ETH Price: $2,639.25 (-1.49%)

Contract Diff Checker

Contract Name:
LiquidityPot

Contract Source Code:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import './Game.sol';
import './interfaces/ISoup.sol';
import './interfaces/IOracle.sol';
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import '@openzeppelin/contracts/security/ReentrancyGuard.sol';
import '@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol';

// Join us: https://soup.game

/**
 * @title LiquidityPot
 * @dev Manages staking and distribution of rewards for liquidity provider (LP) tokens. It facilitates
 * the staking of LP tokens, allowing users to earn rewards derived from bridge fees collected and
 * distributed by the OsakCollector. This contract retrieves these fees and streams them to stakers
 * over a defined reward period, initially set to 7 days.
 *
 * Functionalities include:
 * - Staking and withdrawing LP tokens.
 * - Claiming rewards based on the user's stake percentage.
 * - Automatic retrieval and distribution of fees collected by OsakCollector.
 * - Configurable parameters for reward and epoch durations
 *
 * Rewards Calculation:
 * - Dynamic reward updates based on the collected fees and the current total stake.
 * - Secure transfer and calculation mechanisms to ensure accurate reward allocation.
 *
 */

contract LiquidityPot is Ownable, ReentrancyGuard {
  uint256 public constant PRECISION = 10**20;

  uint256 public rewardDuration = 7 days;
  uint256 public nextRewardRetrieval;
  uint256 public rewardsPerSecond;
  uint256 public claimableBalance;
  uint256 public rewardsPerStake;
  uint256 public rewardEndTime;
  uint256 public totalStaked;
  uint256 public updatedAt;

  Game public game;
  ISoup public soup;
  IOracle public oracle;
  IERC20 public stakingToken;

  mapping(address => uint256) unlockAt;
  address public usdAddress = 0xdAC17F958D2ee523a2206206994597C13D831ec7;
  IUniswapV2Router02 public router;
  address public wethAddress;

  struct Stake {
    uint256 excluded;
    uint256 amount;
  }

  struct UserInfo {
    uint256 stakingTokenBalance;
    uint256 userAllocatedAmount;
    uint256 userStakedAmount;
    uint256 rewardsPerSecond;
    uint256 nextRewardRetrieval;
    uint256 rewardsPerStake;
    uint256 rewardEndTime;
    uint256 lockDuration;
    uint256 totalStaked;
    uint256 ethPerToken;
    uint256 totalSupply;
    uint256 ethPerUSD;
    uint256 unlockAt;
    uint256 ethPerLP;
  }

  mapping(address => Stake) public stakes;

  event Staked(address indexed user, uint256 amount);
  event Withdrawn(address indexed user, uint256 amount);
  event RewardClaimed(address indexed user, uint256 reward);
  event AddedToLiquidityPot(address indexed user, uint256 lpAmount, uint256 soupAmount, uint256 ethAmount);
  event EpochDurationUpdated(uint256 duration);
  event RewardDurationUpdated(uint256 duration);
  event RewardsUpdated(uint256 rewardsPerSecond);

  /**
  * @dev Constructor for LPFarm contract initializing staking and reward tokens, and osakCollector fees interface.
  * @param _lpToken Address of the staking token contract
  * @param _soup Address of the reward token contract
  * @param _game Address of the game variables contract
  */
  constructor(IERC20 _lpToken, ISoup _soup, Game _game, IOracle _oracle) {
    game = _game;
    soup = _soup;
    oracle = _oracle;
    stakingToken = _lpToken;
    wethAddress = oracle.WETH();
    router = IUniswapV2Router02(oracle.routerV2());
  }

  function setUSD(address usd) external onlyOwner {
    usdAddress = usd;
  }

    /**
    * @dev Returns user info, including staking balance and rewards info.
    * @param user The address of the user to retrieve info for
    * @return UserInfo struct containing detailed user information
    */
  function getInfo(address user) public view returns (UserInfo memory) {
    uint256 userAllocatedAmount;
    uint256 stakingTokenBalance;
    uint256 userStakedAmount;
    uint256 unlocksAt;

    if (user != address(0)) {
      stakingTokenBalance = stakingToken.balanceOf(user);
      userAllocatedAmount = allocatedAmount(user);
      userStakedAmount = stakes[user].amount;
      unlocksAt = unlockAt[user];
    }

    return UserInfo({
      ethPerLP: oracle.ethPerToken(address(stakingToken)),
      ethPerToken: oracle.ethPerToken(address(soup)),
      ethPerUSD: oracle.ethPerToken(usdAddress),
      lockDuration: game.get('lpLockDuration'),
      userAllocatedAmount: userAllocatedAmount,
      stakingTokenBalance: stakingTokenBalance,
      nextRewardRetrieval: nextRewardRetrieval,
      userStakedAmount: userStakedAmount,
      rewardsPerSecond: rewardsPerSecond,
      rewardsPerStake: rewardsPerStake,
      totalSupply: soup.totalSupply(),
      rewardEndTime: rewardEndTime,
      totalStaked: totalStaked,
      unlockAt: unlocksAt
    });
  }

  /**
  * @dev Sets the reward duration.
  * @param _rewardDuration The new reward duration in seconds
  */
  function setRewardDuration(uint256 _rewardDuration) external onlyOwner {
    require(_rewardDuration <= 2 weeks, "Reward duration must be less than 2 weeks");
    require(_rewardDuration > 1 days, "Reward duration must be more than 1 day");

    rewardDuration = _rewardDuration;
    emit RewardDurationUpdated(_rewardDuration);
  }

  /**
  * @dev Stakes a specified amount of tokens.
  * @param amount The amount of tokens to stake
  */
  function stake(uint256 amount) external {
    stakeFor(msg.sender, amount);
  }

  /**
   * @dev Stakes a specified amount of tokens on behalf of another address.
   * @param user The address on whose behalf to stake
   * @param amount The amount of tokens to stake
   */
  function stakeFor(address user, uint256 amount) public nonReentrant {
    require(amount > 0, "Cannot stake 0");
    require(game.get('publicDepositsEnabled') > 0, "deposits disabled");
    unlockAt[user] = block.timestamp + game.get('lpLockDuration');

    // Always taking from the msg.sender.
    // stakeFor is intended for a zap function, in which the stakingTokens
    // would come from the zap contract.
    stakingToken.transferFrom(msg.sender, address(this), amount);

    bool isFirstStake = totalStaked == 0;
    _claim(user);

    totalStaked += amount;
    stakes[user].amount += amount;

    if (isFirstStake) _retrieveAndReward();
    emit Staked(user, amount);
  }

  /**
   * @notice Internal function to add liquidity to the Uniswap pool
   * @param soupAmount The amount of soup tokens to add
   * @param recipient The recipient address for LP tokens
   */
  function _addLiquidity(uint256 soupAmount, address recipient) internal {
    // Approve the router to spend the specified amount of soup tokens
    soup.approve(address(router), soupAmount);

    // Add liquidity to the Uniswap pool
    // Slippage is taken into account in the functions that call this one.
    router.addLiquidityETH{ value: address(this).balance }(
      address(soup),               // Token address
      soupAmount,                 // Amount of tokens to add
      0,                         // Minimum amount of tokens to add (slippage protection)
      0,                        // Minimum amount of ETH to add (slippage protection)
      recipient,               // Recipient address for LP tokens
      block.timestamp + 1800  // Deadline: 30 minutes from the current block time
    );
  }

  /**
   * @notice Compounds user's rewards into LP and stakes
   */
  function compound() external payable {
    unlockAt[msg.sender] = block.timestamp + game.get('lpLockDuration');

    uint256 underlyingReward = allocatedUnderlyingAmount(msg.sender) / PRECISION;
		require(underlyingReward > 0, 'nothing to compound');

    if (block.timestamp >= nextRewardRetrieval)
      _retrieveAndReward();
    else updateRewards();

    claimableBalance -= underlyingReward;
    stakes[msg.sender].excluded = rewardsPerStake;

    address[] memory path = new address[](2);
    path[0] = wethAddress; path[1] = address(soup);
    uint256[] memory amounts = router.getAmountsOut(msg.value, path);
		uint256 reward = soup.soupToFragment(underlyingReward);

    require(amounts[1] > (reward * liquiditySlippage())/100,
      'Supplied ETH should be worth the reward amount after slippage is applied');

    uint256 lpBalanceWas = stakingToken.balanceOf(address(this));
    _addLiquidity(reward, address(this));

    uint256 lpBalance = stakingToken.balanceOf(address(this));
    uint256 lpAmount = lpBalance - lpBalanceWas;

    totalStaked += lpAmount;
    stakes[msg.sender].amount += lpAmount;

    emit AddedToLiquidityPot(msg.sender, lpBalance, reward, msg.value);

    soup.debase();
  }

  /**
  * @dev Withdraws staked tokens.
  * @param amount The amount of tokens to withdraw
  */
  function withdraw(uint256 amount) external nonReentrant {
    require(amount <= stakes[msg.sender].amount, "Withdraw amount exceeds balance");
    require(unlockAt[msg.sender] <= block.timestamp, "tokens not yet unlocked");
    unlockAt[msg.sender] = block.timestamp + game.get('lpLockDuration');

    _claim(msg.sender);
    totalStaked -= amount;
    stakes[msg.sender].amount -= amount;
    stakingToken.transfer(msg.sender, amount);
    emit Withdrawn(msg.sender, amount);
  }

  /**
  * @dev Claims the accumulated rewards for the caller.
  */
  function claim() external nonReentrant {
    _claim(msg.sender);
  }

  /**
  * @dev Internal function to handle the claiming process for rewards.
  * @param user The user who is claiming their rewards
  */
  function _claim(address user) internal {
    uint256 reward = allocatedUnderlyingAmount(user) / PRECISION;
    unlockAt[user] = block.timestamp + game.get('lpLockDuration');

    if (block.timestamp >= nextRewardRetrieval && totalStaked > 0)
      _retrieveAndReward();
    else updateRewards();

    claimableBalance -= reward;

    stakes[user].excluded = rewardsPerStake;
    if (reward > 0) {
      soup.transferUnderlying(user, reward);
      emit RewardClaimed(user, soup.soupToFragment(reward));
    }
    soup.debase();
  }

  /**
  * @dev External function to trigger the reward retrieval and distribution.
  */
  function retrieveAndReward() external nonReentrant {
    require(totalStaked > 0, "Can not update rewards until users have staked");
    if (rewardsPerSecond != 0)
      require(block.timestamp >= nextRewardRetrieval, "Cannot update rewards yet");

    _retrieveAndReward();
  }

  /**
   * @dev Internal function to update the rewards for the entire pool.
   */
  function updateRewards() internal {
    if (totalStaked == 0) return;
    uint256 currentAllocation = currentAllocationPeriod() * rewardsPerSecond;
    rewardsPerStake += currentAllocation / totalStaked;
    claimableBalance += currentAllocation / PRECISION;
    updatedAt = block.timestamp;
    emit RewardsUpdated(rewardsPerSecond);
  }

  /**
   * @notice Get the permitted liquidity slippage
   * @return The permitted liquidity slippage
   */
  function liquiditySlippage() public view returns (uint256) {
    return game.get('liquiditySlippage');
  }

  /**
   * @dev Internal function to retrieve external fees and update the reward rate.
   */
  function _retrieveAndReward() internal {
    nextRewardRetrieval = block.timestamp + rewardDuration;

    try soup.requestRewards(game.get('lpRewardBips')) { } catch { }
    uint256 balance = soup.balanceOfUnderlying(address(this));

    updateRewards();

    if (balance <= claimableBalance) rewardsPerSecond = 0;
    else rewardsPerSecond = PRECISION * (balance - claimableBalance) / rewardDuration;

    rewardEndTime = rewardDuration + block.timestamp;
  }

  function allocatedAmount(address user) public view returns (uint256) {
    return soup.soupToFragment(allocatedUnderlyingAmount(user) / PRECISION);
  }

  /**
   * @dev Calculates the allocated amount of rewards for a user.
   * @param user The user for whom to calculate the allocated rewards
   * @return The amount of allocated rewards for the user
   */
  function allocatedUnderlyingAmount(address user) public view returns (uint256) {
    if (totalStaked == 0) return 0;
    uint256 currentAllocation = currentAllocationPeriod() * rewardsPerSecond * stakes[user].amount / totalStaked;
    uint256 previousAllocation = stakes[user].amount * (rewardsPerStake - stakes[user].excluded);

    return (previousAllocation + currentAllocation);
  }

  /**
  * @dev Calculates the current allocation period based on the last update time and current time.
  * @return The number of seconds in the current allocation period
  */
  function currentAllocationPeriod() public view returns (uint256) {
    if (rewardEndTime <= updatedAt) return 0;

    return Math.min(rewardEndTime, block.timestamp) - updatedAt;
  }

  /**
   * @dev Allows a user to withdraw some or all of their staked LP tokens without claiming
   * any pending rewards. This respects the `unlockAt[user]` lock time, meaning the user
   * cannot withdraw if still locked. The user forfeits any unclaimed rewards as a result.
   *
   * @param amount The amount of LP tokens to withdraw from the user's stake.
   */
  function emergencyWithdraw(uint256 amount) external nonReentrant {
    // Enforce that user's tokens are actually unlocked
    require(unlockAt[msg.sender] <= block.timestamp, "tokens not yet unlocked");

    // Validate the user has enough staked to withdraw
    uint256 stakedBalance = stakes[msg.sender].amount;
    require(amount > 0 && amount <= stakedBalance, "Invalid withdraw amount");

    totalStaked -= amount;
    stakes[msg.sender].amount = stakedBalance - amount;

    // Reset user's reward exclusion to the current rewardsPerStake,
    // effectively discarding any unclaimed rewards up to this point.
    stakes[msg.sender].excluded = rewardsPerStake;

    // Transfer the LP tokens back to the user
    stakingToken.transfer(msg.sender, amount);

    // Emit a Withdraw event, or a dedicated "EmergencyWithdraw" event if desired
    emit Withdrawn(msg.sender, amount);
  }

  receive() external payable {}
  fallback() external payable {}
}

pragma solidity ^0.8.22;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface ISoup is IERC20 {
  function debase() external;
  function burn(uint256 amount) external;
  function freeze(uint256 amount) external;
  function mint(address to, uint256 amount) external;
  function deflationRate() external returns (int128);
  function requestRewards(uint256 rewardBips) external;
  function totalLiquidSupply() external view returns (uint256);
  function accountForDefrostedDeflation(uint256 leftover) external;
  function unfreeze(address to, uint256 amount) external returns (bool);
  function soupToFragment(uint256 soup) external view returns (uint256);
  function fragmentToSoup(uint256 value) external view returns (uint256);
  function balanceOfUnderlying(address who) external view returns (uint256);
  function transferUnderlying(address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IOracle {
  function ethPerToken(address token) external view returns (uint256);
  function routerV2() external view returns (address);
  function WETH() external view returns (address);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;

import '@openzeppelin/contracts/access/Ownable.sol';
import "abdk-libraries-solidity/ABDKMath64x64.sol";

/**
 * @title Game
 * @dev Serves as a central configuration contract for the Soup ecosystem, storing adjustable variables 
 * that can be updated or permanently renounced. These variables control parameters such as batch sizes,
 * reward rates, freezer settings, rental prices, and time durations. Ownership is restricted, ensuring 
 * only the contract owner can make changes or renounce them.
 *
 * Key Features:
 * - Variable storage: Keeps track of integer values under string identifiers, adjustable by the owner.
 * - Renounce mechanism: Once renounced, a variable can no longer be changed.
 * - Freezer and rental setups: Defines separate configurations (e.g., capacity, basePrice, expoRate) 
 *   and multiple rental price tiers.
 * - Event logging: Emits events on every update or renouncement for transparent off-chain monitoring.
 */

contract Game is Ownable {
  using ABDKMath64x64 for int128;

	// Struct to hold the value and renounce status of a variable
	struct Variable {
		uint256 value;
		bool isRenounced;
	}

	struct FreezerConfig {
		int128 expoRate;
    uint256 capacity;
    uint256 basePrice;
    uint256 _nextMintCost;
	}

	// Mapping to store the variables with string identifiers
	mapping(string => Variable) public variables;

	FreezerConfig[] public freezers;

	uint256[] public rentalPrices;

	// Event to log changes to variables
	event VariableChanged(string indexed name, uint256 newValue);

	// Event to log renouncement of variables
	event VariableRenounced(string indexed name);

  event FreezerChanged(uint256 index, uint256 capacity, uint256 basePrice, uint256 expoRateBips);
  event RentalPriceChanged(uint256 index, uint256 soupPerSecond);

  constructor() {
		//batch sizes divided by 100_000
    set('minBatchSize', 50); // 50 => 0.05% of the circulating liquid supply
    set('maxBatchSize', 250); // 250 => 0.25% of the circulating supply

    set('lpRewardBips', 2700); // 27% of remaining rewards
    set('sssRewardBips', 300); // 3% of remaining rewards

    set('lpLockDuration', 24 hours);
    set('sssLockDuration', 24 hours);

    set('freezerCapacity', 320);
    set('publicDepositsEnabled', 0);
    set('batchDefrostTime', 3 days);
    set('freezerGracePeriod', 7 days);
    set('rewardRetrievalDuration', 7 days);

    set('liquiditySlippage', 95);

    // rental price % in bips
    setRentalPrice(0, 30);
    setRentalPrice(1, 50);
    setRentalPrice(2, 100);

    setFreezer(0, 10, 1 ether, 50);
    setFreezer(1, 25, 2 ether, 75);
    setFreezer(2, 50, 3 ether, 100);
	}

	// Modifier to check if a variable is renounced
	modifier notRenounced(string memory name) {
		require(!variables[name].isRenounced, "Variable has been renounced");
		_;
	}

  function freezerCount() public view returns (uint256) {
    return freezers.length;
  }

  function rentalPriceCount() public view returns (uint256) {
    return rentalPrices.length;
  }

  function getRentalPrice(uint256 index) public view returns (uint256){
    require(index < rentalPrices.length, "Invalid rental price index");
    return rentalPrices[index];
  }

	// Function to create or change a rental price option
	function setRentalPrice(uint256 index, uint256 soupPerSecond) public notRenounced('rentalPrices') onlyOwner {
    require(index <= rentalPrices.length, "Invalid index");
    if (rentalPrices.length == index) rentalPrices.push();

    rentalPrices[index] = soupPerSecond;
		emit RentalPriceChanged(index, soupPerSecond);
	}

  // Function to get a freezer configuration
  function getFreezer(uint256 freezerIndex) public view returns (FreezerConfig memory) {
    require(freezerIndex < freezers.length, "Invalid freezer size");
    return freezers[freezerIndex];
  }

	// Function to create or change a freezer configuration
	function setFreezer(uint256 index, uint256 capacity, uint256 basePrice, uint256 expoRateBips) public notRenounced('freezers') onlyOwner {
    require(index <= freezers.length, "Invalid index");
    if (freezers.length == index) freezers.push();

    freezers[index].capacity = capacity;
    freezers[index].basePrice = basePrice;

    int128 one = ABDKMath64x64.fromUInt(1);
    freezers[index].expoRate = one.add(ABDKMath64x64.divu(expoRateBips, 10000));

		emit FreezerChanged(index, capacity, basePrice, expoRateBips);
	}

	// Function to set the value of a variable
	function set(string memory name, uint256 newValue) public notRenounced(name) onlyOwner {
		variables[name].value = newValue;
		emit VariableChanged(name, newValue);
	}

	// Function to renounce a variable
	function renounce(string memory name) external notRenounced(name) onlyOwner {
		variables[name].isRenounced = true;
		emit VariableRenounced(name);
	}

	// Function to get the value of a variable
	function get(string memory name) external view returns (uint256) {
		return variables[name].value;
	}

	// Function to check if a variable is renounced
	function isRenounced(string memory name) external view returns (bool) {
		return variables[name].isRenounced;
	}
}

// SPDX-License-Identifier: BSD-4-Clause
/*
 * ABDK Math 64.64 Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
 * Author: Mikhail Vladimirov <[email protected]>
 */
pragma solidity ^0.8.0;

/**
 * Smart contract library of mathematical functions operating with signed
 * 64.64-bit fixed point numbers.  Signed 64.64-bit fixed point number is
 * basically a simple fraction whose numerator is signed 128-bit integer and
 * denominator is 2^64.  As long as denominator is always the same, there is no
 * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
 * represented by int128 type holding only the numerator.
 */
library ABDKMath64x64 {
  /*
   * Minimum value signed 64.64-bit fixed point number may have. 
   */
  int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;

  /*
   * Maximum value signed 64.64-bit fixed point number may have. 
   */
  int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

  /**
   * Convert signed 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromInt (int256 x) internal pure returns (int128) {
    unchecked {
      require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
      return int128 (x << 64);
    }
  }

  /**
   * Convert signed 64.64 fixed point number into signed 64-bit integer number
   * rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64-bit integer number
   */
  function toInt (int128 x) internal pure returns (int64) {
    unchecked {
      return int64 (x >> 64);
    }
  }

  /**
   * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
   * number.  Revert on overflow.
   *
   * @param x unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function fromUInt (uint256 x) internal pure returns (int128) {
    unchecked {
      require (x <= 0x7FFFFFFFFFFFFFFF);
      return int128 (int256 (x << 64));
    }
  }

  /**
   * Convert signed 64.64 fixed point number into unsigned 64-bit integer
   * number rounding down.  Revert on underflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return unsigned 64-bit integer number
   */
  function toUInt (int128 x) internal pure returns (uint64) {
    unchecked {
      require (x >= 0);
      return uint64 (uint128 (x >> 64));
    }
  }

  /**
   * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
   * number rounding down.  Revert on overflow.
   *
   * @param x signed 128.128-bin fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function from128x128 (int256 x) internal pure returns (int128) {
    unchecked {
      int256 result = x >> 64;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Convert signed 64.64 fixed point number into signed 128.128 fixed point
   * number.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 128.128 fixed point number
   */
  function to128x128 (int128 x) internal pure returns (int256) {
    unchecked {
      return int256 (x) << 64;
    }
  }

  /**
   * Calculate x + y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function add (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) + y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x - y.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sub (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) - y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x * y rounding down.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function mul (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 result = int256(x) * y >> 64;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
   * number and y is signed 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y signed 256-bit integer number
   * @return signed 256-bit integer number
   */
  function muli (int128 x, int256 y) internal pure returns (int256) {
    unchecked {
      if (x == MIN_64x64) {
        require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
          y <= 0x1000000000000000000000000000000000000000000000000);
        return -y << 63;
      } else {
        bool negativeResult = false;
        if (x < 0) {
          x = -x;
          negativeResult = true;
        }
        if (y < 0) {
          y = -y; // We rely on overflow behavior here
          negativeResult = !negativeResult;
        }
        uint256 absoluteResult = mulu (x, uint256 (y));
        if (negativeResult) {
          require (absoluteResult <=
            0x8000000000000000000000000000000000000000000000000000000000000000);
          return -int256 (absoluteResult); // We rely on overflow behavior here
        } else {
          require (absoluteResult <=
            0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
          return int256 (absoluteResult);
        }
      }
    }
  }

  /**
   * Calculate x * y rounding down, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64 fixed point number
   * @param y unsigned 256-bit integer number
   * @return unsigned 256-bit integer number
   */
  function mulu (int128 x, uint256 y) internal pure returns (uint256) {
    unchecked {
      if (y == 0) return 0;

      require (x >= 0);

      uint256 lo = (uint256 (int256 (x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
      uint256 hi = uint256 (int256 (x)) * (y >> 128);

      require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      hi <<= 64;

      require (hi <=
        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
      return hi + lo;
    }
  }

  /**
   * Calculate x / y rounding towards zero.  Revert on overflow or when y is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function div (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);
      int256 result = (int256 (x) << 64) / y;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are signed 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x signed 256-bit integer number
   * @param y signed 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divi (int256 x, int256 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);

      bool negativeResult = false;
      if (x < 0) {
        x = -x; // We rely on overflow behavior here
        negativeResult = true;
      }
      if (y < 0) {
        y = -y; // We rely on overflow behavior here
        negativeResult = !negativeResult;
      }
      uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
      if (negativeResult) {
        require (absoluteResult <= 0x80000000000000000000000000000000);
        return -int128 (absoluteResult); // We rely on overflow behavior here
      } else {
        require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
        return int128 (absoluteResult); // We rely on overflow behavior here
      }
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return signed 64.64-bit fixed point number
   */
  function divu (uint256 x, uint256 y) internal pure returns (int128) {
    unchecked {
      require (y != 0);
      uint128 result = divuu (x, y);
      require (result <= uint128 (MAX_64x64));
      return int128 (result);
    }
  }

  /**
   * Calculate -x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function neg (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != MIN_64x64);
      return -x;
    }
  }

  /**
   * Calculate |x|.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function abs (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != MIN_64x64);
      return x < 0 ? -x : x;
    }
  }

  /**
   * Calculate 1 / x rounding towards zero.  Revert on overflow or when x is
   * zero.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function inv (int128 x) internal pure returns (int128) {
    unchecked {
      require (x != 0);
      int256 result = int256 (0x100000000000000000000000000000000) / x;
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function avg (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      return int128 ((int256 (x) + int256 (y)) >> 1);
    }
  }

  /**
   * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
   * Revert on overflow or in case x * y is negative.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function gavg (int128 x, int128 y) internal pure returns (int128) {
    unchecked {
      int256 m = int256 (x) * int256 (y);
      require (m >= 0);
      require (m <
          0x4000000000000000000000000000000000000000000000000000000000000000);
      return int128 (sqrtu (uint256 (m)));
    }
  }

  /**
   * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
   * and y is unsigned 256-bit integer number.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @param y uint256 value
   * @return signed 64.64-bit fixed point number
   */
  function pow (int128 x, uint256 y) internal pure returns (int128) {
    unchecked {
      bool negative = x < 0 && y & 1 == 1;

      uint256 absX = uint128 (x < 0 ? -x : x);
      uint256 absResult;
      absResult = 0x100000000000000000000000000000000;

      if (absX <= 0x10000000000000000) {
        absX <<= 63;
        while (y != 0) {
          if (y & 0x1 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x2 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x4 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          if (y & 0x8 != 0) {
            absResult = absResult * absX >> 127;
          }
          absX = absX * absX >> 127;

          y >>= 4;
        }

        absResult >>= 64;
      } else {
        uint256 absXShift = 63;
        if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; }
        if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; }
        if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; }
        if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; }
        if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; }
        if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; }

        uint256 resultShift = 0;
        while (y != 0) {
          require (absXShift < 64);

          if (y & 0x1 != 0) {
            absResult = absResult * absX >> 127;
            resultShift += absXShift;
            if (absResult > 0x100000000000000000000000000000000) {
              absResult >>= 1;
              resultShift += 1;
            }
          }
          absX = absX * absX >> 127;
          absXShift <<= 1;
          if (absX >= 0x100000000000000000000000000000000) {
              absX >>= 1;
              absXShift += 1;
          }

          y >>= 1;
        }

        require (resultShift < 64);
        absResult >>= 64 - resultShift;
      }
      int256 result = negative ? -int256 (absResult) : int256 (absResult);
      require (result >= MIN_64x64 && result <= MAX_64x64);
      return int128 (result);
    }
  }

  /**
   * Calculate sqrt (x) rounding down.  Revert if x < 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function sqrt (int128 x) internal pure returns (int128) {
    unchecked {
      require (x >= 0);
      return int128 (sqrtu (uint256 (int256 (x)) << 64));
    }
  }

  /**
   * Calculate binary logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function log_2 (int128 x) internal pure returns (int128) {
    unchecked {
      require (x > 0);

      int256 msb = 0;
      int256 xc = x;
      if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
      if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
      if (xc >= 0x10000) { xc >>= 16; msb += 16; }
      if (xc >= 0x100) { xc >>= 8; msb += 8; }
      if (xc >= 0x10) { xc >>= 4; msb += 4; }
      if (xc >= 0x4) { xc >>= 2; msb += 2; }
      if (xc >= 0x2) msb += 1;  // No need to shift xc anymore

      int256 result = msb - 64 << 64;
      uint256 ux = uint256 (int256 (x)) << uint256 (127 - msb);
      for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
        ux *= ux;
        uint256 b = ux >> 255;
        ux >>= 127 + b;
        result += bit * int256 (b);
      }

      return int128 (result);
    }
  }

  /**
   * Calculate natural logarithm of x.  Revert if x <= 0.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function ln (int128 x) internal pure returns (int128) {
    unchecked {
      require (x > 0);

      return int128 (int256 (
          uint256 (int256 (log_2 (x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128));
    }
  }

  /**
   * Calculate binary exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp_2 (int128 x) internal pure returns (int128) {
    unchecked {
      require (x < 0x400000000000000000); // Overflow

      if (x < -0x400000000000000000) return 0; // Underflow

      uint256 result = 0x80000000000000000000000000000000;

      if (x & 0x8000000000000000 > 0)
        result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
      if (x & 0x4000000000000000 > 0)
        result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
      if (x & 0x2000000000000000 > 0)
        result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
      if (x & 0x1000000000000000 > 0)
        result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
      if (x & 0x800000000000000 > 0)
        result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
      if (x & 0x400000000000000 > 0)
        result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
      if (x & 0x200000000000000 > 0)
        result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
      if (x & 0x100000000000000 > 0)
        result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
      if (x & 0x80000000000000 > 0)
        result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
      if (x & 0x40000000000000 > 0)
        result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
      if (x & 0x20000000000000 > 0)
        result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
      if (x & 0x10000000000000 > 0)
        result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
      if (x & 0x8000000000000 > 0)
        result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
      if (x & 0x4000000000000 > 0)
        result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
      if (x & 0x2000000000000 > 0)
        result = result * 0x1000162E525EE054754457D5995292026 >> 128;
      if (x & 0x1000000000000 > 0)
        result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
      if (x & 0x800000000000 > 0)
        result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
      if (x & 0x400000000000 > 0)
        result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
      if (x & 0x200000000000 > 0)
        result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
      if (x & 0x100000000000 > 0)
        result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
      if (x & 0x80000000000 > 0)
        result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
      if (x & 0x40000000000 > 0)
        result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
      if (x & 0x20000000000 > 0)
        result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
      if (x & 0x10000000000 > 0)
        result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
      if (x & 0x8000000000 > 0)
        result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
      if (x & 0x4000000000 > 0)
        result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
      if (x & 0x2000000000 > 0)
        result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
      if (x & 0x1000000000 > 0)
        result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
      if (x & 0x800000000 > 0)
        result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
      if (x & 0x400000000 > 0)
        result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
      if (x & 0x200000000 > 0)
        result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
      if (x & 0x100000000 > 0)
        result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
      if (x & 0x80000000 > 0)
        result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
      if (x & 0x40000000 > 0)
        result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
      if (x & 0x20000000 > 0)
        result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
      if (x & 0x10000000 > 0)
        result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
      if (x & 0x8000000 > 0)
        result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
      if (x & 0x4000000 > 0)
        result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
      if (x & 0x2000000 > 0)
        result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
      if (x & 0x1000000 > 0)
        result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
      if (x & 0x800000 > 0)
        result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
      if (x & 0x400000 > 0)
        result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
      if (x & 0x200000 > 0)
        result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
      if (x & 0x100000 > 0)
        result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
      if (x & 0x80000 > 0)
        result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
      if (x & 0x40000 > 0)
        result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
      if (x & 0x20000 > 0)
        result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
      if (x & 0x10000 > 0)
        result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
      if (x & 0x8000 > 0)
        result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
      if (x & 0x4000 > 0)
        result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
      if (x & 0x2000 > 0)
        result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
      if (x & 0x1000 > 0)
        result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
      if (x & 0x800 > 0)
        result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
      if (x & 0x400 > 0)
        result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
      if (x & 0x200 > 0)
        result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
      if (x & 0x100 > 0)
        result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
      if (x & 0x80 > 0)
        result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
      if (x & 0x40 > 0)
        result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
      if (x & 0x20 > 0)
        result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
      if (x & 0x10 > 0)
        result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
      if (x & 0x8 > 0)
        result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
      if (x & 0x4 > 0)
        result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
      if (x & 0x2 > 0)
        result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
      if (x & 0x1 > 0)
        result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;

      result >>= uint256 (int256 (63 - (x >> 64)));
      require (result <= uint256 (int256 (MAX_64x64)));

      return int128 (int256 (result));
    }
  }

  /**
   * Calculate natural exponent of x.  Revert on overflow.
   *
   * @param x signed 64.64-bit fixed point number
   * @return signed 64.64-bit fixed point number
   */
  function exp (int128 x) internal pure returns (int128) {
    unchecked {
      require (x < 0x400000000000000000); // Overflow

      if (x < -0x400000000000000000) return 0; // Underflow

      return exp_2 (
          int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
    }
  }

  /**
   * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
   * integer numbers.  Revert on overflow or when y is zero.
   *
   * @param x unsigned 256-bit integer number
   * @param y unsigned 256-bit integer number
   * @return unsigned 64.64-bit fixed point number
   */
  function divuu (uint256 x, uint256 y) private pure returns (uint128) {
    unchecked {
      require (y != 0);

      uint256 result;

      if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
        result = (x << 64) / y;
      else {
        uint256 msb = 192;
        uint256 xc = x >> 192;
        if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
        if (xc >= 0x10000) { xc >>= 16; msb += 16; }
        if (xc >= 0x100) { xc >>= 8; msb += 8; }
        if (xc >= 0x10) { xc >>= 4; msb += 4; }
        if (xc >= 0x4) { xc >>= 2; msb += 2; }
        if (xc >= 0x2) msb += 1;  // No need to shift xc anymore

        result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
        require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

        uint256 hi = result * (y >> 128);
        uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);

        uint256 xh = x >> 192;
        uint256 xl = x << 64;

        if (xl < lo) xh -= 1;
        xl -= lo; // We rely on overflow behavior here
        lo = hi << 128;
        if (xl < lo) xh -= 1;
        xl -= lo; // We rely on overflow behavior here

        result += xh == hi >> 128 ? xl / y : 1;
      }

      require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      return uint128 (result);
    }
  }

  /**
   * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
   * number.
   *
   * @param x unsigned 256-bit integer number
   * @return unsigned 128-bit integer number
   */
  function sqrtu (uint256 x) private pure returns (uint128) {
    unchecked {
      if (x == 0) return 0;
      else {
        uint256 xx = x;
        uint256 r = 1;
        if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; }
        if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; }
        if (xx >= 0x100000000) { xx >>= 32; r <<= 16; }
        if (xx >= 0x10000) { xx >>= 16; r <<= 8; }
        if (xx >= 0x100) { xx >>= 8; r <<= 4; }
        if (xx >= 0x10) { xx >>= 4; r <<= 2; }
        if (xx >= 0x4) { r <<= 1; }
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1; // Seven iterations should be enough
        uint256 r1 = x / r;
        return uint128 (r < r1 ? r : r1);
      }
    }
  }
}

pragma solidity >=0.6.2;

import './IUniswapV2Router01.sol';

interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}

pragma solidity >=0.6.2;

interface IUniswapV2Router01 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);
    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETHWithPermit(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountToken, uint amountETH);
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);
    function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);

    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):