Contract Source Code:
File 1 of 1 : MUTATE
/*
https://twitter.com/MutateToken
https://www.mutate-token.com/
https://t.me/mutateportal
*/
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);
function removeLiquidityETHWithPermit(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
}
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
contract MUTATE is IERC20, Ownable {
using SafeMath for uint256;
address private constant DEAD = address(0xdead);
address private constant ZERO = address(0);
address private devAddress = address(0xdE77aC95F80B18Fc89c32FEf18c3D71aF690dd35);
address private treasuryAddress = address(0xdE77aC95F80B18Fc89c32FEf18c3D71aF690dd35);
address private marketingAddress = address(0xdE77aC95F80B18Fc89c32FEf18c3D71aF690dd35);
address private liquidityAddress = address(0xeFc9264D68d06502cdc785FC2aEa84bF05a999f2);
/**
* Token Assets
* name, symbol, _decimals totalSupply
* This will be defined when we deploy the contract.
*/
string private _name = "MUTATE";
string private _symbol = "MUTATE";
uint8 private _decimals = 18;
uint256 private _totalSupply = 1_000_000_000 * (10 ** _decimals); // 1 billion
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
bool public enableTrading = true;
bool public enableSwap = false;
uint256 public maxBalance = _totalSupply * 2 / 100; // 2%
uint256 public maxTx = _totalSupply * 2 / 100; // 2%
uint256 public swapThreshold = (_totalSupply * 4) / 10000; // 0.04%
uint256 _buyMarketingFee = 0;
uint256 _buyLiquidityFee = 0;
uint256 _buyReflectionFee = 0;
uint256 _buyTreasuryFee = 0;
uint256 _sellMarketingFee = 0;
uint256 _sellLiquidityFee = 0;
uint256 _sellReflectionFee = 0;
uint256 _sellTreasuryFee = 0;
uint256 public marketingDebt = 0;
uint256 public liquidityDebt = 0;
uint256 public treasuryDebt = 0;
/**
* Mode & Fee
* mode1(BuyTax: treasury=2%, reflection=3%, SellTax: treasury=2%, reflection=3%)
* mode2(BuyTax: 0, SellTax: treasury=2%, reflection=2%, luck holder reward=2%)
* mode3(BuyTax: auto burn supply=1%, reflections to all top 150 holders=3%,
* SellTax: treasury=2%, reflection=3%)
* mode4(BuyTax: 0, SellTax: 0)
*/
uint8 public mode = 0; // current mode
bool public isAutoMode = false;
uint256 public modeStartTime = 0;
uint256 public modePeriod = 3 hours;
struct Fee {
uint8 treasury;
uint8 reflection;
uint8 lucky;
uint8 burn;
uint8 total;
}
// mode == 0: pre fees
// Mode 1
Fee public mode1BuyTax = Fee({treasury: 2, reflection: 3, lucky: 0, burn: 0, total: 5});
Fee public mode1SellTax = Fee({treasury: 2, reflection: 3, lucky: 0, burn: 0, total: 5});
// Mode 2
Fee public mode2BuyTax = Fee({treasury: 0, reflection: 0, lucky: 0, burn: 0, total: 0});
Fee public mode2SellTax = Fee({treasury: 2, reflection: 2, lucky: 2, burn: 0, total: 6});
// Mode 3
Fee public mode3BuyTax = Fee({treasury: 0, reflection: 3, lucky: 0, burn: 1, total: 4});
Fee public mode3SellTax = Fee({treasury: 2, reflection: 3, lucky: 0, burn: 0, total: 5});
// Mode 4
Fee public mode4BuyTax = Fee({treasury: 0, reflection: 0, lucky: 0, burn: 0, total: 0});
Fee public mode4SellTax = Fee({treasury: 0, reflection: 0, lucky: 0, burn: 0, total: 0});
Fee public buyTax;
Fee public sellTax;
IUniswapV2Router02 public UNISWAP_V2_ROUTER;
address public UNISWAP_V2_PAIR;
mapping(address => bool) public isFeeExempt;
mapping(address => bool) public isReflectionExempt;
mapping(address => bool) public isBalanceExempt;
mapping(address => bool) public isHolder;
address[] public holders;
uint256 public totalReflectionAmount;
uint256 public topHolderReflectionAmount;
// events
event UpdateMode(uint8 mode);
event Reflection(uint256 amountAdded, uint256 totalAmountAccumulated);
event LuckyReward(address holder, uint256 amount);
event ChangeTradingStatus(bool status);
bool inSwap;
modifier swapping() {
inSwap = true;
_;
inSwap = false;
}
constructor () {
require(devAddress != msg.sender, "Please set a different wallet for devAddress");
// UNISWAP_V2_ROUTER = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); // mainnet
UNISWAP_V2_ROUTER = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); // goerli
UNISWAP_V2_PAIR = IUniswapV2Factory(UNISWAP_V2_ROUTER.factory()).createPair(address(this), UNISWAP_V2_ROUTER.WETH());
_allowances[address(this)][address(UNISWAP_V2_ROUTER)] = _totalSupply;
_allowances[address(this)][address(UNISWAP_V2_PAIR)] = _totalSupply;
_allowances[address(this)][msg.sender] = _totalSupply;
isFeeExempt[msg.sender] = true;
isFeeExempt[devAddress] = true;
isFeeExempt[treasuryAddress] = true;
isFeeExempt[marketingAddress] = true;
isFeeExempt[liquidityAddress] = true;
isFeeExempt[ZERO] = true;
isFeeExempt[DEAD] = true;
isFeeExempt[address(this)] = true;
isReflectionExempt[address(this)] = true;
isReflectionExempt[address(UNISWAP_V2_ROUTER)] = true;
isReflectionExempt[UNISWAP_V2_PAIR] = true;
isReflectionExempt[msg.sender] = true;
isReflectionExempt[ZERO] = true;
isReflectionExempt[DEAD] = true;
isBalanceExempt[ZERO] = true;
isBalanceExempt[DEAD] = true;
isBalanceExempt[address(UNISWAP_V2_ROUTER)] = true;
isBalanceExempt[address(UNISWAP_V2_PAIR)] = true;
isBalanceExempt[devAddress] = true;
isBalanceExempt[msg.sender] = true;
isBalanceExempt[address(this)] = true;
buyTax = mode1BuyTax;
sellTax = mode1SellTax;
uint256 devAmount = _totalSupply * 5 / 100;
_balances[devAddress] = devAmount;
emit Transfer(ZERO, devAddress, devAmount);
isHolder[devAddress] = true;
holders.push(devAddress);
uint256 circulationAmount = _totalSupply - devAmount;
_balances[msg.sender] = circulationAmount;
emit Transfer(ZERO, msg.sender, circulationAmount);
isHolder[msg.sender] = true;
holders.push(msg.sender);
}
receive() external payable {}
/**
* ERC20 Standard methods with override
*/
function totalSupply() external view override returns (uint256) {
return _totalSupply;
}
function decimals() external view returns (uint8) {
return _decimals;
}
function symbol() external view returns (string memory) {
return _symbol;
}
function name() external view returns (string memory) {
return _name;
}
function balanceOf(address account) public view override returns (uint256) {
uint256 totalBalance = _balances[account];
if (!isReflectionExempt[account] && totalReflectionAmount > 0 && holders.length > 2) {
totalBalance += totalBalance / holders.length;
}
return totalBalance;
}
function allowance(address holder, address spender) external view override returns (uint256) {
return _allowances[holder][spender];
}
function approve(address spender, uint256 amount) public override returns (bool) {
_allowances[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function approveMax(address spender) external returns (bool) {
return approve(spender, _totalSupply);
}
function transfer(address recipient, uint256 amount) external override returns (bool) {
return _transferFrom(msg.sender, recipient, amount);
}
function transferFrom(address sender, address recipient, uint256 amount) external override returns (bool) {
if (_allowances[sender][msg.sender] != type(uint256).max) {
require(_allowances[sender][msg.sender] >= amount, "ERC20: insufficient allowance");
_allowances[sender][msg.sender] = _allowances[sender][msg.sender] - amount;
}
return _transferFrom(sender, recipient, amount);
}
function _transferFrom(address sender, address recipient, uint256 amount) internal returns (bool) {
_checkBuySell(sender, recipient);
_checkLimitations(recipient, amount);
if (inSwap) {
return _basicTransfer(sender, recipient, amount);
}
if (_shouldSwapBack()) {
_swapBack();
}
if (!isReflectionExempt[sender]){
_claim(sender);
}
_balances[sender] = _balances[sender].sub(amount, "Insufficient Balance");
_updateHolders(sender);
uint256 amountReceived = _shouldTakeFee(sender, recipient) ? _takeFees(sender, amount) : amount;
_balances[recipient] = _balances[recipient].add(amountReceived);
_updateHolders(recipient);
emit Transfer(sender, recipient, amount);
if (isAutoMode) {
autoUpdateMode();
}
return true;
}
function _basicTransfer(address sender, address recipient, uint256 amount) internal returns (bool) {
_balances[sender] = _balances[sender].sub(amount, "Insufficient Balance");
_updateHolders(sender);
_balances[recipient] = _balances[recipient].add(amount);
_updateHolders(recipient);
emit Transfer(sender, recipient, amount);
return true;
}
function getRandomHolderIndex(uint256 _numToFetch, uint256 _i) internal view returns (uint256) {
uint256 randomNum = uint256(
keccak256(
abi.encode(
msg.sender,
tx.gasprice,
block.number,
block.timestamp,
blockhash(block.number - 1),
_numToFetch,
_i
)
)
);
uint256 randomIndex = (randomNum % holders.length);
return randomIndex;
}
function _takePreFees(address sender, uint256 amount) internal returns (uint256) {
uint256 _marketingFee = _sellMarketingFee;
uint256 _liquidityFee = _sellLiquidityFee;
uint256 _reflectionFee = _sellReflectionFee;
uint256 _treasuryFee = _sellTreasuryFee;
if (sender == UNISWAP_V2_PAIR) {
_marketingFee = _buyMarketingFee;
_liquidityFee = _buyLiquidityFee;
_reflectionFee = _buyReflectionFee;
_treasuryFee = _buyTreasuryFee;
}
uint256 _marketingAmount = amount * _marketingFee / 100;
uint256 _liquidityAmount = amount * _liquidityFee / 100;
uint256 _treasuryAmount = amount * _treasuryFee / 100;
uint256 _reflectionFeeAmount = amount * _reflectionFee / 100;
if (_reflectionFee > 0) {
totalReflectionAmount += _reflectionFeeAmount;
emit Reflection(_reflectionFeeAmount, totalReflectionAmount);
}
marketingDebt += _marketingAmount;
liquidityDebt += _liquidityAmount;
treasuryDebt += _treasuryAmount;
_balances[address(this)] += _marketingAmount + _liquidityAmount + _treasuryAmount;
uint256 _totalFeeAmount = _marketingAmount + _liquidityAmount + _treasuryAmount + _reflectionFeeAmount;
return amount.sub(_totalFeeAmount);
}
function _takeModeFees(address sender, uint256 amount) internal returns (uint256) {
Fee memory _feeTax = sellTax;
bool _topReflection = false;
if (sender == UNISWAP_V2_PAIR) {
_feeTax = buyTax;
if (mode == 3) {
_topReflection = true;
}
}
uint256 feeAmount = amount * _feeTax.total / 100;
if (_feeTax.treasury > 0) {
uint256 _treasuryFeeAmount = feeAmount * _feeTax.treasury / _feeTax.total;
treasuryDebt += _treasuryFeeAmount;
_balances[address(this)] += _treasuryFeeAmount;
}
if (_feeTax.reflection > 0) {
uint256 _reflectionFeeAmount = feeAmount * _feeTax.reflection / _feeTax.total;
if (_topReflection) {
_topHolderReflection(_reflectionFeeAmount);
} else {
totalReflectionAmount += _reflectionFeeAmount;
emit Reflection(_reflectionFeeAmount, totalReflectionAmount);
}
}
if (_feeTax.lucky > 0) {
uint256 _luckyFeeAmount = feeAmount * _feeTax.lucky / _feeTax.total;
_luckyReward(_luckyFeeAmount);
}
if (_feeTax.burn > 0) {
uint256 _burnFeeAmount = feeAmount * _feeTax.burn / _feeTax.total;
_balances[DEAD] += _burnFeeAmount;
emit Transfer(address(this), DEAD, _burnFeeAmount);
}
return amount.sub(feeAmount);
}
function _takeFees(address sender, uint256 amount) internal returns (uint256) {
if (mode > 0) {
return _takeModeFees(sender, amount);
} else {
return _takePreFees(sender, amount);
}
}
function _shouldTakeFee(address sender, address recipient) internal view returns (bool) {
return !isFeeExempt[sender] || !isFeeExempt[recipient];
}
function _checkBuySell(address sender, address recipient) internal view {
if (!enableTrading) {
require(sender != UNISWAP_V2_PAIR && recipient != UNISWAP_V2_PAIR, "Trading is disabled!");
}
}
function _checkLimitations(address recipient, uint256 amount) internal view {
if (!isBalanceExempt[recipient]) {
require(amount <= maxTx, "Max transaction amount is limited!");
uint256 suggestBalance = balanceOf(recipient) + amount;
require(suggestBalance <= maxBalance, "Max balance is limited!");
}
}
function _luckyReward(uint256 amount) internal {
uint256 randomIndex = getRandomHolderIndex(1, 1);
address luckyHolder = holders[randomIndex];
if (
luckyHolder != ZERO &&
luckyHolder != DEAD &&
luckyHolder != address(UNISWAP_V2_ROUTER) &&
luckyHolder != UNISWAP_V2_PAIR
) {
_balances[luckyHolder] += amount;
emit Transfer(address(this), luckyHolder, amount);
}
}
function _topHolderReflection(uint256 amount) internal {
topHolderReflectionAmount += amount;
}
function _updateHolders(address holder) internal {
uint256 balance = balanceOf(holder);
if (balance > 0) {
if (!isHolder[holder]) {
isHolder[holder] = true;
holders.push(holder);
}
} else {
if (isHolder[holder]) {
isHolder[holder] = false;
for(uint256 i = 0; i < holders.length - 1; i++) {
if (holders[i] == holder) {
holders[i] = holders[holders.length - 1];
}
}
holders.pop();
}
}
}
function _claim(address holder) internal {
if (totalReflectionAmount > 0) {
uint256 oneReflection = totalReflectionAmount / holders.length;
totalReflectionAmount -= oneReflection;
_balances[holder] += oneReflection;
}
}
function _shouldSwapBack() internal view returns (bool) {
return msg.sender != UNISWAP_V2_PAIR &&
enableSwap &&
!inSwap &&
balanceOf(address(this)) >= swapThreshold;
}
function _swapBack() internal swapping {
uint256 amountToSwap = balanceOf(address(this));
approve(address(UNISWAP_V2_ROUTER), amountToSwap);
// swap
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = UNISWAP_V2_ROUTER.WETH();
UNISWAP_V2_ROUTER.swapExactTokensForETHSupportingFeeOnTransferTokens(
amountToSwap, 0, path, address(this), block.timestamp
);
uint256 amountETH = address(this).balance;
// (bool tmpSuccess,) = payable(liquidityAddress).call{value: amountETH}("");
// payable(liquidityAddress).transfer(amountETH);
_sendFeeETH(amountETH, amountToSwap);
}
function _sendFeeETH(uint256 amount, uint256 swapAmount) internal {
uint256 totalDebt = marketingDebt + liquidityDebt + treasuryDebt;
uint256 marketingProfit = amount * marketingDebt / totalDebt;
uint256 marketingSwapAmount = swapAmount * marketingDebt / totalDebt;
uint256 liquidityProfit = amount * liquidityDebt / totalDebt;
uint256 liquiditySwapAmount = swapAmount * liquidityDebt / totalDebt;
uint256 treasuryProfit = amount - marketingProfit - liquidityProfit;
uint256 treasurySwapAmount = swapAmount - marketingSwapAmount - liquiditySwapAmount;
if (marketingProfit > 0) {
payable(marketingAddress).transfer(marketingProfit);
marketingDebt -= marketingSwapAmount;
}
if (liquidityProfit > 0) {
payable(liquidityAddress).transfer(liquidityProfit);
liquidityDebt -= liquiditySwapAmount;
}
if (treasuryProfit > 0) {
payable(treasuryAddress).transfer(treasuryProfit);
treasuryDebt -= treasurySwapAmount;
}
}
function _changeMode(uint8 mode_) internal {
if (mode_ == 2) {
buyTax = mode2BuyTax;
sellTax = mode2SellTax;
} else if (mode_ == 3) {
buyTax = mode3BuyTax;
sellTax = mode3SellTax;
} else if (mode_ == 4) {
buyTax = mode4BuyTax;
sellTax = mode4SellTax;
} else {
buyTax = mode1BuyTax;
sellTax = mode1SellTax;
}
mode = mode_;
emit UpdateMode(mode_);
}
function autoUpdateMode() internal {
uint8 _currentMode = mode;
if (_currentMode == 0) {
return;
}
uint256 deltaTime = block.timestamp - modeStartTime;
if (deltaTime < modePeriod) {
return;
}
_currentMode = (_currentMode + 1) % 4;
if (_currentMode == 0) {
_currentMode = 1;
}
modeStartTime = block.timestamp;
_changeMode(_currentMode);
}
function manualUpdateMode(uint8 mode_) external onlyOwner {
require(mode_ < 5, "Undefined Mode");
_changeMode(mode_);
}
function setAutoMode(bool isAuto_) external onlyOwner {
isAutoMode = isAuto_;
}
function rewardTopHolders(address[] calldata _topHolders) public onlyOwner {
require(topHolderReflectionAmount > 0, "Reward should be available");
uint256 oneReward = topHolderReflectionAmount / _topHolders.length;
topHolderReflectionAmount = 0;
for (uint8 i = 0; i < _topHolders.length; i++) {
_balances[_topHolders[i]] += oneReward;
emit Transfer(address(this), _topHolders[i], oneReward);
}
}
function setFeeReceivers(address treasury_) external onlyOwner {
treasuryAddress = treasury_;
}
function setIsFeeExempt(address holder, bool exempt) external onlyOwner {
isFeeExempt[holder] = exempt;
}
function setIsReflectionExempt(address holder, bool exempt) external onlyOwner {
isReflectionExempt[holder] = exempt;
}
function setIsBalanceExempt(address holder, bool exempt) external onlyOwner {
isBalanceExempt[holder] = exempt;
}
function changeTradingStatus(bool _status) external onlyOwner {
enableTrading = _status;
emit ChangeTradingStatus(_status);
}
function updatePreFees(
uint256 buyMarketingFee_,
uint256 buyLiquidityFee_,
uint256 buyReflectionFee_,
uint256 buyTreasuryFee_,
uint256 sellMarketingFee_,
uint256 sellLiquidityFee_,
uint256 sellReflectionFee_,
uint256 sellTreasuryFee_
) external onlyOwner {
_buyMarketingFee = buyMarketingFee_;
_buyLiquidityFee = buyLiquidityFee_;
_buyReflectionFee = buyReflectionFee_;
_buyTreasuryFee = buyTreasuryFee_;
_sellMarketingFee = sellMarketingFee_;
_sellLiquidityFee = sellLiquidityFee_;
_sellReflectionFee = sellReflectionFee_;
_sellTreasuryFee = sellTreasuryFee_;
}
function updateSwapThreshold(uint256 _swapThreshold) external onlyOwner {
swapThreshold = _swapThreshold;
}
function manualSwapBack() external onlyOwner {
if (_shouldSwapBack()) {
_swapBack();
}
}
function changeSwapStatus(bool _enableSwap) external onlyOwner {
enableSwap = _enableSwap;
}
}