Contract Name:
StakingPool
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
pragma experimental ABIEncoderV2;
import "./interfaces/IStakingPool.sol";
import "./libs/StakingErrors.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@whitelist-merkle/Whitelist.sol";
import "solowei/AttoDecimal.sol";
import "solowei/TwoStageOwnable.sol";
contract StakingPool is IStakingPool, ERC20, TwoStageOwnable {
using SafeERC20 for IERC20;
using AttoDecimal for AttoDecimal.Instance;
struct Strategy {
uint256 endBlockNumber;
uint256 perBlockReward;
uint256 startBlockNumber;
}
struct Unstake {
uint256 amount;
uint256 applicableAt;
}
Whitelist public whitelist;
uint256 public constant MIN_STAKE_BALANCE = 10 ** 18;
uint256 public claimingFeePercent;
uint256 public lastUpdateBlockNumber;
uint256 private _feePool;
uint256 private _lockedRewards;
uint256 private _totalStaked;
uint256 private _totalUnstaked;
uint256 private _unstakingTime;
IERC20 private _stakingToken;
AttoDecimal.Instance private _defaultPrice;
AttoDecimal.Instance private _price;
Strategy private _currentStrategy;
Strategy private _nextStrategy;
mapping(address => Unstake) private _unstakes;
constructor(
string memory syntheticTokenName,
string memory syntheticTokenSymbol,
IERC20 stakingToken_,
address owner_,
address whitelistAddress_,
uint256 claimingFeePercent_,
uint256 perBlockReward_,
uint256 startBlockNumber_,
uint256 duration_,
uint256 unstakingTime_,
uint256 defaultPriceMantissa
)
TwoStageOwnable(owner_)
ERC20(syntheticTokenName, syntheticTokenSymbol)
{
_defaultPrice = AttoDecimal.Instance(defaultPriceMantissa);
_stakingToken = stakingToken_;
_setClaimingFeePercent(claimingFeePercent_);
_validateStrategyParameters(perBlockReward_, startBlockNumber_, duration_);
_setUnstakingTime(unstakingTime_);
_setCurrentStrategy(perBlockReward_, startBlockNumber_, startBlockNumber_ + duration_);
lastUpdateBlockNumber = getBlockNumber();
_price = _defaultPrice;
whitelist = Whitelist(whitelistAddress_);
}
/// @notice Cancels unstaking by staking locked for withdrawals tokens
/// @param amount Amount of locked for withdrawals tokens
function cancelUnstaking(uint256 amount) external onlyPositiveAmount(amount) returns (bool success) {
_update();
address caller = msg.sender;
Unstake storage unstake_ = _unstakes[caller];
uint256 unstakingAmount = unstake_.amount;
require(unstakingAmount >= amount, "Not enough unstaked balance");
uint256 stakedAmount = _price.mul(balanceOf(caller)).floor();
require(stakedAmount + amount >= MIN_STAKE_BALANCE, "Stake balance lt min stake");
uint256 synthAmount = AttoDecimal.div(amount, _price).floor();
_mint(caller, synthAmount);
_totalStaked = _totalStaked + amount;
_totalUnstaked = _totalUnstaked - amount;
unstake_.amount = unstakingAmount - amount;
emit Staked(caller, address(0), amount, synthAmount);
emit UnstakingCanceled(caller, amount);
return true;
}
/// @notice Swaps synthetic tokens for staking tokens and immediately sends them to the caller but takes some fee
/// @param amount Staking tokens amount to swap for. Fee will be taked from this amount
/// @return claimedAmount Amount of staking tokens that was been sended to caller
/// @return burnedAmount Amount of synthetic tokens that was burned while swapping
function claim(uint256 amount)
external
onlyPositiveAmount(amount)
returns (uint256 claimedAmount, uint256 burnedAmount)
{
_update();
address caller = msg.sender;
(claimedAmount, burnedAmount) = _calculateUnstake(caller, amount, _price);
uint256 fee = (claimedAmount * claimingFeePercent) / 100;
_burn(caller, burnedAmount);
_totalStaked = _totalStaked - claimedAmount;
claimedAmount = claimedAmount - fee;
_feePool = _feePool + fee;
emit Claimed(caller, amount, claimedAmount, fee, burnedAmount);
_stakingToken.safeTransfer(caller, claimedAmount);
}
/// @notice Withdraws all staking tokens, that have been accumulated in immediately claiming process.
/// Allowed to be called only by the owner
/// @return amount Amount of accumulated and withdrawed tokens
function claimFees() external onlyOwner returns (uint256 amount) {
require(_feePool > 0, "No fees");
amount = _feePool;
_feePool = 0;
emit FeeClaimed(owner(), amount);
_stakingToken.safeTransfer(owner(), amount);
}
/// @notice Creates new strategy. Allowed to be called only by the owner
/// @param perBlockReward_ Reward that should be added to common staking tokens pool every block
/// @param startBlockNumber_ Number of block from which strategy should starts
/// @param duration_ Blocks count for which new strategy should be applied
function createNewStrategy(
uint256 perBlockReward_,
uint256 startBlockNumber_,
uint256 duration_
)
public
onlyOwner
returns (bool success)
{
_update();
_validateStrategyParameters(perBlockReward_, startBlockNumber_, duration_);
uint256 endBlockNumber = startBlockNumber_ + duration_;
Strategy memory strategy = Strategy({
perBlockReward: perBlockReward_,
startBlockNumber: startBlockNumber_,
endBlockNumber: endBlockNumber
});
if (_currentStrategy.startBlockNumber > getBlockNumber()) {
delete _nextStrategy;
emit NextStrategyRemoved();
_currentStrategy = strategy;
emit CurrentStrategyUpdated(perBlockReward_, startBlockNumber_, endBlockNumber);
} else {
emit NextStrategyUpdated(perBlockReward_, startBlockNumber_, endBlockNumber);
_nextStrategy = strategy;
if (_currentStrategy.endBlockNumber > startBlockNumber_) {
_currentStrategy.endBlockNumber = startBlockNumber_;
emit CurrentStrategyUpdated(
_currentStrategy.perBlockReward, _currentStrategy.startBlockNumber, startBlockNumber_
);
}
}
return true;
}
function decreasePool(uint256 amount) external onlyPositiveAmount(amount) onlyOwner returns (bool success) {
_update();
if (_lockedRewards >= amount) {
_lockedRewards = _lockedRewards - amount;
} else {
amount = _lockedRewards;
_lockedRewards = 0;
}
emit PoolDecreased(amount);
_stakingToken.safeTransfer(owner(), amount);
return true;
}
/// @notice Increases pool of rewards
/// @param amount Amount of staking tokens (in wei) that should be added to rewards pool
function increasePool(uint256 amount) external onlyPositiveAmount(amount) returns (bool success) {
_update();
address payer = msg.sender;
_lockedRewards = _lockedRewards + amount;
emit PoolIncreased(payer, amount);
_stakingToken.safeTransferFrom(payer, address(this), amount);
return true;
}
/// @notice Change claiming fee percent. Can be called only by the owner
/// @param feePercent New claiming fee percent
function setClaimingFeePercent(uint256 feePercent) external onlyOwner returns (bool success) {
_setClaimingFeePercent(feePercent);
return true;
}
/// @notice Converts staking tokens to synthetic tokens
/// @param amount Amount of staking tokens to be swapped
/// @param proof Merkle Whitelist inclusion if user wallet proof
/// @return mintedAmount Amount of synthetic tokens that was received at swapping process
function stake(
uint256 amount,
bytes32[] calldata proof
)
external
onlyPositiveAmount(amount)
returns (uint256 mintedAmount)
{
if (!whitelist.isValidProof(proof, keccak256(abi.encodePacked(msg.sender)))) {
revert StakingErrors.StakingPool__StakerNotWhitelisted(msg.sender);
}
return _stake(msg.sender, msg.sender, amount);
}
/// @notice Converts staking tokens to synthetic tokens and sends them to specific account
/// @param account Receiver of synthetic tokens
/// @param amount Amount of staking tokens to be swapped
/// @param proof Merkle Whitelist inclusion if user wallet proof
/// @return mintedAmount Amount of synthetic tokens that was received by specified account at swapping process
function stakeForUser(
address account,
uint256 amount,
bytes32[] calldata proof
)
external
onlyPositiveAmount(amount)
returns (uint256 mintedAmount)
{
if (!whitelist.isValidProof(proof, keccak256(abi.encodePacked(account)))) {
revert StakingErrors.StakingPool__StakerNotWhitelisted(account);
}
return _stake(account, msg.sender, amount);
}
/// @notice Swapes synthetic tokens for staking tokens and locks them for some period
/// @param amount Minimum amount of staking tokens that should be locked after swapping process
/// @return unstakedAmount Amount of staking tokens that was locked
/// @return burnedAmount Amount of synthetic tokens that was burned
function unstake(uint256 amount)
external
onlyPositiveAmount(amount)
returns (uint256 unstakedAmount, uint256 burnedAmount)
{
address caller = msg.sender;
_update();
(unstakedAmount, burnedAmount) = _calculateUnstake(caller, amount, _price);
_burn(caller, burnedAmount);
_totalStaked = _totalStaked - unstakedAmount;
_totalUnstaked = _totalUnstaked + unstakedAmount;
Unstake storage unstake_ = _unstakes[caller];
unstake_.amount = unstake_.amount + unstakedAmount;
unstake_.applicableAt = getTimestamp() + _unstakingTime;
emit Unstaked(caller, amount, unstakedAmount, burnedAmount, unstake_.applicableAt);
}
/// @notice Updates price of synthetic token
/// @dev Automatically has been called on every contract action, that uses or can affect price
function update() external returns (bool success) {
_update();
return true;
}
/// @notice Withdraws unstaked staking tokens
function withdraw() external returns (bool success) {
address caller = msg.sender;
Unstake storage unstake_ = _unstakes[caller];
uint256 amount = unstake_.amount;
require(amount > 0, "Not unstaked");
require(unstake_.applicableAt <= getTimestamp(), "Not released at");
delete _unstakes[caller];
_totalUnstaked = _totalUnstaked - amount;
emit Withdrawed(caller, amount);
_stakingToken.safeTransfer(caller, amount);
return true;
}
/// @notice Change unstaking time. Can be called only by the owner
/// @param unstakingTime_ New unstaking process duration in seconds
function setUnstakingTime(uint256 unstakingTime_) external onlyOwner returns (bool success) {
_setUnstakingTime(unstakingTime_);
return true;
}
function _getStrategyUnlockedRewards(Strategy memory strategy_) internal view returns (uint256 unlocked) {
uint256 currentBlockNumber = getBlockNumber();
if (currentBlockNumber < strategy_.startBlockNumber || currentBlockNumber == lastUpdateBlockNumber) {
return unlocked;
}
uint256 lastRewardedBlockNumber = Math.max(lastUpdateBlockNumber, strategy_.startBlockNumber);
uint256 lastRewardableBlockNumber = Math.min(currentBlockNumber, strategy_.endBlockNumber);
if (lastRewardedBlockNumber < lastRewardableBlockNumber) {
uint256 blocksDiff = lastRewardableBlockNumber - lastRewardedBlockNumber;
unlocked = unlocked + (blocksDiff * strategy_.perBlockReward);
}
}
function _calculateUnstake(
address account,
uint256 amount,
AttoDecimal.Instance memory price_
)
internal
view
returns (uint256 unstakedAmount, uint256 burnedAmount)
{
unstakedAmount = amount;
burnedAmount = AttoDecimal.div(amount, price_).ceil();
uint256 balance = balanceOf(account);
require(burnedAmount > 0, "Too small unstaking amount");
require(balance >= burnedAmount, "Not enough synthetic tokens");
uint256 remainingSyntheticBalance = balance - burnedAmount;
uint256 remainingStake = _price.mul(remainingSyntheticBalance).floor();
if (remainingStake < 10 ** 18) {
burnedAmount = balance;
unstakedAmount = unstakedAmount + remainingStake;
}
}
function _unlockRewardsAndStake() internal {
(uint256 unlocked, bool currentStrategyEnded) = getUnlockedRewards();
if (currentStrategyEnded) {
_currentStrategy = _nextStrategy;
emit NextStrategyRemoved();
if (_currentStrategy.endBlockNumber != 0) {
emit CurrentStrategyUpdated(
_currentStrategy.perBlockReward, _currentStrategy.startBlockNumber, _currentStrategy.endBlockNumber
);
}
delete _nextStrategy;
}
unlocked = Math.min(unlocked, _lockedRewards);
if (unlocked > 0) {
emit RewardsUnlocked(unlocked);
_lockedRewards = _lockedRewards - unlocked;
_totalStaked = _totalStaked + unlocked;
}
lastUpdateBlockNumber = getBlockNumber();
}
function _update() internal {
if (getBlockNumber() <= lastUpdateBlockNumber) return;
_unlockRewardsAndStake();
_updatePrice();
}
function _updatePrice() internal {
uint256 totalStaked_ = _totalStaked;
uint256 totalSupply_ = totalSupply();
if (totalSupply_ == 0) _price = _defaultPrice;
else _price = AttoDecimal.div(totalStaked_, totalSupply_);
emit PriceUpdated(_price.mantissa, AttoDecimal.BASE, AttoDecimal.EXPONENTIATION);
}
function _validateStrategyParameters(
uint256 perBlockReward,
uint256 startBlockNumber,
uint256 duration
)
internal
view
{
require(duration > 0, "Duration is zero");
require(startBlockNumber >= getBlockNumber(), "Start block number lt current");
require(perBlockReward <= 188 * 10 ** 18, "Per block reward overflow");
}
function _setClaimingFeePercent(uint256 feePercent) internal {
require(feePercent >= 0 && feePercent <= 100, "Invalid fee percent");
claimingFeePercent = feePercent;
emit ClaimingFeePercentUpdated(feePercent);
}
function _setUnstakingTime(uint256 unstakingTime_) internal {
_unstakingTime = unstakingTime_;
emit UnstakingTimeUpdated(unstakingTime_);
}
function _beforeTokenTransfer(address from, address to, uint256 amount) internal override {
_update();
string memory errorText = "Minimal stake balance should be more or equal to 1 token";
if (from != address(0)) {
uint256 fromNewBalance = _price.mul(balanceOf(from) - amount).floor();
require(fromNewBalance >= MIN_STAKE_BALANCE || fromNewBalance == 0, errorText);
}
if (to != address(0)) {
require(_price.mul(balanceOf(to) + amount).floor() >= MIN_STAKE_BALANCE, errorText);
}
}
function _setCurrentStrategy(uint256 perBlockReward_, uint256 startBlockNumber_, uint256 endBlockNumber_) private {
_currentStrategy = Strategy({
perBlockReward: perBlockReward_,
startBlockNumber: startBlockNumber_,
endBlockNumber: endBlockNumber_
});
emit CurrentStrategyUpdated(perBlockReward_, startBlockNumber_, endBlockNumber_);
}
function _stake(address staker, address payer, uint256 amount) private returns (uint256 mintedAmount) {
_update();
mintedAmount = AttoDecimal.div(amount, _price).floor();
require(mintedAmount > 0, "Too small staking amount");
_mint(staker, mintedAmount);
_totalStaked = _totalStaked + amount;
emit Staked(staker, payer, amount, mintedAmount);
_stakingToken.safeTransferFrom(payer, address(this), amount);
}
modifier onlyPositiveAmount(uint256 amount) {
require(amount > 0, "Amount is not positive");
_;
}
function getBlockNumber() internal view virtual returns (uint256) {
return block.number;
}
function getTimestamp() internal view virtual returns (uint256) {
return block.timestamp;
}
function feePool() public view returns (uint256) {
return _feePool;
}
function lockedRewards() public view returns (uint256) {
return _lockedRewards;
}
function totalStaked() public view returns (uint256) {
return _totalStaked;
}
function totalUnstaked() public view returns (uint256) {
return _totalUnstaked;
}
function stakingToken() public view returns (IERC20) {
return _stakingToken;
}
function unstakingTime() public view returns (uint256) {
return _unstakingTime;
}
function currentStrategy() public view returns (Strategy memory) {
return _currentStrategy;
}
function nextStrategy() public view returns (Strategy memory) {
return _nextStrategy;
}
function getUnstake(address account) public view returns (Unstake memory result) {
result = _unstakes[account];
}
function defaultPrice() external view returns (uint256 mantissa, uint256 base, uint256 exponentiation) {
return _defaultPrice.toTuple();
}
function getCurrentStrategyUnlockedRewards() public view returns (uint256 unlocked) {
unlocked = _getStrategyUnlockedRewards(_currentStrategy);
}
function getUnlockedRewards() public view returns (uint256 unlocked, bool currentStrategyEnded) {
unlocked = _getStrategyUnlockedRewards(_currentStrategy);
if (getBlockNumber() >= _currentStrategy.endBlockNumber) {
currentStrategyEnded = true;
if (_nextStrategy.endBlockNumber != 0) unlocked = unlocked + _getStrategyUnlockedRewards(_nextStrategy);
}
}
/// @notice Calculates price of synthetic token for current block
function price() public view returns (uint256 mantissa, uint256 base, uint256 exponentiation) {
(uint256 unlocked,) = getUnlockedRewards();
uint256 totalStaked_ = _totalStaked;
uint256 totalSupply_ = totalSupply();
AttoDecimal.Instance memory result = _defaultPrice;
if (totalSupply_ > 0) result = AttoDecimal.div(totalStaked_ + unlocked, totalSupply_);
return result.toTuple();
}
/// @notice Returns last updated price of synthetic token
function priceStored() public view returns (uint256 mantissa, uint256 base, uint256 exponentiation) {
return _price.toTuple();
}
/// @notice Calculates expected result of swapping synthetic tokens for staking tokens
/// @param account Account that wants to swap
/// @param amount Minimum amount of staking tokens that should be received at swapping process
/// @return unstakedAmount Amount of staking tokens that should be received at swapping process
/// @return burnedAmount Amount of synthetic tokens that should be burned at swapping process
function calculateUnstake(
address account,
uint256 amount
)
public
view
returns (uint256 unstakedAmount, uint256 burnedAmount)
{
(uint256 mantissa_,,) = price();
return _calculateUnstake(account, amount, AttoDecimal.Instance(mantissa_));
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "../StakingPool.sol";
interface IStakingPool {
function cancelUnstaking(uint256 amount) external returns (bool success);
function claim(uint256 amount) external returns (uint256 claimedAmount, uint256 burnedAmount);
function claimFees() external returns (uint256 amount);
function createNewStrategy(
uint256 perBlockReward_,
uint256 startBlockNumber_,
uint256 duration_
)
external
returns (bool success);
function decreasePool(uint256 amount) external returns (bool success);
function increasePool(uint256 amount) external returns (bool success);
function setClaimingFeePercent(uint256 feePercent) external returns (bool success);
function stake(uint256 amount, bytes32[] calldata proof) external returns (uint256 mintedAmount);
function stakeForUser(
address account,
uint256 amount,
bytes32[] calldata proof
)
external
returns (uint256 mintedAmount);
function unstake(uint256 amount) external returns (uint256 unstakedAmount, uint256 burnedAmount);
function update() external returns (bool success);
function withdraw() external returns (bool success);
function setUnstakingTime(uint256 unstakingTime_) external returns (bool success);
function feePool() external view returns (uint256);
function lockedRewards() external view returns (uint256);
function totalStaked() external view returns (uint256);
function totalUnstaked() external view returns (uint256);
function stakingToken() external view returns (IERC20);
function unstakingTime() external view returns (uint256);
function currentStrategy() external view returns (StakingPool.Strategy memory);
function nextStrategy() external view returns (StakingPool.Strategy memory);
function getUnstake(address account) external view returns (StakingPool.Unstake memory result);
function defaultPrice() external view returns (uint256 mantissa, uint256 base, uint256 exponentiation);
function getCurrentStrategyUnlockedRewards() external view returns (uint256 unlocked);
function getUnlockedRewards() external view returns (uint256 unlocked, bool currentStrategyEnded);
function price() external view returns (uint256 mantissa, uint256 base, uint256 exponentiation);
function priceStored() external view returns (uint256 mantissa, uint256 base, uint256 exponentiation);
function calculateUnstake(
address account,
uint256 amount
)
external
view
returns (uint256 unstakedAmount, uint256 burnedAmount);
event Claimed(
address indexed account, uint256 requestedAmount, uint256 claimedAmount, uint256 feeAmount, uint256 burnedAmount
);
event ClaimingFeePercentUpdated(uint256 feePercent);
event CurrentStrategyUpdated(uint256 perBlockReward, uint256 startBlockNumber, uint256 endBlockNumber);
event FeeClaimed(address indexed receiver, uint256 amount);
event Migrated(
address indexed account, uint256 omTokenV1StakeAmount, uint256 stakingPoolV1Reward, uint256 stakingPoolV2Reward
);
event NextStrategyUpdated(uint256 perBlockReward, uint256 startBlockNumber, uint256 endBlockNumber);
event UnstakingTimeUpdated(uint256 unstakingTime);
event NextStrategyRemoved();
event PoolDecreased(uint256 amount);
event PoolIncreased(address indexed payer, uint256 amount);
event PriceUpdated(uint256 mantissa, uint256 base, uint256 exponentiation);
event RewardsUnlocked(uint256 amount);
event Staked(address indexed account, address indexed payer, uint256 stakedAmount, uint256 mintedAmount);
event Unstaked(
address indexed account,
uint256 requestedAmount,
uint256 unstakedAmount,
uint256 burnedAmount,
uint256 applicableAt
);
event UnstakingCanceled(address indexed account, uint256 amount);
event Withdrawed(address indexed account, uint256 amount);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
library StakingErrors {
error StakingPool__StakerNotWhitelisted(address staker);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(
address from,
address to,
uint256 amount
) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.19;
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "./interfaces/IWhitelistMerkle.sol";
import "./libs/Errors.sol";
contract Whitelist is IWhitelistMerkle, Ownable {
bytes32 public rootHash;
constructor(bytes32 _rootHash) {
rootHash = _rootHash;
}
function isValidProof(bytes32[] calldata proof, bytes32 leaf) external view returns (bool) {
return MerkleProof.verifyCalldata(proof, rootHash, leaf);
}
function setNewRootHash(bytes32 _rootHash) external onlyOwner {
rootHash = _rootHash;
}
function renounceOwnership() public override onlyOwner {
revert("Can't renounceOwnership here");
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.6;
library AttoDecimal {
struct Instance {
uint256 mantissa;
}
uint256 internal constant BASE = 10;
uint256 internal constant EXPONENTIATION = 18;
uint256 internal constant ONE_MANTISSA = BASE**EXPONENTIATION;
uint256 internal constant ONE_TENTH_MANTISSA = ONE_MANTISSA / 10;
uint256 internal constant HALF_MANTISSA = ONE_MANTISSA / 2;
uint256 internal constant SQUARED_ONE_MANTISSA = ONE_MANTISSA * ONE_MANTISSA;
uint256 internal constant MAX_INTEGER = type(uint256).max / ONE_MANTISSA;
function maximum() internal pure returns (Instance memory) {
return Instance({mantissa: type(uint256).max});
}
function zero() internal pure returns (Instance memory) {
return Instance({mantissa: 0});
}
function one() internal pure returns (Instance memory) {
return Instance({mantissa: ONE_MANTISSA});
}
function convert(uint256 integer) internal pure returns (Instance memory) {
return Instance({mantissa: integer * ONE_MANTISSA});
}
function compare(Instance memory a, Instance memory b) internal pure returns (int8) {
if (a.mantissa < b.mantissa) return -1;
return int8(a.mantissa > b.mantissa ? 1 : 0);
}
function compare(Instance memory a, uint256 b) internal pure returns (int8) {
return compare(a, convert(b));
}
function add(Instance memory a, Instance memory b) internal pure returns (Instance memory) {
return Instance({mantissa: a.mantissa + b.mantissa});
}
function add(Instance memory a, uint256 b) internal pure returns (Instance memory) {
return Instance({mantissa: a.mantissa + b * ONE_MANTISSA});
}
function sub(Instance memory a, Instance memory b) internal pure returns (Instance memory) {
return Instance({mantissa: a.mantissa - b.mantissa});
}
function sub(Instance memory a, uint256 b) internal pure returns (Instance memory) {
return Instance({mantissa: a.mantissa - b * ONE_MANTISSA});
}
function sub(uint256 a, Instance memory b) internal pure returns (Instance memory) {
return Instance({mantissa: a * ONE_MANTISSA - b.mantissa});
}
function mul(Instance memory a, Instance memory b) internal pure returns (Instance memory) {
return Instance({mantissa: a.mantissa * b.mantissa / ONE_MANTISSA});
}
function mul(Instance memory a, uint256 b) internal pure returns (Instance memory) {
return Instance({mantissa: a.mantissa * b});
}
function div(Instance memory a, Instance memory b) internal pure returns (Instance memory) {
return Instance({mantissa: a.mantissa * ONE_MANTISSA / b.mantissa});
}
function div(Instance memory a, uint256 b) internal pure returns (Instance memory) {
return Instance({mantissa: a.mantissa / b});
}
function div(uint256 a, Instance memory b) internal pure returns (Instance memory) {
return Instance({mantissa: a * SQUARED_ONE_MANTISSA / b.mantissa});
}
function div(uint256 a, uint256 b) internal pure returns (Instance memory) {
return Instance({mantissa: a * ONE_MANTISSA / b});
}
function idiv(Instance memory a, Instance memory b) internal pure returns (uint256) {
return a.mantissa / b.mantissa;
}
function idiv(Instance memory a, uint256 b) internal pure returns (uint256) {
return a.mantissa / (b * ONE_MANTISSA);
}
function idiv(uint256 a, Instance memory b) internal pure returns (uint256) {
return a * ONE_MANTISSA / b.mantissa;
}
function mod(Instance memory a, Instance memory b) internal pure returns (Instance memory) {
return Instance({mantissa: a.mantissa % b.mantissa});
}
function mod(Instance memory a, uint256 b) internal pure returns (Instance memory) {
return Instance({mantissa: a.mantissa % (b * ONE_MANTISSA)});
}
function mod(uint256 a, Instance memory b) internal pure returns (Instance memory) {
if (a > MAX_INTEGER) return Instance({mantissa: a % b.mantissa * ONE_MANTISSA % b.mantissa});
return Instance({mantissa: a * ONE_MANTISSA % b.mantissa});
}
function floor(Instance memory a) internal pure returns (uint256) {
return a.mantissa / ONE_MANTISSA;
}
function ceil(Instance memory a) internal pure returns (uint256) {
return (a.mantissa / ONE_MANTISSA) + (a.mantissa % ONE_MANTISSA > 0 ? 1 : 0);
}
function round(Instance memory a) internal pure returns (uint256) {
return (a.mantissa / ONE_MANTISSA) + ((a.mantissa / ONE_TENTH_MANTISSA) % 10 >= 5 ? 1 : 0);
}
function eq(Instance memory a, Instance memory b) internal pure returns (bool) {
return a.mantissa == b.mantissa;
}
function eq(Instance memory a, uint256 b) internal pure returns (bool) {
if (b > MAX_INTEGER) return false;
return a.mantissa == b * ONE_MANTISSA;
}
function gt(Instance memory a, Instance memory b) internal pure returns (bool) {
return a.mantissa > b.mantissa;
}
function gt(Instance memory a, uint256 b) internal pure returns (bool) {
if (b > MAX_INTEGER) return false;
return a.mantissa > b * ONE_MANTISSA;
}
function gte(Instance memory a, Instance memory b) internal pure returns (bool) {
return a.mantissa >= b.mantissa;
}
function gte(Instance memory a, uint256 b) internal pure returns (bool) {
if (b > MAX_INTEGER) return false;
return a.mantissa >= b * ONE_MANTISSA;
}
function lt(Instance memory a, Instance memory b) internal pure returns (bool) {
return a.mantissa < b.mantissa;
}
function lt(Instance memory a, uint256 b) internal pure returns (bool) {
if (b > MAX_INTEGER) return true;
return a.mantissa < b * ONE_MANTISSA;
}
function lte(Instance memory a, Instance memory b) internal pure returns (bool) {
return a.mantissa <= b.mantissa;
}
function lte(Instance memory a, uint256 b) internal pure returns (bool) {
if (b > MAX_INTEGER) return true;
return a.mantissa <= b * ONE_MANTISSA;
}
function isInteger(Instance memory a) internal pure returns (bool) {
return a.mantissa % ONE_MANTISSA == 0;
}
function isPositive(Instance memory a) internal pure returns (bool) {
return a.mantissa > 0;
}
function isZero(Instance memory a) internal pure returns (bool) {
return a.mantissa == 0;
}
function sum(Instance[] memory array) internal pure returns (Instance memory result) {
uint256 length = array.length;
for (uint256 index = 0; index < length; index++) result = add(result, array[index]);
}
function toTuple(Instance memory a)
internal
pure
returns (
uint256 mantissa,
uint256 base,
uint256 exponentiation
)
{
return (a.mantissa, BASE, EXPONENTIATION);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.6;
abstract contract TwoStageOwnable {
address private _nominatedOwner;
address private _owner;
function nominatedOwner() public view returns (address) {
return _nominatedOwner;
}
function owner() public view returns (address) {
return _owner;
}
event OwnerChanged(address indexed newOwner);
event OwnerNominated(address indexed nominatedOwner);
constructor(address owner_) {
require(owner_ != address(0), "Owner is zero");
_setOwner(owner_);
}
function acceptOwnership() external returns (bool success) {
require(msg.sender == _nominatedOwner, "Not nominated to ownership");
_setOwner(_nominatedOwner);
return true;
}
function nominateNewOwner(address owner_) external onlyOwner returns (bool success) {
_nominateNewOwner(owner_);
return true;
}
modifier onlyOwner {
require(msg.sender == _owner, "Not owner");
_;
}
function _nominateNewOwner(address owner_) internal {
if (_nominatedOwner == owner_) return;
require(_owner != owner_, "Already owner");
_nominatedOwner = owner_;
emit OwnerNominated(owner_);
}
function _setOwner(address newOwner) internal {
if (_owner == newOwner) return;
_owner = newOwner;
_nominatedOwner = address(0);
emit OwnerChanged(newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface IWhitelistMerkle {
function isValidProof(bytes32[] calldata proof, bytes32 leaf) external view returns (bool);
function setNewRootHash(bytes32 _rootHash) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
library Errors {
error MerkleWhitelist__AddressNotWhitelisted(address wallet);
}