        bool permissionedSwap
    ) external returns (IMaverickV2Pool pool);

    /**
     * @notice Update the protocol fee ratio for a pool. Can be called
     * permissionlessly allowing any user to sync the pool protocol fee value
     * with the factory protocol fee value.
     * @param pool The pool for which to update.
     */
    function updateProtocolFeeRatioForPool(IMaverickV2Pool pool) external;

    /**
     * @notice Update the protocol lending fee rate for a pool. Can be called
     * permissionlessly allowing any user to sync the pool protocol lending fee
     * rate value with the factory value.
     * @param pool The pool for which to update.
     */
    function updateProtocolLendingFeeRateForPool(IMaverickV2Pool pool) external;

    /**
     * @notice Claim protocol fee for a pool and transfer it to the protocolFeeReceiver.
     * @param pool The pool from which to claim the protocol fee.
     * @param isTokenA A boolean indicating whether tokenA (true) or tokenB
     * (false) is being collected.
     */
    function claimProtocolFeeForPool(IMaverickV2Pool pool, bool isTokenA) external;

    /**
     * @notice Claim protocol fee for a pool and transfer it to the protocolFeeReceiver.
     * @param pool The pool from which to claim the protocol fee.
     */
    function claimProtocolFeeForPool(IMaverickV2Pool pool) external;

    /**
     * @notice Bool indicating whether the pool was deployed from this factory.
     */
    function isFactoryPool(IMaverickV2Pool pool) external view returns (bool);

    /**
     * @notice Address that receives the protocol fee when users call
     * `claimProtocolFeeForPool`.
     */
    function protocolFeeReceiver() external view returns (address);

    /**
     * @notice Lookup a pool for given parameters.
     *
     * @dev  options bit map of kinds and function permissions
     * 0b000001 = static;
     * 0b000010 = right;
     * 0b000100 = left;
     * 0b001000 = both;
     * 0b010000 = liquidity functions are permissioned
     * 0b100000 = swap function is permissioned
     */
    function lookupPermissioned(
        uint256 feeAIn,
        uint256 feeBIn,
        uint256 tickSpacing,
        uint256 lookback,
        IERC20 tokenA,
        IERC20 tokenB,
        uint8 options,
        address accessor
    ) external view returns (IMaverickV2Pool);

    /**
     * @notice Lookup a pool for given parameters.
     */
    function lookupPermissioned(
        IERC20 _tokenA,
        IERC20 _tokenB,
        address accessor,
        uint256 startIndex,
        uint256 endIndex
    ) external view returns (IMaverickV2Pool[] memory pools);

    /**
     * @notice Lookup a pool for given parameters.
     */
    function lookupPermissioned(
        uint256 startIndex,
        uint256 endIndex
    ) external view returns (IMaverickV2Pool[] memory pools);

    /**
     * @notice Lookup a pool for given parameters.
     */
    function lookup(
        uint256 feeAIn,
        uint256 feeBIn,
        uint256 tickSpacing,
        uint256 lookback,
        IERC20 tokenA,
        IERC20 tokenB,
        uint8 kinds
    ) external view returns (IMaverickV2Pool);

    /**
     * @notice Lookup a pool for given parameters.
     */
    function lookup(
        IERC20 _tokenA,
        IERC20 _tokenB,
        uint256 startIndex,
        uint256 endIndex
    ) external view returns (IMaverickV2Pool[] memory pools);

    /**
     * @notice Lookup a pool for given parameters.
     */
    function lookup(uint256 startIndex, uint256 endIndex) external view returns (IMaverickV2Pool[] memory pools);

    /**
     * @notice Count of permissionless pools.
     */
    function poolCount() external view returns (uint256 _poolCount);

    /**
     * @notice Count of permissioned pools.
     */
    function poolPermissionedCount() external view returns (uint256 _poolCount);

    /**
     * @notice Count of pools for a given accessor and token pair.  For
     * permissionless pools, pass `accessor = address(0)`.
     */
    function poolByTokenCount(
        IERC20 _tokenA,
        IERC20 _tokenB,
        address accessor
    ) external view returns (uint256 _poolCount);

    /**
     * @notice Get the current factory owner.
     */
    function owner() external view returns (address);

    /**
     * @notice Proportion of protocol fee to collect on each swap.  Value is in
     * 3-decimal format with a maximum value of 0.25e3.
     */
    function protocolFeeRatioD3() external view returns (uint8);

    /**
     * @notice Fee rate charged by the protocol for flashloans.  Value is in
     * 18-decimal format with a maximum value of 0.02e18.
     */
    function protocolLendingFeeRateD18() external view returns (uint256);
}

// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IMaverickV2Factory} from "./IMaverickV2Factory.sol";

interface IMaverickV2Pool {
    error PoolZeroLiquidityAdded();
    error PoolMinimumLiquidityNotMet();
    error PoolLocked();
    error PoolInvalidFee();
    error PoolTicksNotSorted(uint256 index, int256 previousTick, int256 tick);
    error PoolTicksAmountsLengthMismatch(uint256 ticksLength, uint256 amountsLength);
    error PoolBinIdsAmountsLengthMismatch(uint256 binIdsLength, uint256 amountsLength);
    error PoolKindNotSupported(uint256 kinds, uint256 kind);
    error PoolInsufficientBalance(uint256 deltaLpAmount, uint256 accountBalance);
    error PoolReservesExceedMaximum(uint256 amount);
    error PoolValueExceedsBits(uint256 amount, uint256 bits);
    error PoolTickMaxExceeded(uint256 tick);
    error PoolMigrateBinFirst();
    error PoolCurrentTickBeyondSwapLimit(int32 startingTick);
    error PoolSenderNotAccessor(address sender_, address accessor);
    error PoolSenderNotFactory(address sender_, address accessor);
    error PoolFunctionNotImplemented();
    error PoolTokenNotSolvent(uint256 internalReserve, uint256 tokenBalance, IERC20 token);

    event PoolSwap(address sender, address recipient, SwapParams params, uint256 amountIn, uint256 amountOut);

    event PoolAddLiquidity(
        address sender,
        address recipient,
        uint256 subaccount,
        AddLiquidityParams params,
        uint256 tokenAAmount,
        uint256 tokenBAmount,
        uint32[] binIds
    );

    event PoolMigrateBinsUpStack(address sender, uint32 binId, uint32 maxRecursion);

    event PoolRemoveLiquidity(
        address sender,
        address recipient,
        uint256 subaccount,
        RemoveLiquidityParams params,
        uint256 tokenAOut,
        uint256 tokenBOut
    );

    event PoolSetVariableFee(uint256 newFeeAIn, uint256 newFeeBIn);

    /**
     * @notice Tick state parameters.
     */
    struct TickState {
        uint128 reserveA;
        uint128 reserveB;
        uint128 totalSupply;
        uint32[4] binIdsByTick;
    }

    /**
     * @notice Tick data parameters.
     * @param currentReserveA Current reserve of token A.
     * @param currentReserveB Current reserve of token B.
     * @param currentLiquidity Current liquidity amount.
     */
    struct TickData {
        uint256 currentReserveA;
        uint256 currentReserveB;
        uint256 currentLiquidity;
    }

    /**
     * @notice Bin state parameters.
     * @param mergeBinBalance LP token balance that this bin possesses of the merge bin.
     * @param mergeId Bin ID of the bin that this bin has merged into.
     * @param totalSupply Total amount of LP tokens in this bin.
     * @param kind One of the 4 kinds (0=static, 1=right, 2=left, 3=both).
     * @param tick The lower price tick of the bin in its current state.
     * @param tickBalance Balance of the tick.
     */
    struct BinState {
        uint128 mergeBinBalance;
        uint128 tickBalance;
        uint128 totalSupply;
        uint8 kind;
        int32 tick;
        uint32 mergeId;
    }

    /**
     * @notice Parameters for swap.
     * @param amount Amount of the token that is either the input if exactOutput is false
     * or the output if exactOutput is true.
     * @param tokenAIn Boolean indicating whether tokenA is the input.
     * @param exactOutput Boolean indicating whether the amount specified is
     * the exact output amount (true).
     * @param tickLimit The furthest tick a swap will execute in. If no limit
     * is desired, value should be set to type(int32).max for a tokenAIn swap
     * and type(int32).min for a swap where tokenB is the input.
     */
    struct SwapParams {
        uint256 amount;
        bool tokenAIn;
        bool exactOutput;
        int32 tickLimit;
    }

    /**
     * @notice Parameters associated with adding liquidity.
     * @param kind One of the 4 kinds (0=static, 1=right, 2=left, 3=both).
     * @param ticks Array of ticks to add liquidity to.
     * @param amounts Array of bin LP amounts to add.
     */
    struct AddLiquidityParams {
        uint8 kind;
        int32[] ticks;
        uint128[] amounts;
    }

    /**
     * @notice Parameters for each bin that will have liquidity removed.
     * @param binIds Index array of the bins losing liquidity.
     * @param amounts Array of bin LP amounts to remove.
     */
    struct RemoveLiquidityParams {
        uint32[] binIds;
        uint128[] amounts;
    }

    /**
     * @notice State of the pool.
     * @param reserveA Pool tokenA balanceOf at end of last operation
     * @param reserveB Pool tokenB balanceOf at end of last operation
     * @param lastTwaD8 Value of log time weighted average price at last block.
     * Value is 8-decimal scale and is in the fractional tick domain.  E.g. a
     * value of 12.3e8 indicates the TWAP was 3/10ths of the way into the 12th
     * tick.
     * @param lastLogPriceD8 Value of log price at last block. Value is
     * 8-decimal scale and is in the fractional tick domain.  E.g. a value of
     * 12.3e8 indicates the price was 3/10ths of the way into the 12th tick.
     * @param lastTimestamp Last block.timestamp value in seconds for latest
     * swap transaction.
     * @param activeTick Current tick position that contains the active bins.
     * @param isLocked Pool isLocked, E.g., locked or unlocked; isLocked values
     * defined in Pool.sol.
     * @param binCounter Index of the last bin created.
     * @param protocolFeeRatioD3 Ratio of the swap fee that is kept for the
     * protocol.
     */
    struct State {
        uint128 reserveA;
        uint128 reserveB;
        int64 lastTwaD8;
        int64 lastLogPriceD8;
        uint40 lastTimestamp;
        int32 activeTick;
        bool isLocked;
        uint32 binCounter;
        uint8 protocolFeeRatioD3;
    }

    /**
     * @notice Internal data used for data passing between Pool and Bin code.
     */
    struct BinDelta {
        uint128 deltaA;
        uint128 deltaB;
    }

    /**
     * @notice 1-15 number to represent the active kinds.
     * @notice 0b0001 = static;
     * @notice 0b0010 = right;
     * @notice 0b0100 = left;
     * @notice 0b1000 = both;
     *
     * E.g. a pool with all 4 modes will have kinds = b1111 = 15
     */
    function kinds() external view returns (uint8 _kinds);

    /**
     * @notice Returns whether a pool has permissioned functions. If true, the
     * `accessor()` of the pool can set the pool fees.  Other functions in the
     * pool may also be permissioned; whether or not they are can be determined
     * through calls to `permissionedLiquidity()` and `permissionedSwap()`.
     */
    function permissionedPool() external view returns (bool _permissionedPool);

    /**
     * @notice Returns whether a pool has permissioned liquidity management
     * functions. If true, the pool is incompatible with permissioned pool
     * liquidity management infrastructure.
     */
    function permissionedLiquidity() external view returns (bool _permissionedLiquidity);

    /**
     * @notice Returns whether a pool has a permissioned swap functions. If
     * true, the pool is incompatible with permissioned pool swap router
     * infrastructure.
     */
    function permissionedSwap() external view returns (bool _permissionedSwap);

    /**
     * @notice Pool swap fee for the given direction (A-in or B-in swap) in
     * 18-decimal format. E.g. 0.01e18 is a 1% swap fee.
     */
    function fee(bool tokenAIn) external view returns (uint256);

    /**
     * @notice TickSpacing of pool where 1.0001^tickSpacing is the bin width.
     */
    function tickSpacing() external view returns (uint256);

    /**
     * @notice Lookback period of pool in seconds.
     */
    function lookback() external view returns (uint256);

    /**
     * @notice Address of Pool accessor.  This is Zero address for
     * permissionless pools.
     */
    function accessor() external view returns (address);

    /**
     * @notice Pool tokenA.  Address of tokenA is such that tokenA < tokenB.
     */
    function tokenA() external view returns (IERC20);

    /**
     * @notice Pool tokenB.
     */
    function tokenB() external view returns (IERC20);

    /**
     * @notice Deploying factory of the pool and also contract that has ability
     * to set and collect protocol fees for the pool.
     */
    function factory() external view returns (IMaverickV2Factory);

    /**
     * @notice Most significant bit of scale value is a flag to indicate whether
     * tokenA has more or less than 18 decimals.  Scale is used in conjuction
     * with Math.toScale/Math.fromScale functions to convert from token amounts
     * to D18 scale internal pool accounting.
     */
    function tokenAScale() external view returns (uint256);

    /**
     * @notice Most significant bit of scale value is a flag to indicate whether
     * tokenA has more or less than 18 decimals.  Scale is used in conjuction
     * with Math.toScale/Math.fromScale functions to convert from token amounts
     * to D18 scale internal pool accounting.
     */
    function tokenBScale() external view returns (uint256);

    /**
     * @notice ID of bin at input tick position and kind.
     */
    function binIdByTickKind(int32 tick, uint256 kind) external view returns (uint32);

    /**
     * @notice Accumulated tokenA protocol fee.
     */
    function protocolFeeA() external view returns (uint128);

    /**
     * @notice Accumulated tokenB protocol fee.
     */
    function protocolFeeB() external view returns (uint128);

    /**
     * @notice Lending fee rate on flash loans.
     */
    function lendingFeeRateD18() external view returns (uint256);

    /**
     * @notice External function to get the current time-weighted average price.
     */
    function getCurrentTwa() external view returns (int256);

    /**
     * @notice External function to get the state of the pool.
     */
    function getState() external view returns (State memory);

    /**
     * @notice Return state of Bin at input binId.
     */
    function getBin(uint32 binId) external view returns (BinState memory bin);

    /**
     * @notice Return state of Tick at input tick position.
     */
    function getTick(int32 tick) external view returns (TickState memory tickState);

    /**
     * @notice Retrieves the balance of a user within a bin.
     * @param user The user's address.
     * @param subaccount The subaccount for the user.
     * @param binId The ID of the bin.
     */
    function balanceOf(address user, uint256 subaccount, uint32 binId) external view returns (uint128 lpToken);

    /**
     * @notice Add liquidity to a pool. This function allows users to deposit
     * tokens into a liquidity pool.
     * @dev This function will call `maverickV2AddLiquidityCallback` on the
     * calling contract to collect the tokenA/tokenB payment.
     * @param recipient The account that will receive credit for the added liquidity.
     * @param subaccount The account that will receive credit for the added liquidity.
     * @param params Parameters containing the details for adding liquidity,
     * such as token types and amounts.
     * @param data Bytes information that gets passed to the callback.
     * @return tokenAAmount The amount of token A added to the pool.
     * @return tokenBAmount The amount of token B added to the pool.
     * @return binIds An array of bin IDs where the liquidity is stored.
     */
    function addLiquidity(
        address recipient,
        uint256 subaccount,
        AddLiquidityParams calldata params,
        bytes calldata data
    ) external returns (uint256 tokenAAmount, uint256 tokenBAmount, uint32[] memory binIds);

    /**
     * @notice Removes liquidity from the pool.
     * @dev Liquidy can only be removed from a bin that is either unmerged or
     * has a mergeId of an unmerged bin.  If a bin is merged more than one
     * level deep, it must be migrated up the merge stack to the root bin
     * before liquidity removal.
     * @param recipient The address to receive the tokens.
     * @param subaccount The subaccount for the recipient.
     * @param params The parameters for removing liquidity.
     * @return tokenAOut The amount of token A received.
     * @return tokenBOut The amount of token B received.
     */
    function removeLiquidity(
        address recipient,
        uint256 subaccount,
        RemoveLiquidityParams calldata params
    ) external returns (uint256 tokenAOut, uint256 tokenBOut);

    /**
     * @notice Migrate bins up the linked list of merged bins so that its
     * mergeId is the currrent active bin.
     * @dev Liquidy can only be removed from a bin that is either unmerged or
     * has a mergeId of an unmerged bin.  If a bin is merged more than one
     * level deep, it must be migrated up the merge stack to the root bin
     * before liquidity removal.
     * @param binId The ID of the bin to migrate.
     * @param maxRecursion The maximum recursion depth for the migration.
     */
    function migrateBinUpStack(uint32 binId, uint32 maxRecursion) external;

    /**
     * @notice Swap tokenA/tokenB assets in the pool.  The swap user has two
     * options for funding their swap.
     * - The user can push the input token amount to the pool before calling
     * the swap function. In order to avoid having the pool call the callback,
     * the user should pass a zero-length `data` bytes object with the swap
     * call.
     * - The user can send the input token amount to the pool when the pool
     * calls the `maverickV2SwapCallback` function on the calling contract.
     * That callback has input parameters that specify the token address of the
     * input token, the input and output amounts, and the bytes data sent to
     * the swap function.
     * @dev  If the users elects to do a callback-based swap, the output
     * assets will be sent before the callback is called, allowing the user to
     * execute flash swaps.  However, the pool does have reentrancy protection,
     * so a swapper will not be able to interact with the same pool again
     * while they are in the callback function.
     * @param recipient The address to receive the output tokens.
     * @param params Parameters containing the details of the swap
     * @param data Bytes information that gets passed to the callback.
     */
    function swap(
        address recipient,
        SwapParams memory params,
        bytes calldata data
    ) external returns (uint256 amountIn, uint256 amountOut);

    /**
     * @notice Loan tokenA/tokenB assets from the pool to recipient. The fee
     * rate of a loan is determined by `lendingFeeRateD18`, which is set at the
     * protocol level by the factory.  This function calls
     * `maverickV2FlashLoanCallback` on the calling contract.  At the end of
     * the callback, the caller must pay back the loan with fee (if there is a
     * fee).
     * @param recipient The address to receive the loaned tokens.
     * @param amountB Loan amount of tokenA sent to recipient.
     * @param amountB Loan amount of tokenB sent to recipient.
     * @param data Bytes information that gets passed to the callback.
     */
    function flashLoan(
        address recipient,
        uint256 amountA,
        uint256 amountB,
        bytes calldata data
    ) external returns (uint128 lendingFeeA, uint128 lendingFeeB);

    /**
     * @notice Sets fee for permissioned pools.  May only be called by the
     * accessor.
     */
    function setFee(uint256 newFeeAIn, uint256 newFeeBIn) external;
}

// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;

library ArrayOperations {
    error ArrayElementsNotUnique(uint256 index, uint256 duplicateEntry);

    /**
     * @notice Checks that array of numbers are unique.
     * @param array Array of numbers to check.
     * @param maxArrayElementValue Maximum value possible in Array.
     */
    function checkUnique(uint32[] memory array, uint256 maxArrayElementValue) internal pure {
        // for pool with few bins (less than ~100k), the bitmap approach is
        // more gas efficient than exhaustive search of a 10-bin list.  As the
        // bin count in a pool grows beyond this, the gas cost of the bitmap
        // memory allocation quickly overtakes the exhaustive search cost.
        if (maxArrayElementValue < 100_000) {
            // allocate bitmap and set indexes to check uniqueness
            checkUniqueViaBitMap(array, maxArrayElementValue);
        } else {
            // search to check uniqueness
            checkUniqueViaSearch(array);
        }
    }

    /**
     * @notice Search all pair-wise combinations; low memory, but quadratic
     * comparison cost.
     */
    function checkUniqueViaSearch(uint32[] memory array) internal pure {
        uint256 length = array.length;
        if (length <= 1) return;
        for (uint256 i = 0; i < length - 1; i++) {
            for (uint256 j = i + 1; j < length; j++) {
                if (array[i] == array[j]) revert ArrayElementsNotUnique(j, array[j]);
            }
        }
    }

    /**
     * @notice Fill bitmap with values and revert on collision; memory is
     * proportional to pool bin count while comparison costs are linear in
     * array length.
     */
    function checkUniqueViaBitMap(uint32[] memory array, uint256 maxArrayElementValue) internal pure {
        uint256 length = array.length;
        if (length <= 1) return;
        uint256[] memory bitMap = new uint256[]((maxArrayElementValue >> 8) + 1);
        for (uint256 i; i < length; i++) {
            if (get(bitMap, array[i])) revert ArrayElementsNotUnique(i, array[i]);
            set(bitMap, array[i]);
        }
    }

    /**
     * @notice Gets the bit at `index`.
     */
    function get(uint256[] memory bitmap, uint256 index) private pure returns (bool) {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        return bitmap[bucket] & mask != 0;
    }

    /**
     * @notice Sets the bit at `index`.
     */
    function set(uint256[] memory bitmap, uint256 index) private pure {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        bitmap[bucket] |= mask;
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;

// factory contraints on pools
uint8 constant MAX_PROTOCOL_FEE_RATIO_D3 = 0.25e3; // 25%
uint256 constant MAX_PROTOCOL_LENDING_FEE_RATE_D18 = 0.02e18; // 2%
uint64 constant MAX_POOL_FEE_D18 = 0.9e18; // 90%
uint64 constant MIN_LOOKBACK = 1 seconds;
uint64 constant MAX_TICK_SPACING = 10_000;

// pool constraints
uint8 constant NUMBER_OF_KINDS = 4;
int32 constant NUMBER_OF_KINDS_32 = int32(int8(NUMBER_OF_KINDS));
uint256 constant MAX_TICK = 322_378; // max price 1e14 in D18 scale
int32 constant MAX_TICK_32 = int32(int256(MAX_TICK));
int32 constant MIN_TICK_32 = int32(-int256(MAX_TICK));
uint256 constant MAX_BINS_TO_MERGE = 3;
uint128 constant MINIMUM_LIQUIDITY = 1e8;

// accessor named constants
uint8 constant ALL_KINDS_MASK = 0xF; // 0b1111
uint8 constant PERMISSIONED_LIQUIDITY_MASK = 0x10; // 0b010000
uint8 constant PERMISSIONED_SWAP_MASK = 0x20; // 0b100000
uint8 constant OPTIONS_MASK = ALL_KINDS_MASK | PERMISSIONED_LIQUIDITY_MASK | PERMISSIONED_SWAP_MASK; // 0b111111

// named values
address constant MERGED_LP_BALANCE_ADDRESS = address(0);
uint256 constant MERGED_LP_BALANCE_SUBACCOUNT = 0;
uint128 constant ONE = 1e18;
uint128 constant ONE_SQUARED = 1e36;
int256 constant INT256_ONE = 1e18;
uint256 constant ONE_D8 = 1e8;
uint256 constant ONE_D3 = 1e3;
int40 constant INT_ONE_D8 = 1e8;
int40 constant HALF_TICK_D8 = 0.5e8;
uint8 constant DEFAULT_DECIMALS = 18;
uint256 constant DEFAULT_SCALE = 1;
bytes constant EMPTY_PRICE_BREAKS = hex"010000000000000000000000";

// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;

import {Math as OzMath} from "@openzeppelin/contracts/utils/math/Math.sol";

import {ONE, DEFAULT_SCALE, DEFAULT_DECIMALS, INT_ONE_D8, ONE_SQUARED} from "./Constants.sol";

/**
 * @notice Math functions.
 */
library Math {
    /**
     * @notice Returns the lesser of two values.
     * @param x First uint256 value.
     * @param y Second uint256 value.
     */
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly ("memory-safe") {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /**
     * @notice Returns the lesser of two uint128 values.
     * @param x First uint128 value.
     * @param y Second uint128 value.
     */
    function min128(uint128 x, uint128 y) internal pure returns (uint128 z) {
        assembly ("memory-safe") {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /**
     * @notice Returns the lesser of two int256 values.
     * @param x First int256 value.
     * @param y Second int256 value.
     */
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        assembly ("memory-safe") {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /**
     * @notice Returns the greater of two uint256 values.
     * @param x First uint256 value.
     * @param y Second uint256 value.
     */
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly ("memory-safe") {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /**
     * @notice Returns the greater of two int256 values.
     * @param x First int256 value.
     * @param y Second int256 value.
     */
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        assembly ("memory-safe") {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /**
     * @notice Returns the greater of two uint128 values.
     * @param x First uint128 value.
     * @param y Second uint128 value.
     */
    function max128(uint128 x, uint128 y) internal pure returns (uint128 z) {
        assembly ("memory-safe") {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /**
     * @notice Thresholds a value to be within the specified bounds.
     * @param value The value to bound.
     * @param lowerLimit The minimum allowable value.
     * @param upperLimit The maximum allowable value.
     */
    function boundValue(
        uint256 value,
        uint256 lowerLimit,
        uint256 upperLimit
    ) internal pure returns (uint256 outputValue) {
        outputValue = min(max(value, lowerLimit), upperLimit);
    }

    /**
     * @notice Returns the difference between two uint128 values or zero if the result would be negative.
     * @param x The minuend.
     * @param y The subtrahend.
     */
    function clip128(uint128 x, uint128 y) internal pure returns (uint128) {
        unchecked {
            return x < y ? 0 : x - y;
        }
    }

    /**
     * @notice Returns the difference between two uint256 values or zero if the result would be negative.
     * @param x The minuend.
     * @param y The subtrahend.
     */
    function clip(uint256 x, uint256 y) internal pure returns (uint256) {
        unchecked {
            return x < y ? 0 : x - y;
        }
    }

    /**
     * @notice Divides one uint256 by another, rounding down to the nearest
     * integer.
     * @param x The dividend.
     * @param y The divisor.
     */
    function divFloor(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivFloor(x, ONE, y);
    }

    /**
     * @notice Divides one uint256 by another, rounding up to the nearest integer.
     * @param x The dividend.
     * @param y The divisor.
     */
    function divCeil(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivCeil(x, ONE, y);
    }

    /**
     * @notice Multiplies two uint256 values and then divides by ONE, rounding down.
     * @param x The multiplicand.
     * @param y The multiplier.
     */
    function mulFloor(uint256 x, uint256 y) internal pure returns (uint256) {
        return OzMath.mulDiv(x, y, ONE);
    }

    /**
     * @notice Multiplies two uint256 values and then divides by ONE, rounding up.
     * @param x The multiplicand.
     * @param y The multiplier.
     */
    function mulCeil(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivCeil(x, y, ONE);
    }

    /**
     * @notice Calculates the multiplicative inverse of a uint256, rounding down.
     * @param x The value to invert.
     */
    function invFloor(uint256 x) internal pure returns (uint256) {
        unchecked {
            return ONE_SQUARED / x;
        }
    }

    /**
     * @notice Calculates the multiplicative inverse of a uint256, rounding up.
     * @param denominator The value to invert.
     */
    function invCeil(uint256 denominator) internal pure returns (uint256 z) {
        assembly ("memory-safe") {
            // divide z - 1 by the denominator and add 1.
            z := add(div(sub(ONE_SQUARED, 1), denominator), 1)
        }
    }

    /**
     * @notice Multiplies two uint256 values and divides by a third, rounding down.
     * @param x The multiplicand.
     * @param y The multiplier.
     * @param k The divisor.
     */
    function mulDivFloor(uint256 x, uint256 y, uint256 k) internal pure returns (uint256 result) {
        result = OzMath.mulDiv(x, y, max(1, k));
    }

    /**
     * @notice Multiplies two uint256 values and divides by a third, rounding up if there's a remainder.
     * @param x The multiplicand.
     * @param y The multiplier.
     * @param k The divisor.
     */
    function mulDivCeil(uint256 x, uint256 y, uint256 k) internal pure returns (uint256 result) {
        result = mulDivFloor(x, y, k);
        if (mulmod(x, y, max(1, k)) != 0) result = result + 1;
    }

    /**
     * @notice Multiplies two uint256 values and divides by a third, rounding
     * down. Will revert if `x * y` is larger than `type(uint256).max`.
     * @param x The first operand for multiplication.
     * @param y The second operand for multiplication.
     * @param denominator The divisor after multiplication.
     */
    function mulDivDown(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 z) {
        assembly ("memory-safe") {
            // Store x * y in z for now.
            z := mul(x, y)
            if iszero(denominator) {
                denominator := 1
            }

            if iszero(or(iszero(x), eq(div(z, x), y))) {
                revert(0, 0)
            }

            // Divide z by the denominator.
            z := div(z, denominator)
        }
    }

    /**
     * @notice Multiplies two uint256 values and divides by a third, rounding
     * up. Will revert if `x * y` is larger than `type(uint256).max`.
     * @param x The first operand for multiplication.
     * @param y The second operand for multiplication.
     * @param denominator The divisor after multiplication.
     */
    function mulDivUp(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 z) {
        assembly ("memory-safe") {
            // Store x * y in z for now.
            z := mul(x, y)
            if iszero(denominator) {
                denominator := 1
            }

            if iszero(or(iszero(x), eq(div(z, x), y))) {
                revert(0, 0)
            }

            // First, divide z - 1 by the denominator and add 1.
            // We allow z - 1 to underflow if z is 0, because we multiply the
            // end result by 0 if z is zero, ensuring we return 0 if z is zero.
            z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
        }
    }

    /**
     * @notice Multiplies a uint256 by another and divides by a constant,
     * rounding down. Will revert if `x * y` is larger than
     * `type(uint256).max`.
     * @param x The multiplicand.
     * @param y The multiplier.
     */
    function mulDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, ONE);
    }

    /**
     * @notice Divides a uint256 by another, rounding down the result. Will
     * revert if `x * 1e18` is larger than `type(uint256).max`.
     * @param x The dividend.
     * @param y The divisor.
     */
    function divDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, ONE, y);
    }

    /**
     * @notice Divides a uint256 by another, rounding up the result. Will
     * revert if `x * 1e18` is larger than `type(uint256).max`.
     * @param x The dividend.
     * @param y The divisor.
     */
    function divUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, ONE, y);
    }

    /**
     * @notice Scales a number based on a difference in decimals from a default.
     * @param decimals The new decimal precision.
     */
    function scale(uint8 decimals) internal pure returns (uint256) {
        unchecked {
            if (decimals == DEFAULT_DECIMALS) {
                return DEFAULT_SCALE;
            } else {
                return 10 ** (DEFAULT_DECIMALS - decimals);
            }
        }
    }

    /**
     * @notice Adjusts a scaled amount to the token decimal scale.
     * @param amount The scaled amount.
     * @param scaleFactor The scaling factor to adjust by.
     * @param ceil Whether to round up (true) or down (false).
     */
    function ammScaleToTokenScale(uint256 amount, uint256 scaleFactor, bool ceil) internal pure returns (uint256 z) {
        unchecked {
            if (scaleFactor == DEFAULT_SCALE || amount == 0) {
                return amount;
            } else {
                if (!ceil) return amount / scaleFactor;
                assembly ("memory-safe") {
                    z := add(div(sub(amount, 1), scaleFactor), 1)
                }
            }
        }
    }

    /**
     * @notice Adjusts a token amount to the D18 AMM scale.
     * @param amount The amount in token scale.
     * @param scaleFactor The scale factor for adjustment.
     */
    function tokenScaleToAmmScale(uint256 amount, uint256 scaleFactor) internal pure returns (uint256) {
        if (scaleFactor == DEFAULT_SCALE) {
            return amount;
        } else {
            return amount * scaleFactor;
        }
    }

    /**
     * @notice Returns the absolute value of a signed 32-bit integer.
     * @param x The integer to take the absolute value of.
     */
    function abs32(int32 x) internal pure returns (uint32) {
        unchecked {
            return uint32(x < 0 ? -x : x);
        }
    }

    /**
     * @notice Returns the absolute value of a signed 256-bit integer.
     * @param x The integer to take the absolute value of.
     */
    function abs(int256 x) internal pure returns (uint256) {
        unchecked {
            return uint256(x < 0 ? -x : x);
        }
    }

    /**
     * @notice Calculates the integer square root of a uint256 rounded down.
     * @param x The number to take the square root of.
     */
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        // from https://github.com/transmissions11/solmate/blob/e8f96f25d48fe702117ce76c79228ca4f20206cb/src/utils/FixedPointMathLib.sol
        assembly ("memory-safe") {
            let y := x
            z := 181

            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            z := shr(18, mul(z, add(y, 65536)))

            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            z := sub(z, lt(div(x, z), z))
        }
    }

    /**
     * @notice Computes the floor of a D8-scaled number as an int32, ignoring
     * potential overflow in the cast.
     * @param val The D8-scaled number.
     */
    function floorD8Unchecked(int256 val) internal pure returns (int32) {
        int32 val32;
        bool check;
        unchecked {
            val32 = int32(val / INT_ONE_D8);
            check = (val < 0 && val % INT_ONE_D8 != 0);
        }
        return check ? val32 - 1 : val32;
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;

import {SafeCast as Cast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {IMaverickV2Pool} from "../interfaces/IMaverickV2Pool.sol";
import {TickMath} from "./TickMath.sol";
import {Math} from "./Math.sol";

/**
 * @notice Library of pool functions.
 */
library PoolLib {
    using Cast for uint256;

    struct AddLiquidityInfo {
        uint256 deltaA;
        uint256 deltaB;
        bool tickLtActive;
        uint256 tickSpacing;
        int32 tick;
    }

    /**
     * @notice Check to ensure that the ticks are in ascending order and amount
     * array is same length as tick array.
     * @param ticks An array of int32 values representing ticks to be checked.
     * @param amountsLength Amount array length.
     */
    function uniqueOrderedTicksCheck(int32[] memory ticks, uint256 amountsLength) internal pure {
        unchecked {
            if (ticks.length != amountsLength)
                revert IMaverickV2Pool.PoolTicksAmountsLengthMismatch(ticks.length, amountsLength);
            int32 lastTick = type(int32).min;
            for (uint256 i; i < ticks.length; ) {
                if (ticks[i] <= lastTick) revert IMaverickV2Pool.PoolTicksNotSorted(i, lastTick, ticks[i]);
                lastTick = ticks[i];
                i = i + 1;
            }
        }
    }

    /**
     * @notice Compute bin reserves assuming the bin is not merged; not accurate
     * reflection of reserves for merged bins.
     * @param bin The storage reference to the state for this bin.
     * @param tick The memory reference to the state for this tick.
     * @return reserveA The reserve amount for token A.
     * @return reserveB The reserve amount for token B.
     */
    function binReserves(
        IMaverickV2Pool.BinState storage bin,
        IMaverickV2Pool.TickState memory tick
    ) internal view returns (uint128 reserveA, uint128 reserveB) {
        return binReserves(bin.tickBalance, tick.reserveA, tick.reserveB, tick.totalSupply);
    }

    /**
     * @notice Compute bin reserves assuming the bin is not merged; not accurate
     * reflection of reserves for merged bins.
     * @param tickBalance Bin's balance in the tick.
     * @param tickReserveA Tick's tokenA reserves.
     * @param tickReserveB Tick's tokenB reserves.
     * @param tickTotalSupply Tick total supply of bin balances.
     */
    function binReserves(
        uint128 tickBalance,
        uint128 tickReserveA,
        uint128 tickReserveB,
        uint128 tickTotalSupply
    ) internal pure returns (uint128 reserveA, uint128 reserveB) {
        if (tickTotalSupply != 0) {
            reserveA = reserveValue(tickReserveA, tickBalance, tickTotalSupply);
            reserveB = reserveValue(tickReserveB, tickBalance, tickTotalSupply);
        }
    }

    /**
     * @notice Reserves of a bin in a tick.
     * @param tickReserve Tick reserve amount in a given token.
     * @param tickBalance Bin's balance in the tick.
     * @param tickTotalSupply Tick total supply of bin balances.
     */
    function reserveValue(
        uint128 tickReserve,
        uint128 tickBalance,
        uint128 tickTotalSupply
    ) internal pure returns (uint128 reserve) {
        reserve = Math.mulDivFloor(tickReserve, tickBalance, tickTotalSupply).toUint128();
        reserve = Math.min128(tickReserve, reserve);
    }

    /**
     * @notice Calculate delta A, delta B, and delta Tick Balance based on delta
     * LP balance and the Tick/Bin state.
     */
    function deltaTickBalanceFromDeltaLpBalance(
        uint256 binTickBalance,
        uint256 binTotalSupply,
        IMaverickV2Pool.TickState memory tickState,
        uint128 deltaLpBalance,
        AddLiquidityInfo memory addLiquidityInfo
    ) internal pure returns (uint256 deltaTickBalance) {
        unchecked {
            if (tickState.reserveA != 0 || tickState.reserveB != 0) {
                // if there are already reserves, then we just contribute pro rata
                // deltaLiquidity = deltaBinLP / binTS * binTickBalance / tickTS * tickL
                uint256 numerator = Math.max(1, binTickBalance) * uint256(deltaLpBalance);
                uint256 denominator = Math.max(1, tickState.totalSupply) * Math.max(1, binTotalSupply);
                addLiquidityInfo.deltaA = Math.mulDivCeil(tickState.reserveA, numerator, denominator);
                addLiquidityInfo.deltaB = Math.mulDivCeil(tickState.reserveB, numerator, denominator);
            } else {
                _setRequiredDeltaReservesForEmptyTick(deltaLpBalance, addLiquidityInfo);
            }

            // round down the amount credited to the tick; this could lead to a
            // small add amount getting zero reserves credit.
            deltaTickBalance = tickState.totalSupply == 0
                ? deltaLpBalance
                : Math.mulDivDown(deltaLpBalance, Math.max(1, binTickBalance), binTotalSupply);
        }
    }

    /**
     * @notice Calculates deltaA = liquidity * (sqrt(upper) - sqrt(lower))
     * @notice Calculates deltaB = liquidity / sqrt(lower) - liquidity / sqrt(upper),
     * @notice i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
     * @notice we set liquidity = deltaLpBalance / (1.0001^(tick * tickspacing) - 1)
     * @notice which simplifies the A/B amounts to:
     * @notice deltaA = deltaLpBalance * sqrt(lower)
     * @notice deltaB = deltaLpBalance / sqrt(upper)
     */
    function _setRequiredDeltaReservesForEmptyTick(
        uint128 deltaLpBalance,
        AddLiquidityInfo memory addLiquidityInfo
    ) internal pure {
        // No reserves, so we will use deltaLpBalance as liquidity to be added.
        // In this logic branch, the tick is empty, so we know the tick will be
        // a one-asset add.
        (uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(
            addLiquidityInfo.tickSpacing,
            addLiquidityInfo.tick
        );

        addLiquidityInfo.deltaA = addLiquidityInfo.tickLtActive ? Math.mulCeil(deltaLpBalance, sqrtLowerTickPrice) : 0;
        addLiquidityInfo.deltaB = addLiquidityInfo.tickLtActive ? 0 : Math.divCeil(deltaLpBalance, sqrtUpperTickPrice);
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;

import {Math as OzMath} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Math} from "./Math.sol";
import {MAX_TICK, ONE} from "./Constants.sol";

/**
 * @notice Math functions related to tick operations.
 */
library TickMath {
    using Math for uint256;

    error TickMaxExceeded(int256 tick);

    /**
     * @notice Compute the lower and upper sqrtPrice of a tick.
     * @param tickSpacing The tick spacing used for calculations.
     * @param _tick The input tick value.
     */
    function tickSqrtPrices(
        uint256 tickSpacing,
        int32 _tick
    ) internal pure returns (uint256 sqrtLowerPrice, uint256 sqrtUpperPrice) {
        unchecked {
            sqrtLowerPrice = tickSqrtPrice(tickSpacing, _tick);
            sqrtUpperPrice = tickSqrtPrice(tickSpacing, _tick + 1);
        }
    }

    /**
     * @notice Compute the base tick value from the pool tick and the
     * tickSpacing.  Revert if base tick is beyond the max tick boundary.
     * @param tickSpacing The tick spacing used for calculations.
     * @param _tick The input tick value.
     */
    function subTickIndex(uint256 tickSpacing, int32 _tick) internal pure returns (uint32 subTick) {
        subTick = Math.abs32(_tick);
        subTick *= uint32(tickSpacing);
        if (subTick > MAX_TICK) {
            revert TickMaxExceeded(_tick);
        }
    }

    /**
     * @notice Calculate the square root price for a given tick and tick spacing.
     * @param tickSpacing The tick spacing used for calculations.
     * @param _tick The input tick value.
     * @return _result The square root price.
     */
    function tickSqrtPrice(uint256 tickSpacing, int32 _tick) internal pure returns (uint256 _result) {
        unchecked {
            uint256 tick = subTickIndex(tickSpacing, _tick);

            uint256 ratio = tick & 0x1 != 0 ? 0xfffcb933bd6fad9d3af5f0b9f25db4d6 : 0x100000000000000000000000000000000;
            if (tick & 0x2 != 0) ratio = (ratio * 0xfff97272373d41fd789c8cb37ffcaa1c) >> 128;
            if (tick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656ac9229c67059486f389) >> 128;
            if (tick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e81259b3cddc7a064941) >> 128;
            if (tick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f67b19e8887e0bd251eb7) >> 128;
            if (tick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98cd2e57b660be99eb2c4a) >> 128;
            if (tick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c9838804e327cb417cafcb) >> 128;
            if (tick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99d51e2cc356c2f617dbe0) >> 128;
            if (tick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900aecf64236ab31f1f9dcb5) >> 128;
            if (tick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac4d9194200696907cf2e37) >> 128;
            if (tick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b88206f8abe8a3b44dd9be) >> 128;
            if (tick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c578ef4f1d17b2b235d480) >> 128;
            if (tick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd254ee83bdd3f248e7e785e) >> 128;
            if (tick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d8f7dd10e744d913d033333) >> 128;
            if (tick & 0x4000 != 0) ratio = (ratio * 0x70d869a156ddd32a39e257bc3f50aa9b) >> 128;
            if (tick & 0x8000 != 0) ratio = (ratio * 0x31be135f97da6e09a19dc367e3b6da40) >> 128;
            if (tick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7e5a9780b0cc4e25d61a56) >> 128;
            if (tick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedbcb3a6ccb7ce618d14225) >> 128;
            if (tick & 0x40000 != 0) ratio = (ratio * 0x2216e584f630389b2052b8db590e) >> 128;
            if (_tick > 0) ratio = type(uint256).max / ratio;
            _result = (ratio * ONE) >> 128;
        }
    }

    /**
     * @notice Calculate liquidity of a tick.
     * @param reserveA Tick reserve of token A.
     * @param reserveB Tick reserve of token B.
     * @param sqrtLowerTickPrice The square root price of the lower tick edge.
     * @param sqrtUpperTickPrice The square root price of the upper tick edge.
     */
    function getTickL(
        uint256 reserveA,
        uint256 reserveB,
        uint256 sqrtLowerTickPrice,
        uint256 sqrtUpperTickPrice
    ) internal pure returns (uint256 liquidity) {
        // known:
        // - sqrt price values are different
        // - reserveA and reserveB fit in 128 bit
        // - sqrt price is in (1e-7, 1e7)
        // - D18 max for uint256 is 1.15e59
        // - D18 min is 1e-18

        unchecked {
            // diff is in (5e-12, 4e6); max tick spacing is 10_000
            uint256 diff = sqrtUpperTickPrice - sqrtLowerTickPrice;

            // Need to maximize precision by shifting small values A and B up so
            // that they use more of the available bit range. Two constraints to
            // consider: we need A * B * diff / sqrtPrice to be bigger than 1e-18
            // when the bump is not in play.  This constrains the threshold for
            // bumping to be at least 77 bit; ie, either a or b needs 2^77 which
            // means that term A * B * diff / sqrtPrice > 1e-18.
            //
            // At the other end, the second constraint is that b^2 needs to fit in
            // a 256-bit number, so, post bump, the max reserve value needs to be
            // less than 6e22. With a 78-bit threshold and a 57-bit bump, we have A
            // and B are in (1.4e-1, 4.4e22 (2^(78+57))) with bump, and one of A or
            // B is at least 2^78 without the bump, but the other reserve value may
            // be as small as 1 wei.
            uint256 precisionBump = 0;
            if ((reserveA >> 78) == 0 && (reserveB >> 78) == 0) {
                precisionBump = 57;
                reserveA <<= precisionBump;
                reserveB <<= precisionBump;
            }

            if (reserveB == 0) return Math.divDown(reserveA, diff) >> precisionBump;
            if (reserveA == 0)
                return Math.mulDivDown(reserveB.mulDown(sqrtLowerTickPrice), sqrtUpperTickPrice, diff) >> precisionBump;

            // b is in (7.2e-9 (2^57 / 1e7 / 2), 2.8e29  (2^(78+57) * 1e7 / 2)) with bump
            // b is in a subset of the same range without bump
            uint256 b = (reserveA.divDown(sqrtUpperTickPrice) + reserveB.mulDown(sqrtLowerTickPrice)) >> 1;

            // b^2 is in (5.1e-17, 4.8e58); and will not overflow on either end;
            // A*B is in (3e-13 (2^78 / 1e18 * 1e-18), 1.9e45) without bump and is in a subset range with bump
            // A*B*diff/sqrtUpper is in (1.5e-17 (3e-13 * 5e-12 * 1e7), 7.6e58);

            // Since b^2 is at the upper edge of the precision range, we are not
            // able to multiply the argument of the sqrt by 1e18, instead, we move
            // this factor outside of the sqrt. The resulting loss of precision
            // means that this liquidity value is a lower bound on the tick
            // liquidity
            return
                OzMath.mulDiv(
                    b +
                        Math.sqrt(
                            (OzMath.mulDiv(b, b, ONE) +
                                OzMath.mulDiv(reserveB.mulFloor(reserveA), diff, sqrtUpperTickPrice))
                        ) *
                        1e9,
                    sqrtUpperTickPrice,
                    diff
                ) >> precisionBump;
        }
    }

    /**
     * @notice Calculate square root price of a tick. Returns left edge of the
     * tick if the tick has no reserves.
     * @param reserveA Tick reserve of token A.
     * @param reserveB Tick reserve of token B.
     * @param sqrtLowerTickPrice The square root price of the lower tick edge.
     * @param sqrtUpperTickPrice The square root price of the upper tick edge.
     * @return sqrtPrice The calculated square root price.
     */
    function getSqrtPrice(
        uint256 reserveA,
        uint256 reserveB,
        uint256 sqrtLowerTickPrice,
        uint256 sqrtUpperTickPrice,
        uint256 liquidity
    ) internal pure returns (uint256 sqrtPrice) {
        unchecked {
            if (reserveA == 0) {
                return sqrtLowerTickPrice;
            }
            if (reserveB == 0) {
                return sqrtUpperTickPrice;
            }
            sqrtPrice = Math.sqrt(
                ONE *
                    (reserveA + liquidity.mulDown(sqrtLowerTickPrice)).divDown(
                        reserveB + liquidity.divDown(sqrtUpperTickPrice)
                    )
            );
            sqrtPrice = Math.boundValue(sqrtPrice, sqrtLowerTickPrice, sqrtUpperTickPrice);
        }
    }

    /**
     * @notice Calculate square root price of a tick. Returns left edge of the
     * tick if the tick has no reserves.
     * @param reserveA Tick reserve of token A.
     * @param reserveB Tick reserve of token B.
     * @param sqrtLowerTickPrice The square root price of the lower tick edge.
     * @param sqrtUpperTickPrice The square root price of the upper tick edge.
     * @return sqrtPrice The calculated square root price.
     * @return liquidity The calculated liquidity.
     */
    function getTickSqrtPriceAndL(
        uint256 reserveA,
        uint256 reserveB,
        uint256 sqrtLowerTickPrice,
        uint256 sqrtUpperTickPrice
    ) internal pure returns (uint256 sqrtPrice, uint256 liquidity) {
        liquidity = getTickL(reserveA, reserveB, sqrtLowerTickPrice, sqrtUpperTickPrice);
        sqrtPrice = getSqrtPrice(reserveA, reserveB, sqrtLowerTickPrice, sqrtUpperTickPrice, liquidity);
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IChecks} from "./IChecks.sol";
import {PoolInspection} from "../libraries/PoolInspection.sol";

abstract contract Checks is IChecks {
    /// @inheritdoc IChecks
    function checkSqrtPrice(IMaverickV2Pool pool, uint256 minSqrtPrice, uint256 maxSqrtPrice) public payable {
        uint256 sqrtPrice = PoolInspection.poolSqrtPrice(pool);
        if (sqrtPrice < minSqrtPrice || sqrtPrice > maxSqrtPrice)
            revert PositionExceededPriceBounds(sqrtPrice, minSqrtPrice, maxSqrtPrice);
    }

    /// @inheritdoc IChecks
    function checkDeadline(uint256 deadline) public payable {
        if (block.timestamp > deadline) revert PositionDeadlinePassed(deadline, block.timestamp);
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";

interface IChecks {
    error PositionExceededPriceBounds(uint256 sqrtPrice, uint256 minSqrtPrice, uint256 maxSqrtPrice);
    error PositionDeadlinePassed(uint256 deadline, uint256 blockTimestamp);

    /**
     * @notice Function to check if the price of a pool is within specified bounds.
     * @param pool The MaverickV2Pool contract to check.
     * @param minSqrtPrice The minimum acceptable square root price.
     * @param maxSqrtPrice The maximum acceptable square root price.
     */
    function checkSqrtPrice(IMaverickV2Pool pool, uint256 minSqrtPrice, uint256 maxSqrtPrice) external payable;

    /**
     * @notice Function to check if a given deadline has passed.
     * @param deadline The timestamp representing the deadline.
     */
    function checkDeadline(uint256 deadline) external payable;
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";

interface IMigrateBins {
    function migrateBinsUpStack(IMaverickV2Pool pool, uint32[] calldata binIds, uint32 maxRecursion) external payable;
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IMigrateBins} from "./IMigrateBins.sol";

abstract contract MigrateBins is IMigrateBins {
    /**
     * @dev Migrates bins up the stack in the pool.
     * @param pool The MaverickV2Pool contract.
     * @param binIds An array of bin IDs to migrate.
     * @param maxRecursion The maximum recursion depth.
     */
    function migrateBinsUpStack(IMaverickV2Pool pool, uint32[] memory binIds, uint32 maxRecursion) public payable {
        for (uint256 i = 0; i < binIds.length; i++) {
            pool.migrateBinUpStack(binIds[i], maxRecursion);
        }
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {IMaverickV2Factory} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Factory.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IMulticall} from "@maverick/v2-common/contracts/base/IMulticall.sol";
import {IPositionImage} from "./IPositionImage.sol";
import {INft} from "../positionbase/INft.sol";
import {IMigrateBins} from "../base/IMigrateBins.sol";
import {IChecks} from "../base/IChecks.sol";

interface IMaverickV2Position is INft, IMigrateBins, IMulticall, IChecks {
    event PositionClearData(uint256 indexed tokenId);
    event PositionSetData(uint256 indexed tokenId, uint256 index, PositionPoolBinIds newData);

    error PositionDuplicatePool(uint256 index, IMaverickV2Pool pool);
    error PositionNotFactoryPool();
    error PositionPermissionedLiquidityPool();

    struct PositionPoolBinIds {
        IMaverickV2Pool pool;
        uint32[] binIds;
    }

    struct PositionFullInformation {
        PositionPoolBinIds poolBinIds;
        uint256 amountA;
        uint256 amountB;
        uint256[] binAAmounts;
        uint256[] binBAmounts;
        int32[] ticks;
        uint256[] liquidities;
    }

    /**
     * @notice Contract that renders the position nft svg image.
     */
    function positionImage() external view returns (IPositionImage);

    /**
     * @notice Pool factory.
     */
    function factory() external view returns (IMaverickV2Factory);

    /**
     * @notice Mint NFT that holds liquidity in a Maverick V2 Pool. To mint
     * liquidity to an NFT, add liquidity to bins in a pool where the
     * add liquidity recipient is this contract and the subaccount is the
     * tokenId. LiquidityManager can be used to simplify minting Position NFTs.
     */
    function mint(address recipient, IMaverickV2Pool pool, uint32[] memory binIds) external returns (uint256 tokenId);

    /**
     * @notice Overwrites tokenId pool/binId information for a given data index.
     */
    function setTokenIdData(uint256 tokenId, uint256 index, IMaverickV2Pool pool, uint32[] memory binIds) external;

    /**
     * @notice Overwrites entire pool/binId data set for a given tokenId.
     */
    function setTokenIdData(uint256 tokenId, PositionPoolBinIds[] memory data) external;

    /**
     * @notice Append new pool/binIds data array to tokenId.
     */
    function appendTokenIdData(uint256 tokenId, IMaverickV2Pool pool, uint32[] memory binIds) external;

    /**
     * @notice Get array pool/binIds data for a given tokenId.
     */
    function getTokenIdData(uint256 tokenId) external view returns (PositionPoolBinIds[] memory);

    /**
     * @notice Get value from array of pool/binIds data for a given tokenId.
     */
    function getTokenIdData(uint256 tokenId, uint256 index) external view returns (PositionPoolBinIds memory);

    /**
     * @notice Length of array of pool/binIds data for a given tokenId.
     */
    function tokenIdDataLength(uint256 tokenId) external view returns (uint256 length);

    /**
     * @notice Remove liquidity from tokenId for a given pool.  User can
     * specify arbitrary bins to remove from for their subaccount in the pool
     * even if those bins are not in the tokenIdData set.
     */
    function removeLiquidity(
        uint256 tokenId,
        address recipient,
        IMaverickV2Pool pool,
        IMaverickV2Pool.RemoveLiquidityParams memory params
    ) external returns (uint256 tokenAAmount, uint256 tokenBAmount);

    /**
     * @notice Remove liquidity from tokenId for a given pool to sender.  User
     * can specify arbitrary bins to remove from for their subaccount in the
     * pool even if those bins are not in the tokenIdData set.
     */
    function removeLiquidityToSender(
        uint256 tokenId,
        IMaverickV2Pool pool,
        IMaverickV2Pool.RemoveLiquidityParams memory params
    ) external returns (uint256 tokenAAmount, uint256 tokenBAmount);

    /**
     * @notice NFT asset information for a given range of pool/binIds indexes.
     * This function only returns the liquidity in the pools/binIds stored as
     * part of the tokenIdData, but it is possible that the NFT has additional
     * liquidity in pools/binIds that have not been recorded.
     */
    function tokenIdPositionInformation(
        uint256 tokenId,
        uint256 startIndex,
        uint256 stopIndex
    ) external view returns (PositionFullInformation[] memory output);

    /**
     * @notice NFT asset information for a given pool/binIds index. This
     * function only returns the liquidity in the pools/binIds stored as part
     * of the tokenIdData, but it is possible that the NFT has additional
     * liquidity in pools/binIds that have not been recorded.
     */
    function tokenIdPositionInformation(
        uint256 tokenId,
        uint256 index
    ) external view returns (PositionFullInformation memory output);

    /**
     * @notice Get remove paramters for removing a fractional part of the
     * liquidity owned by a given tokenId.  The fractional factor to remove is
     * given by proporationD18 in 18-decimal scale.
     */
    function getRemoveParams(
        uint256 tokenId,
        uint256 index,
        uint256 proportionD18
    ) external view returns (IMaverickV2Pool.RemoveLiquidityParams memory params);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Position} from "./IMaverickV2Position.sol";

interface IPositionImage {
    error PositionImageSetPositionError(address sender, address deployer, IMaverickV2Position currentPosition);

    function position() external view returns (IMaverickV2Position _position);
    function setPosition(IMaverickV2Position _position) external;
    function image(uint256 tokenId, address tokenOwner) external view returns (string memory);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {SafeCast as Cast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";

import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {Math} from "@maverick/v2-common/contracts/libraries/Math.sol";
import {PoolLib} from "@maverick/v2-common/contracts/libraries/PoolLib.sol";
import {TickMath} from "@maverick/v2-common/contracts/libraries/TickMath.sol";

library PoolInspection {
    using Cast for uint256;

    /**
     * @dev Calculates the square root price of a given Maverick V2 pool.
     * @param pool The Maverick V2 pool to inspect.
     * @return sqrtPrice The square root price of the pool.
     */
    function poolSqrtPrice(IMaverickV2Pool pool) internal view returns (uint256 sqrtPrice) {
        int32 activeTick = pool.getState().activeTick;
        IMaverickV2Pool.TickState memory tickState = pool.getTick(activeTick);

        (uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(
            pool.tickSpacing(),
            activeTick
        );

        (sqrtPrice, ) = TickMath.getTickSqrtPriceAndL(
            tickState.reserveA,
            tickState.reserveB,
            sqrtLowerTickPrice,
            sqrtUpperTickPrice
        );
    }

    /**
     * @dev Retrieves the reserves of a user's subaccount for a specific bin.
     */
    function userSubaccountBinReserves(
        IMaverickV2Pool pool,
        address user,
        uint256 subaccount,
        uint32 binId
    ) internal view returns (uint256 amountA, uint256 amountB, int32 tick, uint256 liquidity) {
        IMaverickV2Pool.BinState memory bin = pool.getBin(binId);

        uint256 userBinLpBalance = pool.balanceOf(user, subaccount, binId);
        while (bin.mergeId != 0) {
            userBinLpBalance = bin.totalSupply == 0
                ? 0
                : Math.mulDivFloor(userBinLpBalance, bin.mergeBinBalance, bin.totalSupply);
            bin = pool.getBin(bin.mergeId);
        }
        tick = bin.tick;

        IMaverickV2Pool.TickState memory tickState = pool.getTick(tick);

        uint256 activeBinDeltaLpBalance = Math.min(userBinLpBalance, bin.totalSupply);

        uint128 deltaTickBalance = Math
            .mulDivDown(activeBinDeltaLpBalance, bin.tickBalance, bin.totalSupply)
            .toUint128();

        deltaTickBalance = Math.min128(deltaTickBalance, tickState.totalSupply);

        (amountA, amountB) = PoolLib.binReserves(
            deltaTickBalance,
            tickState.reserveA,
            tickState.reserveB,
            tickState.totalSupply
        );

        {
            (uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(
                pool.tickSpacing(),
                tick
            );
            liquidity = TickMath.getTickL(amountA, amountB, sqrtLowerTickPrice, sqrtUpperTickPrice);
        }
    }

    /**
     * @dev Retrieves the reserves of a token for all bins associated with it.
     * Bin reserve amounts are in pool D18 scale units.
     */
    function subaccountPositionInformation(
        IMaverickV2Pool pool,
        address user,
        uint256 subaccount,
        uint32[] memory binIds
    )
        internal
        view
        returns (
            uint256 amountA,
            uint256 amountB,
            uint256[] memory binAAmounts,
            uint256[] memory binBAmounts,
            int32[] memory ticks,
            uint256[] memory liquidities
        )
    {
        binAAmounts = new uint256[](binIds.length);
        binBAmounts = new uint256[](binIds.length);
        ticks = new int32[](binIds.length);
        liquidities = new uint256[](binIds.length);

        for (uint256 i; i < binIds.length; i++) {
            (binAAmounts[i], binBAmounts[i], ticks[i], liquidities[i]) = userSubaccountBinReserves(
                pool,
                user,
                subaccount,
                binIds[i]
            );
            amountA += binAAmounts[i];
            amountB += binBAmounts[i];
        }
        {
            uint256 tokenAScale = pool.tokenAScale();
            uint256 tokenBScale = pool.tokenBScale();
            amountA = Math.ammScaleToTokenScale(amountA, tokenAScale, false);
            amountB = Math.ammScaleToTokenScale(amountB, tokenBScale, false);
        }
    }

    function binLpBalances(
        IMaverickV2Pool pool,
        uint32[] memory binIds,
        uint256 subaccount
    ) internal view returns (uint128[] memory amounts) {
        amounts = new uint128[](binIds.length);
        for (uint256 i = 0; i < binIds.length; i++) {
            amounts[i] = pool.balanceOf(address(this), subaccount, binIds[i]);
        }
    }

    function lpBalanceForTargetReserveAmounts(
        IMaverickV2Pool pool,
        uint32 binId,
        uint256 amountA,
        uint256 amountB,
        uint256 scaleA,
        uint256 scaleB
    ) internal view returns (IMaverickV2Pool.AddLiquidityParams memory addParams) {
        amountA = Math.tokenScaleToAmmScale(amountA, scaleA);
        amountB = Math.tokenScaleToAmmScale(amountB, scaleB);

        IMaverickV2Pool.BinState memory bin = pool.getBin(binId);
        uint128[] memory amounts = new uint128[](1);

        IMaverickV2Pool.TickState memory tickState = pool.getTick(bin.tick);
        uint256 numerator = Math.max(1, uint256(tickState.totalSupply)) * Math.max(1, uint256(bin.totalSupply));

        if (amountA != 0) {
            uint256 denominator = Math.max(1, uint256(bin.tickBalance)) * uint256(tickState.reserveA);
            amounts[0] = Math.mulDivFloor(amountA, numerator, denominator).toUint128();
        }
        if (amountB != 0) {
            uint256 denominator = Math.max(1, uint256(bin.tickBalance)) * uint256(tickState.reserveB);

            if (amountA != 0) {
                amounts[0] = Math.min128(amounts[0], Math.mulDivFloor(amountB, numerator, denominator).toUint128());
            } else {
                amounts[0] = Math.mulDivFloor(amountB, numerator, denominator).toUint128();
            }
        }
        {
            int32[] memory ticks = new int32[](1);
            ticks[0] = bin.tick;
            addParams = IMaverickV2Pool.AddLiquidityParams({kind: bin.kind, ticks: ticks, amounts: amounts});
        }
    }

    function maxRemoveParams(
        IMaverickV2Pool pool,
        uint32 binId,
        address user,
        uint256 subaccount
    ) internal view returns (IMaverickV2Pool.RemoveLiquidityParams memory params) {
        uint32[] memory binIds = new uint32[](1);
        uint128[] memory amounts = new uint128[](1);
        binIds[0] = binId;
        amounts[0] = pool.balanceOf(user, subaccount, binId);
        params = IMaverickV2Pool.RemoveLiquidityParams({binIds: binIds, amounts: amounts});
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {SafeCast as Cast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";

import {IMaverickV2Factory} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Factory.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {Math} from "@maverick/v2-common/contracts/libraries/Math.sol";
import {Multicall} from "@maverick/v2-common/contracts/base/Multicall.sol";
import {ONE} from "@maverick/v2-common/contracts/libraries/Constants.sol";
import {ArrayOperations} from "@maverick/v2-common/contracts/libraries/ArrayOperations.sol";

import {IMaverickV2Position} from "./interfaces/IMaverickV2Position.sol";
import {IPositionImage} from "./interfaces/IPositionImage.sol";

import {PoolInspection} from "./libraries/PoolInspection.sol";
import {Nft, INft} from "./positionbase/Nft.sol";
import {MigrateBins} from "./base/MigrateBins.sol";
import {Checks} from "./base/Checks.sol";

/**
 * @notice ERC-721 contract that stores user NFTs that contain Maverick V2 pool
 * liquidity.
 *
 * @dev The Maverick V2 pool has a concept of storing liquidity according to an
 * address and a "subaccount".  When liquidity is minted to an NFT, it is
 * stored in the pool to the address of this Position contract to the
 * subaccount that corresponds to the NFT tokenId.  The mechanism of liquidity
 * management is that the tokenId owner is the only user who can remove pool
 * liquidity in the subaccount corresponding to their tokenId.
 *
 * @dev Additionally, this position NFT has data about the pools and binIds
 * that a given tokenId has liquidity in. But these binId/pool values are
 * essentially self reported and can be updated by the token owner by calling
 * setTokenIdData.
 */
contract MaverickV2Position is Nft, Checks, MigrateBins, Multicall, IMaverickV2Position {
    using Cast for uint256;
    using ArrayOperations for uint32[];

    IPositionImage public immutable positionImage;
    IMaverickV2Factory public immutable factory;

    mapping(uint256 => PositionPoolBinIds[]) private dataByTokenId;

    constructor(IPositionImage _positionImage, IMaverickV2Factory _factory) Nft("Maverick v2 Position", "MPv2") {
        factory = _factory;
        positionImage = _positionImage;
    }

    /// @inheritdoc IMaverickV2Position
    function mint(address recipient, IMaverickV2Pool pool, uint32[] memory binIds) public returns (uint256 tokenId) {
        tokenId = _mint(recipient);
        PositionPoolBinIds memory data = PositionPoolBinIds(pool, binIds);
        _checkData(data);
        dataByTokenId[tokenId].push(data);
        emit PositionSetData(tokenId, 0, data);
    }

    /// @inheritdoc IMaverickV2Position
    function removeLiquidity(
        uint256 tokenId,
        address recipient,
        IMaverickV2Pool pool,
        IMaverickV2Pool.RemoveLiquidityParams memory params
    ) external onlyTokenIdAuthorizedUser(tokenId) returns (uint256 tokenAAmount, uint256 tokenBAmount) {
        (tokenAAmount, tokenBAmount) = pool.removeLiquidity(recipient, tokenId, params);
    }

    /// @inheritdoc IMaverickV2Position
    function removeLiquidityToSender(
        uint256 tokenId,
        IMaverickV2Pool pool,
        IMaverickV2Pool.RemoveLiquidityParams memory params
    ) external onlyTokenIdAuthorizedUser(tokenId) returns (uint256 tokenAAmount, uint256 tokenBAmount) {
        (tokenAAmount, tokenBAmount) = pool.removeLiquidity(msg.sender, tokenId, params);
    }

    /// @inheritdoc IMaverickV2Position
    function setTokenIdData(
        uint256 tokenId,
        uint256 index,
        IMaverickV2Pool pool,
        uint32[] memory binIds
    ) external onlyTokenIdAuthorizedUser(tokenId) {
        PositionPoolBinIds memory data = PositionPoolBinIds(pool, binIds);
        _checkData(data);
        dataByTokenId[tokenId][index] = data;
        _checkNoDuplicatePool(tokenId);
        emit PositionSetData(tokenId, index, data);
    }

    /// @inheritdoc IMaverickV2Position
    function setTokenIdData(
        uint256 tokenId,
        PositionPoolBinIds[] memory data
    ) external onlyTokenIdAuthorizedUser(tokenId) {
        delete dataByTokenId[tokenId];
        emit PositionClearData(tokenId);
        for (uint256 k; k < data.length; k++) {
            _checkData(data[k]);
            dataByTokenId[tokenId].push(data[k]);
            emit PositionSetData(tokenId, k, data[k]);
        }
        _checkNoDuplicatePool(tokenId);
    }

    /// @inheritdoc IMaverickV2Position
    function appendTokenIdData(
        uint256 tokenId,
        IMaverickV2Pool pool,
        uint32[] memory binIds
    ) external onlyTokenIdAuthorizedUser(tokenId) {
        PositionPoolBinIds memory data = PositionPoolBinIds(pool, binIds);
        _checkData(data);
        dataByTokenId[tokenId].push(data);
        _checkNoDuplicatePool(tokenId);
        emit PositionSetData(tokenId, dataByTokenId[tokenId].length - 1, data);
    }

    /// @inheritdoc IMaverickV2Position
    function getTokenIdData(uint256 tokenId) external view returns (PositionPoolBinIds[] memory) {
        return dataByTokenId[tokenId];
    }

    /// @inheritdoc IMaverickV2Position
    function getTokenIdData(uint256 tokenId, uint256 index) external view returns (PositionPoolBinIds memory) {
        return dataByTokenId[tokenId][index];
    }

    /// @inheritdoc IMaverickV2Position
    function tokenIdDataLength(uint256 tokenId) external view returns (uint256 length) {
        return dataByTokenId[tokenId].length;
    }

    /// @inheritdoc IMaverickV2Position
    function tokenIdPositionInformation(
        uint256 tokenId,
        uint256 startIndex,
        uint256 stopIndex
    ) public view returns (PositionFullInformation[] memory output) {
        stopIndex = Math.min(dataByTokenId[tokenId].length, stopIndex);
        uint256 count = stopIndex - startIndex;
        output = new PositionFullInformation[](count);
        for (uint256 k; k < count; k++) {
            uint256 index = k + startIndex;
            output[index] = tokenIdPositionInformation(tokenId, index);
        }
    }

    /// @inheritdoc IMaverickV2Position
    function tokenIdPositionInformation(
        uint256 tokenId,
        uint256 index
    ) public view returns (PositionFullInformation memory output) {
        output.poolBinIds = dataByTokenId[tokenId][index];
        (
            output.amountA,
            output.amountB,
            output.binAAmounts,
            output.binBAmounts,
            output.ticks,
            output.liquidities
        ) = PoolInspection.subaccountPositionInformation(
            output.poolBinIds.pool,
            address(this),
            tokenId,
            output.poolBinIds.binIds
        );
    }

    /// @inheritdoc IMaverickV2Position
    function getRemoveParams(
        uint256 tokenId,
        uint256 index,
        uint256 proportionD18
    ) public view returns (IMaverickV2Pool.RemoveLiquidityParams memory params) {
        PositionPoolBinIds memory data = dataByTokenId[tokenId][index];
        params.binIds = data.binIds;
        params.amounts = PoolInspection.binLpBalances(data.pool, params.binIds, tokenId);
        if (proportionD18 < ONE) {
            for (uint256 k; k < params.amounts.length; k++) {
                params.amounts[k] = Math.mulFloor(params.amounts[k], proportionD18).toUint128();
            }
        }
    }

    /**
     * @notice Checks that binIds are unique.
     */
    function _checkData(PositionPoolBinIds memory data) internal view {
        uint256 binCount = data.pool.getState().binCounter;
        // if not factory pool, revert
        // if permissioned liquidity, revert
        if (!factory.isFactoryPool(data.pool)) revert PositionNotFactoryPool();
        if (data.pool.permissionedLiquidity()) revert PositionPermissionedLiquidityPool();
        data.binIds.checkUnique(binCount);
    }

    /**
     * @notice Checks that token data does not contain duplicate pool.
     */
    function _checkNoDuplicatePool(uint256 tokenId) internal view {
        uint256 length = dataByTokenId[tokenId].length;
        if (length <= 1) return;
        // hold list of pools as they are pulled from storage
        IMaverickV2Pool[] memory poolList = new IMaverickV2Pool[](length);
        for (uint256 k; k < length; k++) {
            poolList[k] = dataByTokenId[tokenId][k].pool;
            for (uint256 j; j < k; j++) {
                // loop through all pools so far to compare to this new pool in the list
                if (poolList[k] == poolList[j]) revert PositionDuplicatePool(k, poolList[k]);
            }
        }
    }

    function tokenURI(uint256 tokenId) public view virtual override(Nft, INft) returns (string memory) {
        address owner = ownerOf(tokenId);
        return positionImage.image(tokenId, owner);
    }

    function name() public view override(INft, Nft) returns (string memory) {
        return super.name();
    }

    function symbol() public view override(INft, Nft) returns (string memory) {
        return super.symbol();
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {IERC721Enumerable} from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";

interface INft is IERC721Enumerable {
    /**
     * @notice Check if an NFT exists for a given owner and index.
     */
    function tokenOfOwnerByIndexExists(address owner, uint256 index) external view returns (bool);

    /**
     * @notice Return Id of the next token minted.
     */
    function nextTokenId() external view returns (uint256 nextTokenId_);

    /**
     * @notice Check if the caller has access to a specific NFT by tokenId.
     */
    function checkAuthorized(address spender, uint256 tokenId) external view returns (address owner);

    /**
     * @notice List of tokenIds by owner.
     */
    function tokenIdsOfOwner(address owner) external view returns (uint256[] memory tokenIds);

    /**
     * @notice Get the token URI for a given tokenId.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);

    function name() external view returns (string memory);
    function symbol() external view returns (string memory);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {ERC721, IERC165} from "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import {ERC721Enumerable} from "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol";

import {INft} from "./INft.sol";

/**
 * @notice Extensions to ECR-721 to support an image contract and owner
 * enumeration.
 */
abstract contract Nft is ERC721Enumerable, INft {
    uint256 private _nextTokenId = 1;

    constructor(string memory __name, string memory __symbol) ERC721(__name, __symbol) {}

    /**
     * @notice Internal function to mint a new NFT and assign it to the
     * specified address.
     * @param to The address to which the NFT will be minted.
     * @return tokenId The ID of the newly minted NFT.
     */
    function _mint(address to) internal returns (uint256 tokenId) {
        super._mint(to, _nextTokenId);
        tokenId = _nextTokenId++;
    }

    /**
     * @notice Modifier to restrict access to functions to the owner of a
     * specific NFT by its tokenId.
     */
    modifier onlyTokenIdAuthorizedUser(uint256 tokenId) {
        checkAuthorized(msg.sender, tokenId);
        _;
    }

    /// @inheritdoc INft
    function nextTokenId() public view returns (uint256 nextTokenId_) {
        return _nextTokenId;
    }

    /// @inheritdoc INft
    function tokenOfOwnerByIndexExists(address ownerToCheck, uint256 index) public view returns (bool exists) {
        return index < balanceOf(ownerToCheck);
    }

    /// @inheritdoc INft
    function tokenIdsOfOwner(address owner) public view returns (uint256[] memory tokenIds) {
        uint256 tokenCount = balanceOf(owner);
        tokenIds = new uint256[](tokenCount);
        for (uint256 k; k < tokenCount; k++) {
            tokenIds[k] = tokenOfOwnerByIndex(owner, k);
        }
    }

    /// @inheritdoc INft
    function checkAuthorized(address spender, uint256 tokenId) public view returns (address owner) {
        owner = ownerOf(tokenId);
        _checkAuthorized(owner, spender, tokenId);
    }

    // ************************************************************
    // The following functions are overrides required by Solidity.

    function _update(address to, uint256 tokenId, address auth) internal override(ERC721Enumerable) returns (address) {
        return super._update(to, tokenId, auth);
    }

    function _increaseBalance(address account, uint128 value) internal override(ERC721Enumerable) {
        super._increaseBalance(account, value);
    }

    function name() public view virtual override(INft, ERC721) returns (string memory) {
        return super.name();
    }

    function symbol() public view virtual override(INft, ERC721) returns (string memory) {
        return super.symbol();
    }

    function supportsInterface(bytes4 interfaceId) public view override(ERC721Enumerable, IERC165) returns (bool) {
        return super.supportsInterface(interfaceId);
    }

    function tokenURI(uint256 tokenId) public view virtual override(INft, ERC721) returns (string memory) {
        return super.tokenURI(tokenId);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/ERC721.sol)

pragma solidity ^0.8.20;

import {IERC721} from "./IERC721.sol";
import {IERC721Receiver} from "./IERC721Receiver.sol";
import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {Strings} from "../../utils/Strings.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
 * the Metadata extension, but not including the Enumerable extension, which is available separately as
 * {ERC721Enumerable}.
 */
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
    using Strings for uint256;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    mapping(uint256 tokenId => address) private _owners;

    mapping(address owner => uint256) private _balances;

    mapping(uint256 tokenId => address) private _tokenApprovals;

    mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;

    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721-balanceOf}.
     */
    function balanceOf(address owner) public view virtual returns (uint256) {
        if (owner == address(0)) {
            revert ERC721InvalidOwner(address(0));
        }
        return _balances[owner];
    }

    /**
     * @dev See {IERC721-ownerOf}.
     */
    function ownerOf(uint256 tokenId) public view virtual returns (address) {
        return _requireOwned(tokenId);
    }

    /**
     * @dev See {IERC721Metadata-name}.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev See {IERC721Metadata-symbol}.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
        _requireOwned(tokenId);

        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }

    /**
     * @dev See {IERC721-approve}.
     */
    function approve(address to, uint256 tokenId) public virtual {
        _approve(to, tokenId, _msgSender());
    }

    /**
     * @dev See {IERC721-getApproved}.
     */
    function getApproved(uint256 tokenId) public view virtual returns (address) {
        _requireOwned(tokenId);

        return _getApproved(tokenId);
    }

    /**
     * @dev See {IERC721-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC721-isApprovedForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev See {IERC721-transferFrom}.
     */
    function transferFrom(address from, address to, uint256 tokenId) public virtual {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
        // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
        address previousOwner = _update(to, tokenId, _msgSender());
        if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) public {
        safeTransferFrom(from, to, tokenId, "");
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
        transferFrom(from, to, tokenId);
        _checkOnERC721Received(from, to, tokenId, data);
    }

    /**
     * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
     *
     * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
     * core ERC721 logic MUST be matched with the use of {_increaseBalance} to keep balances
     * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
     * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
     */
    function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
        return _owners[tokenId];
    }

    /**
     * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
     */
    function _getApproved(uint256 tokenId) internal view virtual returns (address) {
        return _tokenApprovals[tokenId];
    }

    /**
     * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
     * particular (ignoring whether it is owned by `owner`).
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
        return
            spender != address(0) &&
            (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
    }

    /**
     * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
     * Reverts if `spender` does not have approval from the provided `owner` for the given token or for all its assets
     * the `spender` for the specific `tokenId`.
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
        if (!_isAuthorized(owner, spender, tokenId)) {
            if (owner == address(0)) {
                revert ERC721NonexistentToken(tokenId);
            } else {
                revert ERC721InsufficientApproval(spender, tokenId);
            }
        }
    }

    /**
     * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
     *
     * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
     * a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
     *
     * WARNING: Increasing an account's balance using this function tends to be paired with an override of the
     * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
     * remain consistent with one another.
     */
    function _increaseBalance(address account, uint128 value) internal virtual {
        unchecked {
            _balances[account] += value;
        }
    }

    /**
     * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
     * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that
     * `auth` is either the owner of the token, or approved to operate on the token (by the owner).
     *
     * Emits a {Transfer} event.
     *
     * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
     */
    function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
        address from = _ownerOf(tokenId);

        // Perform (optional) operator check
        if (auth != address(0)) {
            _checkAuthorized(from, auth, tokenId);
        }

        // Execute the update
        if (from != address(0)) {
            // Clear approval. No need to re-authorize or emit the Approval event
            _approve(address(0), tokenId, address(0), false);

            unchecked {
                _balances[from] -= 1;
            }
        }

        if (to != address(0)) {
            unchecked {
                _balances[to] += 1;
            }
        }

        _owners[tokenId] = to;

        emit Transfer(from, to, tokenId);

        return from;
    }

    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner != address(0)) {
            revert ERC721InvalidSender(address(0));
        }
    }

    /**
     * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal {
        _safeMint(to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
        _mint(to, tokenId);
        _checkOnERC721Received(address(0), to, tokenId, data);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     * This is an internal function that does not check if the sender is authorized to operate on the token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal {
        address previousOwner = _update(address(0), tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
    }

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(address from, address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        } else if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
     * are aware of the ERC721 standard to prevent tokens from being forever locked.
     *
     * `data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is like {safeTransferFrom} in the sense that it invokes
     * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `tokenId` token must exist and be owned by `from`.
     * - `to` cannot be the zero address.
     * - `from` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(address from, address to, uint256 tokenId) internal {
        _safeTransfer(from, to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
        _transfer(from, to, tokenId);
        _checkOnERC721Received(from, to, tokenId, data);
    }

    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
     * either the owner of the token, or approved to operate on all tokens held by this owner.
     *
     * Emits an {Approval} event.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address to, uint256 tokenId, address auth) internal {
        _approve(to, tokenId, auth, true);
    }

    /**
     * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
     * emitted in the context of transfers.
     */
    function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
        // Avoid reading the owner unless necessary
        if (emitEvent || auth != address(0)) {
            address owner = _requireOwned(tokenId);

            // We do not use _isAuthorized because single-token approvals should not be able to call approve
            if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
                revert ERC721InvalidApprover(auth);
            }

            if (emitEvent) {
                emit Approval(owner, to, tokenId);
            }
        }

        _tokenApprovals[tokenId] = to;
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Requirements:
     * - operator can't be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        if (operator == address(0)) {
            revert ERC721InvalidOperator(operator);
        }
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
     * Returns the owner.
     *
     * Overrides to ownership logic should be done to {_ownerOf}.
     */
    function _requireOwned(uint256 tokenId) internal view returns (address) {
        address owner = _ownerOf(tokenId);
        if (owner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
        return owner;
    }

    /**
     * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target address. This will revert if the
     * recipient doesn't accept the token transfer. The call is not executed if the target address is not a contract.
     *
     * @param from address representing the previous owner of the given token ID
     * @param to target address that will receive the tokens
     * @param tokenId uint256 ID of the token to be transferred
     * @param data bytes optional data to send along with the call
     */
    function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory data) private {
        if (to.code.length > 0) {
            try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                if (retval != IERC721Receiver.onERC721Received.selector) {
                    revert ERC721InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert ERC721InvalidReceiver(to);
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/ERC721Enumerable.sol)

pragma solidity ^0.8.20;

import {ERC721} from "../ERC721.sol";
import {IERC721Enumerable} from "./IERC721Enumerable.sol";
import {IERC165} from "../../../utils/introspection/ERC165.sol";

/**
 * @dev This implements an optional extension of {ERC721} defined in the EIP that adds enumerability
 * of all the token ids in the contract as well as all token ids owned by each account.
 *
 * CAUTION: `ERC721` extensions that implement custom `balanceOf` logic, such as `ERC721Consecutive`,
 * interfere with enumerability and should not be used together with `ERC721Enumerable`.
 */
abstract contract ERC721Enumerable is ERC721, IERC721Enumerable {
    mapping(address owner => mapping(uint256 index => uint256)) private _ownedTokens;
    mapping(uint256 tokenId => uint256) private _ownedTokensIndex;

    uint256[] private _allTokens;
    mapping(uint256 tokenId => uint256) private _allTokensIndex;

    /**
     * @dev An `owner`'s token query was out of bounds for `index`.
     *
     * NOTE: The owner being `address(0)` indicates a global out of bounds index.
     */
    error ERC721OutOfBoundsIndex(address owner, uint256 index);

    /**
     * @dev Batch mint is not allowed.
     */
    error ERC721EnumerableForbiddenBatchMint();

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC721) returns (bool) {
        return interfaceId == type(IERC721Enumerable).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721Enumerable-tokenOfOwnerByIndex}.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual returns (uint256) {
        if (index >= balanceOf(owner)) {
            revert ERC721OutOfBoundsIndex(owner, index);
        }
        return _ownedTokens[owner][index];
    }

    /**
     * @dev See {IERC721Enumerable-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _allTokens.length;
    }

    /**
     * @dev See {IERC721Enumerable-tokenByIndex}.
     */
    function tokenByIndex(uint256 index) public view virtual returns (uint256) {
        if (index >= totalSupply()) {
            revert ERC721OutOfBoundsIndex(address(0), index);
        }
        return _allTokens[index];
    }

    /**
     * @dev See {ERC721-_update}.
     */
    function _update(address to, uint256 tokenId, address auth) internal virtual override returns (address) {
        address previousOwner = super._update(to, tokenId, auth);

        if (previousOwner == address(0)) {
            _addTokenToAllTokensEnumeration(tokenId);
        } else if (previousOwner != to) {
            _removeTokenFromOwnerEnumeration(previousOwner, tokenId);
        }
        if (to == address(0)) {
            _removeTokenFromAllTokensEnumeration(tokenId);
        } else if (previousOwner != to) {
            _addTokenToOwnerEnumeration(to, tokenId);
        }

        return previousOwner;
    }

    /**
     * @dev Private function to add a token to this extension's ownership-tracking data structures.
     * @param to address representing the new owner of the given token ID
     * @param tokenId uint256 ID of the token to be added to the tokens list of the given address
     */
    function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private {
        uint256 length = balanceOf(to) - 1;
        _ownedTokens[to][length] = tokenId;
        _ownedTokensIndex[tokenId] = length;
    }

    /**
     * @dev Private function to add a token to this extension's token tracking data structures.
     * @param tokenId uint256 ID of the token to be added to the tokens list
     */
    function _addTokenToAllTokensEnumeration(uint256 tokenId) private {
        _allTokensIndex[tokenId] = _allTokens.length;
        _allTokens.push(tokenId);
    }

    /**
     * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that
     * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for
     * gas optimizations e.g. when performing a transfer operation (avoiding double writes).
     * This has O(1) time complexity, but alters the order of the _ownedTokens array.
     * @param from address representing the previous owner of the given token ID
     * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address
     */
    function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private {
        // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and
        // then delete the last slot (swap and pop).

        uint256 lastTokenIndex = balanceOf(from);
        uint256 tokenIndex = _ownedTokensIndex[tokenId];

        // When the token to delete is the last token, the swap operation is unnecessary
        if (tokenIndex != lastTokenIndex) {
            uint256 lastTokenId = _ownedTokens[from][lastTokenIndex];

            _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
            _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
        }

        // This also deletes the contents at the last position of the array
        delete _ownedTokensIndex[tokenId];
        delete _ownedTokens[from][lastTokenIndex];
    }

    /**
     * @dev Private function to remove a token from this extension's token tracking data structures.
     * This has O(1) time complexity, but alters the order of the _allTokens array.
     * @param tokenId uint256 ID of the token to be removed from the tokens list
     */
    function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private {
        // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and
        // then delete the last slot (swap and pop).

        uint256 lastTokenIndex = _allTokens.length - 1;
        uint256 tokenIndex = _allTokensIndex[tokenId];

        // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so
        // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding
        // an 'if' statement (like in _removeTokenFromOwnerEnumeration)
        uint256 lastTokenId = _allTokens[lastTokenIndex];

        _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
        _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index

        // This also deletes the contents at the last position of the array
        delete _allTokensIndex[tokenId];
        _allTokens.pop();
    }

    /**
     * See {ERC721-_increaseBalance}. We need that to account tokens that were minted in batch
     */
    function _increaseBalance(address account, uint128 amount) internal virtual override {
        if (amount > 0) {
            revert ERC721EnumerableForbiddenBatchMint();
        }
        super._increaseBalance(account, amount);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.20;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):