ETH Price: $2,279.01 (+1.57%)

Contract Diff Checker

Contract Name:
PolygonMessengerWrapper

Contract Source Code:

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.12 <=0.8.9;
pragma experimental ABIEncoderV2;

interface IMessengerWrapper {
    function sendCrossDomainMessage(bytes memory _calldata) external;
    function verifySender(address l1BridgeCaller, bytes memory _data) external;
    function confirmRoots(
        bytes32[] calldata rootHashes,
        uint256[] calldata destinationChainIds,
        uint256[] calldata totalAmounts,
        uint256[] calldata rootCommittedAts
    ) external;
}

pragma solidity ^0.8.0;

import {RLPReader} from "./RLPReader.sol";

library ExitPayloadReader {
    using RLPReader for bytes;
    using RLPReader for RLPReader.RLPItem;

    uint8 constant WORD_SIZE = 32;

    struct ExitPayload {
        RLPReader.RLPItem[] data;
    }

    struct Receipt {
        RLPReader.RLPItem[] data;
        bytes raw;
        uint256 logIndex;
    }

    struct Log {
        RLPReader.RLPItem data;
        RLPReader.RLPItem[] list;
    }

    struct LogTopics {
        RLPReader.RLPItem[] data;
    }

    // copy paste of private copy() from RLPReader to avoid changing of existing contracts
    function copy(
        uint256 src,
        uint256 dest,
        uint256 len
    ) private pure {
        if (len == 0) return;

        // copy as many word sizes as possible
        for (; len >= WORD_SIZE; len -= WORD_SIZE) {
            assembly {
                mstore(dest, mload(src))
            }

            src += WORD_SIZE;
            dest += WORD_SIZE;
        }

        // left over bytes. Mask is used to remove unwanted bytes from the word
        uint256 mask = 256**(WORD_SIZE - len) - 1;
        assembly {
            let srcpart := and(mload(src), not(mask)) // zero out src
            let destpart := and(mload(dest), mask) // retrieve the bytes
            mstore(dest, or(destpart, srcpart))
        }
    }

    function toExitPayload(bytes memory data) internal pure returns (ExitPayload memory) {
        RLPReader.RLPItem[] memory payloadData = data.toRlpItem().toList();

        return ExitPayload(payloadData);
    }

    function getHeaderNumber(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[0].toUint();
    }

    function getBlockProof(ExitPayload memory payload) internal pure returns (bytes memory) {
        return payload.data[1].toBytes();
    }

    function getBlockNumber(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[2].toUint();
    }

    function getBlockTime(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[3].toUint();
    }

    function getTxRoot(ExitPayload memory payload) internal pure returns (bytes32) {
        return bytes32(payload.data[4].toUint());
    }

    function getReceiptRoot(ExitPayload memory payload) internal pure returns (bytes32) {
        return bytes32(payload.data[5].toUint());
    }

    function getReceipt(ExitPayload memory payload) internal pure returns (Receipt memory receipt) {
        receipt.raw = payload.data[6].toBytes();
        RLPReader.RLPItem memory receiptItem = receipt.raw.toRlpItem();

        if (receiptItem.isList()) {
            // legacy tx
            receipt.data = receiptItem.toList();
        } else {
            // pop first byte before parsting receipt
            bytes memory typedBytes = receipt.raw;
            bytes memory result = new bytes(typedBytes.length - 1);
            uint256 srcPtr;
            uint256 destPtr;
            assembly {
                srcPtr := add(33, typedBytes)
                destPtr := add(0x20, result)
            }

            copy(srcPtr, destPtr, result.length);
            receipt.data = result.toRlpItem().toList();
        }

        receipt.logIndex = getReceiptLogIndex(payload);
        return receipt;
    }

    function getReceiptProof(ExitPayload memory payload) internal pure returns (bytes memory) {
        return payload.data[7].toBytes();
    }

    function getBranchMaskAsBytes(ExitPayload memory payload) internal pure returns (bytes memory) {
        return payload.data[8].toBytes();
    }

    function getBranchMaskAsUint(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[8].toUint();
    }

    function getReceiptLogIndex(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[9].toUint();
    }

    // Receipt methods
    function toBytes(Receipt memory receipt) internal pure returns (bytes memory) {
        return receipt.raw;
    }

    function getLog(Receipt memory receipt) internal pure returns (Log memory) {
        RLPReader.RLPItem memory logData = receipt.data[3].toList()[receipt.logIndex];
        return Log(logData, logData.toList());
    }

    // Log methods
    function getEmitter(Log memory log) internal pure returns (address) {
        return RLPReader.toAddress(log.list[0]);
    }

    function getTopics(Log memory log) internal pure returns (LogTopics memory) {
        return LogTopics(log.list[1].toList());
    }

    function getData(Log memory log) internal pure returns (bytes memory) {
        return log.list[2].toBytes();
    }

    function toRlpBytes(Log memory log) internal pure returns (bytes memory) {
        return log.data.toRlpBytes();
    }

    // LogTopics methods
    function getField(LogTopics memory topics, uint256 index) internal pure returns (RLPReader.RLPItem memory) {
        return topics.data[index];
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

library Merkle {
    function checkMembership(
        bytes32 leaf,
        uint256 index,
        bytes32 rootHash,
        bytes memory proof
    ) internal pure returns (bool) {
        require(proof.length % 32 == 0, "Invalid proof length");
        uint256 proofHeight = proof.length / 32;
        // Proof of size n means, height of the tree is n+1.
        // In a tree of height n+1, max #leafs possible is 2 ^ n
        require(index < 2**proofHeight, "Leaf index is too big");

        bytes32 proofElement;
        bytes32 computedHash = leaf;
        for (uint256 i = 32; i <= proof.length; i += 32) {
            assembly {
                proofElement := mload(add(proof, i))
            }

            if (index % 2 == 0) {
                computedHash = keccak256(abi.encodePacked(computedHash, proofElement));
            } else {
                computedHash = keccak256(abi.encodePacked(proofElement, computedHash));
            }

            index = index / 2;
        }
        return computedHash == rootHash;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {RLPReader} from "./RLPReader.sol";

library MerklePatriciaProof {
    /*
     * @dev Verifies a merkle patricia proof.
     * @param value The terminating value in the trie.
     * @param encodedPath The path in the trie leading to value.
     * @param rlpParentNodes The rlp encoded stack of nodes.
     * @param root The root hash of the trie.
     * @return The boolean validity of the proof.
     */
    function verify(
        bytes memory value,
        bytes memory encodedPath,
        bytes memory rlpParentNodes,
        bytes32 root
    ) internal pure returns (bool) {
        RLPReader.RLPItem memory item = RLPReader.toRlpItem(rlpParentNodes);
        RLPReader.RLPItem[] memory parentNodes = RLPReader.toList(item);

        bytes memory currentNode;
        RLPReader.RLPItem[] memory currentNodeList;

        bytes32 nodeKey = root;
        uint256 pathPtr = 0;

        bytes memory path = _getNibbleArray(encodedPath);
        if (path.length == 0) {
            return false;
        }

        for (uint256 i = 0; i < parentNodes.length; i++) {
            if (pathPtr > path.length) {
                return false;
            }

            currentNode = RLPReader.toRlpBytes(parentNodes[i]);
            if (nodeKey != keccak256(currentNode)) {
                return false;
            }
            currentNodeList = RLPReader.toList(parentNodes[i]);

            if (currentNodeList.length == 17) {
                if (pathPtr == path.length) {
                    if (keccak256(RLPReader.toBytes(currentNodeList[16])) == keccak256(value)) {
                        return true;
                    } else {
                        return false;
                    }
                }

                uint8 nextPathNibble = uint8(path[pathPtr]);
                if (nextPathNibble > 16) {
                    return false;
                }
                nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[nextPathNibble]));
                pathPtr += 1;
            } else if (currentNodeList.length == 2) {
                uint256 traversed = _nibblesToTraverse(RLPReader.toBytes(currentNodeList[0]), path, pathPtr);
                if (pathPtr + traversed == path.length) {
                    //leaf node
                    if (keccak256(RLPReader.toBytes(currentNodeList[1])) == keccak256(value)) {
                        return true;
                    } else {
                        return false;
                    }
                }

                //extension node
                if (traversed == 0) {
                    return false;
                }

                pathPtr += traversed;
                nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[1]));
            } else {
                return false;
            }
        }
    }

    function _nibblesToTraverse(
        bytes memory encodedPartialPath,
        bytes memory path,
        uint256 pathPtr
    ) private pure returns (uint256) {
        uint256 len = 0;
        // encodedPartialPath has elements that are each two hex characters (1 byte), but partialPath
        // and slicedPath have elements that are each one hex character (1 nibble)
        bytes memory partialPath = _getNibbleArray(encodedPartialPath);
        bytes memory slicedPath = new bytes(partialPath.length);

        // pathPtr counts nibbles in path
        // partialPath.length is a number of nibbles
        for (uint256 i = pathPtr; i < pathPtr + partialPath.length; i++) {
            bytes1 pathNibble = path[i];
            slicedPath[i - pathPtr] = pathNibble;
        }

        if (keccak256(partialPath) == keccak256(slicedPath)) {
            len = partialPath.length;
        } else {
            len = 0;
        }
        return len;
    }

    // bytes b must be hp encoded
    function _getNibbleArray(bytes memory b) internal pure returns (bytes memory) {
        bytes memory nibbles = "";
        if (b.length > 0) {
            uint8 offset;
            uint8 hpNibble = uint8(_getNthNibbleOfBytes(0, b));
            if (hpNibble == 1 || hpNibble == 3) {
                nibbles = new bytes(b.length * 2 - 1);
                bytes1 oddNibble = _getNthNibbleOfBytes(1, b);
                nibbles[0] = oddNibble;
                offset = 1;
            } else {
                nibbles = new bytes(b.length * 2 - 2);
                offset = 0;
            }

            for (uint256 i = offset; i < nibbles.length; i++) {
                nibbles[i] = _getNthNibbleOfBytes(i - offset + 2, b);
            }
        }
        return nibbles;
    }

    function _getNthNibbleOfBytes(uint256 n, bytes memory str) private pure returns (bytes1) {
        return bytes1(n % 2 == 0 ? uint8(str[n / 2]) / 0x10 : uint8(str[n / 2]) % 0x10);
    }
}

/*
 * @author Hamdi Allam [email protected]
 * Please reach out with any questions or concerns
 */
pragma solidity ^0.8.0;

library RLPReader {
    uint8 constant STRING_SHORT_START = 0x80;
    uint8 constant STRING_LONG_START = 0xb8;
    uint8 constant LIST_SHORT_START = 0xc0;
    uint8 constant LIST_LONG_START = 0xf8;
    uint8 constant WORD_SIZE = 32;

    struct RLPItem {
        uint256 len;
        uint256 memPtr;
    }

    struct Iterator {
        RLPItem item; // Item that's being iterated over.
        uint256 nextPtr; // Position of the next item in the list.
    }

    /*
     * @dev Returns the next element in the iteration. Reverts if it has not next element.
     * @param self The iterator.
     * @return The next element in the iteration.
     */
    function next(Iterator memory self) internal pure returns (RLPItem memory) {
        require(hasNext(self));

        uint256 ptr = self.nextPtr;
        uint256 itemLength = _itemLength(ptr);
        self.nextPtr = ptr + itemLength;

        return RLPItem(itemLength, ptr);
    }

    /*
     * @dev Returns true if the iteration has more elements.
     * @param self The iterator.
     * @return true if the iteration has more elements.
     */
    function hasNext(Iterator memory self) internal pure returns (bool) {
        RLPItem memory item = self.item;
        return self.nextPtr < item.memPtr + item.len;
    }

    /*
     * @param item RLP encoded bytes
     */
    function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) {
        uint256 memPtr;
        assembly {
            memPtr := add(item, 0x20)
        }

        return RLPItem(item.length, memPtr);
    }

    /*
     * @dev Create an iterator. Reverts if item is not a list.
     * @param self The RLP item.
     * @return An 'Iterator' over the item.
     */
    function iterator(RLPItem memory self) internal pure returns (Iterator memory) {
        require(isList(self));

        uint256 ptr = self.memPtr + _payloadOffset(self.memPtr);
        return Iterator(self, ptr);
    }

    /*
     * @param item RLP encoded bytes
     */
    function rlpLen(RLPItem memory item) internal pure returns (uint256) {
        return item.len;
    }

    /*
     * @param item RLP encoded bytes
     */
    function payloadLen(RLPItem memory item) internal pure returns (uint256) {
        return item.len - _payloadOffset(item.memPtr);
    }

    /*
     * @param item RLP encoded list in bytes
     */
    function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) {
        require(isList(item));

        uint256 items = numItems(item);
        RLPItem[] memory result = new RLPItem[](items);

        uint256 memPtr = item.memPtr + _payloadOffset(item.memPtr);
        uint256 dataLen;
        for (uint256 i = 0; i < items; i++) {
            dataLen = _itemLength(memPtr);
            result[i] = RLPItem(dataLen, memPtr);
            memPtr = memPtr + dataLen;
        }

        return result;
    }

    // @return indicator whether encoded payload is a list. negate this function call for isData.
    function isList(RLPItem memory item) internal pure returns (bool) {
        if (item.len == 0) return false;

        uint8 byte0;
        uint256 memPtr = item.memPtr;
        assembly {
            byte0 := byte(0, mload(memPtr))
        }

        if (byte0 < LIST_SHORT_START) return false;
        return true;
    }

    /*
     * @dev A cheaper version of keccak256(toRlpBytes(item)) that avoids copying memory.
     * @return keccak256 hash of RLP encoded bytes.
     */
    function rlpBytesKeccak256(RLPItem memory item) internal pure returns (bytes32) {
        uint256 ptr = item.memPtr;
        uint256 len = item.len;
        bytes32 result;
        assembly {
            result := keccak256(ptr, len)
        }
        return result;
    }

    function payloadLocation(RLPItem memory item) internal pure returns (uint256, uint256) {
        uint256 offset = _payloadOffset(item.memPtr);
        uint256 memPtr = item.memPtr + offset;
        uint256 len = item.len - offset; // data length
        return (memPtr, len);
    }

    /*
     * @dev A cheaper version of keccak256(toBytes(item)) that avoids copying memory.
     * @return keccak256 hash of the item payload.
     */
    function payloadKeccak256(RLPItem memory item) internal pure returns (bytes32) {
        (uint256 memPtr, uint256 len) = payloadLocation(item);
        bytes32 result;
        assembly {
            result := keccak256(memPtr, len)
        }
        return result;
    }

    /** RLPItem conversions into data types **/

    // @returns raw rlp encoding in bytes
    function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) {
        bytes memory result = new bytes(item.len);
        if (result.length == 0) return result;

        uint256 ptr;
        assembly {
            ptr := add(0x20, result)
        }

        copy(item.memPtr, ptr, item.len);
        return result;
    }

    // any non-zero byte is considered true
    function toBoolean(RLPItem memory item) internal pure returns (bool) {
        require(item.len == 1);
        uint256 result;
        uint256 memPtr = item.memPtr;
        assembly {
            result := byte(0, mload(memPtr))
        }

        return result == 0 ? false : true;
    }

    function toAddress(RLPItem memory item) internal pure returns (address) {
        // 1 byte for the length prefix
        require(item.len == 21);

        return address(uint160(toUint(item)));
    }

    function toUint(RLPItem memory item) internal pure returns (uint256) {
        require(item.len > 0 && item.len <= 33);

        uint256 offset = _payloadOffset(item.memPtr);
        uint256 len = item.len - offset;

        uint256 result;
        uint256 memPtr = item.memPtr + offset;
        assembly {
            result := mload(memPtr)

            // shfit to the correct location if neccesary
            if lt(len, 32) {
                result := div(result, exp(256, sub(32, len)))
            }
        }

        return result;
    }

    // enforces 32 byte length
    function toUintStrict(RLPItem memory item) internal pure returns (uint256) {
        // one byte prefix
        require(item.len == 33);

        uint256 result;
        uint256 memPtr = item.memPtr + 1;
        assembly {
            result := mload(memPtr)
        }

        return result;
    }

    function toBytes(RLPItem memory item) internal pure returns (bytes memory) {
        require(item.len > 0);

        uint256 offset = _payloadOffset(item.memPtr);
        uint256 len = item.len - offset; // data length
        bytes memory result = new bytes(len);

        uint256 destPtr;
        assembly {
            destPtr := add(0x20, result)
        }

        copy(item.memPtr + offset, destPtr, len);
        return result;
    }

    /*
     * Private Helpers
     */

    // @return number of payload items inside an encoded list.
    function numItems(RLPItem memory item) private pure returns (uint256) {
        if (item.len == 0) return 0;

        uint256 count = 0;
        uint256 currPtr = item.memPtr + _payloadOffset(item.memPtr);
        uint256 endPtr = item.memPtr + item.len;
        while (currPtr < endPtr) {
            currPtr = currPtr + _itemLength(currPtr); // skip over an item
            count++;
        }

        return count;
    }

    // @return entire rlp item byte length
    function _itemLength(uint256 memPtr) private pure returns (uint256) {
        uint256 itemLen;
        uint256 byte0;
        assembly {
            byte0 := byte(0, mload(memPtr))
        }

        if (byte0 < STRING_SHORT_START) itemLen = 1;
        else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1;
        else if (byte0 < LIST_SHORT_START) {
            assembly {
                let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is
                memPtr := add(memPtr, 1) // skip over the first byte
                /* 32 byte word size */
                let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len
                itemLen := add(dataLen, add(byteLen, 1))
            }
        } else if (byte0 < LIST_LONG_START) {
            itemLen = byte0 - LIST_SHORT_START + 1;
        } else {
            assembly {
                let byteLen := sub(byte0, 0xf7)
                memPtr := add(memPtr, 1)

                let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length
                itemLen := add(dataLen, add(byteLen, 1))
            }
        }

        return itemLen;
    }

    // @return number of bytes until the data
    function _payloadOffset(uint256 memPtr) private pure returns (uint256) {
        uint256 byte0;
        assembly {
            byte0 := byte(0, mload(memPtr))
        }

        if (byte0 < STRING_SHORT_START) return 0;
        else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1;
        else if (byte0 < LIST_SHORT_START)
            // being explicit
            return byte0 - (STRING_LONG_START - 1) + 1;
        else return byte0 - (LIST_LONG_START - 1) + 1;
    }

    /*
     * @param src Pointer to source
     * @param dest Pointer to destination
     * @param len Amount of memory to copy from the source
     */
    function copy(
        uint256 src,
        uint256 dest,
        uint256 len
    ) private pure {
        if (len == 0) return;

        // copy as many word sizes as possible
        for (; len >= WORD_SIZE; len -= WORD_SIZE) {
            assembly {
                mstore(dest, mload(src))
            }

            src += WORD_SIZE;
            dest += WORD_SIZE;
        }

        if (len == 0) return;

        // left over bytes. Mask is used to remove unwanted bytes from the word
        uint256 mask = 256**(WORD_SIZE - len) - 1;

        assembly {
            let srcpart := and(mload(src), not(mask)) // zero out src
            let destpart := and(mload(dest), mask) // retrieve the bytes
            mstore(dest, or(destpart, srcpart))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {RLPReader} from "../lib/RLPReader.sol";
import {MerklePatriciaProof} from "../lib/MerklePatriciaProof.sol";
import {Merkle} from "../lib/Merkle.sol";
import "../lib/ExitPayloadReader.sol";

interface IFxStateSender {
    function sendMessageToChild(address _receiver, bytes calldata _data) external;
}

contract ICheckpointManager {
    struct HeaderBlock {
        bytes32 root;
        uint256 start;
        uint256 end;
        uint256 createdAt;
        address proposer;
    }

    /**
     * @notice mapping of checkpoint header numbers to block details
     * @dev These checkpoints are submited by plasma contracts
     */
    mapping(uint256 => HeaderBlock) public headerBlocks;
}

abstract contract FxBaseRootTunnel {
    using RLPReader for RLPReader.RLPItem;
    using Merkle for bytes32;
    using ExitPayloadReader for bytes;
    using ExitPayloadReader for ExitPayloadReader.ExitPayload;
    using ExitPayloadReader for ExitPayloadReader.Log;
    using ExitPayloadReader for ExitPayloadReader.LogTopics;
    using ExitPayloadReader for ExitPayloadReader.Receipt;

    // keccak256(MessageSent(bytes))
    bytes32 public constant SEND_MESSAGE_EVENT_SIG = 0x8c5261668696ce22758910d05bab8f186d6eb247ceac2af2e82c7dc17669b036;

    // state sender contract
    IFxStateSender public fxRoot;
    // root chain manager
    ICheckpointManager public checkpointManager;
    // child tunnel contract which receives and sends messages
    address public fxChildTunnel;

    // storage to avoid duplicate exits
    mapping(bytes32 => bool) public processedExits;

    constructor(address _checkpointManager, address _fxRoot) {
        checkpointManager = ICheckpointManager(_checkpointManager);
        fxRoot = IFxStateSender(_fxRoot);
    }

    // set fxChildTunnel if not set already
    function setFxChildTunnel(address _fxChildTunnel) public {
        require(fxChildTunnel == address(0x0), "FxBaseRootTunnel: CHILD_TUNNEL_ALREADY_SET");
        fxChildTunnel = _fxChildTunnel;
    }

    /**
     * @notice Send bytes message to Child Tunnel
     * @param message bytes message that will be sent to Child Tunnel
     * some message examples -
     *   abi.encode(tokenId);
     *   abi.encode(tokenId, tokenMetadata);
     *   abi.encode(messageType, messageData);
     */
    function _sendMessageToChild(bytes memory message) internal {
        fxRoot.sendMessageToChild(fxChildTunnel, message);
    }

    function _validateAndExtractMessage(bytes memory inputData) internal returns (bytes memory) {
        ExitPayloadReader.ExitPayload memory payload = inputData.toExitPayload();

        bytes memory branchMaskBytes = payload.getBranchMaskAsBytes();
        uint256 blockNumber = payload.getBlockNumber();
        // checking if exit has already been processed
        // unique exit is identified using hash of (blockNumber, branchMask, receiptLogIndex)
        bytes32 exitHash = keccak256(
            abi.encodePacked(
                blockNumber,
                // first 2 nibbles are dropped while generating nibble array
                // this allows branch masks that are valid but bypass exitHash check (changing first 2 nibbles only)
                // so converting to nibble array and then hashing it
                MerklePatriciaProof._getNibbleArray(branchMaskBytes),
                payload.getReceiptLogIndex()
            )
        );
        require(processedExits[exitHash] == false, "FxRootTunnel: EXIT_ALREADY_PROCESSED");
        processedExits[exitHash] = true;

        ExitPayloadReader.Receipt memory receipt = payload.getReceipt();
        ExitPayloadReader.Log memory log = receipt.getLog();

        // check child tunnel
        require(fxChildTunnel == log.getEmitter(), "FxRootTunnel: INVALID_FX_CHILD_TUNNEL");

        bytes32 receiptRoot = payload.getReceiptRoot();
        // verify receipt inclusion
        require(
            MerklePatriciaProof.verify(receipt.toBytes(), branchMaskBytes, payload.getReceiptProof(), receiptRoot),
            "FxRootTunnel: INVALID_RECEIPT_PROOF"
        );

        // verify checkpoint inclusion
        _checkBlockMembershipInCheckpoint(
            blockNumber,
            payload.getBlockTime(),
            payload.getTxRoot(),
            receiptRoot,
            payload.getHeaderNumber(),
            payload.getBlockProof()
        );

        ExitPayloadReader.LogTopics memory topics = log.getTopics();

        require(
            bytes32(topics.getField(0).toUint()) == SEND_MESSAGE_EVENT_SIG, // topic0 is event sig
            "FxRootTunnel: INVALID_SIGNATURE"
        );

        // received message data
        bytes memory message = abi.decode(log.getData(), (bytes)); // event decodes params again, so decoding bytes to get message
        return message;
    }

    function _checkBlockMembershipInCheckpoint(
        uint256 blockNumber,
        uint256 blockTime,
        bytes32 txRoot,
        bytes32 receiptRoot,
        uint256 headerNumber,
        bytes memory blockProof
    ) private view returns (uint256) {
        (bytes32 headerRoot, uint256 startBlock, , uint256 createdAt, ) = checkpointManager.headerBlocks(headerNumber);

        require(
            keccak256(abi.encodePacked(blockNumber, blockTime, txRoot, receiptRoot)).checkMembership(
                blockNumber - startBlock,
                headerRoot,
                blockProof
            ),
            "FxRootTunnel: INVALID_HEADER"
        );
        return createdAt;
    }

    /**
     * @notice receive message from  L2 to L1, validated by proof
     * @dev This function verifies if the transaction actually happened on child chain
     *
     * @param inputData RLP encoded data of the reference tx containing following list of fields
     *  0 - headerNumber - Checkpoint header block number containing the reference tx
     *  1 - blockProof - Proof that the block header (in the child chain) is a leaf in the submitted merkle root
     *  2 - blockNumber - Block number containing the reference tx on child chain
     *  3 - blockTime - Reference tx block time
     *  4 - txRoot - Transactions root of block
     *  5 - receiptRoot - Receipts root of block
     *  6 - receipt - Receipt of the reference transaction
     *  7 - receiptProof - Merkle proof of the reference receipt
     *  8 - branchMask - 32 bits denoting the path of receipt in merkle tree
     *  9 - receiptLogIndex - Log Index to read from the receipt
     */
    function receiveMessage(bytes memory inputData) public virtual {
        bytes memory message = _validateAndExtractMessage(inputData);
        _processMessageFromChild(message);
    }

    /**
     * @notice Process message received from Child Tunnel
     * @dev function needs to be implemented to handle message as per requirement
     * This is called by onStateReceive function.
     * Since it is called via a system call, any event will not be emitted during its execution.
     * @param message bytes message that was sent from Child Tunnel
     */
    function _processMessageFromChild(bytes memory message) internal virtual;
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.12 <=0.8.9;
pragma experimental ABIEncoderV2;

import "../interfaces/IMessengerWrapper.sol";

contract IL1Bridge {
    struct TransferBond {
        address bonder;
        uint256 createdAt;
        uint256 totalAmount;
        uint256 challengeStartTime;
        address challenger;
        bool challengeResolved;
    }
    uint256 public challengePeriod;
    mapping(bytes32 => TransferBond) public transferBonds;
    function getIsBonder(address maybeBonder) public view returns (bool) {}
    function getTransferRootId(bytes32 rootHash, uint256 totalAmount) public pure returns (bytes32) {}
    function confirmTransferRoot(
        uint256 originChainId,
        bytes32 rootHash,
        uint256 destinationChainId,
        uint256 totalAmount,
        uint256 rootCommittedAt
    )
        external
    {}
}

abstract contract MessengerWrapper is IMessengerWrapper {
    address public immutable l1BridgeAddress;
    uint256 public immutable l2ChainId;
    bool public isRootConfirmation = false;

    constructor(address _l1BridgeAddress, uint256 _l2ChainId) internal {
        l1BridgeAddress = _l1BridgeAddress;
        l2ChainId = _l2ChainId;
    }

    modifier onlyL1Bridge {
        require(msg.sender == l1BridgeAddress, "MW: Sender must be the L1 Bridge");
        _;
    }

    modifier rootConfirmation {
        isRootConfirmation = true;
        _;
        isRootConfirmation = false;
    }

    /**
     * @dev Confirm roots that have bonded on L1 and passed the challenge period with no challenge
     * @param rootHashes The root hashes to confirm
     * @param destinationChainIds The destinationChainId of the roots to confirm
     * @param totalAmounts The totalAmount of the roots to confirm
     * @param rootCommittedAts The rootCommittedAt of the roots to confirm
     */
    function confirmRoots (
        bytes32[] calldata rootHashes,
        uint256[] calldata destinationChainIds,
        uint256[] calldata totalAmounts,
        uint256[] calldata rootCommittedAts
    ) external override rootConfirmation {
        IL1Bridge l1Bridge = IL1Bridge(l1BridgeAddress);
        require(l1Bridge.getIsBonder(msg.sender), "MW: Sender must be a bonder");
        require(rootHashes.length == totalAmounts.length, "MW: rootHashes and totalAmounts must be the same length");

        uint256 challengePeriod = l1Bridge.challengePeriod();
        for (uint256 i = 0; i < rootHashes.length; i++) {
            bool canConfirm = canConfirmRoot(l1Bridge, rootHashes[i], totalAmounts[i], challengePeriod);
            require(canConfirm, "MW: Root cannot be confirmed");
            l1Bridge.confirmTransferRoot(
                l2ChainId,
                rootHashes[i],
                destinationChainIds[i],
                totalAmounts[i],
                rootCommittedAts[i]
            );
        }
    }
    
    function canConfirmRoot (IL1Bridge l1Bridge, bytes32 rootHash, uint256 totalAmount, uint256 challengePeriod) public view returns (bool) {
        bytes32 transferRootId = l1Bridge.getTransferRootId(rootHash, totalAmount);
        (,uint256 createdAt,,uint256 challengeStartTime,,) = l1Bridge.transferBonds(transferRootId);

        uint256 timeSinceBondCreation = block.timestamp - createdAt;
        if (
            createdAt != 0 &&
            challengeStartTime == 0 &&
            timeSinceBondCreation > challengePeriod
        ) {
            return true;
        }

        return false;
    }
}

// SPDX-License-Identifier: MIT
// @unsupported: ovm

pragma solidity 0.8.9;
pragma experimental ABIEncoderV2;

import "../polygon/tunnel/FxBaseRootTunnel.sol";
import "./MessengerWrapper.sol";

/**
 * @dev A MessengerWrapper for Polygon - https://docs.matic.network/docs
 * @notice Deployed on layer-1
 */

contract PolygonMessengerWrapper is FxBaseRootTunnel, MessengerWrapper {

    constructor(
        address _l1BridgeAddress,
        address _checkpointManager,
        address _fxRoot,
        address _fxChildTunnel,
        uint256 _l2ChainId
    )
        public
        MessengerWrapper(_l1BridgeAddress, _l2ChainId)
        FxBaseRootTunnel(_checkpointManager, _fxRoot)
    {
        setFxChildTunnel(_fxChildTunnel);
    }

    /** 
     * @dev Sends a message to the l2MessengerProxy from layer-1
     * @param _calldata The data that l2MessengerProxy will be called with
     * @notice The msg.sender is sent to the L2_PolygonMessengerProxy and checked there.
     */
    function sendCrossDomainMessage(bytes memory _calldata) public override {
        _sendMessageToChild(
            abi.encode(msg.sender, _calldata)
        );
    }

    function verifySender(address l1BridgeCaller, bytes memory /*_data*/) public view override {
        if (isRootConfirmation) return;

        require(l1BridgeCaller == address(this), "L1_PLGN_WPR: Caller must be this contract");
    }

    function _processMessageFromChild(bytes memory message) internal override {
        (bool success,) = l1BridgeAddress.call(message);
        require(success, "L1_PLGN_WPR: Call to L1 Bridge failed");
    }
}

Contract Name:
PolygonMessengerWrapper

Contract Source Code:

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.12 <=0.8.9;
pragma experimental ABIEncoderV2;

interface IMessengerWrapper {
    function sendCrossDomainMessage(bytes memory _calldata) external;
    function verifySender(address l1BridgeCaller, bytes memory _data) external;
    function confirmRoots(
        bytes32[] calldata rootHashes,
        uint256[] calldata destinationChainIds,
        uint256[] calldata totalAmounts,
        uint256[] calldata rootCommittedAts
    ) external;
}

pragma solidity ^0.8.0;

import {RLPReader} from "./RLPReader.sol";

library ExitPayloadReader {
    using RLPReader for bytes;
    using RLPReader for RLPReader.RLPItem;

    uint8 constant WORD_SIZE = 32;

    struct ExitPayload {
        RLPReader.RLPItem[] data;
    }

    struct Receipt {
        RLPReader.RLPItem[] data;
        bytes raw;
        uint256 logIndex;
    }

    struct Log {
        RLPReader.RLPItem data;
        RLPReader.RLPItem[] list;
    }

    struct LogTopics {
        RLPReader.RLPItem[] data;
    }

    // copy paste of private copy() from RLPReader to avoid changing of existing contracts
    function copy(
        uint256 src,
        uint256 dest,
        uint256 len
    ) private pure {
        if (len == 0) return;

        // copy as many word sizes as possible
        for (; len >= WORD_SIZE; len -= WORD_SIZE) {
            assembly {
                mstore(dest, mload(src))
            }

            src += WORD_SIZE;
            dest += WORD_SIZE;
        }

        // left over bytes. Mask is used to remove unwanted bytes from the word
        uint256 mask = 256**(WORD_SIZE - len) - 1;
        assembly {
            let srcpart := and(mload(src), not(mask)) // zero out src
            let destpart := and(mload(dest), mask) // retrieve the bytes
            mstore(dest, or(destpart, srcpart))
        }
    }

    function toExitPayload(bytes memory data) internal pure returns (ExitPayload memory) {
        RLPReader.RLPItem[] memory payloadData = data.toRlpItem().toList();

        return ExitPayload(payloadData);
    }

    function getHeaderNumber(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[0].toUint();
    }

    function getBlockProof(ExitPayload memory payload) internal pure returns (bytes memory) {
        return payload.data[1].toBytes();
    }

    function getBlockNumber(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[2].toUint();
    }

    function getBlockTime(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[3].toUint();
    }

    function getTxRoot(ExitPayload memory payload) internal pure returns (bytes32) {
        return bytes32(payload.data[4].toUint());
    }

    function getReceiptRoot(ExitPayload memory payload) internal pure returns (bytes32) {
        return bytes32(payload.data[5].toUint());
    }

    function getReceipt(ExitPayload memory payload) internal pure returns (Receipt memory receipt) {
        receipt.raw = payload.data[6].toBytes();
        RLPReader.RLPItem memory receiptItem = receipt.raw.toRlpItem();

        if (receiptItem.isList()) {
            // legacy tx
            receipt.data = receiptItem.toList();
        } else {
            // pop first byte before parsting receipt
            bytes memory typedBytes = receipt.raw;
            bytes memory result = new bytes(typedBytes.length - 1);
            uint256 srcPtr;
            uint256 destPtr;
            assembly {
                srcPtr := add(33, typedBytes)
                destPtr := add(0x20, result)
            }

            copy(srcPtr, destPtr, result.length);
            receipt.data = result.toRlpItem().toList();
        }

        receipt.logIndex = getReceiptLogIndex(payload);
        return receipt;
    }

    function getReceiptProof(ExitPayload memory payload) internal pure returns (bytes memory) {
        return payload.data[7].toBytes();
    }

    function getBranchMaskAsBytes(ExitPayload memory payload) internal pure returns (bytes memory) {
        return payload.data[8].toBytes();
    }

    function getBranchMaskAsUint(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[8].toUint();
    }

    function getReceiptLogIndex(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[9].toUint();
    }

    // Receipt methods
    function toBytes(Receipt memory receipt) internal pure returns (bytes memory) {
        return receipt.raw;
    }

    function getLog(Receipt memory receipt) internal pure returns (Log memory) {
        RLPReader.RLPItem memory logData = receipt.data[3].toList()[receipt.logIndex];
        return Log(logData, logData.toList());
    }

    // Log methods
    function getEmitter(Log memory log) internal pure returns (address) {
        return RLPReader.toAddress(log.list[0]);
    }

    function getTopics(Log memory log) internal pure returns (LogTopics memory) {
        return LogTopics(log.list[1].toList());
    }

    function getData(Log memory log) internal pure returns (bytes memory) {
        return log.list[2].toBytes();
    }

    function toRlpBytes(Log memory log) internal pure returns (bytes memory) {
        return log.data.toRlpBytes();
    }

    // LogTopics methods
    function getField(LogTopics memory topics, uint256 index) internal pure returns (RLPReader.RLPItem memory) {
        return topics.data[index];
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

library Merkle {
    function checkMembership(
        bytes32 leaf,
        uint256 index,
        bytes32 rootHash,
        bytes memory proof
    ) internal pure returns (bool) {
        require(proof.length % 32 == 0, "Invalid proof length");
        uint256 proofHeight = proof.length / 32;
        // Proof of size n means, height of the tree is n+1.
        // In a tree of height n+1, max #leafs possible is 2 ^ n
        require(index < 2**proofHeight, "Leaf index is too big");

        bytes32 proofElement;
        bytes32 computedHash = leaf;
        for (uint256 i = 32; i <= proof.length; i += 32) {
            assembly {
                proofElement := mload(add(proof, i))
            }

            if (index % 2 == 0) {
                computedHash = keccak256(abi.encodePacked(computedHash, proofElement));
            } else {
                computedHash = keccak256(abi.encodePacked(proofElement, computedHash));
            }

            index = index / 2;
        }
        return computedHash == rootHash;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {RLPReader} from "./RLPReader.sol";

library MerklePatriciaProof {
    /*
     * @dev Verifies a merkle patricia proof.
     * @param value The terminating value in the trie.
     * @param encodedPath The path in the trie leading to value.
     * @param rlpParentNodes The rlp encoded stack of nodes.
     * @param root The root hash of the trie.
     * @return The boolean validity of the proof.
     */
    function verify(
        bytes memory value,
        bytes memory encodedPath,
        bytes memory rlpParentNodes,
        bytes32 root
    ) internal pure returns (bool) {
        RLPReader.RLPItem memory item = RLPReader.toRlpItem(rlpParentNodes);
        RLPReader.RLPItem[] memory parentNodes = RLPReader.toList(item);

        bytes memory currentNode;
        RLPReader.RLPItem[] memory currentNodeList;

        bytes32 nodeKey = root;
        uint256 pathPtr = 0;

        bytes memory path = _getNibbleArray(encodedPath);
        if (path.length == 0) {
            return false;
        }

        for (uint256 i = 0; i < parentNodes.length; i++) {
            if (pathPtr > path.length) {
                return false;
            }

            currentNode = RLPReader.toRlpBytes(parentNodes[i]);
            if (nodeKey != keccak256(currentNode)) {
                return false;
            }
            currentNodeList = RLPReader.toList(parentNodes[i]);

            if (currentNodeList.length == 17) {
                if (pathPtr == path.length) {
                    if (keccak256(RLPReader.toBytes(currentNodeList[16])) == keccak256(value)) {
                        return true;
                    } else {
                        return false;
                    }
                }

                uint8 nextPathNibble = uint8(path[pathPtr]);
                if (nextPathNibble > 16) {
                    return false;
                }
                nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[nextPathNibble]));
                pathPtr += 1;
            } else if (currentNodeList.length == 2) {
                uint256 traversed = _nibblesToTraverse(RLPReader.toBytes(currentNodeList[0]), path, pathPtr);
                if (pathPtr + traversed == path.length) {
                    //leaf node
                    if (keccak256(RLPReader.toBytes(currentNodeList[1])) == keccak256(value)) {
                        return true;
                    } else {
                        return false;
                    }
                }

                //extension node
                if (traversed == 0) {
                    return false;
                }

                pathPtr += traversed;
                nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[1]));
            } else {
                return false;
            }
        }
    }

    function _nibblesToTraverse(
        bytes memory encodedPartialPath,
        bytes memory path,
        uint256 pathPtr
    ) private pure returns (uint256) {
        uint256 len = 0;
        // encodedPartialPath has elements that are each two hex characters (1 byte), but partialPath
        // and slicedPath have elements that are each one hex character (1 nibble)
        bytes memory partialPath = _getNibbleArray(encodedPartialPath);
        bytes memory slicedPath = new bytes(partialPath.length);

        // pathPtr counts nibbles in path
        // partialPath.length is a number of nibbles
        for (uint256 i = pathPtr; i < pathPtr + partialPath.length; i++) {
            bytes1 pathNibble = path[i];
            slicedPath[i - pathPtr] = pathNibble;
        }

        if (keccak256(partialPath) == keccak256(slicedPath)) {
            len = partialPath.length;
        } else {
            len = 0;
        }
        return len;
    }

    // bytes b must be hp encoded
    function _getNibbleArray(bytes memory b) internal pure returns (bytes memory) {
        bytes memory nibbles = "";
        if (b.length > 0) {
            uint8 offset;
            uint8 hpNibble = uint8(_getNthNibbleOfBytes(0, b));
            if (hpNibble == 1 || hpNibble == 3) {
                nibbles = new bytes(b.length * 2 - 1);
                bytes1 oddNibble = _getNthNibbleOfBytes(1, b);
                nibbles[0] = oddNibble;
                offset = 1;
            } else {
                nibbles = new bytes(b.length * 2 - 2);
                offset = 0;
            }

            for (uint256 i = offset; i < nibbles.length; i++) {
                nibbles[i] = _getNthNibbleOfBytes(i - offset + 2, b);
            }
        }
        return nibbles;
    }

    function _getNthNibbleOfBytes(uint256 n, bytes memory str) private pure returns (bytes1) {
        return bytes1(n % 2 == 0 ? uint8(str[n / 2]) / 0x10 : uint8(str[n / 2]) % 0x10);
    }
}

/*
 * @author Hamdi Allam [email protected]
 * Please reach out with any questions or concerns
 */
pragma solidity ^0.8.0;

library RLPReader {
    uint8 constant STRING_SHORT_START = 0x80;
    uint8 constant STRING_LONG_START = 0xb8;
    uint8 constant LIST_SHORT_START = 0xc0;
    uint8 constant LIST_LONG_START = 0xf8;
    uint8 constant WORD_SIZE = 32;

    struct RLPItem {
        uint256 len;
        uint256 memPtr;
    }

    struct Iterator {
        RLPItem item; // Item that's being iterated over.
        uint256 nextPtr; // Position of the next item in the list.
    }

    /*
     * @dev Returns the next element in the iteration. Reverts if it has not next element.
     * @param self The iterator.
     * @return The next element in the iteration.
     */
    function next(Iterator memory self) internal pure returns (RLPItem memory) {
        require(hasNext(self));

        uint256 ptr = self.nextPtr;
        uint256 itemLength = _itemLength(ptr);
        self.nextPtr = ptr + itemLength;

        return RLPItem(itemLength, ptr);
    }

    /*
     * @dev Returns true if the iteration has more elements.
     * @param self The iterator.
     * @return true if the iteration has more elements.
     */
    function hasNext(Iterator memory self) internal pure returns (bool) {
        RLPItem memory item = self.item;
        return self.nextPtr < item.memPtr + item.len;
    }

    /*
     * @param item RLP encoded bytes
     */
    function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) {
        uint256 memPtr;
        assembly {
            memPtr := add(item, 0x20)
        }

        return RLPItem(item.length, memPtr);
    }

    /*
     * @dev Create an iterator. Reverts if item is not a list.
     * @param self The RLP item.
     * @return An 'Iterator' over the item.
     */
    function iterator(RLPItem memory self) internal pure returns (Iterator memory) {
        require(isList(self));

        uint256 ptr = self.memPtr + _payloadOffset(self.memPtr);
        return Iterator(self, ptr);
    }

    /*
     * @param item RLP encoded bytes
     */
    function rlpLen(RLPItem memory item) internal pure returns (uint256) {
        return item.len;
    }

    /*
     * @param item RLP encoded bytes
     */
    function payloadLen(RLPItem memory item) internal pure returns (uint256) {
        return item.len - _payloadOffset(item.memPtr);
    }

    /*
     * @param item RLP encoded list in bytes
     */
    function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) {
        require(isList(item));

        uint256 items = numItems(item);
        RLPItem[] memory result = new RLPItem[](items);

        uint256 memPtr = item.memPtr + _payloadOffset(item.memPtr);
        uint256 dataLen;
        for (uint256 i = 0; i < items; i++) {
            dataLen = _itemLength(memPtr);
            result[i] = RLPItem(dataLen, memPtr);
            memPtr = memPtr + dataLen;
        }

        return result;
    }

    // @return indicator whether encoded payload is a list. negate this function call for isData.
    function isList(RLPItem memory item) internal pure returns (bool) {
        if (item.len == 0) return false;

        uint8 byte0;
        uint256 memPtr = item.memPtr;
        assembly {
            byte0 := byte(0, mload(memPtr))
        }

        if (byte0 < LIST_SHORT_START) return false;
        return true;
    }

    /*
     * @dev A cheaper version of keccak256(toRlpBytes(item)) that avoids copying memory.
     * @return keccak256 hash of RLP encoded bytes.
     */
    function rlpBytesKeccak256(RLPItem memory item) internal pure returns (bytes32) {
        uint256 ptr = item.memPtr;
        uint256 len = item.len;
        bytes32 result;
        assembly {
            result := keccak256(ptr, len)
        }
        return result;
    }

    function payloadLocation(RLPItem memory item) internal pure returns (uint256, uint256) {
        uint256 offset = _payloadOffset(item.memPtr);
        uint256 memPtr = item.memPtr + offset;
        uint256 len = item.len - offset; // data length
        return (memPtr, len);
    }

    /*
     * @dev A cheaper version of keccak256(toBytes(item)) that avoids copying memory.
     * @return keccak256 hash of the item payload.
     */
    function payloadKeccak256(RLPItem memory item) internal pure returns (bytes32) {
        (uint256 memPtr, uint256 len) = payloadLocation(item);
        bytes32 result;
        assembly {
            result := keccak256(memPtr, len)
        }
        return result;
    }

    /** RLPItem conversions into data types **/

    // @returns raw rlp encoding in bytes
    function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) {
        bytes memory result = new bytes(item.len);
        if (result.length == 0) return result;

        uint256 ptr;
        assembly {
            ptr := add(0x20, result)
        }

        copy(item.memPtr, ptr, item.len);
        return result;
    }

    // any non-zero byte is considered true
    function toBoolean(RLPItem memory item) internal pure returns (bool) {
        require(item.len == 1);
        uint256 result;
        uint256 memPtr = item.memPtr;
        assembly {
            result := byte(0, mload(memPtr))
        }

        return result == 0 ? false : true;
    }

    function toAddress(RLPItem memory item) internal pure returns (address) {
        // 1 byte for the length prefix
        require(item.len == 21);

        return address(uint160(toUint(item)));
    }

    function toUint(RLPItem memory item) internal pure returns (uint256) {
        require(item.len > 0 && item.len <= 33);

        uint256 offset = _payloadOffset(item.memPtr);
        uint256 len = item.len - offset;

        uint256 result;
        uint256 memPtr = item.memPtr + offset;
        assembly {
            result := mload(memPtr)

            // shfit to the correct location if neccesary
            if lt(len, 32) {
                result := div(result, exp(256, sub(32, len)))
            }
        }

        return result;
    }

    // enforces 32 byte length
    function toUintStrict(RLPItem memory item) internal pure returns (uint256) {
        // one byte prefix
        require(item.len == 33);

        uint256 result;
        uint256 memPtr = item.memPtr + 1;
        assembly {
            result := mload(memPtr)
        }

        return result;
    }

    function toBytes(RLPItem memory item) internal pure returns (bytes memory) {
        require(item.len > 0);

        uint256 offset = _payloadOffset(item.memPtr);
        uint256 len = item.len - offset; // data length
        bytes memory result = new bytes(len);

        uint256 destPtr;
        assembly {
            destPtr := add(0x20, result)
        }

        copy(item.memPtr + offset, destPtr, len);
        return result;
    }

    /*
     * Private Helpers
     */

    // @return number of payload items inside an encoded list.
    function numItems(RLPItem memory item) private pure returns (uint256) {
        if (item.len == 0) return 0;

        uint256 count = 0;
        uint256 currPtr = item.memPtr + _payloadOffset(item.memPtr);
        uint256 endPtr = item.memPtr + item.len;
        while (currPtr < endPtr) {
            currPtr = currPtr + _itemLength(currPtr); // skip over an item
            count++;
        }

        return count;
    }

    // @return entire rlp item byte length
    function _itemLength(uint256 memPtr) private pure returns (uint256) {
        uint256 itemLen;
        uint256 byte0;
        assembly {
            byte0 := byte(0, mload(memPtr))
        }

        if (byte0 < STRING_SHORT_START) itemLen = 1;
        else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1;
        else if (byte0 < LIST_SHORT_START) {
            assembly {
                let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is
                memPtr := add(memPtr, 1) // skip over the first byte
                /* 32 byte word size */
                let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len
                itemLen := add(dataLen, add(byteLen, 1))
            }
        } else if (byte0 < LIST_LONG_START) {
            itemLen = byte0 - LIST_SHORT_START + 1;
        } else {
            assembly {
                let byteLen := sub(byte0, 0xf7)
                memPtr := add(memPtr, 1)

                let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length
                itemLen := add(dataLen, add(byteLen, 1))
            }
        }

        return itemLen;
    }

    // @return number of bytes until the data
    function _payloadOffset(uint256 memPtr) private pure returns (uint256) {
        uint256 byte0;
        assembly {
            byte0 := byte(0, mload(memPtr))
        }

        if (byte0 < STRING_SHORT_START) return 0;
        else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1;
        else if (byte0 < LIST_SHORT_START)
            // being explicit
            return byte0 - (STRING_LONG_START - 1) + 1;
        else return byte0 - (LIST_LONG_START - 1) + 1;
    }

    /*
     * @param src Pointer to source
     * @param dest Pointer to destination
     * @param len Amount of memory to copy from the source
     */
    function copy(
        uint256 src,
        uint256 dest,
        uint256 len
    ) private pure {
        if (len == 0) return;

        // copy as many word sizes as possible
        for (; len >= WORD_SIZE; len -= WORD_SIZE) {
            assembly {
                mstore(dest, mload(src))
            }

            src += WORD_SIZE;
            dest += WORD_SIZE;
        }

        if (len == 0) return;

        // left over bytes. Mask is used to remove unwanted bytes from the word
        uint256 mask = 256**(WORD_SIZE - len) - 1;

        assembly {
            let srcpart := and(mload(src), not(mask)) // zero out src
            let destpart := and(mload(dest), mask) // retrieve the bytes
            mstore(dest, or(destpart, srcpart))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {RLPReader} from "../lib/RLPReader.sol";
import {MerklePatriciaProof} from "../lib/MerklePatriciaProof.sol";
import {Merkle} from "../lib/Merkle.sol";
import "../lib/ExitPayloadReader.sol";

interface IFxStateSender {
    function sendMessageToChild(address _receiver, bytes calldata _data) external;
}

contract ICheckpointManager {
    struct HeaderBlock {
        bytes32 root;
        uint256 start;
        uint256 end;
        uint256 createdAt;
        address proposer;
    }

    /**
     * @notice mapping of checkpoint header numbers to block details
     * @dev These checkpoints are submited by plasma contracts
     */
    mapping(uint256 => HeaderBlock) public headerBlocks;
}

abstract contract FxBaseRootTunnel {
    using RLPReader for RLPReader.RLPItem;
    using Merkle for bytes32;
    using ExitPayloadReader for bytes;
    using ExitPayloadReader for ExitPayloadReader.ExitPayload;
    using ExitPayloadReader for ExitPayloadReader.Log;
    using ExitPayloadReader for ExitPayloadReader.LogTopics;
    using ExitPayloadReader for ExitPayloadReader.Receipt;

    // keccak256(MessageSent(bytes))
    bytes32 public constant SEND_MESSAGE_EVENT_SIG = 0x8c5261668696ce22758910d05bab8f186d6eb247ceac2af2e82c7dc17669b036;

    // state sender contract
    IFxStateSender public fxRoot;
    // root chain manager
    ICheckpointManager public checkpointManager;
    // child tunnel contract which receives and sends messages
    address public fxChildTunnel;

    // storage to avoid duplicate exits
    mapping(bytes32 => bool) public processedExits;

    constructor(address _checkpointManager, address _fxRoot) {
        checkpointManager = ICheckpointManager(_checkpointManager);
        fxRoot = IFxStateSender(_fxRoot);
    }

    // set fxChildTunnel if not set already
    function setFxChildTunnel(address _fxChildTunnel) public {
        require(fxChildTunnel == address(0x0), "FxBaseRootTunnel: CHILD_TUNNEL_ALREADY_SET");
        fxChildTunnel = _fxChildTunnel;
    }

    /**
     * @notice Send bytes message to Child Tunnel
     * @param message bytes message that will be sent to Child Tunnel
     * some message examples -
     *   abi.encode(tokenId);
     *   abi.encode(tokenId, tokenMetadata);
     *   abi.encode(messageType, messageData);
     */
    function _sendMessageToChild(bytes memory message) internal {
        fxRoot.sendMessageToChild(fxChildTunnel, message);
    }

    function _validateAndExtractMessage(bytes memory inputData) internal returns (bytes memory) {
        ExitPayloadReader.ExitPayload memory payload = inputData.toExitPayload();

        bytes memory branchMaskBytes = payload.getBranchMaskAsBytes();
        uint256 blockNumber = payload.getBlockNumber();
        // checking if exit has already been processed
        // unique exit is identified using hash of (blockNumber, branchMask, receiptLogIndex)
        bytes32 exitHash = keccak256(
            abi.encodePacked(
                blockNumber,
                // first 2 nibbles are dropped while generating nibble array
                // this allows branch masks that are valid but bypass exitHash check (changing first 2 nibbles only)
                // so converting to nibble array and then hashing it
                MerklePatriciaProof._getNibbleArray(branchMaskBytes),
                payload.getReceiptLogIndex()
            )
        );
        require(processedExits[exitHash] == false, "FxRootTunnel: EXIT_ALREADY_PROCESSED");
        processedExits[exitHash] = true;

        ExitPayloadReader.Receipt memory receipt = payload.getReceipt();
        ExitPayloadReader.Log memory log = receipt.getLog();

        // check child tunnel
        require(fxChildTunnel == log.getEmitter(), "FxRootTunnel: INVALID_FX_CHILD_TUNNEL");

        bytes32 receiptRoot = payload.getReceiptRoot();
        // verify receipt inclusion
        require(
            MerklePatriciaProof.verify(receipt.toBytes(), branchMaskBytes, payload.getReceiptProof(), receiptRoot),
            "FxRootTunnel: INVALID_RECEIPT_PROOF"
        );

        // verify checkpoint inclusion
        _checkBlockMembershipInCheckpoint(
            blockNumber,
            payload.getBlockTime(),
            payload.getTxRoot(),
            receiptRoot,
            payload.getHeaderNumber(),
            payload.getBlockProof()
        );

        ExitPayloadReader.LogTopics memory topics = log.getTopics();

        require(
            bytes32(topics.getField(0).toUint()) == SEND_MESSAGE_EVENT_SIG, // topic0 is event sig
            "FxRootTunnel: INVALID_SIGNATURE"
        );

        // received message data
        bytes memory message = abi.decode(log.getData(), (bytes)); // event decodes params again, so decoding bytes to get message
        return message;
    }

    function _checkBlockMembershipInCheckpoint(
        uint256 blockNumber,
        uint256 blockTime,
        bytes32 txRoot,
        bytes32 receiptRoot,
        uint256 headerNumber,
        bytes memory blockProof
    ) private view returns (uint256) {
        (bytes32 headerRoot, uint256 startBlock, , uint256 createdAt, ) = checkpointManager.headerBlocks(headerNumber);

        require(
            keccak256(abi.encodePacked(blockNumber, blockTime, txRoot, receiptRoot)).checkMembership(
                blockNumber - startBlock,
                headerRoot,
                blockProof
            ),
            "FxRootTunnel: INVALID_HEADER"
        );
        return createdAt;
    }

    /**
     * @notice receive message from  L2 to L1, validated by proof
     * @dev This function verifies if the transaction actually happened on child chain
     *
     * @param inputData RLP encoded data of the reference tx containing following list of fields
     *  0 - headerNumber - Checkpoint header block number containing the reference tx
     *  1 - blockProof - Proof that the block header (in the child chain) is a leaf in the submitted merkle root
     *  2 - blockNumber - Block number containing the reference tx on child chain
     *  3 - blockTime - Reference tx block time
     *  4 - txRoot - Transactions root of block
     *  5 - receiptRoot - Receipts root of block
     *  6 - receipt - Receipt of the reference transaction
     *  7 - receiptProof - Merkle proof of the reference receipt
     *  8 - branchMask - 32 bits denoting the path of receipt in merkle tree
     *  9 - receiptLogIndex - Log Index to read from the receipt
     */
    function receiveMessage(bytes memory inputData) public virtual {
        bytes memory message = _validateAndExtractMessage(inputData);
        _processMessageFromChild(message);
    }

    /**
     * @notice Process message received from Child Tunnel
     * @dev function needs to be implemented to handle message as per requirement
     * This is called by onStateReceive function.
     * Since it is called via a system call, any event will not be emitted during its execution.
     * @param message bytes message that was sent from Child Tunnel
     */
    function _processMessageFromChild(bytes memory message) internal virtual;
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.12 <=0.8.9;
pragma experimental ABIEncoderV2;

import "../interfaces/IMessengerWrapper.sol";

contract IL1Bridge {
    struct TransferBond {
        address bonder;
        uint256 createdAt;
        uint256 totalAmount;
        uint256 challengeStartTime;
        address challenger;
        bool challengeResolved;
    }
    uint256 public challengePeriod;
    mapping(bytes32 => TransferBond) public transferBonds;
    function getIsBonder(address maybeBonder) public view returns (bool) {}
    function getTransferRootId(bytes32 rootHash, uint256 totalAmount) public pure returns (bytes32) {}
    function confirmTransferRoot(
        uint256 originChainId,
        bytes32 rootHash,
        uint256 destinationChainId,
        uint256 totalAmount,
        uint256 rootCommittedAt
    )
        external
    {}
}

abstract contract MessengerWrapper is IMessengerWrapper {
    address public immutable l1BridgeAddress;
    uint256 public immutable l2ChainId;
    bool public isRootConfirmation = false;

    constructor(address _l1BridgeAddress, uint256 _l2ChainId) internal {
        l1BridgeAddress = _l1BridgeAddress;
        l2ChainId = _l2ChainId;
    }

    modifier onlyL1Bridge {
        require(msg.sender == l1BridgeAddress, "MW: Sender must be the L1 Bridge");
        _;
    }

    modifier rootConfirmation {
        isRootConfirmation = true;
        _;
        isRootConfirmation = false;
    }

    /**
     * @dev Confirm roots that have bonded on L1 and passed the challenge period with no challenge
     * @param rootHashes The root hashes to confirm
     * @param destinationChainIds The destinationChainId of the roots to confirm
     * @param totalAmounts The totalAmount of the roots to confirm
     * @param rootCommittedAts The rootCommittedAt of the roots to confirm
     */
    function confirmRoots (
        bytes32[] calldata rootHashes,
        uint256[] calldata destinationChainIds,
        uint256[] calldata totalAmounts,
        uint256[] calldata rootCommittedAts
    ) external override rootConfirmation {
        IL1Bridge l1Bridge = IL1Bridge(l1BridgeAddress);
        require(l1Bridge.getIsBonder(msg.sender), "MW: Sender must be a bonder");
        require(rootHashes.length == totalAmounts.length, "MW: rootHashes and totalAmounts must be the same length");

        uint256 challengePeriod = l1Bridge.challengePeriod();
        for (uint256 i = 0; i < rootHashes.length; i++) {
            bool canConfirm = canConfirmRoot(l1Bridge, rootHashes[i], totalAmounts[i], challengePeriod);
            require(canConfirm, "MW: Root cannot be confirmed");
            l1Bridge.confirmTransferRoot(
                l2ChainId,
                rootHashes[i],
                destinationChainIds[i],
                totalAmounts[i],
                rootCommittedAts[i]
            );
        }
    }
    
    function canConfirmRoot (IL1Bridge l1Bridge, bytes32 rootHash, uint256 totalAmount, uint256 challengePeriod) public view returns (bool) {
        bytes32 transferRootId = l1Bridge.getTransferRootId(rootHash, totalAmount);
        (,uint256 createdAt,,uint256 challengeStartTime,,) = l1Bridge.transferBonds(transferRootId);

        uint256 timeSinceBondCreation = block.timestamp - createdAt;
        if (
            createdAt != 0 &&
            challengeStartTime == 0 &&
            timeSinceBondCreation > challengePeriod
        ) {
            return true;
        }

        return false;
    }
}

// SPDX-License-Identifier: MIT
// @unsupported: ovm

pragma solidity 0.8.9;
pragma experimental ABIEncoderV2;

import "../polygon/tunnel/FxBaseRootTunnel.sol";
import "./MessengerWrapper.sol";

/**
 * @dev A MessengerWrapper for Polygon - https://docs.matic.network/docs
 * @notice Deployed on layer-1
 */

contract PolygonMessengerWrapper is FxBaseRootTunnel, MessengerWrapper {

    constructor(
        address _l1BridgeAddress,
        address _checkpointManager,
        address _fxRoot,
        address _fxChildTunnel,
        uint256 _l2ChainId
    )
        public
        MessengerWrapper(_l1BridgeAddress, _l2ChainId)
        FxBaseRootTunnel(_checkpointManager, _fxRoot)
    {
        setFxChildTunnel(_fxChildTunnel);
    }

    /** 
     * @dev Sends a message to the l2MessengerProxy from layer-1
     * @param _calldata The data that l2MessengerProxy will be called with
     * @notice The msg.sender is sent to the L2_PolygonMessengerProxy and checked there.
     */
    function sendCrossDomainMessage(bytes memory _calldata) public override {
        _sendMessageToChild(
            abi.encode(msg.sender, _calldata)
        );
    }

    function verifySender(address l1BridgeCaller, bytes memory /*_data*/) public view override {
        if (isRootConfirmation) return;

        require(l1BridgeCaller == address(this), "L1_PLGN_WPR: Caller must be this contract");
    }

    function _processMessageFromChild(bytes memory message) internal override {
        (bool success,) = l1BridgeAddress.call(message);
        require(success, "L1_PLGN_WPR: Call to L1 Bridge failed");
    }
}

Context size (optional):