ETH Price: $3,857.12 (+0.25%)

Contract Diff Checker

Contract Name:
Relics

Contract Source Code:

File 1 of 1 : Relics

/**
    When an ancient vault long hidden was unlocked, a secret emerged: 1,000 alien skulls, each from a distinct ancient species that had been concealed for millennia. Empowered by ERC404 alien technology, this collection unveils the diverse and enigmatic alien races that once flourished across the cosmos. Explore the vast array of alien legacies and secure a fragment of celestial heritage. Your expedition into the lineage of extraterrestrial ancestors begins today. Which legacy will you claim?
    
    https://twitter.com/AlienRelics404
    https://t.me/alienrelics
    https://alienrelics.online
*/
pragma solidity ^0.8.20;

interface IUniswapV2Factory {
    event PairCreated(
        address indexed token0,
        address indexed token1,
        address pair,
        uint256
    );

    function feeTo() external view returns (address);

    function feeToSetter() external view returns (address);

    function getPair(address tokenA, address tokenB)
    external
    view
    returns (address pair);

    function allPairs(uint256) external view returns (address pair);

    function allPairsLength() external view returns (uint256);

    function createPair(address tokenA, address tokenB)
    external
    returns (address pair);

    function setFeeTo(address) external;

    function setFeeToSetter(address) external;
}

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
        // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

        // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

        // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

        ///////////////////////////////////////////////
        // 512 by 256 division.
        ///////////////////////////////////////////////

        // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
            // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

            // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

        // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
        // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
            // Divide denominator by twos.
                denominator := div(denominator, twos)

            // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

            // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

        // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
        // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
        // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
        // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}


/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
        /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

abstract contract Ownable {
    event OwnershipTransferred(address indexed user, address indexed newOwner);

    error Unauthorized();
    error InvalidOwner();

    address public owner;

    modifier onlyOwner() virtual {
        if (msg.sender != owner) revert Unauthorized();

        _;
    }

    constructor(address _owner) {
        if (_owner == address(0)) revert InvalidOwner();

        owner = _owner;

        emit OwnershipTransferred(address(0), _owner);
    }

    function transferOwnership(address _owner) public virtual onlyOwner {
        if (_owner == address(0)) revert InvalidOwner();

        owner = _owner;

        emit OwnershipTransferred(msg.sender, _owner);
    }

    function revokeOwnership() public virtual onlyOwner {
        owner = address(0);

        emit OwnershipTransferred(msg.sender, address(0));
    }
}

abstract contract ERC721Receiver {
    function onERC721Received(
        address,
        address,
        uint256,
        bytes calldata
    ) external virtual returns (bytes4) {
        return ERC721Receiver.onERC721Received.selector;
    }
}

/// @notice ERC404
///         A gas-efficient, mixed ERC20 / ERC721 implementation
///         with native liquidity and fractionalization.
///
///         This is an experimental standard designed to integrate
///         with pre-existing ERC20 / ERC721 support as smoothly as
///         possible.
///
/// @dev    In order to support full functionality of ERC20 and ERC721
///         supply assumptions are made that slightly constraint usage.
///         Ensure decimals are sufficiently large (standard 18 recommended)
///         as ids are effectively encoded in the lowest range of amounts.
///
///         NFTs are spent on ERC20 functions in a FILO queue, this is by
///         design.
///
abstract contract ERC404 is Ownable {
    // Events
    event ERC20Transfer(
        address indexed from,
        address indexed to,
        uint256 amount
    );
    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 amount
    );
    event Transfer(
        address indexed from,
        address indexed to,
        uint256 indexed id
    );
    event ERC721Approval(
        address indexed owner,
        address indexed spender,
        uint256 indexed id
    );
    event ApprovalForAll(
        address indexed owner,
        address indexed operator,
        bool approved
    );

    // Errors
    error NotFound();
    error AlreadyExists();
    error InvalidRecipient();
    error InvalidSender();
    error UnsafeRecipient();

    // Metadata
    /// @dev Token name
    string public name;

    /// @dev Token symbol
    string public symbol;

    /// @dev Decimals for fractional representation
    uint8 public immutable decimals;

    /// @dev Total supply in fractionalized representation
    uint256 public immutable totalSupply;

    /// @dev Current mint counter, monotonically increasing to ensure accurate ownership
    uint256 public minted;

    // Mappings
    /// @dev Balance of user in fractional representation
    mapping(address => uint256) public balanceOf;

    /// @dev Allowance of user in fractional representation
    mapping(address => mapping(address => uint256)) public allowance;

    /// @dev Approval in native representaion
    mapping(uint256 => address) public getApproved;

    /// @dev Approval for all in native representation
    mapping(address => mapping(address => bool)) public isApprovedForAll;

    /// @dev Owner of id in native representation
    mapping(uint256 => address) internal _ownerOf;

    /// @dev Array of owned ids in native representation
    mapping(address => uint256[]) internal _owned;

    /// @dev Tracks indices for the _owned mapping
    mapping(uint256 => uint256) internal _ownedIndex;

    /// @dev Addresses whitelisted from minting / burning for gas savings (pairs, routers, etc)
    mapping(address => bool) public whitelist;

    address public immutable uniswapV2Pair;

    // Constructor
    constructor(
        string memory _name,
        string memory _symbol,
        uint8 _decimals,
        uint256 _totalNativeSupply,
        address _owner
    ) Ownable(_owner) {
        name = _name;
        symbol = _symbol;
        decimals = _decimals;
        totalSupply = _totalNativeSupply * (10 ** decimals);

        uniswapV2Pair = IUniswapV2Factory(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f).createPair(
            address(this),
            0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2
        );
    }

    /// @notice Initialization function to set pairs / etc
    ///         saving gas by avoiding mint / burn on unnecessary targets
    function setWhitelist(address target, bool state) public onlyOwner {
        whitelist[target] = state;
    }

    /// @notice Function to find owner of a given native token
    function ownerOf(uint256 id) public view virtual returns (address owner) {
        owner = _ownerOf[id];

        if (owner == address(0)) {
            revert NotFound();
        }
    }

    /// @notice tokenURI must be implemented by child contract
    function tokenURI(uint256 id) public view virtual returns (string memory);

    /// @notice Function for token approvals
    /// @dev This function assumes id / native if amount less than or equal to current max id
    function approve(
        address spender,
        uint256 amountOrId
    ) public virtual returns (bool) {
        if (amountOrId <= minted && amountOrId > 0) {
            address owner = _ownerOf[amountOrId];

            if (msg.sender != owner && !isApprovedForAll[owner][msg.sender]) {
                revert Unauthorized();
            }

            getApproved[amountOrId] = spender;

            emit Approval(owner, spender, amountOrId);
        } else {
            allowance[msg.sender][spender] = amountOrId;

            emit Approval(msg.sender, spender, amountOrId);
        }

        return true;
    }

    /// @notice Function native approvals
    function setApprovalForAll(address operator, bool approved) public virtual {
        isApprovedForAll[msg.sender][operator] = approved;

        emit ApprovalForAll(msg.sender, operator, approved);
    }

    /// @notice Function for mixed transfers
    /// @dev This function assumes id / native if amount less than or equal to current max id
    function transferFrom(
        address from,
        address to,
        uint256 amountOrId
    ) public virtual {
        if (amountOrId <= minted) {
            if (from != _ownerOf[amountOrId]) {
                revert InvalidSender();
            }

            if (to == address(0)) {
                revert InvalidRecipient();
            }

            if (
                msg.sender != from &&
                !isApprovedForAll[from][msg.sender] &&
                msg.sender != getApproved[amountOrId]
            ) {
                revert Unauthorized();
            }

            balanceOf[from] -= _getUnit();

            unchecked {
                balanceOf[to] += _getUnit();
            }

            _ownerOf[amountOrId] = to;
            delete getApproved[amountOrId];

            // update _owned for sender
            uint256 updatedId = _owned[from][_owned[from].length - 1];
            _owned[from][_ownedIndex[amountOrId]] = updatedId;
            // pop
            _owned[from].pop();
            // update index for the moved id
            _ownedIndex[updatedId] = _ownedIndex[amountOrId];
            // push token to to owned
            _owned[to].push(amountOrId);
            // update index for to owned
            _ownedIndex[amountOrId] = _owned[to].length - 1;

            emit Transfer(from, to, amountOrId);
            emit ERC20Transfer(from, to, _getUnit());
        } else {
            uint256 allowed = allowance[from][msg.sender];

            if (allowed != type(uint256).max)
                allowance[from][msg.sender] = allowed - amountOrId;

            _transfer(from, to, amountOrId);
        }
    }

    /// @notice Function for fractional transfers
    function transfer(
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        return _transfer(msg.sender, to, amount);
    }

    /// @notice Function for native transfers with contract support
    function safeTransferFrom(
        address from,
        address to,
        uint256 id
    ) public virtual {
        transferFrom(from, to, id);

        if (
            to.code.length != 0 &&
            ERC721Receiver(to).onERC721Received(msg.sender, from, id, "") !=
            ERC721Receiver.onERC721Received.selector
        ) {
            revert UnsafeRecipient();
        }
    }

    /// @notice Function for native transfers with contract support and callback data
    function safeTransferFrom(
        address from,
        address to,
        uint256 id,
        bytes calldata data
    ) public virtual {
        transferFrom(from, to, id);

        if (
            to.code.length != 0 &&
            ERC721Receiver(to).onERC721Received(msg.sender, from, id, data) !=
            ERC721Receiver.onERC721Received.selector
        ) {
            revert UnsafeRecipient();
        }
    }

    /// @notice Internal function for fractional transfers
    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal returns (bool) {
        uint256 unit = _getUnit();
        uint256 balanceBeforeSender = balanceOf[from];
        uint256 balanceBeforeReceiver = balanceOf[to];

        balanceOf[from] -= amount;

        unchecked {
            balanceOf[to] += amount;
        }

        // Skip burn for certain addresses to save gas
        if (!whitelist[from]) {
            uint256 tokens_to_burn = (balanceBeforeSender / unit) -
                (balanceOf[from] / unit);
            for (uint256 i = 0; i < tokens_to_burn; i++) {
                _burn(from);
            }
        }

        // Skip minting for certain addresses to save gas
        if (!whitelist[to]) {
            uint256 tokens_to_mint = (balanceOf[to] / unit) -
                (balanceBeforeReceiver / unit);
            for (uint256 i = 0; i < tokens_to_mint; i++) {
                _mint(to);
            }
        }

        emit ERC20Transfer(from, to, amount);
        return true;
    }

    // Internal utility logic
    function _getUnit() internal view returns (uint256) {
        return 10 ** decimals;
    }

    function _mint(address to) internal virtual {
        if (to == address(0)) {
            revert InvalidRecipient();
        }

        unchecked {
            minted++;
        }

        uint256 id = minted;

        if (_ownerOf[id] != address(0)) {
            revert AlreadyExists();
        }

        _ownerOf[id] = to;
        _owned[to].push(id);
        _ownedIndex[id] = _owned[to].length - 1;

        emit Transfer(address(0), to, id);
    }

    function _burn(address from) internal virtual {
        if (from == address(0)) {
            revert InvalidSender();
        }

        uint256 id = _owned[from][_owned[from].length - 1];
        _owned[from].pop();
        delete _ownedIndex[id];
        delete _ownerOf[id];
        delete getApproved[id];

        emit Transfer(from, address(0), id);
    }

    function _setNameSymbol(
        string memory _name,
        string memory _symbol
    ) internal {
        name = _name;
        symbol = _symbol;
    }
}

contract Relics is ERC404 {
    string public baseTokenURI;

    constructor(
        address _owner
    ) ERC404("Alien Relics", "RELICS", 18, 1000, _owner) {
        balanceOf[_owner] = 1000 * 10 ** 18;
        baseTokenURI = "https://raw.githubusercontent.com/relics404/relics404/main/metadata/";
    }

    function setTokenURI(string memory _tokenURI) public onlyOwner {
        baseTokenURI = _tokenURI;
    }

    function setNameSymbol(
        string memory _name,
        string memory _symbol
    ) public onlyOwner {
        _setNameSymbol(_name, _symbol);
    }

    function tokenURI(uint256 id) public view override returns (string memory) {
        return bytes(baseTokenURI).length > 0 ? string.concat(baseTokenURI, Strings.toString(id), ".json") : "";
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):