Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
//Be name khoda
pragma solidity 0.6.12;
import "./SafeMath.sol";
import "./Ownable.sol";
interface StakedToken {
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
}
interface RewardToken {
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
}
contract Staking is Ownable {
struct User {
uint256 depositAmount;
uint256 paidReward;
}
using SafeMath for uint256;
mapping (address => User) public users;
uint256 public rewardTillNowPerToken = 0;
uint256 public lastUpdatedBlock;
uint256 public rewardPerBlock;
uint256 public scale = 1e18;
uint256 public particleCollector = 0;
uint256 public daoShare;
uint256 public earlyFoundersShare;
address public daoWallet;
address public earlyFoundersWallet;
StakedToken public stakedToken;
RewardToken public rewardToken;
event Deposit(address user, uint256 amount);
event Withdraw(address user, uint256 amount);
event EmergencyWithdraw(address user, uint256 amount);
event RewardClaimed(address user, uint256 amount);
event RewardPerBlockChanged(uint256 oldValue, uint256 newValue);
constructor (address _stakedToken, address _rewardToken, uint256 _rewardPerBlock, uint256 _daoShare, uint256 _earlyFoundersShare) public {
stakedToken = StakedToken(_stakedToken);
rewardToken = RewardToken(_rewardToken);
rewardPerBlock = _rewardPerBlock;
daoShare = _daoShare;
earlyFoundersShare = _earlyFoundersShare;
lastUpdatedBlock = block.number;
daoWallet = msg.sender;
earlyFoundersWallet = msg.sender;
}
function setWallets(address _daoWallet, address _earlyFoundersWallet) public onlyOwner {
daoWallet = _daoWallet;
earlyFoundersWallet = _earlyFoundersWallet;
}
function setShares(uint256 _daoShare, uint256 _earlyFoundersShare) public onlyOwner {
withdrawParticleCollector();
daoShare = _daoShare;
earlyFoundersShare = _earlyFoundersShare;
}
function setRewardPerBlock(uint256 _rewardPerBlock) public onlyOwner {
update();
rewardPerBlock = _rewardPerBlock;
emit RewardPerBlockChanged(rewardPerBlock, _rewardPerBlock);
}
// Update reward variables of the pool to be up-to-date.
function update() public {
if (block.number <= lastUpdatedBlock) {
return;
}
uint256 totalStakedToken = stakedToken.balanceOf(address(this));
uint256 rewardAmount = (block.number - lastUpdatedBlock).mul(rewardPerBlock);
rewardTillNowPerToken = rewardTillNowPerToken.add(rewardAmount.mul(scale).div(totalStakedToken));
lastUpdatedBlock = block.number;
}
// View function to see pending reward on frontend.
function pendingReward(address _user) external view returns (uint256) {
User storage user = users[_user];
uint256 accRewardPerToken = rewardTillNowPerToken;
if (block.number > lastUpdatedBlock) {
uint256 totalStakedToken = stakedToken.balanceOf(address(this));
uint256 rewardAmount = (block.number - lastUpdatedBlock).mul(rewardPerBlock);
accRewardPerToken = accRewardPerToken.add(rewardAmount.mul(scale).div(totalStakedToken));
}
return user.depositAmount.mul(accRewardPerToken).div(scale).sub(user.paidReward);
}
function deposit(uint256 amount) public {
User storage user = users[msg.sender];
update();
if (user.depositAmount > 0) {
uint256 _pendingReward = user.depositAmount.mul(rewardTillNowPerToken).div(scale).sub(user.paidReward);
rewardToken.transfer(msg.sender, _pendingReward);
emit RewardClaimed(msg.sender, _pendingReward);
}
user.depositAmount = user.depositAmount.add(amount);
user.paidReward = user.depositAmount.mul(rewardTillNowPerToken).div(scale);
stakedToken.transferFrom(address(msg.sender), address(this), amount);
emit Deposit(msg.sender, amount);
}
function withdraw(uint256 amount) public {
User storage user = users[msg.sender];
require(user.depositAmount >= amount, "withdraw amount exceeds deposited amount");
update();
uint256 _pendingReward = user.depositAmount.mul(rewardTillNowPerToken).div(scale).sub(user.paidReward);
rewardToken.transfer(msg.sender, _pendingReward);
emit RewardClaimed(msg.sender, _pendingReward);
uint256 particleCollectorShare = _pendingReward.mul(daoShare.add(earlyFoundersShare)).div(scale);
particleCollector = particleCollector.add(particleCollectorShare);
if (amount > 0) {
user.depositAmount = user.depositAmount.sub(amount);
stakedToken.transfer(address(msg.sender), amount);
emit Withdraw(msg.sender, amount);
}
user.paidReward = user.depositAmount.mul(rewardTillNowPerToken).div(scale);
}
function withdrawParticleCollector() public {
uint256 _daoShare = particleCollector.mul(daoShare).div(daoShare.add(earlyFoundersShare));
rewardToken.transfer(daoWallet, _daoShare);
uint256 _earlyFoundersShare = particleCollector.mul(earlyFoundersShare).div(daoShare.add(earlyFoundersShare));
rewardToken.transfer(earlyFoundersWallet, _earlyFoundersShare);
particleCollector = 0;
}
// Withdraw without caring about rewards. EMERGENCY ONLY.
function emergencyWithdraw() public {
User storage user = users[msg.sender];
stakedToken.transfer(msg.sender, user.depositAmount);
emit EmergencyWithdraw(msg.sender, user.depositAmount);
user.depositAmount = 0;
user.paidReward = 0;
}
// Add temporary withdrawal functionality for owner(DAO) to transfer all tokens to a safe place.
// Contract ownership will transfer to address(0x) after full auditing of codes.
function withdrawAllRewardTokens(address to) public onlyOwner {
uint256 totalRewardTokens = rewardToken.balanceOf(address(this));
rewardToken.transfer(to, totalRewardTokens);
}
// Add temporary withdrawal functionality for owner(DAO) to transfer all tokens to a safe place.
// Contract ownership will transfer to address(0x) after full auditing of codes.
function withdrawAllStakedtokens(address to) public onlyOwner {
uint256 totalStakedTokens = stakedToken.balanceOf(address(this));
stakedToken.transfer(to, totalStakedTokens);
}
}
//Dar panah khoda
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
import "./Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}