Contract Source Code:
File 1 of 1 : PEEPO
/**
https://t.me/PeepoCoinErc
https://www.x.com/PeepoTokenErc20
https://www.peepoeth.com
*/
// SPDX-License-Identifier: MIT
// File: @openzeppelin/contracts/utils/Context.sol
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// File: @openzeppelin/contracts/access/Ownable.sol
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File: PEEPO.sol
pragma solidity ^0.8.20;
contract PEEPO is Ownable {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
string private constant _name = "Peepo";
string private constant _symbol = "PEEPO";
uint8 private constant _decimals = 18;
uint256 private constant _totalSupply = 420_690_000_000_000 * 10**_decimals;
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
constructor() Ownable(msg.sender) {
_balances[msg.sender] = _totalSupply;
emit Transfer(address(0), msg.sender, _totalSupply);
}
function name() external view virtual returns (string memory) {
return _name;
}
function symbol() external view virtual returns (string memory) {
return _symbol;
}
function decimals() external view virtual returns (uint8) {
return _decimals;
}
function totalSupply() external view virtual returns (uint256) {
return _totalSupply;
}
function balanceOf(address account)
external
view
virtual
returns (uint256)
{
return _balances[account];
}
function transfer(address to, uint256 amount)
external
virtual
returns (bool)
{
address owner = msg.sender;
require(owner != to, "ERC20: transfer to address cannot be owner");
_transfer(owner, to, amount);
return true;
}
function allowance(address owner, address spender)
public
view
virtual
returns (uint256)
{
return _allowances[owner][spender];
}
function approve(address spender, uint256 amount)
external
virtual
returns (bool)
{
address owner = msg.sender;
_approve(owner, spender, amount);
return true;
}
function transferFrom(
address from,
address to,
uint256 amount
) external virtual returns (bool) {
address spender = msg.sender;
require(
spender != from,
"ERC20: transferFrom spender can not be the from"
);
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
function increaseAllowance(address spender, uint256 addedValue)
external
virtual
returns (bool)
{
address owner = msg.sender;
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
function decreaseAllowance(address spender, uint256 subtractedValue)
external
virtual
returns (bool)
{
address owner = msg.sender;
uint256 currentAllowance = allowance(owner, spender);
require(
currentAllowance >= subtractedValue,
"ERC20: decreased allowance below zero"
);
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
function _transfer(
address from,
address to,
uint256 amount
) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
require(amount > 0, "ERC20: transfer amount must be greater than zero");
uint256 fromBalance = _balances[from];
require(
fromBalance >= amount,
"ERC20: transfer amount exceeds balance"
);
unchecked {
_balances[from] = fromBalance - amount;
}
_balances[to] += amount;
emit Transfer(from, to, amount);
}
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(
currentAllowance >= amount,
"ERC20: insufficient allowance"
);
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
}