ETH Price: $3,593.33 (+4.07%)

Contract Diff Checker

Contract Name:
CErc20Delegator

Contract Source Code:

pragma solidity ^0.5.16;

/**
  * @title Careful Math
  * @author Compound
  * @notice Derived from OpenZeppelin's SafeMath library
  *         https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
  */
contract CarefulMath {

    /**
     * @dev Possible error codes that we can return
     */
    enum MathError {
        NO_ERROR,
        DIVISION_BY_ZERO,
        INTEGER_OVERFLOW,
        INTEGER_UNDERFLOW
    }

    /**
    * @dev Multiplies two numbers, returns an error on overflow.
    */
    function mulUInt(uint a, uint b) internal pure returns (MathError, uint) {
        if (a == 0) {
            return (MathError.NO_ERROR, 0);
        }

        uint c = a * b;

        if (c / a != b) {
            return (MathError.INTEGER_OVERFLOW, 0);
        } else {
            return (MathError.NO_ERROR, c);
        }
    }

    /**
    * @dev Integer division of two numbers, truncating the quotient.
    */
    function divUInt(uint a, uint b) internal pure returns (MathError, uint) {
        if (b == 0) {
            return (MathError.DIVISION_BY_ZERO, 0);
        }

        return (MathError.NO_ERROR, a / b);
    }

    /**
    * @dev Subtracts two numbers, returns an error on overflow (i.e. if subtrahend is greater than minuend).
    */
    function subUInt(uint a, uint b) internal pure returns (MathError, uint) {
        if (b <= a) {
            return (MathError.NO_ERROR, a - b);
        } else {
            return (MathError.INTEGER_UNDERFLOW, 0);
        }
    }

    /**
    * @dev Adds two numbers, returns an error on overflow.
    */
    function addUInt(uint a, uint b) internal pure returns (MathError, uint) {
        uint c = a + b;

        if (c >= a) {
            return (MathError.NO_ERROR, c);
        } else {
            return (MathError.INTEGER_OVERFLOW, 0);
        }
    }

    /**
    * @dev add a and b and then subtract c
    */
    function addThenSubUInt(uint a, uint b, uint c) internal pure returns (MathError, uint) {
        (MathError err0, uint sum) = addUInt(a, b);

        if (err0 != MathError.NO_ERROR) {
            return (err0, 0);
        }

        return subUInt(sum, c);
    }
}

pragma solidity ^0.5.16;

import "./CToken.sol";

interface CompLike {
  function delegate(address delegatee) external;
}

/**
 * @title Compound's CErc20 Contract
 * @notice CTokens which wrap an EIP-20 underlying
 * @dev This contract should not to be deployed on its own; instead, deploy `CErc20Delegator` (proxy contract) and `CErc20Delegate` (logic/implementation contract).
 * @author Compound
 */
contract CErc20 is CToken, CErc20Interface {
    /**
     * @notice Initialize the new money market
     * @param underlying_ The address of the underlying asset
     * @param comptroller_ The address of the Comptroller
     * @param interestRateModel_ The address of the interest rate model
     * @param name_ ERC-20 name of this token
     * @param symbol_ ERC-20 symbol of this token
     */
    function initialize(address underlying_,
                        ComptrollerInterface comptroller_,
                        InterestRateModel interestRateModel_,
                        string memory name_,
                        string memory symbol_,
                        uint256 reserveFactorMantissa_,
                        uint256 adminFeeMantissa_) public {
        // CToken initialize does the bulk of the work
        uint256 initialExchangeRateMantissa_ = 0.2e18;
        uint8 decimals_ = EIP20Interface(underlying_).decimals();
        super.initialize(comptroller_, interestRateModel_, initialExchangeRateMantissa_, name_, symbol_, decimals_, reserveFactorMantissa_, adminFeeMantissa_);

        // Set underlying and sanity check it
        underlying = underlying_;
        EIP20Interface(underlying).totalSupply();
    }

    /*** User Interface ***/

    /**
     * @notice Sender supplies assets into the market and receives cTokens in exchange
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param mintAmount The amount of the underlying asset to supply
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function mint(uint mintAmount) external returns (uint) {
        (uint err,) = mintInternal(mintAmount);
        return err;
    }

    /**
     * @notice Sender redeems cTokens in exchange for the underlying asset
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param redeemTokens The number of cTokens to redeem into underlying
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeem(uint redeemTokens) external returns (uint) {
        return redeemInternal(redeemTokens);
    }

    /**
     * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param redeemAmount The amount of underlying to redeem
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeemUnderlying(uint redeemAmount) external returns (uint) {
        return redeemUnderlyingInternal(redeemAmount);
    }

    /**
      * @notice Sender borrows assets from the protocol to their own address
      * @param borrowAmount The amount of the underlying asset to borrow
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function borrow(uint borrowAmount) external returns (uint) {
        return borrowInternal(borrowAmount);
    }

    /**
     * @notice Sender repays their own borrow
     * @param repayAmount The amount to repay
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function repayBorrow(uint repayAmount) external returns (uint) {
        (uint err,) = repayBorrowInternal(repayAmount);
        return err;
    }

    /**
     * @notice Sender repays a borrow belonging to borrower
     * @param borrower the account with the debt being payed off
     * @param repayAmount The amount to repay
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function repayBorrowBehalf(address borrower, uint repayAmount) external returns (uint) {
        (uint err,) = repayBorrowBehalfInternal(borrower, repayAmount);
        return err;
    }

    /**
     * @notice The sender liquidates the borrowers collateral.
     *  The collateral seized is transferred to the liquidator.
     * @param borrower The borrower of this cToken to be liquidated
     * @param repayAmount The amount of the underlying borrowed asset to repay
     * @param cTokenCollateral The market in which to seize collateral from the borrower
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function liquidateBorrow(address borrower, uint repayAmount, CTokenInterface cTokenCollateral) external returns (uint) {
        (uint err,) = liquidateBorrowInternal(borrower, repayAmount, cTokenCollateral);
        return err;
    }

    /*** Safe Token ***/

    /**
     * @notice Gets balance of this contract in terms of the underlying
     * @dev This excludes the value of the current message, if any
     * @return The quantity of underlying tokens owned by this contract
     */
    function getCashPrior() internal view returns (uint) {
        EIP20Interface token = EIP20Interface(underlying);
        return token.balanceOf(address(this));
    }

    /**
     * @dev Similar to EIP20 transfer, except it handles a False result from `transferFrom` and reverts in that case.
     *      This will revert due to insufficient balance or insufficient allowance.
     *      This function returns the actual amount received,
     *      which may be less than `amount` if there is a fee attached to the transfer.
     *
     *      Note: This wrapper safely handles non-standard ERC-20 tokens that do not return a value.
     *            See here: https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
     */
    function doTransferIn(address from, uint amount) internal returns (uint) {
        uint balanceBefore = EIP20Interface(underlying).balanceOf(address(this));
        _callOptionalReturn(abi.encodeWithSelector(EIP20NonStandardInterface(underlying).transferFrom.selector, from, address(this), amount), "TOKEN_TRANSFER_IN_FAILED");

        // Calculate the amount that was *actually* transferred
        uint balanceAfter = EIP20Interface(underlying).balanceOf(address(this));
        require(balanceAfter >= balanceBefore, "TOKEN_TRANSFER_IN_OVERFLOW");
        return balanceAfter - balanceBefore;   // underflow already checked above, just subtract
    }

    /**
     * @dev Similar to EIP20 transfer, except it handles a False success from `transfer` and returns an explanatory
     *      error code rather than reverting. If caller has not called checked protocol's balance, this may revert due to
     *      insufficient cash held in this contract. If caller has checked protocol's balance prior to this call, and verified
     *      it is >= amount, this should not revert in normal conditions.
     *
     *      Note: This wrapper safely handles non-standard ERC-20 tokens that do not return a value.
     *            See here: https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
     */
    function doTransferOut(address payable to, uint amount) internal {
        _callOptionalReturn(abi.encodeWithSelector(EIP20NonStandardInterface(underlying).transfer.selector, to, amount), "TOKEN_TRANSFER_OUT_FAILED");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param data The call data (encoded using abi.encode or one of its variants).
     * @param errorMessage The revert string to return on failure.
     */
    function _callOptionalReturn(bytes memory data, string memory errorMessage) internal {
        bytes memory returndata = _functionCall(underlying, data, errorMessage);
        if (returndata.length > 0) require(abi.decode(returndata, (bool)), errorMessage);
    }

    /**
    * @notice Admin call to delegate the votes of the COMP-like underlying
    * @param compLikeDelegatee The address to delegate votes to
    * @dev CTokens whose underlying are not CompLike should revert here
    */
    function _delegateCompLikeTo(address compLikeDelegatee) external {
        require(hasAdminRights(), "only the admin may set the comp-like delegate");
        CompLike(underlying).delegate(compLikeDelegatee);
    }
}

pragma solidity ^0.5.16;

import "./CErc20.sol";

/**
 * @title Compound's CErc20Delegate Contract
 * @notice CTokens which wrap an EIP-20 underlying and are delegated to
 * @author Compound
 */
contract CErc20Delegate is CDelegateInterface, CErc20 {
    /**
     * @notice Construct an empty delegate
     */
    constructor() public {}

    /**
     * @notice Called by the delegator on a delegate to initialize it for duty
     * @param data The encoded bytes data for any initialization
     */
    function _becomeImplementation(bytes calldata data) external {
        // Shh -- currently unused
        data;

        // Shh -- we don't ever want this hook to be marked pure
        if (false) {
            implementation = address(0);
        }

        require(msg.sender == address(this) || hasAdminRights(), "!self");

        // Make sure admin storage is set up correctly
        __admin = address(0);
        __adminHasRights = false;
        __fuseAdminHasRights = false;
    }

    /**
     * @notice Called by the delegator on a delegate to forfeit its responsibility
     */
    function _resignImplementation() internal {
        // Shh -- we don't ever want this hook to be marked pure
        if (false) {
            implementation = address(0);
        }
    }

    /**
     * @dev Internal function to update the implementation of the delegator
     * @param implementation_ The address of the new implementation for delegation
     * @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation
     * @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation
     */
    function _setImplementationInternal(address implementation_, bool allowResign, bytes memory becomeImplementationData) internal {
        // Check whitelist
        require(fuseAdmin.cErc20DelegateWhitelist(implementation, implementation_, allowResign), "!impl");

        // Call _resignImplementation internally (this delegate's code)
        if (allowResign) _resignImplementation();

        // Get old implementation
        address oldImplementation = implementation;

        // Store new implementation
        implementation = implementation_;

        // Call _becomeImplementation externally (delegating to new delegate's code)
        _functionCall(address(this), abi.encodeWithSignature("_becomeImplementation(bytes)", becomeImplementationData), "!become");

        // Emit event
        emit NewImplementation(oldImplementation, implementation);
    }

    /**
     * @notice Called by the admin to update the implementation of the delegator
     * @param implementation_ The address of the new implementation for delegation
     * @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation
     * @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation
     */
    function _setImplementationSafe(address implementation_, bool allowResign, bytes calldata becomeImplementationData) external {
        // Check admin rights
        require(hasAdminRights(), "!admin");

        // Set implementation
        _setImplementationInternal(implementation_, allowResign, becomeImplementationData);
    }

    /**
     * @notice Function called before all delegator functions
     * @dev Checks comptroller.autoImplementation and upgrades the implementation if necessary
     */
    function _prepare() external payable {
        if (msg.sender != address(this) && ComptrollerV3Storage(address(comptroller)).autoImplementation()) {
            (address latestCErc20Delegate, bool allowResign, bytes memory becomeImplementationData) = fuseAdmin.latestCErc20Delegate(implementation);
            if (implementation != latestCErc20Delegate) _setImplementationInternal(latestCErc20Delegate, allowResign, becomeImplementationData);
        }
    }
}

pragma solidity ^0.5.16;

import "./CTokenInterfaces.sol";
import "./ComptrollerStorage.sol";

/**
 * @title Compound's CErc20Delegator Contract
 * @notice CTokens which wrap an EIP-20 underlying and delegate to an implementation
 * @author Compound
 */
contract CErc20Delegator is CDelegationStorage {
    /**
     * @notice Construct a new money market
     * @param underlying_ The address of the underlying asset
     * @param comptroller_ The address of the Comptroller
     * @param interestRateModel_ The address of the interest rate model
     * @param name_ ERC-20 name of this token
     * @param symbol_ ERC-20 symbol of this token
     * @param implementation_ The address of the implementation the contract delegates to
     * @param becomeImplementationData The encoded args for becomeImplementation
     */
    constructor(address underlying_,
                ComptrollerInterface comptroller_,
                InterestRateModel interestRateModel_,
                string memory name_,
                string memory symbol_,
                address implementation_,
                bytes memory becomeImplementationData,
                uint256 reserveFactorMantissa_,
                uint256 adminFeeMantissa_) public {
        // First delegate gets to initialize the delegator (i.e. storage contract)
        delegateTo(implementation_, abi.encodeWithSignature("initialize(address,address,address,string,string,uint256,uint256)",
                                                            underlying_,
                                                            comptroller_,
                                                            interestRateModel_,
                                                            name_,
                                                            symbol_,
                                                            reserveFactorMantissa_,
                                                            adminFeeMantissa_));

        // New implementations always get set via the settor (post-initialize)
        delegateTo(implementation_, abi.encodeWithSignature("_setImplementationSafe(address,bool,bytes)", implementation_, false, becomeImplementationData));
    }

    /**
     * @notice Internal method to delegate execution to another contract
     * @dev It returns to the external caller whatever the implementation returns or forwards reverts
     * @param callee The contract to delegatecall
     * @param data The raw data to delegatecall
     * @return The returned bytes from the delegatecall
     */
    function delegateTo(address callee, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returnData) = callee.delegatecall(data);
        assembly {
            if eq(success, 0) {
                revert(add(returnData, 0x20), returndatasize)
            }
        }
        return returnData;
    }

    /**
     * @notice Delegates execution to an implementation contract
     * @dev It returns to the external caller whatever the implementation returns or forwards reverts
     */
    function () external payable {
        // Cannot send value to CErc20Delegator
        require(msg.value == 0, "CErc20Delegator:fallback: cannot send value to fallback");

        // Check for automatic implementation
        delegateTo(implementation, abi.encodeWithSignature("_prepare()"));

        // delegate all other functions to current implementation
        (bool success, ) = implementation.delegatecall(msg.data);

        assembly {
            let free_mem_ptr := mload(0x40)
            returndatacopy(free_mem_ptr, 0, returndatasize)

            switch success
            case 0 { revert(free_mem_ptr, returndatasize) }
            default { return(free_mem_ptr, returndatasize) }
        }
    }
}

pragma solidity ^0.5.16;

import "./CToken.sol";

/**
 * @title Compound's CEther Contract
 * @notice CToken which wraps Ether
 * @dev This contract should not to be deployed on its own; instead, deploy `CEtherDelegator` (proxy contract) and `CEtherDelegate` (logic/implementation contract).
 * @author Compound
 */
contract CEther is CToken, CEtherInterface {
    /**
     * @notice Initialize the new money market
     * @param comptroller_ The address of the Comptroller
     * @param interestRateModel_ The address of the interest rate model
     * @param name_ ERC-20 name of this token
     * @param symbol_ ERC-20 symbol of this token
     */
    function initialize(ComptrollerInterface comptroller_,
                        InterestRateModel interestRateModel_,
                        string memory name_,
                        string memory symbol_,
                        uint256 reserveFactorMantissa_,
                        uint256 adminFeeMantissa_) public {
        // CToken initialize does the bulk of the work
        uint256 initialExchangeRateMantissa_ = 0.2e18;
        uint8 decimals_ = 18;
        super.initialize(comptroller_, interestRateModel_, initialExchangeRateMantissa_, name_, symbol_, decimals_, reserveFactorMantissa_, adminFeeMantissa_);
    }

    /*** User Interface ***/

    /**
     * @notice Sender supplies assets into the market and receives cTokens in exchange
     * @dev Reverts upon any failure
     */
    function mint() external payable {
        (uint err,) = mintInternal(msg.value);
        requireNoError(err, "mint failed");
    }

    /**
     * @notice Sender redeems cTokens in exchange for the underlying asset
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param redeemTokens The number of cTokens to redeem into underlying
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeem(uint redeemTokens) external returns (uint) {
        return redeemInternal(redeemTokens);
    }

    /**
     * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param redeemAmount The amount of underlying to redeem
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeemUnderlying(uint redeemAmount) external returns (uint) {
        return redeemUnderlyingInternal(redeemAmount);
    }

    /**
      * @notice Sender borrows assets from the protocol to their own address
      * @param borrowAmount The amount of the underlying asset to borrow
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function borrow(uint borrowAmount) external returns (uint) {
        return borrowInternal(borrowAmount);
    }

    /**
     * @notice Sender repays their own borrow
     * @dev Reverts upon any failure
     */
    function repayBorrow() external payable {
        (uint err,) = repayBorrowInternal(msg.value);
        requireNoError(err, "repayBorrow failed");
    }

    /**
     * @notice Sender repays a borrow belonging to borrower
     * @dev Reverts upon any failure
     * @param borrower the account with the debt being payed off
     */
    function repayBorrowBehalf(address borrower) external payable {
        (uint err,) = repayBorrowBehalfInternal(borrower, msg.value);
        requireNoError(err, "repayBorrowBehalf failed");
    }

    /**
     * @notice The sender liquidates the borrowers collateral.
     *  The collateral seized is transferred to the liquidator.
     * @dev Reverts upon any failure
     * @param borrower The borrower of this cToken to be liquidated
     * @param cTokenCollateral The market in which to seize collateral from the borrower
     */
    function liquidateBorrow(address borrower, CToken cTokenCollateral) external payable {
        (uint err,) = liquidateBorrowInternal(borrower, msg.value, cTokenCollateral);
        requireNoError(err, "liquidateBorrow failed");
    }

    /**
     * @notice Send Ether to CEther to mint
     */
    function () external payable {
        (uint err,) = mintInternal(msg.value);
        requireNoError(err, "mint failed");
    }

    /*** Safe Token ***/

    /**
     * @notice Gets balance of this contract in terms of Ether, before this message
     * @dev This excludes the value of the current message, if any
     * @return The quantity of Ether owned by this contract
     */
    function getCashPrior() internal view returns (uint) {
        (MathError err, uint startingBalance) = subUInt(address(this).balance, msg.value);
        require(err == MathError.NO_ERROR);
        return startingBalance;
    }

    /**
     * @notice Perform the actual transfer in, which is a no-op
     * @param from Address sending the Ether
     * @param amount Amount of Ether being sent
     * @return The actual amount of Ether transferred
     */
    function doTransferIn(address from, uint amount) internal returns (uint) {
        // Sanity checks
        require(msg.sender == from, "sender mismatch");
        require(msg.value == amount, "value mismatch");
        return amount;
    }

    function doTransferOut(address payable to, uint amount) internal {
        // Send the Ether and revert on failure
        (bool success, ) = to.call.value(amount)("");
        require(success, "doTransferOut failed");
    }

    function requireNoError(uint errCode, string memory message) internal pure {
        if (errCode == uint(Error.NO_ERROR)) {
            return;
        }

        bytes memory fullMessage = new bytes(bytes(message).length + 7);
        uint i;

        for (i = 0; i < bytes(message).length; i++) {
            fullMessage[i] = bytes(message)[i];
        }

        fullMessage[i+0] = byte(uint8(32));
        fullMessage[i+1] = byte(uint8(40));
        fullMessage[i+2] = byte(uint8(48 + ( errCode / 1000 )));
        fullMessage[i+3] = byte(uint8(48 + ( errCode / 100 % 10 )));
        fullMessage[i+4] = byte(uint8(48 + ( errCode / 10 % 10 )));
        fullMessage[i+5] = byte(uint8(48 + ( errCode % 10 )));
        fullMessage[i+6] = byte(uint8(41));

        require(errCode == uint(Error.NO_ERROR), string(fullMessage));
    }
}

pragma solidity ^0.5.16;

import "./CEther.sol";

/**
 * @title Compound's CEtherDelegate Contract
 * @notice CTokens which wrap Ether and are delegated to
 * @author Compound
 */
contract CEtherDelegate is CDelegateInterface, CEther {
    /**
     * @notice Construct an empty delegate
     */
    constructor() public {}

    /**
     * @notice Called by the delegator on a delegate to initialize it for duty
     * @param data The encoded bytes data for any initialization
     */
    function _becomeImplementation(bytes calldata data) external {
        // Shh -- currently unused
        data;

        // Shh -- we don't ever want this hook to be marked pure
        if (false) {
            implementation = address(0);
        }

        require(msg.sender == address(this) || hasAdminRights(), "!self");

        // Make sure admin storage is set up correctly
        __admin = address(0);
        __adminHasRights = false;
        __fuseAdminHasRights = false;
    }

    /**
     * @notice Called by the delegator on a delegate to forfeit its responsibility
     */
    function _resignImplementation() internal {
        // Shh -- we don't ever want this hook to be marked pure
        if (false) {
            implementation = address(0);
        }
    }

    /**
     * @dev Internal function to update the implementation of the delegator
     * @param implementation_ The address of the new implementation for delegation
     * @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation
     * @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation
     */
    function _setImplementationInternal(address implementation_, bool allowResign, bytes memory becomeImplementationData) internal {
        // Check whitelist
        require(fuseAdmin.cEtherDelegateWhitelist(implementation, implementation_, allowResign), "!impl");

        // Call _resignImplementation internally (this delegate's code)
        if (allowResign) _resignImplementation();

        // Get old implementation
        address oldImplementation = implementation;

        // Store new implementation
        implementation = implementation_;

        // Call _becomeImplementation externally (delegating to new delegate's code)
        _functionCall(address(this), abi.encodeWithSignature("_becomeImplementation(bytes)", becomeImplementationData), "!become");

        // Emit event
        emit NewImplementation(oldImplementation, implementation);
    }

    /**
     * @notice Called by the admin to update the implementation of the delegator
     * @param implementation_ The address of the new implementation for delegation
     * @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation
     * @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation
     */
    function _setImplementationSafe(address implementation_, bool allowResign, bytes calldata becomeImplementationData) external {
        // Check admin rights
        require(hasAdminRights(), "!admin");

        // Set implementation
        _setImplementationInternal(implementation_, allowResign, becomeImplementationData);
    }

    /**
     * @notice Function called before all delegator functions
     * @dev Checks comptroller.autoImplementation and upgrades the implementation if necessary
     */
    function _prepare() external payable {
        if (msg.sender != address(this) && ComptrollerV3Storage(address(comptroller)).autoImplementation()) {
            (address latestCEtherDelegate, bool allowResign, bytes memory becomeImplementationData) = fuseAdmin.latestCEtherDelegate(implementation);
            if (implementation != latestCEtherDelegate) _setImplementationInternal(latestCEtherDelegate, allowResign, becomeImplementationData);
        }
    }
}

pragma solidity ^0.5.16;

import "./CTokenInterfaces.sol";
import "./ComptrollerStorage.sol";

/**
 * @title Compound's CEtherDelegator Contract
 * @notice CTokens which wrap Ether and delegate to an implementation
 * @author Compound
 */
contract CEtherDelegator is CDelegationStorage {
    /**
     * @notice Construct a new CEther money market
     * @param comptroller_ The address of the Comptroller
     * @param interestRateModel_ The address of the interest rate model
     * @param name_ ERC-20 name of this token
     * @param symbol_ ERC-20 symbol of this token
     * @param implementation_ The address of the implementation the contract delegates to
     * @param becomeImplementationData The encoded args for becomeImplementation
     */
    constructor(ComptrollerInterface comptroller_,
                InterestRateModel interestRateModel_,
                string memory name_,
                string memory symbol_,
                address implementation_,
                bytes memory becomeImplementationData,
                uint256 reserveFactorMantissa_,
                uint256 adminFeeMantissa_) public {
        // First delegate gets to initialize the delegator (i.e. storage contract)
        delegateTo(implementation_, abi.encodeWithSignature("initialize(address,address,string,string,uint256,uint256)",
                                                            comptroller_,
                                                            interestRateModel_,
                                                            name_,
                                                            symbol_,
                                                            reserveFactorMantissa_,
                                                            adminFeeMantissa_));

        // New implementations always get set via the settor (post-initialize)
        delegateTo(implementation_, abi.encodeWithSignature("_setImplementationSafe(address,bool,bytes)", implementation_, false, becomeImplementationData));
    }

    /**
     * @notice Internal method to delegate execution to another contract
     * @dev It returns to the external caller whatever the implementation returns or forwards reverts
     * @param callee The contract to delegatecall
     * @param data The raw data to delegatecall
     * @return The returned bytes from the delegatecall
     */
    function delegateTo(address callee, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returnData) = callee.delegatecall(data);
        assembly {
            if eq(success, 0) {
                revert(add(returnData, 0x20), returndatasize)
            }
        }
        return returnData;
    }

    /**
     * @notice Delegates execution to an implementation contract
     * @dev It returns to the external caller whatever the implementation returns or forwards reverts
     */
    function () external payable {
        // Check for automatic implementation
        delegateTo(implementation, abi.encodeWithSignature("_prepare()"));

        // delegate all other functions to current implementation
        (bool success, ) = implementation.delegatecall(msg.data);

        assembly {
            let free_mem_ptr := mload(0x40)
            returndatacopy(free_mem_ptr, 0, returndatasize)

            switch success
            case 0 { revert(free_mem_ptr, returndatasize) }
            default { return(free_mem_ptr, returndatasize) }
        }
    }
}

pragma solidity ^0.5.16;

import "./CToken.sol";
import "./CErc20.sol";
import "./ErrorReporter.sol";
import "./Exponential.sol";
import "./PriceOracle.sol";
import "./ComptrollerInterface.sol";
import "./ComptrollerStorage.sol";
import "./Unitroller.sol";
import "./RewardsDistributorDelegate.sol";

/**
 * @title Compound's Comptroller Contract
 * @author Compound
 * @dev This contract should not to be deployed alone; instead, deploy `Unitroller` (proxy contract) on top of this `Comptroller` (logic/implementation contract).
 */
contract Comptroller is ComptrollerV3Storage, ComptrollerInterface, ComptrollerErrorReporter, Exponential {
    /// @notice Emitted when an admin supports a market
    event MarketListed(CToken cToken);

    /// @notice Emitted when an admin unsupports a market
    event MarketUnlisted(CToken cToken);

    /// @notice Emitted when an account enters a market
    event MarketEntered(CToken cToken, address account);

    /// @notice Emitted when an account exits a market
    event MarketExited(CToken cToken, address account);

    /// @notice Emitted when close factor is changed by admin
    event NewCloseFactor(uint oldCloseFactorMantissa, uint newCloseFactorMantissa);

    /// @notice Emitted when a collateral factor is changed by admin
    event NewCollateralFactor(CToken cToken, uint oldCollateralFactorMantissa, uint newCollateralFactorMantissa);

    /// @notice Emitted when liquidation incentive is changed by admin
    event NewLiquidationIncentive(uint oldLiquidationIncentiveMantissa, uint newLiquidationIncentiveMantissa);

    /// @notice Emitted when price oracle is changed
    event NewPriceOracle(PriceOracle oldPriceOracle, PriceOracle newPriceOracle);

    /// @notice Emitted when pause guardian is changed
    event NewPauseGuardian(address oldPauseGuardian, address newPauseGuardian);

    /// @notice Emitted when an action is paused globally
    event ActionPaused(string action, bool pauseState);

    /// @notice Emitted when an action is paused on a market
    event ActionPaused(CToken cToken, string action, bool pauseState);

    /// @notice Emitted when the whitelist enforcement is changed
    event WhitelistEnforcementChanged(bool enforce);

    /// @notice Emitted when auto implementations are toggled
    event AutoImplementationsToggled(bool enabled);

    /// @notice Emitted when supply cap for a cToken is changed
    event NewSupplyCap(CToken indexed cToken, uint newSupplyCap);

    /// @notice Emitted when borrow cap for a cToken is changed
    event NewBorrowCap(CToken indexed cToken, uint newBorrowCap);

    /// @notice Emitted when borrow cap guardian is changed
    event NewBorrowCapGuardian(address oldBorrowCapGuardian, address newBorrowCapGuardian);

    /// @notice Emitted when a new RewardsDistributor contract is added to hooks
    event AddedRewardsDistributor(address rewardsDistributor);

    // closeFactorMantissa must be strictly greater than this value
    uint internal constant closeFactorMinMantissa = 0.05e18; // 0.05

    // closeFactorMantissa must not exceed this value
    uint internal constant closeFactorMaxMantissa = 0.9e18; // 0.9

    // No collateralFactorMantissa may exceed this value
    uint internal constant collateralFactorMaxMantissa = 0.9e18; // 0.9

    // liquidationIncentiveMantissa must be no less than this value
    uint internal constant liquidationIncentiveMinMantissa = 1.0e18; // 1.0

    // liquidationIncentiveMantissa must be no greater than this value
    uint internal constant liquidationIncentiveMaxMantissa = 1.5e18; // 1.5

    /*** Assets You Are In ***/

    /**
     * @notice Returns the assets an account has entered
     * @param account The address of the account to pull assets for
     * @return A dynamic list with the assets the account has entered
     */
    function getAssetsIn(address account) external view returns (CToken[] memory) {
        CToken[] memory assetsIn = accountAssets[account];

        return assetsIn;
    }

    /**
     * @notice Returns whether the given account is entered in the given asset
     * @param account The address of the account to check
     * @param cToken The cToken to check
     * @return True if the account is in the asset, otherwise false.
     */
    function checkMembership(address account, CToken cToken) external view returns (bool) {
        return markets[address(cToken)].accountMembership[account];
    }

    /**
     * @notice Add assets to be included in account liquidity calculation
     * @param cTokens The list of addresses of the cToken markets to be enabled
     * @return Success indicator for whether each corresponding market was entered
     */
    function enterMarkets(address[] memory cTokens) public returns (uint[] memory) {
        uint len = cTokens.length;

        uint[] memory results = new uint[](len);
        for (uint i = 0; i < len; i++) {
            CToken cToken = CToken(cTokens[i]);

            results[i] = uint(addToMarketInternal(cToken, msg.sender));
        }

        return results;
    }

    /**
     * @notice Add the market to the borrower's "assets in" for liquidity calculations
     * @param cToken The market to enter
     * @param borrower The address of the account to modify
     * @return Success indicator for whether the market was entered
     */
    function addToMarketInternal(CToken cToken, address borrower) internal returns (Error) {
        Market storage marketToJoin = markets[address(cToken)];

        if (!marketToJoin.isListed) {
            // market is not listed, cannot join
            return Error.MARKET_NOT_LISTED;
        }

        if (marketToJoin.accountMembership[borrower] == true) {
            // already joined
            return Error.NO_ERROR;
        }

        // survived the gauntlet, add to list
        // NOTE: we store these somewhat redundantly as a significant optimization
        //  this avoids having to iterate through the list for the most common use cases
        //  that is, only when we need to perform liquidity checks
        //  and not whenever we want to check if an account is in a particular market
        marketToJoin.accountMembership[borrower] = true;
        accountAssets[borrower].push(cToken);
        
        // Add to allBorrowers
        if (!borrowers[borrower]) {
            allBorrowers.push(borrower);
            borrowers[borrower] = true;
            borrowerIndexes[borrower] = allBorrowers.length - 1;
        }

        emit MarketEntered(cToken, borrower);

        return Error.NO_ERROR;
    }

    /**
     * @notice Removes asset from sender's account liquidity calculation
     * @dev Sender must not have an outstanding borrow balance in the asset,
     *  or be providing neccessary collateral for an outstanding borrow.
     * @param cTokenAddress The address of the asset to be removed
     * @return Whether or not the account successfully exited the market
     */
    function exitMarket(address cTokenAddress) external returns (uint) {
        CToken cToken = CToken(cTokenAddress);
        /* Get sender tokensHeld and amountOwed underlying from the cToken */
        (uint oErr, uint tokensHeld, uint amountOwed, ) = cToken.getAccountSnapshot(msg.sender);
        require(oErr == 0, "exitMarket: getAccountSnapshot failed"); // semi-opaque error code

        /* Fail if the sender has a borrow balance */
        if (amountOwed != 0) {
            return fail(Error.NONZERO_BORROW_BALANCE, FailureInfo.EXIT_MARKET_BALANCE_OWED);
        }

        /* Fail if the sender is not permitted to redeem all of their tokens */
        uint allowed = redeemAllowedInternal(cTokenAddress, msg.sender, tokensHeld);
        if (allowed != 0) {
            return failOpaque(Error.REJECTION, FailureInfo.EXIT_MARKET_REJECTION, allowed);
        }

        Market storage marketToExit = markets[address(cToken)];

        /* Return true if the sender is not already ‘in’ the market */
        if (!marketToExit.accountMembership[msg.sender]) {
            return uint(Error.NO_ERROR);
        }

        /* Set cToken account membership to false */
        delete marketToExit.accountMembership[msg.sender];

        /* Delete cToken from the account’s list of assets */
        // load into memory for faster iteration
        CToken[] memory userAssetList = accountAssets[msg.sender];
        uint len = userAssetList.length;
        uint assetIndex = len;
        for (uint i = 0; i < len; i++) {
            if (userAssetList[i] == cToken) {
                assetIndex = i;
                break;
            }
        }

        // We *must* have found the asset in the list or our redundant data structure is broken
        assert(assetIndex < len);

        // copy last item in list to location of item to be removed, reduce length by 1
        CToken[] storage storedList = accountAssets[msg.sender];
        storedList[assetIndex] = storedList[storedList.length - 1];
        storedList.length--;

        // If the user has exited all markets, remove them from the `allBorrowers` array
        if (storedList.length == 0) {
            allBorrowers[borrowerIndexes[msg.sender]] = allBorrowers[allBorrowers.length - 1]; // Copy last item in list to location of item to be removed
            allBorrowers.length--; // Reduce length by 1
            borrowerIndexes[allBorrowers[borrowerIndexes[msg.sender]]] = borrowerIndexes[msg.sender]; // Set borrower index of moved item to correct index
            borrowerIndexes[msg.sender] = 0; // Reset sender borrower index to 0 for a gas refund
            borrowers[msg.sender] = false; // Tell the contract that the sender is no longer a borrower (so it knows to add the borrower back if they enter a market in the future)
        }

        emit MarketExited(cToken, msg.sender);

        return uint(Error.NO_ERROR);
    }

    /*** Policy Hooks ***/

    /**
     * @notice Checks if the account should be allowed to mint tokens in the given market
     * @param cToken The market to verify the mint against
     * @param minter The account which would get the minted tokens
     * @param mintAmount The amount of underlying being supplied to the market in exchange for tokens
     * @return 0 if the mint is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
     */
    function mintAllowed(address cToken, address minter, uint mintAmount) external returns (uint) {
        // Pausing is a very serious situation - we revert to sound the alarms
        require(!mintGuardianPaused[cToken], "mint is paused");

        // Shh - currently unused
        minter;
        mintAmount;

        // Make sure market is listed
        if (!markets[cToken].isListed) {
            return uint(Error.MARKET_NOT_LISTED);
        }
        
        // Make sure minter is whitelisted
        if (enforceWhitelist && !whitelist[minter]) {
            return uint(Error.SUPPLIER_NOT_WHITELISTED);
        }

        // Check supply cap
        uint supplyCap = supplyCaps[cToken];
        // Supply cap of 0 corresponds to unlimited supplying
        if (supplyCap != 0) {
            uint totalCash = CToken(cToken).getCash();
            uint totalBorrows = CToken(cToken).totalBorrows();
            uint totalReserves = CToken(cToken).totalReserves();
            uint totalFuseFees = CToken(cToken).totalFuseFees();
            uint totalAdminFees = CToken(cToken).totalAdminFees();

            // totalUnderlyingSupply = totalCash + totalBorrows - (totalReserves + totalFuseFees + totalAdminFees)
            (MathError mathErr, uint totalUnderlyingSupply) = addThenSubUInt(totalCash, totalBorrows, add_(add_(totalReserves, totalFuseFees), totalAdminFees));
            if (mathErr != MathError.NO_ERROR) return uint(Error.MATH_ERROR);

            uint nextTotalUnderlyingSupply;
            (mathErr, nextTotalUnderlyingSupply) = addUInt(totalUnderlyingSupply, mintAmount);
            if (mathErr != MathError.NO_ERROR) return uint(Error.MATH_ERROR);

            require(nextTotalUnderlyingSupply < supplyCap, "market supply cap reached");
        }

        // Keep the flywheel moving
        flywheelPreSupplierAction(cToken, minter);

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Validates mint and reverts on rejection. May emit logs.
     * @param cToken Asset being minted
     * @param minter The address minting the tokens
     * @param actualMintAmount The amount of the underlying asset being minted
     * @param mintTokens The number of tokens being minted
     */
    function mintVerify(address cToken, address minter, uint actualMintAmount, uint mintTokens) external {
        // Shh - currently unused
        cToken;
        minter;
        actualMintAmount;
        mintTokens;

        // Shh - we don't ever want this hook to be marked pure
        if (false) {
            maxAssets = maxAssets;
        }

        // Add minter to suppliers mapping
        suppliers[minter] = true;
    }

    /**
     * @notice Checks if the account should be allowed to redeem tokens in the given market
     * @param cToken The market to verify the redeem against
     * @param redeemer The account which would redeem the tokens
     * @param redeemTokens The number of cTokens to exchange for the underlying asset in the market
     * @return 0 if the redeem is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
     */
    function redeemAllowed(address cToken, address redeemer, uint redeemTokens) external returns (uint) {
        uint allowed = redeemAllowedInternal(cToken, redeemer, redeemTokens);
        if (allowed != uint(Error.NO_ERROR)) {
            return allowed;
        }

        // Keep the flywheel moving
        flywheelPreSupplierAction(cToken, redeemer);

        return uint(Error.NO_ERROR);
    }

    function redeemAllowedInternal(address cToken, address redeemer, uint redeemTokens) internal view returns (uint) {
        if (!markets[cToken].isListed) {
            return uint(Error.MARKET_NOT_LISTED);
        }

        /* If the redeemer is not 'in' the market, then we can bypass the liquidity check */
        if (!markets[cToken].accountMembership[redeemer]) {
            return uint(Error.NO_ERROR);
        }

        /* Otherwise, perform a hypothetical liquidity check to guard against shortfall */
        (Error err, , uint shortfall) = getHypotheticalAccountLiquidityInternal(redeemer, CToken(cToken), redeemTokens, 0);
        if (err != Error.NO_ERROR) {
            return uint(err);
        }
        if (shortfall > 0) {
            return uint(Error.INSUFFICIENT_LIQUIDITY);
        }

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Validates redeem and reverts on rejection. May emit logs.
     * @param cToken Asset being redeemed
     * @param redeemer The address redeeming the tokens
     * @param redeemAmount The amount of the underlying asset being redeemed
     * @param redeemTokens The number of tokens being redeemed
     */
    function redeemVerify(address cToken, address redeemer, uint redeemAmount, uint redeemTokens) external {
        // Shh - currently unused
        cToken;
        redeemer;

        // Require tokens is zero or amount is also zero
        if (redeemTokens == 0 && redeemAmount > 0) {
            revert("redeemTokens zero");
        }
    }

    /**
     * @notice Checks if the account should be allowed to borrow the underlying asset of the given market
     * @param cToken The market to verify the borrow against
     * @param borrower The account which would borrow the asset
     * @param borrowAmount The amount of underlying the account would borrow
     * @return 0 if the borrow is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
     */
    function borrowAllowed(address cToken, address borrower, uint borrowAmount) external returns (uint) {
        // Pausing is a very serious situation - we revert to sound the alarms
        require(!borrowGuardianPaused[cToken], "borrow is paused");

        // Make sure market is listed
        if (!markets[cToken].isListed) {
            return uint(Error.MARKET_NOT_LISTED);
        }

        if (!markets[cToken].accountMembership[borrower]) {
            // only cTokens may call borrowAllowed if borrower not in market
            require(msg.sender == cToken, "sender must be cToken");

            // attempt to add borrower to the market
            Error err = addToMarketInternal(CToken(msg.sender), borrower);
            if (err != Error.NO_ERROR) {
                return uint(err);
            }

            // it should be impossible to break the important invariant
            assert(markets[cToken].accountMembership[borrower]);
        }

        // Make sure oracle price is available
        if (oracle.getUnderlyingPrice(CToken(cToken)) == 0) {
            return uint(Error.PRICE_ERROR);
        }
        
        // Make sure borrower is whitelisted
        if (enforceWhitelist && !whitelist[borrower]) {
            return uint(Error.SUPPLIER_NOT_WHITELISTED);
        }

        // Check borrow cap
        uint borrowCap = borrowCaps[cToken];
        // Borrow cap of 0 corresponds to unlimited borrowing
        if (borrowCap != 0) {
            uint totalBorrows = CToken(cToken).totalBorrows();
            (MathError mathErr, uint nextTotalBorrows) = addUInt(totalBorrows, borrowAmount);
            if (mathErr != MathError.NO_ERROR) return uint(Error.MATH_ERROR);
            require(nextTotalBorrows < borrowCap, "market borrow cap reached");
        }

        // Keep the flywheel moving
        flywheelPreBorrowerAction(cToken, borrower);

        // Perform a hypothetical liquidity check to guard against shortfall
        (Error err, , uint shortfall) = getHypotheticalAccountLiquidityInternal(borrower, CToken(cToken), 0, borrowAmount);
        if (err != Error.NO_ERROR) {
            return uint(err);
        }
        if (shortfall > 0) {
            return uint(Error.INSUFFICIENT_LIQUIDITY);
        }

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Checks if the account should be allowed to borrow the underlying asset of the given market
     * @param cToken Asset whose underlying is being borrowed
     * @param accountBorrowsNew The user's new borrow balance of the underlying asset
     */
    function borrowWithinLimits(address cToken, uint accountBorrowsNew) external returns (uint) {
        // Check if min borrow exists
        uint minBorrowEth = fuseAdmin.minBorrowEth();

        if (minBorrowEth > 0) {
            // Get new underlying borrow balance of account for this cToken
            uint oraclePriceMantissa = oracle.getUnderlyingPrice(CToken(cToken));
            if (oraclePriceMantissa == 0) return uint(Error.PRICE_ERROR);
            (MathError mathErr, uint borrowBalanceEth) = mulScalarTruncate(Exp({mantissa: oraclePriceMantissa}), accountBorrowsNew);
            if (mathErr != MathError.NO_ERROR) return uint(Error.MATH_ERROR);

            // Check against min borrow
            if (borrowBalanceEth < minBorrowEth) return uint(Error.BORROW_BELOW_MIN);
        }

        // Return no error
        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Checks if the account should be allowed to borrow the underlying asset of the given market
     * @param cToken Asset whose underlying is being borrowed
     * @param exchangeRateMantissa Underlying/cToken exchange rate
     * @param accountTokens Initial account cToken balance
     * @param accountTokens Underlying amount to mint
     */
    function mintWithinLimits(address cToken, uint exchangeRateMantissa, uint accountTokens, uint mintAmount) external returns (uint) {
        // Return no error
        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Validates borrow and reverts on rejection. May emit logs.
     * @param cToken Asset whose underlying is being borrowed
     * @param borrower The address borrowing the underlying
     * @param borrowAmount The amount of the underlying asset requested to borrow
     */
    function borrowVerify(address cToken, address borrower, uint borrowAmount) external {
        // Shh - currently unused
        cToken;
        borrower;
        borrowAmount;

        // Shh - we don't ever want this hook to be marked pure
        if (false) {
            maxAssets = maxAssets;
        }
    }

    /**
     * @notice Checks if the account should be allowed to repay a borrow in the given market
     * @param cToken The market to verify the repay against
     * @param payer The account which would repay the asset
     * @param borrower The account which would borrowed the asset
     * @param repayAmount The amount of the underlying asset the account would repay
     * @return 0 if the repay is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
     */
    function repayBorrowAllowed(
        address cToken,
        address payer,
        address borrower,
        uint repayAmount) external returns (uint) {
        // Shh - currently unused
        payer;
        borrower;
        repayAmount;

        // Make sure market is listed
        if (!markets[cToken].isListed) {
            return uint(Error.MARKET_NOT_LISTED);
        }

        // Keep the flywheel moving
        flywheelPreBorrowerAction(cToken, borrower);

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Validates repayBorrow and reverts on rejection. May emit logs.
     * @param cToken Asset being repaid
     * @param payer The address repaying the borrow
     * @param borrower The address of the borrower
     * @param actualRepayAmount The amount of underlying being repaid
     */
    function repayBorrowVerify(
        address cToken,
        address payer,
        address borrower,
        uint actualRepayAmount,
        uint borrowerIndex) external {
        // Shh - currently unused
        cToken;
        payer;
        borrower;
        actualRepayAmount;
        borrowerIndex;

        // Shh - we don't ever want this hook to be marked pure
        if (false) {
            maxAssets = maxAssets;
        }
    }

    /**
     * @notice Checks if the liquidation should be allowed to occur
     * @param cTokenBorrowed Asset which was borrowed by the borrower
     * @param cTokenCollateral Asset which was used as collateral and will be seized
     * @param liquidator The address repaying the borrow and seizing the collateral
     * @param borrower The address of the borrower
     * @param repayAmount The amount of underlying being repaid
     */
    function liquidateBorrowAllowed(
        address cTokenBorrowed,
        address cTokenCollateral,
        address liquidator,
        address borrower,
        uint repayAmount) external returns (uint) {
        // Shh - currently unused
        liquidator;

        // Make sure markets are listed
        if (!markets[cTokenBorrowed].isListed || !markets[cTokenCollateral].isListed) {
            return uint(Error.MARKET_NOT_LISTED);
        }

        // Get borrowers's underlying borrow balance
        uint borrowBalance = CToken(cTokenBorrowed).borrowBalanceStored(borrower);

        /* allow accounts to be liquidated if the market is deprecated */
        if (isDeprecated(CToken(cTokenBorrowed))) {
            require(borrowBalance >= repayAmount, "Can not repay more than the total borrow");
        } else {
            /* The borrower must have shortfall in order to be liquidatable */
            (Error err, , uint shortfall) = getAccountLiquidityInternal(borrower);
            if (err != Error.NO_ERROR) {
                return uint(err);
            }

            if (shortfall == 0) {
                return uint(Error.INSUFFICIENT_SHORTFALL);
            }

            /* The liquidator may not repay more than what is allowed by the closeFactor */
            uint maxClose = mul_ScalarTruncate(Exp({mantissa: closeFactorMantissa}), borrowBalance);
            if (repayAmount > maxClose) {
                return uint(Error.TOO_MUCH_REPAY);
            }
        }

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Validates liquidateBorrow and reverts on rejection. May emit logs.
     * @param cTokenBorrowed Asset which was borrowed by the borrower
     * @param cTokenCollateral Asset which was used as collateral and will be seized
     * @param liquidator The address repaying the borrow and seizing the collateral
     * @param borrower The address of the borrower
     * @param actualRepayAmount The amount of underlying being repaid
     */
    function liquidateBorrowVerify(
        address cTokenBorrowed,
        address cTokenCollateral,
        address liquidator,
        address borrower,
        uint actualRepayAmount,
        uint seizeTokens) external {
        // Shh - currently unused
        cTokenBorrowed;
        cTokenCollateral;
        liquidator;
        borrower;
        actualRepayAmount;
        seizeTokens;

        // Shh - we don't ever want this hook to be marked pure
        if (false) {
            maxAssets = maxAssets;
        }
    }

    /**
     * @notice Checks if the seizing of assets should be allowed to occur
     * @param cTokenCollateral Asset which was used as collateral and will be seized
     * @param cTokenBorrowed Asset which was borrowed by the borrower
     * @param liquidator The address repaying the borrow and seizing the collateral
     * @param borrower The address of the borrower
     * @param seizeTokens The number of collateral tokens to seize
     */
    function seizeAllowed(
        address cTokenCollateral,
        address cTokenBorrowed,
        address liquidator,
        address borrower,
        uint seizeTokens) external returns (uint) {
        // Pausing is a very serious situation - we revert to sound the alarms
        require(!seizeGuardianPaused, "seize is paused");

        // Shh - currently unused
        liquidator;
        borrower;
        seizeTokens;

        // Make sure markets are listed
        if (!markets[cTokenCollateral].isListed || !markets[cTokenBorrowed].isListed) {
            return uint(Error.MARKET_NOT_LISTED);
        }

        // Make sure cToken Comptrollers are identical
        if (CToken(cTokenCollateral).comptroller() != CToken(cTokenBorrowed).comptroller()) {
            return uint(Error.COMPTROLLER_MISMATCH);
        }

        // Keep the flywheel moving
        flywheelPreTransferAction(cTokenCollateral, borrower, liquidator);

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Validates seize and reverts on rejection. May emit logs.
     * @param cTokenCollateral Asset which was used as collateral and will be seized
     * @param cTokenBorrowed Asset which was borrowed by the borrower
     * @param liquidator The address repaying the borrow and seizing the collateral
     * @param borrower The address of the borrower
     * @param seizeTokens The number of collateral tokens to seize
     */
    function seizeVerify(
        address cTokenCollateral,
        address cTokenBorrowed,
        address liquidator,
        address borrower,
        uint seizeTokens) external {
        // Shh - currently unused
        cTokenCollateral;
        cTokenBorrowed;
        liquidator;
        borrower;
        seizeTokens;

        // Shh - we don't ever want this hook to be marked pure
        if (false) {
            maxAssets = maxAssets;
        }
    }

    /**
     * @notice Checks if the account should be allowed to transfer tokens in the given market
     * @param cToken The market to verify the transfer against
     * @param src The account which sources the tokens
     * @param dst The account which receives the tokens
     * @param transferTokens The number of cTokens to transfer
     * @return 0 if the transfer is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
     */
    function transferAllowed(address cToken, address src, address dst, uint transferTokens) external returns (uint) {
        // Pausing is a very serious situation - we revert to sound the alarms
        require(!transferGuardianPaused, "transfer is paused");

        // Currently the only consideration is whether or not
        //  the src is allowed to redeem this many tokens
        uint allowed = redeemAllowedInternal(cToken, src, transferTokens);
        if (allowed != uint(Error.NO_ERROR)) {
            return allowed;
        }

        // Keep the flywheel moving
        flywheelPreTransferAction(cToken, src, dst);

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Validates transfer and reverts on rejection. May emit logs.
     * @param cToken Asset being transferred
     * @param src The account which sources the tokens
     * @param dst The account which receives the tokens
     * @param transferTokens The number of cTokens to transfer
     */
    function transferVerify(address cToken, address src, address dst, uint transferTokens) external {
        // Shh - currently unused
        cToken;
        src;
        dst;
        transferTokens;

        // Shh - we don't ever want this hook to be marked pure
        if (false) {
            maxAssets = maxAssets;
        }
    }

    /*** Flywheel Hooks ***/

    /**
     * @notice Keeps the flywheel moving pre-mint and pre-redeem
     * @param cToken The relevant market
     * @param supplier The minter/redeemer
     */
    function flywheelPreSupplierAction(address cToken, address supplier) internal {
        for (uint256 i = 0; i < rewardsDistributors.length; i++) RewardsDistributorDelegate(rewardsDistributors[i]).flywheelPreSupplierAction(cToken, supplier);
    }

    /**
     * @notice Keeps the flywheel moving pre-borrow and pre-repay
     * @param cToken The relevant market
     * @param borrower The borrower
     */
    function flywheelPreBorrowerAction(address cToken, address borrower) internal {
        for (uint256 i = 0; i < rewardsDistributors.length; i++) RewardsDistributorDelegate(rewardsDistributors[i]).flywheelPreBorrowerAction(cToken, borrower);
    }

    /**
     * @notice Keeps the flywheel moving pre-transfer and pre-seize
     * @param cToken The relevant market
     * @param src The account which sources the tokens
     * @param dst The account which receives the tokens
     */
    function flywheelPreTransferAction(address cToken, address src, address dst) internal {
        for (uint256 i = 0; i < rewardsDistributors.length; i++) RewardsDistributorDelegate(rewardsDistributors[i]).flywheelPreTransferAction(cToken, src, dst);
    }

    /*** Liquidity/Liquidation Calculations ***/

    /**
     * @dev Local vars for avoiding stack-depth limits in calculating account liquidity.
     *  Note that `cTokenBalance` is the number of cTokens the account owns in the market,
     *  whereas `borrowBalance` is the amount of underlying that the account has borrowed.
     */
    struct AccountLiquidityLocalVars {
        uint sumCollateral;
        uint sumBorrowPlusEffects;
        uint cTokenBalance;
        uint borrowBalance;
        uint exchangeRateMantissa;
        uint oraclePriceMantissa;
        Exp collateralFactor;
        Exp exchangeRate;
        Exp oraclePrice;
        Exp tokensToDenom;
    }

    /**
     * @notice Determine the current account liquidity wrt collateral requirements
     * @return (possible error code (semi-opaque),
                account liquidity in excess of collateral requirements,
     *          account shortfall below collateral requirements)
     */
    function getAccountLiquidity(address account) public view returns (uint, uint, uint) {
        (Error err, uint liquidity, uint shortfall) = getHypotheticalAccountLiquidityInternal(account, CToken(0), 0, 0);

        return (uint(err), liquidity, shortfall);
    }

    /**
     * @notice Determine the current account liquidity wrt collateral requirements
     * @return (possible error code,
                account liquidity in excess of collateral requirements,
     *          account shortfall below collateral requirements)
     */
    function getAccountLiquidityInternal(address account) internal view returns (Error, uint, uint) {
        return getHypotheticalAccountLiquidityInternal(account, CToken(0), 0, 0);
    }

    /**
     * @notice Determine what the account liquidity would be if the given amounts were redeemed/borrowed
     * @param cTokenModify The market to hypothetically redeem/borrow in
     * @param account The account to determine liquidity for
     * @param redeemTokens The number of tokens to hypothetically redeem
     * @param borrowAmount The amount of underlying to hypothetically borrow
     * @return (possible error code (semi-opaque),
                hypothetical account liquidity in excess of collateral requirements,
     *          hypothetical account shortfall below collateral requirements)
     */
    function getHypotheticalAccountLiquidity(
        address account,
        address cTokenModify,
        uint redeemTokens,
        uint borrowAmount) public view returns (uint, uint, uint) {
        (Error err, uint liquidity, uint shortfall) = getHypotheticalAccountLiquidityInternal(account, CToken(cTokenModify), redeemTokens, borrowAmount);
        return (uint(err), liquidity, shortfall);
    }

    /**
     * @notice Determine what the account liquidity would be if the given amounts were redeemed/borrowed
     * @param cTokenModify The market to hypothetically redeem/borrow in
     * @param account The account to determine liquidity for
     * @param redeemTokens The number of tokens to hypothetically redeem
     * @param borrowAmount The amount of underlying to hypothetically borrow
     * @dev Note that we calculate the exchangeRateStored for each collateral cToken using stored data,
     *  without calculating accumulated interest.
     * @return (possible error code,
                hypothetical account liquidity in excess of collateral requirements,
     *          hypothetical account shortfall below collateral requirements)
     */
    function getHypotheticalAccountLiquidityInternal(
        address account,
        CToken cTokenModify,
        uint redeemTokens,
        uint borrowAmount) internal view returns (Error, uint, uint) {

        AccountLiquidityLocalVars memory vars; // Holds all our calculation results
        uint oErr;

        // For each asset the account is in
        CToken[] memory assets = accountAssets[account];
        for (uint i = 0; i < assets.length; i++) {
            CToken asset = assets[i];

            // Read the balances and exchange rate from the cToken
            (oErr, vars.cTokenBalance, vars.borrowBalance, vars.exchangeRateMantissa) = asset.getAccountSnapshot(account);
            if (oErr != 0) { // semi-opaque error code, we assume NO_ERROR == 0 is invariant between upgrades
                return (Error.SNAPSHOT_ERROR, 0, 0);
            }
            vars.collateralFactor = Exp({mantissa: markets[address(asset)].collateralFactorMantissa});
            vars.exchangeRate = Exp({mantissa: vars.exchangeRateMantissa});

            // Get the normalized price of the asset
            vars.oraclePriceMantissa = oracle.getUnderlyingPrice(asset);
            if (vars.oraclePriceMantissa == 0) {
                return (Error.PRICE_ERROR, 0, 0);
            }
            vars.oraclePrice = Exp({mantissa: vars.oraclePriceMantissa});

            // Pre-compute a conversion factor from tokens -> ether (normalized price value)
            vars.tokensToDenom = mul_(mul_(vars.collateralFactor, vars.exchangeRate), vars.oraclePrice);

            // sumCollateral += tokensToDenom * cTokenBalance
            vars.sumCollateral = mul_ScalarTruncateAddUInt(vars.tokensToDenom, vars.cTokenBalance, vars.sumCollateral);

            // sumBorrowPlusEffects += oraclePrice * borrowBalance
            vars.sumBorrowPlusEffects = mul_ScalarTruncateAddUInt(vars.oraclePrice, vars.borrowBalance, vars.sumBorrowPlusEffects);

            // Calculate effects of interacting with cTokenModify
            if (asset == cTokenModify) {
                // redeem effect
                // sumBorrowPlusEffects += tokensToDenom * redeemTokens
                vars.sumBorrowPlusEffects = mul_ScalarTruncateAddUInt(vars.tokensToDenom, redeemTokens, vars.sumBorrowPlusEffects);

                // borrow effect
                // sumBorrowPlusEffects += oraclePrice * borrowAmount
                vars.sumBorrowPlusEffects = mul_ScalarTruncateAddUInt(vars.oraclePrice, borrowAmount, vars.sumBorrowPlusEffects);
            }
        }

        // These are safe, as the underflow condition is checked first
        if (vars.sumCollateral > vars.sumBorrowPlusEffects) {
            return (Error.NO_ERROR, vars.sumCollateral - vars.sumBorrowPlusEffects, 0);
        } else {
            return (Error.NO_ERROR, 0, vars.sumBorrowPlusEffects - vars.sumCollateral);
        }
    }

    /**
     * @notice Calculate number of tokens of collateral asset to seize given an underlying amount
     * @dev Used in liquidation (called in cToken.liquidateBorrowFresh)
     * @param cTokenBorrowed The address of the borrowed cToken
     * @param cTokenCollateral The address of the collateral cToken
     * @param actualRepayAmount The amount of cTokenBorrowed underlying to convert into cTokenCollateral tokens
     * @return (errorCode, number of cTokenCollateral tokens to be seized in a liquidation)
     */
    function liquidateCalculateSeizeTokens(address cTokenBorrowed, address cTokenCollateral, uint actualRepayAmount) external view returns (uint, uint) {
        /* Read oracle prices for borrowed and collateral markets */
        uint priceBorrowedMantissa = oracle.getUnderlyingPrice(CToken(cTokenBorrowed));
        uint priceCollateralMantissa = oracle.getUnderlyingPrice(CToken(cTokenCollateral));
        if (priceBorrowedMantissa == 0 || priceCollateralMantissa == 0) {
            return (uint(Error.PRICE_ERROR), 0);
        }

        /*
         * Get the exchange rate and calculate the number of collateral tokens to seize:
         *  seizeAmount = actualRepayAmount * liquidationIncentive * priceBorrowed / priceCollateral
         *  seizeTokens = seizeAmount / exchangeRate
         *   = actualRepayAmount * (liquidationIncentive * priceBorrowed) / (priceCollateral * exchangeRate)
         */
        uint exchangeRateMantissa = CToken(cTokenCollateral).exchangeRateStored(); // Note: reverts on error
        uint seizeTokens;
        Exp memory numerator;
        Exp memory denominator;
        Exp memory ratio;

        numerator = mul_(Exp({mantissa: liquidationIncentiveMantissa}), Exp({mantissa: priceBorrowedMantissa}));
        denominator = mul_(Exp({mantissa: priceCollateralMantissa}), Exp({mantissa: exchangeRateMantissa}));
        ratio = div_(numerator, denominator);

        seizeTokens = mul_ScalarTruncate(ratio, actualRepayAmount);

        return (uint(Error.NO_ERROR), seizeTokens);
    }

    /*** Admin Functions ***/

    /**
      * @notice Add a RewardsDistributor contracts.
      * @dev Admin function to add a RewardsDistributor contract
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function _addRewardsDistributor(address distributor) external returns (uint) {
        // Check caller is admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.ADD_REWARDS_DISTRIBUTOR_OWNER_CHECK);
        }

        // Check marker method
        require(RewardsDistributorDelegate(distributor).isRewardsDistributor(), "marker method returned false");

        // Check for existing RewardsDistributor
        for (uint i = 0; i < rewardsDistributors.length; i++) require(distributor != rewardsDistributors[i], "RewardsDistributor contract already added");

        // Add RewardsDistributor to array
        rewardsDistributors.push(distributor);
        emit AddedRewardsDistributor(distributor);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Sets the whitelist enforcement for the comptroller
      * @dev Admin function to set a new whitelist enforcement boolean
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function _setWhitelistEnforcement(bool enforce) external returns (uint) {
        // Check caller is admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_WHITELIST_ENFORCEMENT_OWNER_CHECK);
        }

        // Check if `enforceWhitelist` already equals `enforce`
        if (enforceWhitelist == enforce) {
            return uint(Error.NO_ERROR);
        }

        // Set comptroller's `enforceWhitelist` to `enforce`
        enforceWhitelist = enforce;

        // Emit WhitelistEnforcementChanged(bool enforce);
        emit WhitelistEnforcementChanged(enforce);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Sets the whitelist `statuses` for `suppliers`
      * @dev Admin function to set the whitelist `statuses` for `suppliers`
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function _setWhitelistStatuses(address[] calldata suppliers, bool[] calldata statuses) external returns (uint) {
        // Check caller is admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_WHITELIST_STATUS_OWNER_CHECK);
        }

        // Set whitelist statuses for suppliers
        for (uint i = 0; i < suppliers.length; i++) {
            address supplier = suppliers[i];

            if (statuses[i]) {
                // If not already whitelisted, add to whitelist
                if (!whitelist[supplier]) {
                    whitelist[supplier] = true;
                    whitelistArray.push(supplier);
                    whitelistIndexes[supplier] = whitelistArray.length - 1;
                }
            } else {
                // If whitelisted, remove from whitelist
                if (whitelist[supplier]) {
                    whitelistArray[whitelistIndexes[supplier]] = whitelistArray[whitelistArray.length - 1]; // Copy last item in list to location of item to be removed
                    whitelistArray.length--; // Reduce length by 1
                    whitelistIndexes[whitelistArray[whitelistIndexes[supplier]]] = whitelistIndexes[supplier]; // Set whitelist index of moved item to correct index
                    whitelistIndexes[supplier] = 0; // Reset supplier whitelist index to 0 for a gas refund
                    whitelist[supplier] = false; // Tell the contract that the supplier is no longer whitelisted
                }
            }
        }

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Sets a new price oracle for the comptroller
      * @dev Admin function to set a new price oracle
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function _setPriceOracle(PriceOracle newOracle) public returns (uint) {
        // Check caller is admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_PRICE_ORACLE_OWNER_CHECK);
        }

        // Track the old oracle for the comptroller
        PriceOracle oldOracle = oracle;

        // Set comptroller's oracle to newOracle
        oracle = newOracle;

        // Emit NewPriceOracle(oldOracle, newOracle)
        emit NewPriceOracle(oldOracle, newOracle);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Sets the closeFactor used when liquidating borrows
      * @dev Admin function to set closeFactor
      * @param newCloseFactorMantissa New close factor, scaled by 1e18
      * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
      */
    function _setCloseFactor(uint newCloseFactorMantissa) external returns (uint256) {
        // Check caller is admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_CLOSE_FACTOR_OWNER_CHECK);
        }

        // Check limits
        Exp memory newCloseFactorExp = Exp({mantissa: newCloseFactorMantissa});
        Exp memory lowLimit = Exp({mantissa: closeFactorMinMantissa});
        if (lessThanOrEqualExp(newCloseFactorExp, lowLimit)) {
            return fail(Error.INVALID_CLOSE_FACTOR, FailureInfo.SET_CLOSE_FACTOR_VALIDATION);
        }

        Exp memory highLimit = Exp({mantissa: closeFactorMaxMantissa});
        if (lessThanExp(highLimit, newCloseFactorExp)) {
            return fail(Error.INVALID_CLOSE_FACTOR, FailureInfo.SET_CLOSE_FACTOR_VALIDATION);
        }

        // Set pool close factor to new close factor, remember old value
        uint oldCloseFactorMantissa = closeFactorMantissa;
        closeFactorMantissa = newCloseFactorMantissa;

        // Emit event
        emit NewCloseFactor(oldCloseFactorMantissa, closeFactorMantissa);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Sets the collateralFactor for a market
      * @dev Admin function to set per-market collateralFactor
      * @param cToken The market to set the factor on
      * @param newCollateralFactorMantissa The new collateral factor, scaled by 1e18
      * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
      */
    function _setCollateralFactor(CToken cToken, uint newCollateralFactorMantissa) public returns (uint256) {
        // Check caller is admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_COLLATERAL_FACTOR_OWNER_CHECK);
        }

        // Verify market is listed
        Market storage market = markets[address(cToken)];
        if (!market.isListed) {
            return fail(Error.MARKET_NOT_LISTED, FailureInfo.SET_COLLATERAL_FACTOR_NO_EXISTS);
        }

        Exp memory newCollateralFactorExp = Exp({mantissa: newCollateralFactorMantissa});

        // Check collateral factor <= 0.9
        Exp memory highLimit = Exp({mantissa: collateralFactorMaxMantissa});
        if (lessThanExp(highLimit, newCollateralFactorExp)) {
            return fail(Error.INVALID_COLLATERAL_FACTOR, FailureInfo.SET_COLLATERAL_FACTOR_VALIDATION);
        }

        // If collateral factor != 0, fail if price == 0
        if (newCollateralFactorMantissa != 0 && oracle.getUnderlyingPrice(cToken) == 0) {
            return fail(Error.PRICE_ERROR, FailureInfo.SET_COLLATERAL_FACTOR_WITHOUT_PRICE);
        }

        // Set market's collateral factor to new collateral factor, remember old value
        uint oldCollateralFactorMantissa = market.collateralFactorMantissa;
        market.collateralFactorMantissa = newCollateralFactorMantissa;

        // Emit event with asset, old collateral factor, and new collateral factor
        emit NewCollateralFactor(cToken, oldCollateralFactorMantissa, newCollateralFactorMantissa);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Sets liquidationIncentive
      * @dev Admin function to set liquidationIncentive
      * @param newLiquidationIncentiveMantissa New liquidationIncentive scaled by 1e18
      * @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
      */
    function _setLiquidationIncentive(uint newLiquidationIncentiveMantissa) external returns (uint) {
        // Check caller is admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_LIQUIDATION_INCENTIVE_OWNER_CHECK);
        }

        // Check de-scaled min <= newLiquidationIncentive <= max
        Exp memory newLiquidationIncentive = Exp({mantissa: newLiquidationIncentiveMantissa});
        Exp memory minLiquidationIncentive = Exp({mantissa: liquidationIncentiveMinMantissa});
        if (lessThanExp(newLiquidationIncentive, minLiquidationIncentive)) {
            return fail(Error.INVALID_LIQUIDATION_INCENTIVE, FailureInfo.SET_LIQUIDATION_INCENTIVE_VALIDATION);
        }

        Exp memory maxLiquidationIncentive = Exp({mantissa: liquidationIncentiveMaxMantissa});
        if (lessThanExp(maxLiquidationIncentive, newLiquidationIncentive)) {
            return fail(Error.INVALID_LIQUIDATION_INCENTIVE, FailureInfo.SET_LIQUIDATION_INCENTIVE_VALIDATION);
        }

        // Save current value for use in log
        uint oldLiquidationIncentiveMantissa = liquidationIncentiveMantissa;

        // Set liquidation incentive to new incentive
        liquidationIncentiveMantissa = newLiquidationIncentiveMantissa;

        // Emit event with old incentive, new incentive
        emit NewLiquidationIncentive(oldLiquidationIncentiveMantissa, newLiquidationIncentiveMantissa);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Add the market to the markets mapping and set it as listed
      * @dev Admin function to set isListed and add support for the market
      * @param cToken The address of the market (token) to list
      * @return uint 0=success, otherwise a failure. (See enum Error for details)
      */
    function _supportMarket(CToken cToken) internal returns (uint) {
        // Check caller is admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SUPPORT_MARKET_OWNER_CHECK);
        }

        // Is market already listed?
        if (markets[address(cToken)].isListed) {
            return fail(Error.MARKET_ALREADY_LISTED, FailureInfo.SUPPORT_MARKET_EXISTS);
        }

        // Sanity check to make sure its really a CToken
        require(cToken.isCToken(), "marker method returned false");

        // Check cToken.comptroller == this
        require(address(cToken.comptroller()) == address(this), "Cannot support a market with a different Comptroller.");

        // Make sure market is not already listed
        address underlying = cToken.isCEther() ? address(0) : CErc20(address(cToken)).underlying();

        if (address(cTokensByUnderlying[underlying]) != address(0)) {
            return fail(Error.MARKET_ALREADY_LISTED, FailureInfo.SUPPORT_MARKET_EXISTS);
        }

        // List market and emit event
        markets[address(cToken)] = Market({isListed: true, collateralFactorMantissa: 0});
        allMarkets.push(cToken);
        cTokensByUnderlying[underlying] = cToken;
        emit MarketListed(cToken);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Deploy cToken, add the market to the markets mapping, and set it as listed and set the collateral factor
      * @dev Admin function to deploy cToken, set isListed, and add support for the market and set the collateral factor
      * @return uint 0=success, otherwise a failure. (See enum Error for details)
      */
    function _deployMarket(
        bool isCEther,
        bytes calldata constructorData,
        uint collateralFactorMantissa
    ) external returns (uint) {
        // Check caller is admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SUPPORT_MARKET_OWNER_CHECK);
        }

        // Temporarily enable Fuse admin rights for asset deployment (storing the original value)
        bool oldFuseAdminHasRights = fuseAdminHasRights;
        fuseAdminHasRights = true;

        // Deploy via Fuse admin
        CToken cToken = CToken(isCEther ? fuseAdmin.deployCEther(constructorData) : fuseAdmin.deployCErc20(constructorData));

        // Reset Fuse admin rights to the original value
        fuseAdminHasRights = oldFuseAdminHasRights;

        // Support market here in the Comptroller
        uint256 err = _supportMarket(cToken);

        // Set collateral factor
        return err == uint(Error.NO_ERROR) ? _setCollateralFactor(cToken, collateralFactorMantissa) : err;
    }

    /**
      * @notice Removed a market from the markets mapping and sets it as unlisted
      * @dev Admin function unset isListed and collateralFactorMantissa and unadd support for the market
      * @param cToken The address of the market (token) to unlist
      * @return uint 0=success, otherwise a failure. (See enum Error for details)
      */
    function _unsupportMarket(CToken cToken) external returns (uint) {
        // Check admin rights
        if (!hasAdminRights()) return fail(Error.UNAUTHORIZED, FailureInfo.UNSUPPORT_MARKET_OWNER_CHECK);

        // Check if market is already unlisted
        if (!markets[address(cToken)].isListed) return fail(Error.MARKET_NOT_LISTED, FailureInfo.UNSUPPORT_MARKET_DOES_NOT_EXIST);

        // Check if market is in use
        if (cToken.totalSupply() > 0) return fail(Error.NONZERO_TOTAL_SUPPLY, FailureInfo.UNSUPPORT_MARKET_IN_USE);

        // Unlist market
        delete markets[address(cToken)];
        
        /* Delete cToken from allMarkets */
        // load into memory for faster iteration
        CToken[] memory _allMarkets = allMarkets;
        uint len = _allMarkets.length;
        uint assetIndex = len;
        for (uint i = 0; i < len; i++) {
            if (_allMarkets[i] == cToken) {
                assetIndex = i;
                break;
            }
        }

        // We *must* have found the asset in the list or our redundant data structure is broken
        assert(assetIndex < len);

        // copy last item in list to location of item to be removed, reduce length by 1
        allMarkets[assetIndex] = allMarkets[allMarkets.length - 1];
        allMarkets.length--;

        cTokensByUnderlying[cToken.isCEther() ? address(0) : CErc20(address(cToken)).underlying()] = CToken(address(0));
        emit MarketUnlisted(cToken);

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Toggles the auto-implementation feature
     * @param enabled If the feature is to be enabled
     * @return uint 0=success, otherwise a failure. (See enum Error for details)
     */
    function _toggleAutoImplementations(bool enabled) public returns (uint) {
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.TOGGLE_AUTO_IMPLEMENTATIONS_ENABLED_OWNER_CHECK);
        }

        // Return no error if already set to the desired value
        if (autoImplementation == enabled) return uint(Error.NO_ERROR);

        // Store autoImplementation with value enabled
        autoImplementation = enabled;

        // Emit AutoImplementationsToggled(enabled)
        emit AutoImplementationsToggled(enabled);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Set the given supply caps for the given cToken markets. Supplying that brings total underlying supply to or above supply cap will revert.
      * @dev Admin or borrowCapGuardian function to set the supply caps. A supply cap of 0 corresponds to unlimited supplying.
      * @param cTokens The addresses of the markets (tokens) to change the supply caps for
      * @param newSupplyCaps The new supply cap values in underlying to be set. A value of 0 corresponds to unlimited supplying.
      */
    function _setMarketSupplyCaps(CToken[] calldata cTokens, uint[] calldata newSupplyCaps) external {
    	require(msg.sender == admin || msg.sender == borrowCapGuardian, "only admin or borrow cap guardian can set supply caps"); 

        uint numMarkets = cTokens.length;
        uint numSupplyCaps = newSupplyCaps.length;

        require(numMarkets != 0 && numMarkets == numSupplyCaps, "invalid input");

        for(uint i = 0; i < numMarkets; i++) {
            supplyCaps[address(cTokens[i])] = newSupplyCaps[i];
            emit NewSupplyCap(cTokens[i], newSupplyCaps[i]);
        }
    }

    /**
      * @notice Set the given borrow caps for the given cToken markets. Borrowing that brings total borrows to or above borrow cap will revert.
      * @dev Admin or borrowCapGuardian function to set the borrow caps. A borrow cap of 0 corresponds to unlimited borrowing.
      * @param cTokens The addresses of the markets (tokens) to change the borrow caps for
      * @param newBorrowCaps The new borrow cap values in underlying to be set. A value of 0 corresponds to unlimited borrowing.
      */
    function _setMarketBorrowCaps(CToken[] calldata cTokens, uint[] calldata newBorrowCaps) external {
    	require(msg.sender == admin || msg.sender == borrowCapGuardian, "only admin or borrow cap guardian can set borrow caps"); 

        uint numMarkets = cTokens.length;
        uint numBorrowCaps = newBorrowCaps.length;

        require(numMarkets != 0 && numMarkets == numBorrowCaps, "invalid input");

        for(uint i = 0; i < numMarkets; i++) {
            borrowCaps[address(cTokens[i])] = newBorrowCaps[i];
            emit NewBorrowCap(cTokens[i], newBorrowCaps[i]);
        }
    }

    /**
     * @notice Admin function to change the Borrow Cap Guardian
     * @param newBorrowCapGuardian The address of the new Borrow Cap Guardian
     */
    function _setBorrowCapGuardian(address newBorrowCapGuardian) external {
        require(msg.sender == admin, "only admin can set borrow cap guardian");

        // Save current value for inclusion in log
        address oldBorrowCapGuardian = borrowCapGuardian;

        // Store borrowCapGuardian with value newBorrowCapGuardian
        borrowCapGuardian = newBorrowCapGuardian;

        // Emit NewBorrowCapGuardian(OldBorrowCapGuardian, NewBorrowCapGuardian)
        emit NewBorrowCapGuardian(oldBorrowCapGuardian, newBorrowCapGuardian);
    }

    /**
     * @notice Admin function to change the Pause Guardian
     * @param newPauseGuardian The address of the new Pause Guardian
     * @return uint 0=success, otherwise a failure. (See enum Error for details)
     */
    function _setPauseGuardian(address newPauseGuardian) public returns (uint) {
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_PAUSE_GUARDIAN_OWNER_CHECK);
        }

        // Save current value for inclusion in log
        address oldPauseGuardian = pauseGuardian;

        // Store pauseGuardian with value newPauseGuardian
        pauseGuardian = newPauseGuardian;

        // Emit NewPauseGuardian(OldPauseGuardian, NewPauseGuardian)
        emit NewPauseGuardian(oldPauseGuardian, pauseGuardian);

        return uint(Error.NO_ERROR);
    }

    function _setMintPaused(CToken cToken, bool state) public returns (bool) {
        require(markets[address(cToken)].isListed, "cannot pause a market that is not listed");
        require(msg.sender == pauseGuardian || hasAdminRights(), "only pause guardian and admin can pause");
        require(hasAdminRights() || state == true, "only admin can unpause");

        mintGuardianPaused[address(cToken)] = state;
        emit ActionPaused(cToken, "Mint", state);
        return state;
    }

    function _setBorrowPaused(CToken cToken, bool state) public returns (bool) {
        require(markets[address(cToken)].isListed, "cannot pause a market that is not listed");
        require(msg.sender == pauseGuardian || hasAdminRights(), "only pause guardian and admin can pause");
        require(hasAdminRights() || state == true, "only admin can unpause");

        borrowGuardianPaused[address(cToken)] = state;
        emit ActionPaused(cToken, "Borrow", state);
        return state;
    }

    function _setTransferPaused(bool state) public returns (bool) {
        require(msg.sender == pauseGuardian || hasAdminRights(), "only pause guardian and admin can pause");
        require(hasAdminRights() || state == true, "only admin can unpause");

        transferGuardianPaused = state;
        emit ActionPaused("Transfer", state);
        return state;
    }

    function _setSeizePaused(bool state) public returns (bool) {
        require(msg.sender == pauseGuardian || hasAdminRights(), "only pause guardian and admin can pause");
        require(hasAdminRights() || state == true, "only admin can unpause");

        seizeGuardianPaused = state;
        emit ActionPaused("Seize", state);
        return state;
    }

    function _become(Unitroller unitroller) public {
        require((msg.sender == address(fuseAdmin) && unitroller.fuseAdminHasRights()) || (msg.sender == unitroller.admin() && unitroller.adminHasRights()), "only unitroller admin can change brains");

        uint changeStatus = unitroller._acceptImplementation();
        require(changeStatus == 0, "change not authorized");

        Comptroller(address(unitroller))._becomeImplementation();
    }

    function _becomeImplementation() external {
        require(msg.sender == comptrollerImplementation, "only implementation may call _becomeImplementation");

        if (!_notEnteredInitialized) {
            _notEntered = true;
            _notEnteredInitialized = true;
        }
    }

    /*** Helper Functions ***/

    /**
     * @notice Return all of the markets
     * @dev The automatic getter may be used to access an individual market.
     * @return The list of market addresses
     */
    function getAllMarkets() public view returns (CToken[] memory) {
        return allMarkets;
    }

    /**
     * @notice Return all of the borrowers
     * @dev The automatic getter may be used to access an individual borrower.
     * @return The list of borrower account addresses
     */
    function getAllBorrowers() public view returns (address[] memory) {
        return allBorrowers;
    }

    /**
     * @notice Return all of the whitelist
     * @dev The automatic getter may be used to access an individual whitelist status.
     * @return The list of borrower account addresses
     */
    function getWhitelist() external view returns (address[] memory) {
        return whitelistArray;
    }

    /**
     * @notice Returns an array of all RewardsDistributors
     */
    function getRewardsDistributors() external view returns (address[] memory) {
        return rewardsDistributors;
    }

    /**
     * @notice Returns true if the given cToken market has been deprecated
     * @dev All borrows in a deprecated cToken market can be immediately liquidated
     * @param cToken The market to check if deprecated
     */
    function isDeprecated(CToken cToken) public view returns (bool) {
        return
            markets[address(cToken)].collateralFactorMantissa == 0 && 
            borrowGuardianPaused[address(cToken)] == true && 
            add_(add_(cToken.reserveFactorMantissa(), cToken.adminFeeMantissa()), cToken.fuseFeeMantissa()) == 1e18
        ;
    }

    /*** Pool-Wide/Cross-Asset Reentrancy Prevention ***/

    /**
     * @dev Called by cTokens before a non-reentrant function for pool-wide reentrancy prevention.
     * Prevents pool-wide/cross-asset reentrancy exploits like AMP on Cream.
     */
    function _beforeNonReentrant() external {
        require(markets[msg.sender].isListed, "Comptroller:_beforeNonReentrant: caller not listed as market");
        require(_notEntered, "re-entered across assets");
        _notEntered = false;
    }

    /**
     * @dev Called by cTokens after a non-reentrant function for pool-wide reentrancy prevention.
     * Prevents pool-wide/cross-asset reentrancy exploits like AMP on Cream.
     */
    function _afterNonReentrant() external {
        require(markets[msg.sender].isListed, "Comptroller:_afterNonReentrant: caller not listed as market");
        _notEntered = true; // get a gas-refund post-Istanbul
    }
}

pragma solidity ^0.5.16;

contract ComptrollerInterface {
    /// @notice Indicator that this is a Comptroller contract (for inspection)
    bool public constant isComptroller = true;

    /*** Assets You Are In ***/

    function enterMarkets(address[] calldata cTokens) external returns (uint[] memory);
    function exitMarket(address cToken) external returns (uint);

    /*** Policy Hooks ***/

    function mintAllowed(address cToken, address minter, uint mintAmount) external returns (uint);
    function mintWithinLimits(address cToken, uint exchangeRateMantissa, uint accountTokens, uint mintAmount) external returns (uint);
    function mintVerify(address cToken, address minter, uint mintAmount, uint mintTokens) external;

    function redeemAllowed(address cToken, address redeemer, uint redeemTokens) external returns (uint);
    function redeemVerify(address cToken, address redeemer, uint redeemAmount, uint redeemTokens) external;

    function borrowAllowed(address cToken, address borrower, uint borrowAmount) external returns (uint);
    function borrowWithinLimits(address cToken, uint accountBorrowsNew) external returns (uint);
    function borrowVerify(address cToken, address borrower, uint borrowAmount) external;

    function repayBorrowAllowed(
        address cToken,
        address payer,
        address borrower,
        uint repayAmount) external returns (uint);
    function repayBorrowVerify(
        address cToken,
        address payer,
        address borrower,
        uint repayAmount,
        uint borrowerIndex) external;

    function liquidateBorrowAllowed(
        address cTokenBorrowed,
        address cTokenCollateral,
        address liquidator,
        address borrower,
        uint repayAmount) external returns (uint);
    function liquidateBorrowVerify(
        address cTokenBorrowed,
        address cTokenCollateral,
        address liquidator,
        address borrower,
        uint repayAmount,
        uint seizeTokens) external;

    function seizeAllowed(
        address cTokenCollateral,
        address cTokenBorrowed,
        address liquidator,
        address borrower,
        uint seizeTokens) external returns (uint);
    function seizeVerify(
        address cTokenCollateral,
        address cTokenBorrowed,
        address liquidator,
        address borrower,
        uint seizeTokens) external;

    function transferAllowed(address cToken, address src, address dst, uint transferTokens) external returns (uint);
    function transferVerify(address cToken, address src, address dst, uint transferTokens) external;

    /*** Liquidity/Liquidation Calculations ***/

    function liquidateCalculateSeizeTokens(
        address cTokenBorrowed,
        address cTokenCollateral,
        uint repayAmount) external view returns (uint, uint);
    
    /*** Pool-Wide/Cross-Asset Reentrancy Prevention ***/

    function _beforeNonReentrant() external;
    function _afterNonReentrant() external;
}

pragma solidity ^0.5.16;

import "./IFuseFeeDistributor.sol";
import "./CToken.sol";
import "./PriceOracle.sol";

contract UnitrollerAdminStorage {
    /**
     * @notice Administrator for Fuse
     */
    IFuseFeeDistributor internal constant fuseAdmin = IFuseFeeDistributor(0xa731585ab05fC9f83555cf9Bff8F58ee94e18F85);

    /**
    * @notice Administrator for this contract
    */
    address public admin;

    /**
    * @notice Pending administrator for this contract
    */
    address public pendingAdmin;

    /**
     * @notice Whether or not the Fuse admin has admin rights
     */
    bool public fuseAdminHasRights = true;

    /**
     * @notice Whether or not the admin has admin rights
     */
    bool public adminHasRights = true;

    /**
     * @notice Returns a boolean indicating if the sender has admin rights
     */
    function hasAdminRights() internal view returns (bool) {
        return (msg.sender == admin && adminHasRights) || (msg.sender == address(fuseAdmin) && fuseAdminHasRights);
    }

    /**
    * @notice Active brains of Unitroller
    */
    address public comptrollerImplementation;

    /**
    * @notice Pending brains of Unitroller
    */
    address public pendingComptrollerImplementation;
}

contract ComptrollerV1Storage is UnitrollerAdminStorage {
    /**
     * @notice Oracle which gives the price of any given asset
     */
    PriceOracle public oracle;

    /**
     * @notice Multiplier used to calculate the maximum repayAmount when liquidating a borrow
     */
    uint public closeFactorMantissa;

    /**
     * @notice Multiplier representing the discount on collateral that a liquidator receives
     */
    uint public liquidationIncentiveMantissa;

    /**
     * @notice UNUSED AFTER UPGRADE: Max number of assets a single account can participate in (borrow or use as collateral)
     */
    uint internal maxAssets;

    /**
     * @notice Per-account mapping of "assets you are in", capped by maxAssets
     */
    mapping(address => CToken[]) public accountAssets;

}

contract ComptrollerV2Storage is ComptrollerV1Storage {
    struct Market {
        /**
         * @notice Whether or not this market is listed
         */
        bool isListed;

        /**
         * @notice Multiplier representing the most one can borrow against their collateral in this market.
         *  For instance, 0.9 to allow borrowing 90% of collateral value.
         *  Must be between 0 and 1, and stored as a mantissa.
         */
        uint collateralFactorMantissa;

        /**
         * @notice Per-market mapping of "accounts in this asset"
         */
        mapping(address => bool) accountMembership;
    }

    /**
     * @notice Official mapping of cTokens -> Market metadata
     * @dev Used e.g. to determine if a market is supported
     */
    mapping(address => Market) public markets;

    /// @notice A list of all markets
    CToken[] public allMarkets;

    /**
     * @dev Maps borrowers to booleans indicating if they have entered any markets
     */
    mapping(address => bool) internal borrowers;

    /// @notice A list of all borrowers who have entered markets
    address[] public allBorrowers;

    /// @notice Indexes of borrower account addresses in the `allBorrowers` array
    mapping(address => uint256) internal borrowerIndexes;

    /**
     * @dev Maps suppliers to booleans indicating if they have ever supplied to any markets
     */
    mapping(address => bool) public suppliers;

    /// @notice All cTokens addresses mapped by their underlying token addresses
    mapping(address => CToken) public cTokensByUnderlying;

    /// @notice Whether or not the supplier whitelist is enforced
    bool public enforceWhitelist;

    /// @notice Maps addresses to booleans indicating if they are allowed to supply assets (i.e., mint cTokens)
    mapping(address => bool) public whitelist;

    /// @notice An array of all whitelisted accounts
    address[] public whitelistArray;

    /// @notice Indexes of account addresses in the `whitelistArray` array
    mapping(address => uint256) internal whitelistIndexes;

    /**
     * @notice The Pause Guardian can pause certain actions as a safety mechanism.
     *  Actions which allow users to remove their own assets cannot be paused.
     *  Liquidation / seizing / transfer can only be paused globally, not by market.
     */
    address public pauseGuardian;
    bool public _mintGuardianPaused;
    bool public _borrowGuardianPaused;
    bool public transferGuardianPaused;
    bool public seizeGuardianPaused;
    mapping(address => bool) public mintGuardianPaused;
    mapping(address => bool) public borrowGuardianPaused;
}

contract ComptrollerV3Storage is ComptrollerV2Storage {
    /**
     * @dev Whether or not the implementation should be auto-upgraded.
     */
    bool public autoImplementation;

    /// @notice The borrowCapGuardian can set borrowCaps to any number for any market. Lowering the borrow cap could disable borrowing on the given market.
    address public borrowCapGuardian;

    /// @notice Borrow caps enforced by borrowAllowed for each cToken address. Defaults to zero which corresponds to unlimited borrowing.
    mapping(address => uint) public borrowCaps;

    /// @notice Supply caps enforced by mintAllowed for each cToken address. Defaults to zero which corresponds to unlimited supplying.
    mapping(address => uint) public supplyCaps;

    /// @notice RewardsDistributor contracts to notify of flywheel changes.
    address[] public rewardsDistributors;

    /// @dev Guard variable for pool-wide/cross-asset re-entrancy checks
    bool internal _notEntered;

    /// @dev Whether or not _notEntered has been initialized
    bool internal _notEnteredInitialized;
}

pragma solidity ^0.5.16;

import "./ComptrollerInterface.sol";
import "./CTokenInterfaces.sol";
import "./ErrorReporter.sol";
import "./Exponential.sol";
import "./EIP20Interface.sol";
import "./EIP20NonStandardInterface.sol";
import "./InterestRateModel.sol";

/**
 * @title Compound's CToken Contract
 * @notice Abstract base for CTokens
 * @author Compound
 */
contract CToken is CTokenInterface, Exponential, TokenErrorReporter {
    /**
     * @notice Returns a boolean indicating if the sender has admin rights
     */
    function hasAdminRights() internal view returns (bool) {
        ComptrollerV3Storage comptrollerStorage = ComptrollerV3Storage(address(comptroller));
        return (msg.sender == comptrollerStorage.admin() && comptrollerStorage.adminHasRights()) || (msg.sender == address(fuseAdmin) && comptrollerStorage.fuseAdminHasRights());
    }

    /**
     * @notice Initialize the money market
     * @param comptroller_ The address of the Comptroller
     * @param interestRateModel_ The address of the interest rate model
     * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18
     * @param name_ EIP-20 name of this token
     * @param symbol_ EIP-20 symbol of this token
     * @param decimals_ EIP-20 decimal precision of this token
     */
    function initialize(ComptrollerInterface comptroller_,
                        InterestRateModel interestRateModel_,
                        uint initialExchangeRateMantissa_,
                        string memory name_,
                        string memory symbol_,
                        uint8 decimals_,
                        uint256 reserveFactorMantissa_,
                        uint256 adminFeeMantissa_) public {
        require(msg.sender == address(fuseAdmin), "only Fuse admin may initialize the market");
        require(accrualBlockNumber == 0 && borrowIndex == 0, "market may only be initialized once");

        // Set initial exchange rate
        initialExchangeRateMantissa = initialExchangeRateMantissa_;
        require(initialExchangeRateMantissa > 0, "initial exchange rate must be greater than zero.");

        // Set the comptroller
        uint err = _setComptroller(comptroller_);
        require(err == uint(Error.NO_ERROR), "setting comptroller failed");

        // Initialize block number and borrow index (block number mocks depend on comptroller being set)
        accrualBlockNumber = getBlockNumber();
        borrowIndex = mantissaOne;

        // Set the interest rate model (depends on block number / borrow index)
        err = _setInterestRateModelFresh(interestRateModel_);
        require(err == uint(Error.NO_ERROR), "setting interest rate model failed");

        name = name_;
        symbol = symbol_;
        decimals = decimals_;

        // Set reserve factor
        err = _setReserveFactorFresh(reserveFactorMantissa_);
        require(err == uint(Error.NO_ERROR), "setting reserve factor failed");

        // Set admin fee
        err = _setAdminFeeFresh(adminFeeMantissa_);
        require(err == uint(Error.NO_ERROR), "setting admin fee failed");

        // The counter starts true to prevent changing it from zero to non-zero (i.e. smaller cost/refund)
        _notEntered = true;
    }
    
    /**
     * @dev Returns latest pending Fuse fee (to be set with `_setFuseFeeFresh`)
     */
    function getPendingFuseFeeFromAdmin() internal view returns (uint) {
        return fuseAdmin.interestFeeRate();
    }

    /**
     * @notice Transfer `tokens` tokens from `src` to `dst` by `spender`
     * @dev Called by both `transfer` and `transferFrom` internally
     * @param spender The address of the account performing the transfer
     * @param src The address of the source account
     * @param dst The address of the destination account
     * @param tokens The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transferTokens(address spender, address src, address dst, uint tokens) internal returns (uint) {
        /* Fail if transfer not allowed */
        uint allowed = comptroller.transferAllowed(address(this), src, dst, tokens);
        if (allowed != 0) {
            return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.TRANSFER_COMPTROLLER_REJECTION, allowed);
        }

        /* Do not allow self-transfers */
        if (src == dst) {
            return fail(Error.BAD_INPUT, FailureInfo.TRANSFER_NOT_ALLOWED);
        }

        /* Get the allowance, infinite for the account owner */
        uint startingAllowance = 0;
        if (spender == src) {
            startingAllowance = uint(-1);
        } else {
            startingAllowance = transferAllowances[src][spender];
        }

        /* Do the calculations, checking for {under,over}flow */
        MathError mathErr;
        uint allowanceNew;
        uint srcTokensNew;
        uint dstTokensNew;

        (mathErr, allowanceNew) = subUInt(startingAllowance, tokens);
        if (mathErr != MathError.NO_ERROR) {
            return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ALLOWED);
        }

        (mathErr, srcTokensNew) = subUInt(accountTokens[src], tokens);
        if (mathErr != MathError.NO_ERROR) {
            return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ENOUGH);
        }

        (mathErr, dstTokensNew) = addUInt(accountTokens[dst], tokens);
        if (mathErr != MathError.NO_ERROR) {
            return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_TOO_MUCH);
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        accountTokens[src] = srcTokensNew;
        accountTokens[dst] = dstTokensNew;

        /* Eat some of the allowance (if necessary) */
        if (startingAllowance != uint(-1)) {
            transferAllowances[src][spender] = allowanceNew;
        }

        /* We emit a Transfer event */
        emit Transfer(src, dst, tokens);

        /* We call the defense hook */
        // unused function
        // comptroller.transferVerify(address(this), src, dst, tokens);

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Transfer `amount` tokens from `msg.sender` to `dst`
     * @param dst The address of the destination account
     * @param amount The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transfer(address dst, uint256 amount) external nonReentrant(false) returns (bool) {
        return transferTokens(msg.sender, msg.sender, dst, amount) == uint(Error.NO_ERROR);
    }

    /**
     * @notice Transfer `amount` tokens from `src` to `dst`
     * @param src The address of the source account
     * @param dst The address of the destination account
     * @param amount The number of tokens to transfer
     * @return Whether or not the transfer succeeded
     */
    function transferFrom(address src, address dst, uint256 amount) external nonReentrant(false) returns (bool) {
        return transferTokens(msg.sender, src, dst, amount) == uint(Error.NO_ERROR);
    }

    /**
     * @notice Approve `spender` to transfer up to `amount` from `src`
     * @dev This will overwrite the approval amount for `spender`
     *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
     * @param spender The address of the account which may transfer tokens
     * @param amount The number of tokens that are approved (-1 means infinite)
     * @return Whether or not the approval succeeded
     */
    function approve(address spender, uint256 amount) external returns (bool) {
        address src = msg.sender;
        transferAllowances[src][spender] = amount;
        emit Approval(src, spender, amount);
        return true;
    }

    /**
     * @notice Get the current allowance from `owner` for `spender`
     * @param owner The address of the account which owns the tokens to be spent
     * @param spender The address of the account which may transfer tokens
     * @return The number of tokens allowed to be spent (-1 means infinite)
     */
    function allowance(address owner, address spender) external view returns (uint256) {
        return transferAllowances[owner][spender];
    }

    /**
     * @notice Get the token balance of the `owner`
     * @param owner The address of the account to query
     * @return The number of tokens owned by `owner`
     */
    function balanceOf(address owner) external view returns (uint256) {
        return accountTokens[owner];
    }

    /**
     * @notice Get the underlying balance of the `owner`
     * @dev This also accrues interest in a transaction
     * @param owner The address of the account to query
     * @return The amount of underlying owned by `owner`
     */
    function balanceOfUnderlying(address owner) external returns (uint) {
        Exp memory exchangeRate = Exp({mantissa: exchangeRateCurrent()});
        (MathError mErr, uint balance) = mulScalarTruncate(exchangeRate, accountTokens[owner]);
        require(mErr == MathError.NO_ERROR, "balance could not be calculated");
        return balance;
    }

    /**
     * @notice Get a snapshot of the account's balances, and the cached exchange rate
     * @dev This is used by comptroller to more efficiently perform liquidity checks.
     * @param account Address of the account to snapshot
     * @return (possible error, token balance, borrow balance, exchange rate mantissa)
     */
    function getAccountSnapshot(address account) external view returns (uint, uint, uint, uint) {
        uint cTokenBalance = accountTokens[account];
        uint borrowBalance;
        uint exchangeRateMantissa;

        MathError mErr;

        (mErr, borrowBalance) = borrowBalanceStoredInternal(account);
        if (mErr != MathError.NO_ERROR) {
            return (uint(Error.MATH_ERROR), 0, 0, 0);
        }

        (mErr, exchangeRateMantissa) = exchangeRateStoredInternal();
        if (mErr != MathError.NO_ERROR) {
            return (uint(Error.MATH_ERROR), 0, 0, 0);
        }

        return (uint(Error.NO_ERROR), cTokenBalance, borrowBalance, exchangeRateMantissa);
    }

    /**
     * @dev Function to simply retrieve block number
     *  This exists mainly for inheriting test contracts to stub this result.
     */
    function getBlockNumber() internal view returns (uint) {
        return block.number;
    }

    /**
     * @notice Returns the current per-block borrow interest rate for this cToken
     * @return The borrow interest rate per block, scaled by 1e18
     */
    function borrowRatePerBlock() external view returns (uint) {
        return interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, add_(totalReserves, add_(totalAdminFees, totalFuseFees)));
    }

    /**
     * @notice Returns the current per-block supply interest rate for this cToken
     * @return The supply interest rate per block, scaled by 1e18
     */
    function supplyRatePerBlock() external view returns (uint) {
        return interestRateModel.getSupplyRate(getCashPrior(), totalBorrows, add_(totalReserves, add_(totalAdminFees, totalFuseFees)), reserveFactorMantissa + fuseFeeMantissa + adminFeeMantissa);
    }

    /**
     * @notice Returns the current total borrows plus accrued interest
     * @return The total borrows with interest
     */
    function totalBorrowsCurrent() external nonReentrant(false) returns (uint) {
        require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed");
        return totalBorrows;
    }

    /**
     * @notice Accrue interest to updated borrowIndex and then calculate account's borrow balance using the updated borrowIndex
     * @param account The address whose balance should be calculated after updating borrowIndex
     * @return The calculated balance
     */
    function borrowBalanceCurrent(address account) external nonReentrant(false) returns (uint) {
        require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed");
        return borrowBalanceStored(account);
    }

    /**
     * @notice Return the borrow balance of account based on stored data
     * @param account The address whose balance should be calculated
     * @return The calculated balance
     */
    function borrowBalanceStored(address account) public view returns (uint) {
        (MathError err, uint result) = borrowBalanceStoredInternal(account);
        require(err == MathError.NO_ERROR, "borrowBalanceStored: borrowBalanceStoredInternal failed");
        return result;
    }

    /**
     * @notice Return the borrow balance of account based on stored data
     * @param account The address whose balance should be calculated
     * @return (error code, the calculated balance or 0 if error code is non-zero)
     */
    function borrowBalanceStoredInternal(address account) internal view returns (MathError, uint) {
        /* Note: we do not assert that the market is up to date */
        MathError mathErr;
        uint principalTimesIndex;
        uint result;

        /* Get borrowBalance and borrowIndex */
        BorrowSnapshot storage borrowSnapshot = accountBorrows[account];

        /* If borrowBalance = 0 then borrowIndex is likely also 0.
         * Rather than failing the calculation with a division by 0, we immediately return 0 in this case.
         */
        if (borrowSnapshot.principal == 0) {
            return (MathError.NO_ERROR, 0);
        }

        /* Calculate new borrow balance using the interest index:
         *  recentBorrowBalance = borrower.borrowBalance * market.borrowIndex / borrower.borrowIndex
         */
        (mathErr, principalTimesIndex) = mulUInt(borrowSnapshot.principal, borrowIndex);
        if (mathErr != MathError.NO_ERROR) {
            return (mathErr, 0);
        }

        (mathErr, result) = divUInt(principalTimesIndex, borrowSnapshot.interestIndex);
        if (mathErr != MathError.NO_ERROR) {
            return (mathErr, 0);
        }

        return (MathError.NO_ERROR, result);
    }

    /**
     * @notice Accrue interest then return the up-to-date exchange rate
     * @return Calculated exchange rate scaled by 1e18
     */
    function exchangeRateCurrent() public nonReentrant(false) returns (uint) {
        require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed");
        return exchangeRateStored();
    }

    /**
     * @notice Calculates the exchange rate from the underlying to the CToken
     * @dev This function does not accrue interest before calculating the exchange rate
     * @return Calculated exchange rate scaled by 1e18
     */
    function exchangeRateStored() public view returns (uint) {
        (MathError err, uint result) = exchangeRateStoredInternal();
        require(err == MathError.NO_ERROR, "exchangeRateStored: exchangeRateStoredInternal failed");
        return result;
    }

    /**
     * @notice Calculates the exchange rate from the underlying to the CToken
     * @dev This function does not accrue interest before calculating the exchange rate
     * @return (error code, calculated exchange rate scaled by 1e18)
     */
    function exchangeRateStoredInternal() internal view returns (MathError, uint) {
        uint _totalSupply = totalSupply;
        if (_totalSupply == 0) {
            /*
             * If there are no tokens minted:
             *  exchangeRate = initialExchangeRate
             */
            return (MathError.NO_ERROR, initialExchangeRateMantissa);
        } else {
            /*
             * Otherwise:
             *  exchangeRate = (totalCash + totalBorrows - (totalReserves + totalFuseFees + totalAdminFees)) / totalSupply
             */
            uint totalCash = getCashPrior();
            uint cashPlusBorrowsMinusReserves;
            Exp memory exchangeRate;
            MathError mathErr;

            (mathErr, cashPlusBorrowsMinusReserves) = addThenSubUInt(totalCash, totalBorrows, add_(totalReserves, add_(totalAdminFees, totalFuseFees)));
            if (mathErr != MathError.NO_ERROR) {
                return (mathErr, 0);
            }

            (mathErr, exchangeRate) = getExp(cashPlusBorrowsMinusReserves, _totalSupply);
            if (mathErr != MathError.NO_ERROR) {
                return (mathErr, 0);
            }

            return (MathError.NO_ERROR, exchangeRate.mantissa);
        }
    }

    /**
     * @notice Get cash balance of this cToken in the underlying asset
     * @return The quantity of underlying asset owned by this contract
     */
    function getCash() external view returns (uint) {
        return getCashPrior();
    }

    /**
     * @notice Applies accrued interest to total borrows and reserves
     * @dev This calculates interest accrued from the last checkpointed block
     *   up to the current block and writes new checkpoint to storage.
     */
    function accrueInterest() public returns (uint) {
        /* Remember the initial block number */
        uint currentBlockNumber = getBlockNumber();

        /* Short-circuit accumulating 0 interest */
        if (accrualBlockNumber == currentBlockNumber) {
            return uint(Error.NO_ERROR);
        }

        /* Read the previous values out of storage */
        uint cashPrior = getCashPrior();

        /* Calculate the current borrow interest rate */
        uint borrowRateMantissa = interestRateModel.getBorrowRate(cashPrior, totalBorrows, add_(totalReserves, add_(totalAdminFees, totalFuseFees)));
        require(borrowRateMantissa <= borrowRateMaxMantissa, "borrow rate is absurdly high");

        /* Calculate the number of blocks elapsed since the last accrual */
        (MathError mathErr, uint blockDelta) = subUInt(currentBlockNumber, accrualBlockNumber);
        require(mathErr == MathError.NO_ERROR, "could not calculate block delta");

        return finishInterestAccrual(currentBlockNumber, cashPrior, borrowRateMantissa, blockDelta);
    }

    /**
     * @dev Split off from `accrueInterest` to avoid "stack too deep" error".
     */
    function finishInterestAccrual(uint currentBlockNumber, uint cashPrior, uint borrowRateMantissa, uint blockDelta) private returns (uint) {
        /*
         * Calculate the interest accumulated into borrows and reserves and the new index:
         *  simpleInterestFactor = borrowRate * blockDelta
         *  interestAccumulated = simpleInterestFactor * totalBorrows
         *  totalBorrowsNew = interestAccumulated + totalBorrows
         *  totalReservesNew = interestAccumulated * reserveFactor + totalReserves
         *  totalFuseFeesNew = interestAccumulated * fuseFee + totalFuseFees
         *  totalAdminFeesNew = interestAccumulated * adminFee + totalAdminFees
         *  borrowIndexNew = simpleInterestFactor * borrowIndex + borrowIndex
         */

        Exp memory simpleInterestFactor = mul_(Exp({mantissa: borrowRateMantissa}), blockDelta);
        uint interestAccumulated = mul_ScalarTruncate(simpleInterestFactor, totalBorrows);
        uint totalBorrowsNew = add_(interestAccumulated, totalBorrows);
        uint totalReservesNew = mul_ScalarTruncateAddUInt(Exp({mantissa: reserveFactorMantissa}), interestAccumulated, totalReserves);
        uint totalFuseFeesNew = mul_ScalarTruncateAddUInt(Exp({mantissa: fuseFeeMantissa}), interestAccumulated, totalFuseFees);
        uint totalAdminFeesNew = mul_ScalarTruncateAddUInt(Exp({mantissa: adminFeeMantissa}), interestAccumulated, totalAdminFees);
        uint borrowIndexNew = mul_ScalarTruncateAddUInt(simpleInterestFactor, borrowIndex, borrowIndex);

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /* We write the previously calculated values into storage */
        accrualBlockNumber = currentBlockNumber;
        borrowIndex = borrowIndexNew;
        totalBorrows = totalBorrowsNew;
        totalReserves = totalReservesNew;
        totalFuseFees = totalFuseFeesNew;
        totalAdminFees = totalAdminFeesNew;

        /* We emit an AccrueInterest event */
        emit AccrueInterest(cashPrior, interestAccumulated, borrowIndexNew, totalBorrowsNew);

        // Attempt to add interest checkpoint
        address(interestRateModel).call(abi.encodeWithSignature("checkpointInterest(uint256)", borrowRateMantissa));

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Sender supplies assets into the market and receives cTokens in exchange
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param mintAmount The amount of the underlying asset to supply
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount.
     */
    function mintInternal(uint mintAmount) internal nonReentrant(false) returns (uint, uint) {
        uint error = accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
            return (fail(Error(error), FailureInfo.MINT_ACCRUE_INTEREST_FAILED), 0);
        }
        // mintFresh emits the actual Mint event if successful and logs on errors, so we don't need to
        return mintFresh(msg.sender, mintAmount);
    }

    struct MintLocalVars {
        Error err;
        MathError mathErr;
        uint exchangeRateMantissa;
        uint mintTokens;
        uint totalSupplyNew;
        uint accountTokensNew;
        uint actualMintAmount;
    }

    /**
     * @notice User supplies assets into the market and receives cTokens in exchange
     * @dev Assumes interest has already been accrued up to the current block
     * @param minter The address of the account which is supplying the assets
     * @param mintAmount The amount of the underlying asset to supply
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount.
     */
    function mintFresh(address minter, uint mintAmount) internal returns (uint, uint) {
        /* Fail if mint not allowed */
        uint allowed = comptroller.mintAllowed(address(this), minter, mintAmount);
        if (allowed != 0) {
            return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.MINT_COMPTROLLER_REJECTION, allowed), 0);
        }

        /* Verify market's block number equals current block number */
        if (accrualBlockNumber != getBlockNumber()) {
            return (fail(Error.MARKET_NOT_FRESH, FailureInfo.MINT_FRESHNESS_CHECK), 0);
        }

        MintLocalVars memory vars;

        (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal();
        if (vars.mathErr != MathError.NO_ERROR) {
            return (failOpaque(Error.MATH_ERROR, FailureInfo.MINT_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr)), 0);
        }

        // Check max supply
        // unused function
        /* allowed = comptroller.mintWithinLimits(address(this), vars.exchangeRateMantissa, accountTokens[minter], mintAmount);
        if (allowed != 0) {
            return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.MINT_COMPTROLLER_REJECTION, allowed), 0);
        } */

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /*
         *  We call `doTransferIn` for the minter and the mintAmount.
         *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
         *  `doTransferIn` reverts if anything goes wrong, since we can't be sure if
         *  side-effects occurred. The function returns the amount actually transferred,
         *  in case of a fee. On success, the cToken holds an additional `actualMintAmount`
         *  of cash.
         */
        vars.actualMintAmount = doTransferIn(minter, mintAmount);

        /*
         * We get the current exchange rate and calculate the number of cTokens to be minted:
         *  mintTokens = actualMintAmount / exchangeRate
         */

        (vars.mathErr, vars.mintTokens) = divScalarByExpTruncate(vars.actualMintAmount, Exp({mantissa: vars.exchangeRateMantissa}));
        require(vars.mathErr == MathError.NO_ERROR, "MINT_EXCHANGE_CALCULATION_FAILED");

        /*
         * We calculate the new total supply of cTokens and minter token balance, checking for overflow:
         *  totalSupplyNew = totalSupply + mintTokens
         *  accountTokensNew = accountTokens[minter] + mintTokens
         */
        vars.totalSupplyNew = add_(totalSupply, vars.mintTokens);

        vars.accountTokensNew = add_(accountTokens[minter], vars.mintTokens);

        /* We write previously calculated values into storage */
        totalSupply = vars.totalSupplyNew;
        accountTokens[minter] = vars.accountTokensNew;

        /* We emit a Mint event, and a Transfer event */
        emit Mint(minter, vars.actualMintAmount, vars.mintTokens);
        emit Transfer(address(this), minter, vars.mintTokens);

        /* We call the defense hook */
        comptroller.mintVerify(address(this), minter, vars.actualMintAmount, vars.mintTokens);

        return (uint(Error.NO_ERROR), vars.actualMintAmount);
    }

    /**
     * @notice Sender redeems cTokens in exchange for the underlying asset
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param redeemTokens The number of cTokens to redeem into underlying
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeemInternal(uint redeemTokens) internal nonReentrant(false) returns (uint) {
        uint error = accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed
            return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED);
        }
        // redeemFresh emits redeem-specific logs on errors, so we don't need to
        return redeemFresh(msg.sender, redeemTokens, 0);
    }

    /**
     * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset
     * @dev Accrues interest whether or not the operation succeeds, unless reverted
     * @param redeemAmount The amount of underlying to receive from redeeming cTokens
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeemUnderlyingInternal(uint redeemAmount) internal nonReentrant(false) returns (uint) {
        uint error = accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed
            return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED);
        }
        // redeemFresh emits redeem-specific logs on errors, so we don't need to
        return redeemFresh(msg.sender, 0, redeemAmount);
    }

    struct RedeemLocalVars {
        Error err;
        MathError mathErr;
        uint exchangeRateMantissa;
        uint redeemTokens;
        uint redeemAmount;
        uint totalSupplyNew;
        uint accountTokensNew;
    }

    /**
     * @notice User redeems cTokens in exchange for the underlying asset
     * @dev Assumes interest has already been accrued up to the current block
     * @param redeemer The address of the account which is redeeming the tokens
     * @param redeemTokensIn The number of cTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be non-zero)
     * @param redeemAmountIn The number of underlying tokens to receive from redeeming cTokens (only one of redeemTokensIn or redeemAmountIn may be non-zero)
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function redeemFresh(address payable redeemer, uint redeemTokensIn, uint redeemAmountIn) internal returns (uint) {
        require(redeemTokensIn == 0 || redeemAmountIn == 0, "one of redeemTokensIn or redeemAmountIn must be zero");

        RedeemLocalVars memory vars;

        /* exchangeRate = invoke Exchange Rate Stored() */
        (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal();
        if (vars.mathErr != MathError.NO_ERROR) {
            return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr));
        }

        /* If redeemTokensIn > 0: */
        if (redeemTokensIn > 0) {
            /*
             * We calculate the exchange rate and the amount of underlying to be redeemed:
             *  redeemTokens = redeemTokensIn
             *  redeemAmount = redeemTokensIn x exchangeRateCurrent
             */
            vars.redeemTokens = redeemTokensIn;

            (vars.mathErr, vars.redeemAmount) = mulScalarTruncate(Exp({mantissa: vars.exchangeRateMantissa}), redeemTokensIn);
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED, uint(vars.mathErr));
            }
        } else {
            /*
             * We get the current exchange rate and calculate the amount to be redeemed:
             *  redeemTokens = redeemAmountIn / exchangeRate
             *  redeemAmount = redeemAmountIn
             */

            (vars.mathErr, vars.redeemTokens) = divScalarByExpTruncate(redeemAmountIn, Exp({mantissa: vars.exchangeRateMantissa}));
            if (vars.mathErr != MathError.NO_ERROR) {
                return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED, uint(vars.mathErr));
            }

            vars.redeemAmount = redeemAmountIn;
        }

        /* Fail if redeem not allowed */
        uint allowed = comptroller.redeemAllowed(address(this), redeemer, vars.redeemTokens);
        if (allowed != 0) {
            return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REDEEM_COMPTROLLER_REJECTION, allowed);
        }

        /* Verify market's block number equals current block number */
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDEEM_FRESHNESS_CHECK);
        }

        /*
         * We calculate the new total supply and redeemer balance, checking for underflow:
         *  totalSupplyNew = totalSupply - redeemTokens
         *  accountTokensNew = accountTokens[redeemer] - redeemTokens
         */
        (vars.mathErr, vars.totalSupplyNew) = subUInt(totalSupply, vars.redeemTokens);
        if (vars.mathErr != MathError.NO_ERROR) {
            return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, uint(vars.mathErr));
        }

        (vars.mathErr, vars.accountTokensNew) = subUInt(accountTokens[redeemer], vars.redeemTokens);
        if (vars.mathErr != MathError.NO_ERROR) {
            return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
        }

        /* Fail gracefully if protocol has insufficient cash */
        if (getCashPrior() < vars.redeemAmount) {
            return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDEEM_TRANSFER_OUT_NOT_POSSIBLE);
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /*
         * We invoke doTransferOut for the redeemer and the redeemAmount.
         *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
         *  On success, the cToken has redeemAmount less of cash.
         *  doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
         */
        doTransferOut(redeemer, vars.redeemAmount);

        /* We write previously calculated values into storage */
        totalSupply = vars.totalSupplyNew;
        accountTokens[redeemer] = vars.accountTokensNew;

        /* We emit a Transfer event, and a Redeem event */
        emit Transfer(redeemer, address(this), vars.redeemTokens);
        emit Redeem(redeemer, vars.redeemAmount, vars.redeemTokens);

        /* We call the defense hook */
        comptroller.redeemVerify(address(this), redeemer, vars.redeemAmount, vars.redeemTokens);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Sender borrows assets from the protocol to their own address
      * @param borrowAmount The amount of the underlying asset to borrow
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function borrowInternal(uint borrowAmount) internal nonReentrant(false) returns (uint) {
        uint error = accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
            return fail(Error(error), FailureInfo.BORROW_ACCRUE_INTEREST_FAILED);
        }
        // borrowFresh emits borrow-specific logs on errors, so we don't need to
        return borrowFresh(msg.sender, borrowAmount);
    }

    struct BorrowLocalVars {
        MathError mathErr;
        uint accountBorrows;
        uint accountBorrowsNew;
        uint totalBorrowsNew;
    }

    /**
      * @notice Users borrow assets from the protocol to their own address
      * @param borrowAmount The amount of the underlying asset to borrow
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function borrowFresh(address payable borrower, uint borrowAmount) internal returns (uint) {
        /* Fail if borrow not allowed */
        uint allowed = comptroller.borrowAllowed(address(this), borrower, borrowAmount);
        if (allowed != 0) {
            return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.BORROW_COMPTROLLER_REJECTION, allowed);
        }

        /* Verify market's block number equals current block number */
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.BORROW_FRESHNESS_CHECK);
        }

        /* Fail gracefully if protocol has insufficient underlying cash */
        uint cashPrior = getCashPrior();

        if (cashPrior < borrowAmount) {
            return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.BORROW_CASH_NOT_AVAILABLE);
        }

        BorrowLocalVars memory vars;

        /*
         * We calculate the new borrower and total borrow balances, failing on overflow:
         *  accountBorrowsNew = accountBorrows + borrowAmount
         *  totalBorrowsNew = totalBorrows + borrowAmount
         */
        (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower);
        if (vars.mathErr != MathError.NO_ERROR) {
            return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
        }

        (vars.mathErr, vars.accountBorrowsNew) = addUInt(vars.accountBorrows, borrowAmount);
        if (vars.mathErr != MathError.NO_ERROR) {
            return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
        }

        // Check min borrow for this user for this asset
        allowed = comptroller.borrowWithinLimits(address(this), vars.accountBorrowsNew);
        if (allowed != 0) {
            return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.BORROW_COMPTROLLER_REJECTION, allowed);
        }

        (vars.mathErr, vars.totalBorrowsNew) = addUInt(totalBorrows, borrowAmount);
        if (vars.mathErr != MathError.NO_ERROR) {
            return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /*
         * We invoke doTransferOut for the borrower and the borrowAmount.
         *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
         *  On success, the cToken borrowAmount less of cash.
         *  doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
         */
        doTransferOut(borrower, borrowAmount);

        /* We write the previously calculated values into storage */
        accountBorrows[borrower].principal = vars.accountBorrowsNew;
        accountBorrows[borrower].interestIndex = borrowIndex;
        totalBorrows = vars.totalBorrowsNew;

        /* We emit a Borrow event */
        emit Borrow(borrower, borrowAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);

        /* We call the defense hook */
        // unused function
        // comptroller.borrowVerify(address(this), borrower, borrowAmount);

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Sender repays their own borrow
     * @param repayAmount The amount to repay
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
     */
    function repayBorrowInternal(uint repayAmount) internal nonReentrant(false) returns (uint, uint) {
        uint error = accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
            return (fail(Error(error), FailureInfo.REPAY_BORROW_ACCRUE_INTEREST_FAILED), 0);
        }
        // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to
        return repayBorrowFresh(msg.sender, msg.sender, repayAmount);
    }

    /**
     * @notice Sender repays a borrow belonging to borrower
     * @param borrower the account with the debt being payed off
     * @param repayAmount The amount to repay
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
     */
    function repayBorrowBehalfInternal(address borrower, uint repayAmount) internal nonReentrant(false) returns (uint, uint) {
        uint error = accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
            return (fail(Error(error), FailureInfo.REPAY_BEHALF_ACCRUE_INTEREST_FAILED), 0);
        }
        // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to
        return repayBorrowFresh(msg.sender, borrower, repayAmount);
    }

    struct RepayBorrowLocalVars {
        Error err;
        MathError mathErr;
        uint repayAmount;
        uint borrowerIndex;
        uint accountBorrows;
        uint accountBorrowsNew;
        uint totalBorrowsNew;
        uint actualRepayAmount;
    }

    /**
     * @notice Borrows are repaid by another user (possibly the borrower).
     * @param payer the account paying off the borrow
     * @param borrower the account with the debt being payed off
     * @param repayAmount the amount of undelrying tokens being returned
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
     */
    function repayBorrowFresh(address payer, address borrower, uint repayAmount) internal returns (uint, uint) {
        /* Fail if repayBorrow not allowed */
        uint allowed = comptroller.repayBorrowAllowed(address(this), payer, borrower, repayAmount);
        if (allowed != 0) {
            return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REPAY_BORROW_COMPTROLLER_REJECTION, allowed), 0);
        }

        /* Verify market's block number equals current block number */
        if (accrualBlockNumber != getBlockNumber()) {
            return (fail(Error.MARKET_NOT_FRESH, FailureInfo.REPAY_BORROW_FRESHNESS_CHECK), 0);
        }

        RepayBorrowLocalVars memory vars;

        /* We remember the original borrowerIndex for verification purposes */
        vars.borrowerIndex = accountBorrows[borrower].interestIndex;

        /* We fetch the amount the borrower owes, with accumulated interest */
        (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower);
        if (vars.mathErr != MathError.NO_ERROR) {
            return (failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)), 0);
        }

        /* If repayAmount == -1, repayAmount = accountBorrows */
        if (repayAmount == uint(-1)) {
            vars.repayAmount = vars.accountBorrows;
        } else {
            vars.repayAmount = repayAmount;
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /*
         * We call doTransferIn for the payer and the repayAmount
         *  Note: The cToken must handle variations between ERC-20 and ETH underlying.
         *  On success, the cToken holds an additional repayAmount of cash.
         *  doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred.
         *   it returns the amount actually transferred, in case of a fee.
         */
        vars.actualRepayAmount = doTransferIn(payer, vars.repayAmount);

        /*
         * We calculate the new borrower and total borrow balances, failing on underflow:
         *  accountBorrowsNew = accountBorrows - actualRepayAmount
         *  totalBorrowsNew = totalBorrows - actualRepayAmount
         */
        (vars.mathErr, vars.accountBorrowsNew) = subUInt(vars.accountBorrows, vars.actualRepayAmount);
        require(vars.mathErr == MathError.NO_ERROR, "REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED");

        (vars.mathErr, vars.totalBorrowsNew) = subUInt(totalBorrows, vars.actualRepayAmount);
        require(vars.mathErr == MathError.NO_ERROR, "REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED");

        /* We write the previously calculated values into storage */
        accountBorrows[borrower].principal = vars.accountBorrowsNew;
        accountBorrows[borrower].interestIndex = borrowIndex;
        totalBorrows = vars.totalBorrowsNew;

        /* We emit a RepayBorrow event */
        emit RepayBorrow(payer, borrower, vars.actualRepayAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);

        /* We call the defense hook */
        // unused function
        // comptroller.repayBorrowVerify(address(this), payer, borrower, vars.actualRepayAmount, vars.borrowerIndex);

        return (uint(Error.NO_ERROR), vars.actualRepayAmount);
    }

    /**
     * @notice The sender liquidates the borrowers collateral.
     *  The collateral seized is transferred to the liquidator.
     * @param borrower The borrower of this cToken to be liquidated
     * @param cTokenCollateral The market in which to seize collateral from the borrower
     * @param repayAmount The amount of the underlying borrowed asset to repay
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
     */
    function liquidateBorrowInternal(address borrower, uint repayAmount, CTokenInterface cTokenCollateral) internal nonReentrant(false) returns (uint, uint) {
        uint error = accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed
            return (fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED), 0);
        }

        error = cTokenCollateral.accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed
            return (fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED), 0);
        }

        // liquidateBorrowFresh emits borrow-specific logs on errors, so we don't need to
        return liquidateBorrowFresh(msg.sender, borrower, repayAmount, cTokenCollateral);
    }

    /**
     * @notice The liquidator liquidates the borrowers collateral.
     *  The collateral seized is transferred to the liquidator.
     * @param borrower The borrower of this cToken to be liquidated
     * @param liquidator The address repaying the borrow and seizing collateral
     * @param cTokenCollateral The market in which to seize collateral from the borrower
     * @param repayAmount The amount of the underlying borrowed asset to repay
     * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
     */
    function liquidateBorrowFresh(address liquidator, address borrower, uint repayAmount, CTokenInterface cTokenCollateral) internal returns (uint, uint) {
        /* Fail if liquidate not allowed */
        uint allowed = comptroller.liquidateBorrowAllowed(address(this), address(cTokenCollateral), liquidator, borrower, repayAmount);
        if (allowed != 0) {
            return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_COMPTROLLER_REJECTION, allowed), 0);
        }

        /* Verify market's block number equals current block number */
        if (accrualBlockNumber != getBlockNumber()) {
            return (fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_FRESHNESS_CHECK), 0);
        }

        /* Verify cTokenCollateral market's block number equals current block number */
        if (cTokenCollateral.accrualBlockNumber() != getBlockNumber()) {
            return (fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_COLLATERAL_FRESHNESS_CHECK), 0);
        }

        /* Fail if borrower = liquidator */
        if (borrower == liquidator) {
            return (fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_LIQUIDATOR_IS_BORROWER), 0);
        }

        /* Fail if repayAmount = 0 */
        if (repayAmount == 0) {
            return (fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_ZERO), 0);
        }

        /* Fail if repayAmount = -1 */
        if (repayAmount == uint(-1)) {
            return (fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX), 0);
        }


        /* Fail if repayBorrow fails */
        (uint repayBorrowError, uint actualRepayAmount) = repayBorrowFresh(liquidator, borrower, repayAmount);
        if (repayBorrowError != uint(Error.NO_ERROR)) {
            return (fail(Error(repayBorrowError), FailureInfo.LIQUIDATE_REPAY_BORROW_FRESH_FAILED), 0);
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /* We calculate the number of collateral tokens that will be seized */
        (uint amountSeizeError, uint seizeTokens) = comptroller.liquidateCalculateSeizeTokens(address(this), address(cTokenCollateral), actualRepayAmount);
        require(amountSeizeError == uint(Error.NO_ERROR), "LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED");

        /* Revert if borrower collateral token balance < seizeTokens */
        require(cTokenCollateral.balanceOf(borrower) >= seizeTokens, "LIQUIDATE_SEIZE_TOO_MUCH");

        // If this is also the collateral, run seizeInternal to avoid re-entrancy, otherwise make an external call
        uint seizeError;
        if (address(cTokenCollateral) == address(this)) {
            seizeError = seizeInternal(address(this), liquidator, borrower, seizeTokens);
        } else {
            seizeError = cTokenCollateral.seize(liquidator, borrower, seizeTokens);
        }

        /* Revert if seize tokens fails (since we cannot be sure of side effects) */
        require(seizeError == uint(Error.NO_ERROR), "token seizure failed");

        /* We emit a LiquidateBorrow event */
        emit LiquidateBorrow(liquidator, borrower, actualRepayAmount, address(cTokenCollateral), seizeTokens);

        /* We call the defense hook */
        // unused function
        // comptroller.liquidateBorrowVerify(address(this), address(cTokenCollateral), liquidator, borrower, actualRepayAmount, seizeTokens);

        return (uint(Error.NO_ERROR), actualRepayAmount);
    }

    /**
     * @notice Transfers collateral tokens (this market) to the liquidator.
     * @dev Will fail unless called by another cToken during the process of liquidation.
     *  Its absolutely critical to use msg.sender as the borrowed cToken and not a parameter.
     * @param liquidator The account receiving seized collateral
     * @param borrower The account having collateral seized
     * @param seizeTokens The number of cTokens to seize
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function seize(address liquidator, address borrower, uint seizeTokens) external nonReentrant(true) returns (uint) {
        return seizeInternal(msg.sender, liquidator, borrower, seizeTokens);
    }

    struct SeizeInternalLocalVars {
        MathError mathErr;
        uint borrowerTokensNew;
        uint liquidatorTokensNew;
        uint liquidatorSeizeTokens;
        uint protocolSeizeTokens;
        uint protocolSeizeAmount;
        uint exchangeRateMantissa;
        uint totalReservesNew;
        uint totalSupplyNew;
    }

    /**
     * @notice Transfers collateral tokens (this market) to the liquidator.
     * @dev Called only during an in-kind liquidation, or by liquidateBorrow during the liquidation of another CToken.
     *  Its absolutely critical to use msg.sender as the seizer cToken and not a parameter.
     * @param seizerToken The contract seizing the collateral (i.e. borrowed cToken)
     * @param liquidator The account receiving seized collateral
     * @param borrower The account having collateral seized
     * @param seizeTokens The number of cTokens to seize
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function seizeInternal(address seizerToken, address liquidator, address borrower, uint seizeTokens) internal returns (uint) {
        /* Fail if seize not allowed */
        uint allowed = comptroller.seizeAllowed(address(this), seizerToken, liquidator, borrower, seizeTokens);
        if (allowed != 0) {
            return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_SEIZE_COMPTROLLER_REJECTION, allowed);
        }

        /* Fail if borrower = liquidator */
        if (borrower == liquidator) {
            return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER);
        }

        SeizeInternalLocalVars memory vars;

        /*
         * We calculate the new borrower and liquidator token balances, failing on underflow/overflow:
         *  borrowerTokensNew = accountTokens[borrower] - seizeTokens
         *  liquidatorTokensNew = accountTokens[liquidator] + seizeTokens
         */
        (vars.mathErr, vars.borrowerTokensNew) = subUInt(accountTokens[borrower], seizeTokens);
        if (vars.mathErr != MathError.NO_ERROR) {
            return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED, uint(vars.mathErr));
        }

        vars.protocolSeizeTokens = mul_(seizeTokens, Exp({mantissa: protocolSeizeShareMantissa}));
        vars.liquidatorSeizeTokens = sub_(seizeTokens, vars.protocolSeizeTokens);

        (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal();
        require(vars.mathErr == MathError.NO_ERROR, "exchange rate math error");

        vars.protocolSeizeAmount = mul_ScalarTruncate(Exp({mantissa: vars.exchangeRateMantissa}), vars.protocolSeizeTokens);

        vars.totalReservesNew = add_(totalReserves, vars.protocolSeizeAmount);
        vars.totalSupplyNew = sub_(totalSupply, vars.protocolSeizeTokens);

        (vars.mathErr, vars.liquidatorTokensNew) = addUInt(accountTokens[liquidator], vars.liquidatorSeizeTokens);
        if (vars.mathErr != MathError.NO_ERROR) {
            return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED, uint(vars.mathErr));
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        /* We write the previously calculated values into storage */
        totalReserves = vars.totalReservesNew;
        totalSupply = vars.totalSupplyNew;
        accountTokens[borrower] = vars.borrowerTokensNew;
        accountTokens[liquidator] = vars.liquidatorTokensNew;

        /* Emit a Transfer event */
        emit Transfer(borrower, liquidator, vars.liquidatorSeizeTokens);
        emit Transfer(borrower, address(this), vars.protocolSeizeTokens);
        emit ReservesAdded(address(this), vars.protocolSeizeAmount, vars.totalReservesNew);

        /* We call the defense hook */
        // unused function
        // comptroller.seizeVerify(address(this), seizerToken, liquidator, borrower, seizeTokens);

        return uint(Error.NO_ERROR);
    }


    /*** Admin Functions ***/

    /**
      * @notice Sets a new comptroller for the market
      * @dev Internal function to set a new comptroller
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function _setComptroller(ComptrollerInterface newComptroller) internal returns (uint) {
        ComptrollerInterface oldComptroller = comptroller;
        // Ensure invoke comptroller.isComptroller() returns true
        require(newComptroller.isComptroller(), "marker method returned false");

        // Set market's comptroller to newComptroller
        comptroller = newComptroller;

        // Emit NewComptroller(oldComptroller, newComptroller)
        emit NewComptroller(oldComptroller, newComptroller);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice accrues interest and sets a new admin fee for the protocol using _setAdminFeeFresh
      * @dev Admin function to accrue interest and set a new admin fee
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function _setAdminFee(uint newAdminFeeMantissa) external nonReentrant(false) returns (uint) {
        uint error = accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted admin fee change failed.
            return fail(Error(error), FailureInfo.SET_ADMIN_FEE_ACCRUE_INTEREST_FAILED);
        }
        // _setAdminFeeFresh emits reserve-factor-specific logs on errors, so we don't need to.
        return _setAdminFeeFresh(newAdminFeeMantissa);
    }

    /**
      * @notice Sets a new admin fee for the protocol (*requires fresh interest accrual)
      * @dev Admin function to set a new admin fee
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function _setAdminFeeFresh(uint newAdminFeeMantissa) internal returns (uint) {
        // Verify market's block number equals current block number
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_ADMIN_FEE_FRESH_CHECK);
        }

        // Sanitize newAdminFeeMantissa
        if (newAdminFeeMantissa == uint(-1)) newAdminFeeMantissa = adminFeeMantissa;

        // Get latest Fuse fee
        uint newFuseFeeMantissa = getPendingFuseFeeFromAdmin();

        // Check reserveFactorMantissa + newAdminFeeMantissa + newFuseFeeMantissa ≤ reserveFactorPlusFeesMaxMantissa
        if (add_(add_(reserveFactorMantissa, newAdminFeeMantissa), newFuseFeeMantissa) > reserveFactorPlusFeesMaxMantissa) {
            return fail(Error.BAD_INPUT, FailureInfo.SET_ADMIN_FEE_BOUNDS_CHECK);
        }

        // If setting admin fee
        if (adminFeeMantissa != newAdminFeeMantissa) {
            // Check caller is admin
            if (!hasAdminRights()) {
                return fail(Error.UNAUTHORIZED, FailureInfo.SET_ADMIN_FEE_ADMIN_CHECK);
            }

            // Set admin fee
            uint oldAdminFeeMantissa = adminFeeMantissa;
            adminFeeMantissa = newAdminFeeMantissa;

            // Emit event
            emit NewAdminFee(oldAdminFeeMantissa, newAdminFeeMantissa);
        }

        // If setting Fuse fee
        if (fuseFeeMantissa != newFuseFeeMantissa) {
            // Set Fuse fee
            uint oldFuseFeeMantissa = fuseFeeMantissa;
            fuseFeeMantissa = newFuseFeeMantissa;

            // Emit event
            emit NewFuseFee(oldFuseFeeMantissa, newFuseFeeMantissa);
        }

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice accrues interest and sets a new reserve factor for the protocol using _setReserveFactorFresh
      * @dev Admin function to accrue interest and set a new reserve factor
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function _setReserveFactor(uint newReserveFactorMantissa) external nonReentrant(false) returns (uint) {
        uint error = accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reserve factor change failed.
            return fail(Error(error), FailureInfo.SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED);
        }
        // _setReserveFactorFresh emits reserve-factor-specific logs on errors, so we don't need to.
        return _setReserveFactorFresh(newReserveFactorMantissa);
    }

    /**
      * @notice Sets a new reserve factor for the protocol (*requires fresh interest accrual)
      * @dev Admin function to set a new reserve factor
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function _setReserveFactorFresh(uint newReserveFactorMantissa) internal returns (uint) {
        // Check caller is admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_RESERVE_FACTOR_ADMIN_CHECK);
        }

        // Verify market's block number equals current block number
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_RESERVE_FACTOR_FRESH_CHECK);
        }

        // Check newReserveFactor ≤ maxReserveFactor
        if (add_(add_(newReserveFactorMantissa, adminFeeMantissa), fuseFeeMantissa) > reserveFactorPlusFeesMaxMantissa) {
            return fail(Error.BAD_INPUT, FailureInfo.SET_RESERVE_FACTOR_BOUNDS_CHECK);
        }

        uint oldReserveFactorMantissa = reserveFactorMantissa;
        reserveFactorMantissa = newReserveFactorMantissa;

        emit NewReserveFactor(oldReserveFactorMantissa, newReserveFactorMantissa);

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Accrues interest and reduces reserves by transferring to admin
     * @param reduceAmount Amount of reduction to reserves
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _reduceReserves(uint reduceAmount) external nonReentrant(false) returns (uint) {
        uint error = accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reduce reserves failed.
            return fail(Error(error), FailureInfo.REDUCE_RESERVES_ACCRUE_INTEREST_FAILED);
        }
        // _reduceReservesFresh emits reserve-reduction-specific logs on errors, so we don't need to.
        return _reduceReservesFresh(reduceAmount);
    }

    /**
     * @notice Reduces reserves by transferring to admin
     * @dev Requires fresh interest accrual
     * @param reduceAmount Amount of reduction to reserves
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _reduceReservesFresh(uint reduceAmount) internal returns (uint) {
        // totalReserves - reduceAmount
        uint totalReservesNew;

        // Check caller is admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.REDUCE_RESERVES_ADMIN_CHECK);
        }

        // We fail gracefully unless market's block number equals current block number
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDUCE_RESERVES_FRESH_CHECK);
        }

        // Fail gracefully if protocol has insufficient underlying cash
        if (getCashPrior() < reduceAmount) {
            return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDUCE_RESERVES_CASH_NOT_AVAILABLE);
        }

        // Check reduceAmount ≤ reserves[n] (totalReserves)
        if (reduceAmount > totalReserves) {
            return fail(Error.BAD_INPUT, FailureInfo.REDUCE_RESERVES_VALIDATION);
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        // We checked reduceAmount <= totalReserves above, so this should never revert.
        totalReservesNew = sub_(totalReserves, reduceAmount);

        // Store reserves[n+1] = reserves[n] - reduceAmount
        totalReserves = totalReservesNew;

        // doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
        doTransferOut(msg.sender, reduceAmount);

        emit ReservesReduced(msg.sender, reduceAmount, totalReservesNew);

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Accrues interest and reduces Fuse fees by transferring to Fuse
     * @param withdrawAmount Amount of fees to withdraw
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _withdrawFuseFees(uint withdrawAmount) external nonReentrant(false) returns (uint) {
        uint error = accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted Fuse fee withdrawal failed.
            return fail(Error(error), FailureInfo.WITHDRAW_FUSE_FEES_ACCRUE_INTEREST_FAILED);
        }
        // _withdrawFuseFeesFresh emits reserve-reduction-specific logs on errors, so we don't need to.
        return _withdrawFuseFeesFresh(withdrawAmount);
    }

    /**
     * @notice Reduces Fuse fees by transferring to Fuse
     * @dev Requires fresh interest accrual
     * @param withdrawAmount Amount of fees to withdraw
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _withdrawFuseFeesFresh(uint withdrawAmount) internal returns (uint) {
        // totalFuseFees - reduceAmount
        uint totalFuseFeesNew;

        // We fail gracefully unless market's block number equals current block number
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.WITHDRAW_FUSE_FEES_FRESH_CHECK);
        }

        // Fail gracefully if protocol has insufficient underlying cash
        if (getCashPrior() < withdrawAmount) {
            return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.WITHDRAW_FUSE_FEES_CASH_NOT_AVAILABLE);
        }

        // Check withdrawAmount ≤ fuseFees[n] (totalFuseFees)
        if (withdrawAmount > totalFuseFees) {
            return fail(Error.BAD_INPUT, FailureInfo.WITHDRAW_FUSE_FEES_VALIDATION);
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        // We checked withdrawAmount <= totalFuseFees above, so this should never revert.
        totalFuseFeesNew = sub_(totalFuseFees, withdrawAmount);

        // Store fuseFees[n+1] = fuseFees[n] - withdrawAmount
        totalFuseFees = totalFuseFeesNew;

        // doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
        doTransferOut(address(fuseAdmin), withdrawAmount);

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice Accrues interest and reduces admin fees by transferring to admin
     * @param withdrawAmount Amount of fees to withdraw
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _withdrawAdminFees(uint withdrawAmount) external nonReentrant(false) returns (uint) {
        uint error = accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted admin fee withdrawal failed.
            return fail(Error(error), FailureInfo.WITHDRAW_ADMIN_FEES_ACCRUE_INTEREST_FAILED);
        }
        // _withdrawAdminFeesFresh emits reserve-reduction-specific logs on errors, so we don't need to.
        return _withdrawAdminFeesFresh(withdrawAmount);
    }

    /**
     * @notice Reduces admin fees by transferring to admin
     * @dev Requires fresh interest accrual
     * @param withdrawAmount Amount of fees to withdraw
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _withdrawAdminFeesFresh(uint withdrawAmount) internal returns (uint) {
        // totalAdminFees - reduceAmount
        uint totalAdminFeesNew;

        // We fail gracefully unless market's block number equals current block number
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.WITHDRAW_ADMIN_FEES_FRESH_CHECK);
        }

        // Fail gracefully if protocol has insufficient underlying cash
        if (getCashPrior() < withdrawAmount) {
            return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.WITHDRAW_ADMIN_FEES_CASH_NOT_AVAILABLE);
        }

        // Check withdrawAmount ≤ adminFees[n] (totalAdminFees)
        if (withdrawAmount > totalAdminFees) {
            return fail(Error.BAD_INPUT, FailureInfo.WITHDRAW_ADMIN_FEES_VALIDATION);
        }

        /////////////////////////
        // EFFECTS & INTERACTIONS
        // (No safe failures beyond this point)

        // We checked withdrawAmount <= totalAdminFees above, so this should never revert.
        totalAdminFeesNew = sub_(totalAdminFees, withdrawAmount);

        // Store adminFees[n+1] = adminFees[n] - withdrawAmount
        totalAdminFees = totalAdminFeesNew;

        // doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
        doTransferOut(address(uint160(UnitrollerAdminStorage(address(comptroller)).admin())), withdrawAmount);

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice accrues interest and updates the interest rate model using _setInterestRateModelFresh
     * @dev Admin function to accrue interest and update the interest rate model
     * @param newInterestRateModel the new interest rate model to use
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint) {
        uint error = accrueInterest();
        if (error != uint(Error.NO_ERROR)) {
            // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted change of interest rate model failed
            return fail(Error(error), FailureInfo.SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED);
        }
        // _setInterestRateModelFresh emits interest-rate-model-update-specific logs on errors, so we don't need to.
        return _setInterestRateModelFresh(newInterestRateModel);
    }

    /**
     * @notice updates the interest rate model (*requires fresh interest accrual)
     * @dev Admin function to update the interest rate model
     * @param newInterestRateModel the new interest rate model to use
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _setInterestRateModelFresh(InterestRateModel newInterestRateModel) internal returns (uint) {
        // Used to store old model for use in the event that is emitted on success
        InterestRateModel oldInterestRateModel;

        // Check caller is admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_INTEREST_RATE_MODEL_OWNER_CHECK);
        }

        // We fail gracefully unless market's block number equals current block number
        if (accrualBlockNumber != getBlockNumber()) {
            return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_INTEREST_RATE_MODEL_FRESH_CHECK);
        }

        // Track the market's current interest rate model
        oldInterestRateModel = interestRateModel;

        // Ensure invoke newInterestRateModel.isInterestRateModel() returns true
        require(newInterestRateModel.isInterestRateModel(), "marker method returned false");

        // Set the interest rate model to newInterestRateModel
        interestRateModel = newInterestRateModel;

        // Emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel)
        emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel);

        // Attempt to reset interest checkpoints on old IRM
        if (address(oldInterestRateModel) != address(0)) address(oldInterestRateModel).call(abi.encodeWithSignature("resetInterestCheckpoints()"));

        // Attempt to add first interest checkpoint on new IRM
        address(newInterestRateModel).call(abi.encodeWithSignature("checkpointInterest()"));

        return uint(Error.NO_ERROR);
    }

    /**
     * @notice updates the cToken ERC20 name and symbol
     * @dev Admin function to update the cToken ERC20 name and symbol
     * @param _name the new ERC20 token name to use
     * @param _symbol the new ERC20 token symbol to use
     * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
     */
    function _setNameAndSymbol(string calldata _name, string calldata _symbol) external {
        // Check caller is admin
        require(hasAdminRights(), "caller not admin");

        // Set ERC20 name and symbol
        name = _name;
        symbol = _symbol;
    }

    /*** Safe Token ***/

    /**
     * @notice Gets balance of this contract in terms of the underlying
     * @dev This excludes the value of the current message, if any
     * @return The quantity of underlying owned by this contract
     */
    function getCashPrior() internal view returns (uint);

    /**
     * @dev Performs a transfer in, reverting upon failure. Returns the amount actually transferred to the protocol, in case of a fee.
     *  This may revert due to insufficient balance or insufficient allowance.
     */
    function doTransferIn(address from, uint amount) internal returns (uint);

    /**
     * @dev Performs a transfer out, ideally returning an explanatory error code upon failure tather than reverting.
     *  If caller has not called checked protocol's balance, may revert due to insufficient cash held in the contract.
     *  If caller has checked protocol's balance, and verified it is >= amount, this should not revert in normal conditions.
     */
    function doTransferOut(address payable to, uint amount) internal;


    /*** Reentrancy Guard ***/

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     */
    modifier nonReentrant(bool localOnly) {
        _beforeNonReentrant(localOnly);
        _;
        _afterNonReentrant(localOnly);
    }

    /**
     * @dev Split off from `nonReentrant` to keep contract below the 24 KB size limit.
     * Saves space because function modifier code is "inlined" into every function with the modifier).
     * In this specific case, the optimization saves around 1500 bytes of that valuable 24 KB limit.
     */
    function _beforeNonReentrant(bool localOnly) private {
        require(_notEntered, "re-entered");
        if (!localOnly) comptroller._beforeNonReentrant();
        _notEntered = false;
    }

    /**
     * @dev Split off from `nonReentrant` to keep contract below the 24 KB size limit.
     * Saves space because function modifier code is "inlined" into every function with the modifier).
     * In this specific case, the optimization saves around 150 bytes of that valuable 24 KB limit.
     */
    function _afterNonReentrant(bool localOnly) private {
        _notEntered = true; // get a gas-refund post-Istanbul
        if (!localOnly) comptroller._afterNonReentrant();
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     * @param data The call data (encoded using abi.encode or one of its variants).
     * @param errorMessage The revert string to return on failure.
     */
    function _functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.call(data);

        if (!success) {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }

        return returndata;
    }
}

pragma solidity ^0.5.16;

import "./IFuseFeeDistributor.sol";
import "./ComptrollerStorage.sol";
import "./ComptrollerInterface.sol";
import "./InterestRateModel.sol";

contract CTokenAdminStorage {
    /**
     * @notice Administrator for Fuse
     */
    IFuseFeeDistributor internal constant fuseAdmin = IFuseFeeDistributor(0xa731585ab05fC9f83555cf9Bff8F58ee94e18F85);

    /**
     * @dev LEGACY USE ONLY: Administrator for this contract
     */
    address payable internal __admin;

    /**
     * @dev LEGACY USE ONLY: Whether or not the Fuse admin has admin rights
     */
    bool internal __fuseAdminHasRights;

    /**
     * @dev LEGACY USE ONLY: Whether or not the admin has admin rights
     */
    bool internal __adminHasRights;
}

contract CTokenStorage is CTokenAdminStorage {
    /**
     * @dev Guard variable for re-entrancy checks
     */
    bool internal _notEntered;

    /**
     * @notice EIP-20 token name for this token
     */
    string public name;

    /**
     * @notice EIP-20 token symbol for this token
     */
    string public symbol;

    /**
     * @notice EIP-20 token decimals for this token
     */
    uint8 public decimals;

    /**
     * @notice Maximum borrow rate that can ever be applied (.0005% / block)
     */
    uint internal constant borrowRateMaxMantissa = 0.0005e16;

    /**
     * @notice Maximum fraction of interest that can be set aside for reserves + fees
     */
    uint internal constant reserveFactorPlusFeesMaxMantissa = 1e18;

    /**
     * @notice LEGACY USE ONLY: Pending administrator for this contract
     */
    address payable private __pendingAdmin;

    /**
     * @notice Contract which oversees inter-cToken operations
     */
    ComptrollerInterface public comptroller;

    /**
     * @notice Model which tells what the current interest rate should be
     */
    InterestRateModel public interestRateModel;

    /**
     * @notice Initial exchange rate used when minting the first CTokens (used when totalSupply = 0)
     */
    uint internal initialExchangeRateMantissa;

    /**
     * @notice Fraction of interest currently set aside for admin fees
     */
    uint public adminFeeMantissa;

    /**
     * @notice Fraction of interest currently set aside for Fuse fees
     */
    uint public fuseFeeMantissa;

    /**
     * @notice Fraction of interest currently set aside for reserves
     */
    uint public reserveFactorMantissa;

    /**
     * @notice Block number that interest was last accrued at
     */
    uint public accrualBlockNumber;

    /**
     * @notice Accumulator of the total earned interest rate since the opening of the market
     */
    uint public borrowIndex;

    /**
     * @notice Total amount of outstanding borrows of the underlying in this market
     */
    uint public totalBorrows;

    /**
     * @notice Total amount of reserves of the underlying held in this market
     */
    uint public totalReserves;

    /**
     * @notice Total amount of admin fees of the underlying held in this market
     */
    uint public totalAdminFees;

    /**
     * @notice Total amount of Fuse fees of the underlying held in this market
     */
    uint public totalFuseFees;

    /**
     * @notice Total number of tokens in circulation
     */
    uint public totalSupply;

    /**
     * @notice Official record of token balances for each account
     */
    mapping (address => uint) internal accountTokens;

    /**
     * @notice Approved token transfer amounts on behalf of others
     */
    mapping (address => mapping (address => uint)) internal transferAllowances;

    /**
     * @notice Container for borrow balance information
     * @member principal Total balance (with accrued interest), after applying the most recent balance-changing action
     * @member interestIndex Global borrowIndex as of the most recent balance-changing action
     */
    struct BorrowSnapshot {
        uint principal;
        uint interestIndex;
    }

    /**
     * @notice Mapping of account addresses to outstanding borrow balances
     */
    mapping(address => BorrowSnapshot) internal accountBorrows;

    /**
     * @notice Share of seized collateral that is added to reserves
     */
    uint public constant protocolSeizeShareMantissa = 2.8e16; //2.8%
}

contract CTokenInterface is CTokenStorage {
    /**
     * @notice Indicator that this is a CToken contract (for inspection)
     */
    bool public constant isCToken = true;

    /**
     * @notice Indicator that this is or is not a CEther contract (for inspection)
     */
    bool public constant isCEther = false;

    /*** Market Events ***/

    /**
     * @notice Event emitted when interest is accrued
     */
    event AccrueInterest(uint cashPrior, uint interestAccumulated, uint borrowIndex, uint totalBorrows);

    /**
     * @notice Event emitted when tokens are minted
     */
    event Mint(address minter, uint mintAmount, uint mintTokens);

    /**
     * @notice Event emitted when tokens are redeemed
     */
    event Redeem(address redeemer, uint redeemAmount, uint redeemTokens);

    /**
     * @notice Event emitted when underlying is borrowed
     */
    event Borrow(address borrower, uint borrowAmount, uint accountBorrows, uint totalBorrows);

    /**
     * @notice Event emitted when a borrow is repaid
     */
    event RepayBorrow(address payer, address borrower, uint repayAmount, uint accountBorrows, uint totalBorrows);

    /**
     * @notice Event emitted when a borrow is liquidated
     */
    event LiquidateBorrow(address liquidator, address borrower, uint repayAmount, address cTokenCollateral, uint seizeTokens);


    /*** Admin Events ***/

    /**
     * @notice Event emitted when comptroller is changed
     */
    event NewComptroller(ComptrollerInterface oldComptroller, ComptrollerInterface newComptroller);

    /**
     * @notice Event emitted when interestRateModel is changed
     */
    event NewMarketInterestRateModel(InterestRateModel oldInterestRateModel, InterestRateModel newInterestRateModel);

    /**
     * @notice Event emitted when the reserve factor is changed
     */
    event NewReserveFactor(uint oldReserveFactorMantissa, uint newReserveFactorMantissa);

    /**
     * @notice Event emitted when the reserves are added
     */
    event ReservesAdded(address benefactor, uint addAmount, uint newTotalReserves);

    /**
     * @notice Event emitted when the reserves are reduced
     */
    event ReservesReduced(address admin, uint reduceAmount, uint newTotalReserves);

    /**
     * @notice Event emitted when the admin fee is changed
     */
    event NewAdminFee(uint oldAdminFeeMantissa, uint newAdminFeeMantissa);

    /**
     * @notice Event emitted when the Fuse fee is changed
     */
    event NewFuseFee(uint oldFuseFeeMantissa, uint newFuseFeeMantissa);

    /**
     * @notice EIP20 Transfer event
     */
    event Transfer(address indexed from, address indexed to, uint amount);

    /**
     * @notice EIP20 Approval event
     */
    event Approval(address indexed owner, address indexed spender, uint amount);

    /**
     * @notice Failure event
     */
    event Failure(uint error, uint info, uint detail);


    /*** User Interface ***/

    function transfer(address dst, uint amount) external returns (bool);
    function transferFrom(address src, address dst, uint amount) external returns (bool);
    function approve(address spender, uint amount) external returns (bool);
    function allowance(address owner, address spender) external view returns (uint);
    function balanceOf(address owner) external view returns (uint);
    function balanceOfUnderlying(address owner) external returns (uint);
    function getAccountSnapshot(address account) external view returns (uint, uint, uint, uint);
    function borrowRatePerBlock() external view returns (uint);
    function supplyRatePerBlock() external view returns (uint);
    function totalBorrowsCurrent() external returns (uint);
    function borrowBalanceCurrent(address account) external returns (uint);
    function borrowBalanceStored(address account) public view returns (uint);
    function exchangeRateCurrent() public returns (uint);
    function exchangeRateStored() public view returns (uint);
    function getCash() external view returns (uint);
    function accrueInterest() public returns (uint);
    function seize(address liquidator, address borrower, uint seizeTokens) external returns (uint);


    /*** Admin Functions ***/

    function _setReserveFactor(uint newReserveFactorMantissa) external returns (uint);
    function _reduceReserves(uint reduceAmount) external returns (uint);
    function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint);
}

contract CErc20Storage {
    /**
     * @notice Underlying asset for this CToken
     */
    address public underlying;
}

contract CErc20Interface is CErc20Storage {

    /*** User Interface ***/

    function mint(uint mintAmount) external returns (uint);
    function redeem(uint redeemTokens) external returns (uint);
    function redeemUnderlying(uint redeemAmount) external returns (uint);
    function borrow(uint borrowAmount) external returns (uint);
    function repayBorrow(uint repayAmount) external returns (uint);
    function repayBorrowBehalf(address borrower, uint repayAmount) external returns (uint);
    function liquidateBorrow(address borrower, uint repayAmount, CTokenInterface cTokenCollateral) external returns (uint);

}

contract CEtherInterface is CErc20Storage {
    /**
     * @notice Indicator that this is a CEther contract (for inspection)
     */
    bool public constant isCEther = true;
}

contract CDelegationStorage {
    /**
     * @notice Implementation address for this contract
     */
    address public implementation;
}

contract CDelegateInterface is CDelegationStorage {
    /**
     * @notice Emitted when implementation is changed
     */
    event NewImplementation(address oldImplementation, address newImplementation);

    /**
     * @notice Called by the admin to update the implementation of the delegator
     * @param implementation_ The address of the new implementation for delegation
     * @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation
     * @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation
     */
    function _setImplementationSafe(address implementation_, bool allowResign, bytes calldata becomeImplementationData) external;

    /**
     * @notice Called by the delegator on a delegate to initialize it for duty
     * @dev Should revert if any issues arise which make it unfit for delegation
     * @param data The encoded bytes data for any initialization
     */
    function _becomeImplementation(bytes calldata data) external;

    /**
     * @notice Function called before all delegator functions
     * @dev Checks comptroller.autoImplementation and upgrades the implementation if necessary
     */
    function _prepare() external payable;
}

pragma solidity ^0.5.16;

import "./JumpRateModel.sol";
import "./SafeMath.sol";

/**
  * @title Compound's DAIInterestRateModel Contract (version 2)
  * @author Compound (modified by Dharma Labs)
  * @notice The parameterized model described in section 2.4 of the original Compound Protocol whitepaper.
  * Version 2 modifies the original interest rate model by increasing the "gap" or slope of the model prior
  * to the "kink" from 0.05% to 2% with the goal of "smoothing out" interest rate changes as the utilization
  * rate increases.
  */
contract DAIInterestRateModelV2 is JumpRateModel {
    using SafeMath for uint;

    /**
     * @notice The additional margin per block separating the base borrow rate from the roof (2% / block).
     * Note that this value has been increased from the original value of 0.05% per block.
     */
    uint public constant gapPerBlock = 2e16 / blocksPerYear;

    /**
     * @notice The assumed (1 - reserve factor) used to calculate the minimum borrow rate (reserve factor = 0.05)
     */
    uint public constant assumedOneMinusReserveFactorMantissa = 0.95e18;

    PotLike pot;
    JugLike jug;

    /**
     * @notice Construct an interest rate model
     * @param jumpMultiplierPerYear The multiplierPerBlock after hitting a specified utilization point
     * @param kink_ The utilization point at which the jump multiplier is applied
     * @param pot_ The address of the Dai pot (where DSR is earned)
     * @param jug_ The address of the Dai jug (where SF is kept)
     */
    constructor(uint jumpMultiplierPerYear, uint kink_, address pot_, address jug_) JumpRateModel(0, 0, jumpMultiplierPerYear, kink_) public {
        pot = PotLike(pot_);
        jug = JugLike(jug_);
        poke();
    }

    /**
     * @notice Calculates the current supply interest rate per block including the Dai savings rate
     * @param cash The total amount of cash the market has
     * @param borrows The total amount of borrows the market has outstanding
     * @param reserves The total amnount of reserves the market has
     * @param reserveFactorMantissa The current reserve factor the market has
     * @return The supply rate per block (as a percentage, and scaled by 1e18)
     */
    function getSupplyRate(uint cash, uint borrows, uint reserves, uint reserveFactorMantissa) public view returns (uint) {
        uint protocolRate = super.getSupplyRate(cash, borrows, reserves, reserveFactorMantissa);

        uint underlying = cash.add(borrows).sub(reserves);
        if (underlying == 0) {
            return protocolRate;
        } else {
            uint cashRate = cash.mul(dsrPerBlock()).div(underlying);
            return cashRate.add(protocolRate);
        }
    }

    /**
     * @notice Calculates the Dai savings rate per block
     * @return The Dai savings rate per block (as a percentage, and scaled by 1e18)
     */
    function dsrPerBlock() public view returns (uint) {
        return pot
            .dsr().sub(1e27)  // scaled 1e27 aka RAY, and includes an extra "ONE" before subraction
            .div(1e9) // descale to 1e18
            .mul(15); // 15 seconds per block
    }

    /**
     * @notice Resets the baseRate and multiplier per block based on the stability fee and Dai savings rate
     */
    function poke() public {
        (uint duty, ) = jug.ilks("ETH-A");
        uint stabilityFeePerBlock = duty.add(jug.base()).sub(1e27).mul(1e18).div(1e27).mul(15);

        // We ensure the minimum borrow rate >= DSR / (1 - reserve factor)
        baseRatePerBlock = dsrPerBlock().mul(1e18).div(assumedOneMinusReserveFactorMantissa);

        // The roof borrow rate is max(base rate, stability fee) + gap, from which we derive the slope
        if (baseRatePerBlock < stabilityFeePerBlock) {
            multiplierPerBlock = stabilityFeePerBlock.sub(baseRatePerBlock).add(gapPerBlock).mul(1e18).div(kink);
        } else {
            multiplierPerBlock = gapPerBlock.mul(1e18).div(kink);
        }

        emit NewInterestParams(baseRatePerBlock, multiplierPerBlock, jumpMultiplierPerBlock, kink);
    }
}


/*** Maker Interfaces ***/

contract PotLike {
    function chi() external view returns (uint);
    function dsr() external view returns (uint);
    function rho() external view returns (uint);
    function pie(address) external view returns (uint);
    function drip() external returns (uint);
    function join(uint) external;
    function exit(uint) external;
}

contract JugLike {
    // --- Data ---
    struct Ilk {
        uint256 duty;
        uint256  rho;
    }

   mapping (bytes32 => Ilk) public ilks;
   uint256 public base;
}

pragma solidity ^0.5.16;

/**
 * @title ERC 20 Token Standard Interface
 *  https://eips.ethereum.org/EIPS/eip-20
 */
interface EIP20Interface {
    function name() external view returns (string memory);
    function symbol() external view returns (string memory);
    function decimals() external view returns (uint8);

    /**
      * @notice Get the total number of tokens in circulation
      * @return The supply of tokens
      */
    function totalSupply() external view returns (uint256);

    /**
     * @notice Gets the balance of the specified address
     * @param owner The address from which the balance will be retrieved
     * @return The balance
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
      * @notice Transfer `amount` tokens from `msg.sender` to `dst`
      * @param dst The address of the destination account
      * @param amount The number of tokens to transfer
      * @return Whether or not the transfer succeeded
      */
    function transfer(address dst, uint256 amount) external returns (bool success);

    /**
      * @notice Transfer `amount` tokens from `src` to `dst`
      * @param src The address of the source account
      * @param dst The address of the destination account
      * @param amount The number of tokens to transfer
      * @return Whether or not the transfer succeeded
      */
    function transferFrom(address src, address dst, uint256 amount) external returns (bool success);

    /**
      * @notice Approve `spender` to transfer up to `amount` from `src`
      * @dev This will overwrite the approval amount for `spender`
      *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
      * @param spender The address of the account which may transfer tokens
      * @param amount The number of tokens that are approved (-1 means infinite)
      * @return Whether or not the approval succeeded
      */
    function approve(address spender, uint256 amount) external returns (bool success);

    /**
      * @notice Get the current allowance from `owner` for `spender`
      * @param owner The address of the account which owns the tokens to be spent
      * @param spender The address of the account which may transfer tokens
      * @return The number of tokens allowed to be spent (-1 means infinite)
      */
    function allowance(address owner, address spender) external view returns (uint256 remaining);

    event Transfer(address indexed from, address indexed to, uint256 amount);
    event Approval(address indexed owner, address indexed spender, uint256 amount);
}

pragma solidity ^0.5.16;

/**
 * @title EIP20NonStandardInterface
 * @dev Version of ERC20 with no return values for `transfer` and `transferFrom`
 *  See https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
 */
interface EIP20NonStandardInterface {

    /**
     * @notice Get the total number of tokens in circulation
     * @return The supply of tokens
     */
    function totalSupply() external view returns (uint256);

    /**
     * @notice Gets the balance of the specified address
     * @param owner The address from which the balance will be retrieved
     * @return The balance
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    ///
    /// !!!!!!!!!!!!!!
    /// !!! NOTICE !!! `transfer` does not return a value, in violation of the ERC-20 specification
    /// !!!!!!!!!!!!!!
    ///

    /**
      * @notice Transfer `amount` tokens from `msg.sender` to `dst`
      * @param dst The address of the destination account
      * @param amount The number of tokens to transfer
      */
    function transfer(address dst, uint256 amount) external;

    ///
    /// !!!!!!!!!!!!!!
    /// !!! NOTICE !!! `transferFrom` does not return a value, in violation of the ERC-20 specification
    /// !!!!!!!!!!!!!!
    ///

    /**
      * @notice Transfer `amount` tokens from `src` to `dst`
      * @param src The address of the source account
      * @param dst The address of the destination account
      * @param amount The number of tokens to transfer
      */
    function transferFrom(address src, address dst, uint256 amount) external;

    /**
      * @notice Approve `spender` to transfer up to `amount` from `src`
      * @dev This will overwrite the approval amount for `spender`
      *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
      * @param spender The address of the account which may transfer tokens
      * @param amount The number of tokens that are approved
      * @return Whether or not the approval succeeded
      */
    function approve(address spender, uint256 amount) external returns (bool success);

    /**
      * @notice Get the current allowance from `owner` for `spender`
      * @param owner The address of the account which owns the tokens to be spent
      * @param spender The address of the account which may transfer tokens
      * @return The number of tokens allowed to be spent
      */
    function allowance(address owner, address spender) external view returns (uint256 remaining);

    event Transfer(address indexed from, address indexed to, uint256 amount);
    event Approval(address indexed owner, address indexed spender, uint256 amount);
}

pragma solidity ^0.5.16;

contract ComptrollerErrorReporter {
    enum Error {
        NO_ERROR,
        UNAUTHORIZED,
        COMPTROLLER_MISMATCH,
        INSUFFICIENT_SHORTFALL,
        INSUFFICIENT_LIQUIDITY,
        INVALID_CLOSE_FACTOR,
        INVALID_COLLATERAL_FACTOR,
        INVALID_LIQUIDATION_INCENTIVE,
        MARKET_NOT_ENTERED, // no longer possible
        MARKET_NOT_LISTED,
        MARKET_ALREADY_LISTED,
        MATH_ERROR,
        NONZERO_BORROW_BALANCE,
        PRICE_ERROR,
        REJECTION,
        SNAPSHOT_ERROR,
        TOO_MANY_ASSETS,
        TOO_MUCH_REPAY,
        SUPPLIER_NOT_WHITELISTED,
        BORROW_BELOW_MIN,
        SUPPLY_ABOVE_MAX,
        NONZERO_TOTAL_SUPPLY
    }

    enum FailureInfo {
        ACCEPT_ADMIN_PENDING_ADMIN_CHECK,
        ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK,
        ADD_REWARDS_DISTRIBUTOR_OWNER_CHECK,
        EXIT_MARKET_BALANCE_OWED,
        EXIT_MARKET_REJECTION,
        TOGGLE_ADMIN_RIGHTS_OWNER_CHECK,
        TOGGLE_AUTO_IMPLEMENTATIONS_ENABLED_OWNER_CHECK,
        SET_CLOSE_FACTOR_OWNER_CHECK,
        SET_CLOSE_FACTOR_VALIDATION,
        SET_COLLATERAL_FACTOR_OWNER_CHECK,
        SET_COLLATERAL_FACTOR_NO_EXISTS,
        SET_COLLATERAL_FACTOR_VALIDATION,
        SET_COLLATERAL_FACTOR_WITHOUT_PRICE,
        SET_LIQUIDATION_INCENTIVE_OWNER_CHECK,
        SET_LIQUIDATION_INCENTIVE_VALIDATION,
        SET_MAX_ASSETS_OWNER_CHECK,
        SET_PENDING_ADMIN_OWNER_CHECK,
        SET_PENDING_IMPLEMENTATION_CONTRACT_CHECK,
        SET_PENDING_IMPLEMENTATION_OWNER_CHECK,
        SET_PRICE_ORACLE_OWNER_CHECK,
        SET_WHITELIST_ENFORCEMENT_OWNER_CHECK,
        SET_WHITELIST_STATUS_OWNER_CHECK,
        SUPPORT_MARKET_EXISTS,
        SUPPORT_MARKET_OWNER_CHECK,
        SET_PAUSE_GUARDIAN_OWNER_CHECK,
        UNSUPPORT_MARKET_OWNER_CHECK,
        UNSUPPORT_MARKET_DOES_NOT_EXIST,
        UNSUPPORT_MARKET_IN_USE
    }

    /**
      * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary
      * contract-specific code that enables us to report opaque error codes from upgradeable contracts.
      **/
    event Failure(uint error, uint info, uint detail);

    /**
      * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator
      */
    function fail(Error err, FailureInfo info) internal returns (uint) {
        emit Failure(uint(err), uint(info), 0);

        return uint(err);
    }

    /**
      * @dev use this when reporting an opaque error from an upgradeable collaborator contract
      */
    function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) {
        emit Failure(uint(err), uint(info), opaqueError);

        return uint(err);
    }
}

contract TokenErrorReporter {
    enum Error {
        NO_ERROR,
        UNAUTHORIZED,
        BAD_INPUT,
        COMPTROLLER_REJECTION,
        COMPTROLLER_CALCULATION_ERROR,
        INTEREST_RATE_MODEL_ERROR,
        INVALID_ACCOUNT_PAIR,
        INVALID_CLOSE_AMOUNT_REQUESTED,
        INVALID_COLLATERAL_FACTOR,
        MATH_ERROR,
        MARKET_NOT_FRESH,
        MARKET_NOT_LISTED,
        TOKEN_INSUFFICIENT_ALLOWANCE,
        TOKEN_INSUFFICIENT_BALANCE,
        TOKEN_INSUFFICIENT_CASH,
        TOKEN_TRANSFER_IN_FAILED,
        TOKEN_TRANSFER_OUT_FAILED,
        UTILIZATION_ABOVE_MAX
    }

    /*
     * Note: FailureInfo (but not Error) is kept in alphabetical order
     *       This is because FailureInfo grows significantly faster, and
     *       the order of Error has some meaning, while the order of FailureInfo
     *       is entirely arbitrary.
     */
    enum FailureInfo {
        ACCEPT_ADMIN_PENDING_ADMIN_CHECK,
        ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED,
        ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED,
        ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED,
        ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED,
        ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED,
        ACCRUE_INTEREST_NEW_TOTAL_FUSE_FEES_CALCULATION_FAILED,
        ACCRUE_INTEREST_NEW_TOTAL_ADMIN_FEES_CALCULATION_FAILED,
        ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED,
        BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED,
        BORROW_ACCRUE_INTEREST_FAILED,
        BORROW_CASH_NOT_AVAILABLE,
        BORROW_FRESHNESS_CHECK,
        BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED,
        BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED,
        BORROW_MARKET_NOT_LISTED,
        BORROW_COMPTROLLER_REJECTION,
        LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED,
        LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED,
        LIQUIDATE_COLLATERAL_FRESHNESS_CHECK,
        LIQUIDATE_COMPTROLLER_REJECTION,
        LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED,
        LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX,
        LIQUIDATE_CLOSE_AMOUNT_IS_ZERO,
        LIQUIDATE_FRESHNESS_CHECK,
        LIQUIDATE_LIQUIDATOR_IS_BORROWER,
        LIQUIDATE_REPAY_BORROW_FRESH_FAILED,
        LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED,
        LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED,
        LIQUIDATE_SEIZE_COMPTROLLER_REJECTION,
        LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER,
        LIQUIDATE_SEIZE_TOO_MUCH,
        MINT_ACCRUE_INTEREST_FAILED,
        MINT_COMPTROLLER_REJECTION,
        MINT_EXCHANGE_CALCULATION_FAILED,
        MINT_EXCHANGE_RATE_READ_FAILED,
        MINT_FRESHNESS_CHECK,
        MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED,
        MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED,
        MINT_TRANSFER_IN_FAILED,
        MINT_TRANSFER_IN_NOT_POSSIBLE,
        NEW_UTILIZATION_RATE_ABOVE_MAX,
        REDEEM_ACCRUE_INTEREST_FAILED,
        REDEEM_COMPTROLLER_REJECTION,
        REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED,
        REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED,
        REDEEM_EXCHANGE_RATE_READ_FAILED,
        REDEEM_FRESHNESS_CHECK,
        REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED,
        REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED,
        REDEEM_TRANSFER_OUT_NOT_POSSIBLE,
        WITHDRAW_FUSE_FEES_ACCRUE_INTEREST_FAILED,
        WITHDRAW_FUSE_FEES_CASH_NOT_AVAILABLE,
        WITHDRAW_FUSE_FEES_FRESH_CHECK,
        WITHDRAW_FUSE_FEES_VALIDATION,
        WITHDRAW_ADMIN_FEES_ACCRUE_INTEREST_FAILED,
        WITHDRAW_ADMIN_FEES_CASH_NOT_AVAILABLE,
        WITHDRAW_ADMIN_FEES_FRESH_CHECK,
        WITHDRAW_ADMIN_FEES_VALIDATION,
        REDUCE_RESERVES_ACCRUE_INTEREST_FAILED,
        REDUCE_RESERVES_ADMIN_CHECK,
        REDUCE_RESERVES_CASH_NOT_AVAILABLE,
        REDUCE_RESERVES_FRESH_CHECK,
        REDUCE_RESERVES_VALIDATION,
        REPAY_BEHALF_ACCRUE_INTEREST_FAILED,
        REPAY_BORROW_ACCRUE_INTEREST_FAILED,
        REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED,
        REPAY_BORROW_COMPTROLLER_REJECTION,
        REPAY_BORROW_FRESHNESS_CHECK,
        REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED,
        REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED,
        REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE,
        SET_COLLATERAL_FACTOR_OWNER_CHECK,
        SET_COLLATERAL_FACTOR_VALIDATION,
        SET_COMPTROLLER_OWNER_CHECK,
        SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED,
        SET_INTEREST_RATE_MODEL_FRESH_CHECK,
        SET_INTEREST_RATE_MODEL_OWNER_CHECK,
        SET_MAX_ASSETS_OWNER_CHECK,
        SET_ORACLE_MARKET_NOT_LISTED,
        TOGGLE_ADMIN_RIGHTS_OWNER_CHECK,
        SET_PENDING_ADMIN_OWNER_CHECK,
        SET_ADMIN_FEE_ACCRUE_INTEREST_FAILED,
        SET_ADMIN_FEE_ADMIN_CHECK,
        SET_ADMIN_FEE_FRESH_CHECK,
        SET_ADMIN_FEE_BOUNDS_CHECK,
        SET_FUSE_FEE_ACCRUE_INTEREST_FAILED,
        SET_FUSE_FEE_FRESH_CHECK,
        SET_FUSE_FEE_BOUNDS_CHECK,
        SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED,
        SET_RESERVE_FACTOR_ADMIN_CHECK,
        SET_RESERVE_FACTOR_FRESH_CHECK,
        SET_RESERVE_FACTOR_BOUNDS_CHECK,
        TRANSFER_COMPTROLLER_REJECTION,
        TRANSFER_NOT_ALLOWED,
        TRANSFER_NOT_ENOUGH,
        TRANSFER_TOO_MUCH,
        ADD_RESERVES_ACCRUE_INTEREST_FAILED,
        ADD_RESERVES_FRESH_CHECK,
        ADD_RESERVES_TRANSFER_IN_NOT_POSSIBLE
    }

    /**
      * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary
      * contract-specific code that enables us to report opaque error codes from upgradeable contracts.
      **/
    event Failure(uint error, uint info, uint detail);

    /**
      * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator
      */
    function fail(Error err, FailureInfo info) internal returns (uint) {
        emit Failure(uint(err), uint(info), 0);

        return uint(err);
    }

    /**
      * @dev use this when reporting an opaque error from an upgradeable collaborator contract
      */
    function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) {
        emit Failure(uint(err), uint(info), opaqueError);

        return err == Error.COMPTROLLER_REJECTION ? 1000 + opaqueError : uint(err);
    }
}

pragma solidity ^0.5.16;

import "./CarefulMath.sol";
import "./ExponentialNoError.sol";

/**
 * @title Exponential module for storing fixed-precision decimals
 * @author Compound
 * @dev Legacy contract for compatibility reasons with existing contracts that still use MathError
 * @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places.
 *         Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is:
 *         `Exp({mantissa: 5100000000000000000})`.
 */
contract Exponential is CarefulMath, ExponentialNoError {
    /**
     * @dev Creates an exponential from numerator and denominator values.
     *      Note: Returns an error if (`num` * 10e18) > MAX_INT,
     *            or if `denom` is zero.
     */
    function getExp(uint num, uint denom) pure internal returns (MathError, Exp memory) {
        (MathError err0, uint scaledNumerator) = mulUInt(num, expScale);
        if (err0 != MathError.NO_ERROR) {
            return (err0, Exp({mantissa: 0}));
        }

        (MathError err1, uint rational) = divUInt(scaledNumerator, denom);
        if (err1 != MathError.NO_ERROR) {
            return (err1, Exp({mantissa: 0}));
        }

        return (MathError.NO_ERROR, Exp({mantissa: rational}));
    }

    /**
     * @dev Adds two exponentials, returning a new exponential.
     */
    function addExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
        (MathError error, uint result) = addUInt(a.mantissa, b.mantissa);

        return (error, Exp({mantissa: result}));
    }

    /**
     * @dev Subtracts two exponentials, returning a new exponential.
     */
    function subExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
        (MathError error, uint result) = subUInt(a.mantissa, b.mantissa);

        return (error, Exp({mantissa: result}));
    }

    /**
     * @dev Multiply an Exp by a scalar, returning a new Exp.
     */
    function mulScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) {
        (MathError err0, uint scaledMantissa) = mulUInt(a.mantissa, scalar);
        if (err0 != MathError.NO_ERROR) {
            return (err0, Exp({mantissa: 0}));
        }

        return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa}));
    }

    /**
     * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.
     */
    function mulScalarTruncate(Exp memory a, uint scalar) pure internal returns (MathError, uint) {
        (MathError err, Exp memory product) = mulScalar(a, scalar);
        if (err != MathError.NO_ERROR) {
            return (err, 0);
        }

        return (MathError.NO_ERROR, truncate(product));
    }

    /**
     * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.
     */
    function mulScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (MathError, uint) {
        (MathError err, Exp memory product) = mulScalar(a, scalar);
        if (err != MathError.NO_ERROR) {
            return (err, 0);
        }

        return addUInt(truncate(product), addend);
    }

    /**
     * @dev Divide an Exp by a scalar, returning a new Exp.
     */
    function divScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) {
        (MathError err0, uint descaledMantissa) = divUInt(a.mantissa, scalar);
        if (err0 != MathError.NO_ERROR) {
            return (err0, Exp({mantissa: 0}));
        }

        return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa}));
    }

    /**
     * @dev Divide a scalar by an Exp, returning a new Exp.
     */
    function divScalarByExp(uint scalar, Exp memory divisor) pure internal returns (MathError, Exp memory) {
        /*
          We are doing this as:
          getExp(mulUInt(expScale, scalar), divisor.mantissa)

          How it works:
          Exp = a / b;
          Scalar = s;
          `s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale`
        */
        (MathError err0, uint numerator) = mulUInt(expScale, scalar);
        if (err0 != MathError.NO_ERROR) {
            return (err0, Exp({mantissa: 0}));
        }
        return getExp(numerator, divisor.mantissa);
    }

    /**
     * @dev Divide a scalar by an Exp, then truncate to return an unsigned integer.
     */
    function divScalarByExpTruncate(uint scalar, Exp memory divisor) pure internal returns (MathError, uint) {
        (MathError err, Exp memory fraction) = divScalarByExp(scalar, divisor);
        if (err != MathError.NO_ERROR) {
            return (err, 0);
        }

        return (MathError.NO_ERROR, truncate(fraction));
    }

    /**
     * @dev Multiplies two exponentials, returning a new exponential.
     */
    function mulExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {

        (MathError err0, uint doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa);
        if (err0 != MathError.NO_ERROR) {
            return (err0, Exp({mantissa: 0}));
        }

        // We add half the scale before dividing so that we get rounding instead of truncation.
        //  See "Listing 6" and text above it at https://accu.org/index.php/journals/1717
        // Without this change, a result like 6.6...e-19 will be truncated to 0 instead of being rounded to 1e-18.
        (MathError err1, uint doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct);
        if (err1 != MathError.NO_ERROR) {
            return (err1, Exp({mantissa: 0}));
        }

        (MathError err2, uint product) = divUInt(doubleScaledProductWithHalfScale, expScale);
        // The only error `div` can return is MathError.DIVISION_BY_ZERO but we control `expScale` and it is not zero.
        assert(err2 == MathError.NO_ERROR);

        return (MathError.NO_ERROR, Exp({mantissa: product}));
    }

    /**
     * @dev Multiplies two exponentials given their mantissas, returning a new exponential.
     */
    function mulExp(uint a, uint b) pure internal returns (MathError, Exp memory) {
        return mulExp(Exp({mantissa: a}), Exp({mantissa: b}));
    }

    /**
     * @dev Multiplies three exponentials, returning a new exponential.
     */
    function mulExp3(Exp memory a, Exp memory b, Exp memory c) pure internal returns (MathError, Exp memory) {
        (MathError err, Exp memory ab) = mulExp(a, b);
        if (err != MathError.NO_ERROR) {
            return (err, ab);
        }
        return mulExp(ab, c);
    }

    /**
     * @dev Divides two exponentials, returning a new exponential.
     *     (a/scale) / (b/scale) = (a/scale) * (scale/b) = a/b,
     *  which we can scale as an Exp by calling getExp(a.mantissa, b.mantissa)
     */
    function divExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
        return getExp(a.mantissa, b.mantissa);
    }
}

pragma solidity ^0.5.16;

/**
 * @title Exponential module for storing fixed-precision decimals
 * @author Compound
 * @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places.
 *         Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is:
 *         `Exp({mantissa: 5100000000000000000})`.
 */
contract ExponentialNoError {
    uint constant expScale = 1e18;
    uint constant doubleScale = 1e36;
    uint constant halfExpScale = expScale/2;
    uint constant mantissaOne = expScale;

    struct Exp {
        uint mantissa;
    }

    struct Double {
        uint mantissa;
    }

    /**
     * @dev Truncates the given exp to a whole number value.
     *      For example, truncate(Exp{mantissa: 15 * expScale}) = 15
     */
    function truncate(Exp memory exp) pure internal returns (uint) {
        // Note: We are not using careful math here as we're performing a division that cannot fail
        return exp.mantissa / expScale;
    }

    /**
     * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.
     */
    function mul_ScalarTruncate(Exp memory a, uint scalar) pure internal returns (uint) {
        Exp memory product = mul_(a, scalar);
        return truncate(product);
    }

    /**
     * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.
     */
    function mul_ScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (uint) {
        Exp memory product = mul_(a, scalar);
        return add_(truncate(product), addend);
    }

    /**
     * @dev Checks if first Exp is less than second Exp.
     */
    function lessThanExp(Exp memory left, Exp memory right) pure internal returns (bool) {
        return left.mantissa < right.mantissa;
    }

    /**
     * @dev Checks if left Exp <= right Exp.
     */
    function lessThanOrEqualExp(Exp memory left, Exp memory right) pure internal returns (bool) {
        return left.mantissa <= right.mantissa;
    }

    /**
     * @dev Checks if left Exp > right Exp.
     */
    function greaterThanExp(Exp memory left, Exp memory right) pure internal returns (bool) {
        return left.mantissa > right.mantissa;
    }

    /**
     * @dev returns true if Exp is exactly zero
     */
    function isZeroExp(Exp memory value) pure internal returns (bool) {
        return value.mantissa == 0;
    }

    function safe224(uint n, string memory errorMessage) pure internal returns (uint224) {
        require(n < 2**224, errorMessage);
        return uint224(n);
    }

    function safe32(uint n, string memory errorMessage) pure internal returns (uint32) {
        require(n < 2**32, errorMessage);
        return uint32(n);
    }

    function add_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
        return Exp({mantissa: add_(a.mantissa, b.mantissa)});
    }

    function add_(Double memory a, Double memory b) pure internal returns (Double memory) {
        return Double({mantissa: add_(a.mantissa, b.mantissa)});
    }

    function add_(uint a, uint b) pure internal returns (uint) {
        return add_(a, b, "addition overflow");
    }

    function add_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
        uint c = a + b;
        require(c >= a, errorMessage);
        return c;
    }

    function sub_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
        return Exp({mantissa: sub_(a.mantissa, b.mantissa)});
    }

    function sub_(Double memory a, Double memory b) pure internal returns (Double memory) {
        return Double({mantissa: sub_(a.mantissa, b.mantissa)});
    }

    function sub_(uint a, uint b) pure internal returns (uint) {
        return sub_(a, b, "subtraction underflow");
    }

    function sub_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
        require(b <= a, errorMessage);
        return a - b;
    }

    function mul_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
        return Exp({mantissa: mul_(a.mantissa, b.mantissa) / expScale});
    }

    function mul_(Exp memory a, uint b) pure internal returns (Exp memory) {
        return Exp({mantissa: mul_(a.mantissa, b)});
    }

    function mul_(uint a, Exp memory b) pure internal returns (uint) {
        return mul_(a, b.mantissa) / expScale;
    }

    function mul_(Double memory a, Double memory b) pure internal returns (Double memory) {
        return Double({mantissa: mul_(a.mantissa, b.mantissa) / doubleScale});
    }

    function mul_(Double memory a, uint b) pure internal returns (Double memory) {
        return Double({mantissa: mul_(a.mantissa, b)});
    }

    function mul_(uint a, Double memory b) pure internal returns (uint) {
        return mul_(a, b.mantissa) / doubleScale;
    }

    function mul_(uint a, uint b) pure internal returns (uint) {
        return mul_(a, b, "multiplication overflow");
    }

    function mul_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
        if (a == 0 || b == 0) {
            return 0;
        }
        uint c = a * b;
        require(c / a == b, errorMessage);
        return c;
    }

    function div_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
        return Exp({mantissa: div_(mul_(a.mantissa, expScale), b.mantissa)});
    }

    function div_(Exp memory a, uint b) pure internal returns (Exp memory) {
        return Exp({mantissa: div_(a.mantissa, b)});
    }

    function div_(uint a, Exp memory b) pure internal returns (uint) {
        return div_(mul_(a, expScale), b.mantissa);
    }

    function div_(Double memory a, Double memory b) pure internal returns (Double memory) {
        return Double({mantissa: div_(mul_(a.mantissa, doubleScale), b.mantissa)});
    }

    function div_(Double memory a, uint b) pure internal returns (Double memory) {
        return Double({mantissa: div_(a.mantissa, b)});
    }

    function div_(uint a, Double memory b) pure internal returns (uint) {
        return div_(mul_(a, doubleScale), b.mantissa);
    }

    function div_(uint a, uint b) pure internal returns (uint) {
        return div_(a, b, "divide by zero");
    }

    function div_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
        require(b > 0, errorMessage);
        return a / b;
    }

    function fraction(uint a, uint b) pure internal returns (Double memory) {
        return Double({mantissa: div_(mul_(a, doubleScale), b)});
    }
}

pragma solidity ^0.5.16;

interface IFuseFeeDistributor {
    function minBorrowEth() external view returns (uint256);
    function maxSupplyEth() external view returns (uint256);
    function maxUtilizationRate() external view returns (uint256);
    function interestFeeRate() external view returns (uint256);
    function comptrollerImplementationWhitelist(address oldImplementation, address newImplementation) external view returns (bool);
    function cErc20DelegateWhitelist(address oldImplementation, address newImplementation, bool allowResign) external view returns (bool);
    function cEtherDelegateWhitelist(address oldImplementation, address newImplementation, bool allowResign) external view returns (bool);
    function latestComptrollerImplementation(address oldImplementation) external view returns (address);
    function latestCErc20Delegate(address oldImplementation) external view returns (address cErc20Delegate, bool allowResign, bytes memory becomeImplementationData);
    function latestCEtherDelegate(address oldImplementation) external view returns (address cEtherDelegate, bool allowResign, bytes memory becomeImplementationData);
    function deployCEther(bytes calldata constructorData) external returns (address);
    function deployCErc20(bytes calldata constructorData) external returns (address);
    function () external payable;
}

pragma solidity ^0.5.16;

/**
  * @title Compound's InterestRateModel Interface
  * @author Compound
  */
contract InterestRateModel {
    /// @notice Indicator that this is an InterestRateModel contract (for inspection)
    bool public constant isInterestRateModel = true;

    /**
      * @notice Calculates the current borrow interest rate per block
      * @param cash The total amount of cash the market has
      * @param borrows The total amount of borrows the market has outstanding
      * @param reserves The total amount of reserves the market has
      * @return The borrow rate per block (as a percentage, and scaled by 1e18)
      */
    function getBorrowRate(uint cash, uint borrows, uint reserves) external view returns (uint);

    /**
      * @notice Calculates the current supply interest rate per block
      * @param cash The total amount of cash the market has
      * @param borrows The total amount of borrows the market has outstanding
      * @param reserves The total amount of reserves the market has
      * @param reserveFactorMantissa The current reserve factor the market has
      * @return The supply rate per block (as a percentage, and scaled by 1e18)
      */
    function getSupplyRate(uint cash, uint borrows, uint reserves, uint reserveFactorMantissa) external view returns (uint);

}

pragma solidity ^0.5.16;

import "./InterestRateModel.sol";
import "./SafeMath.sol";

/**
  * @title Compound's JumpRateModel Contract
  * @author Compound
  */
contract JumpRateModel is InterestRateModel {
    using SafeMath for uint;

    event NewInterestParams(uint baseRatePerBlock, uint multiplierPerBlock, uint jumpMultiplierPerBlock, uint kink);

    /**
     * @notice The approximate number of blocks per year that is assumed by the interest rate model
     */
    uint public constant blocksPerYear = 2102400;

    /**
     * @notice The multiplier of utilization rate that gives the slope of the interest rate
     */
    uint public multiplierPerBlock;

    /**
     * @notice The base interest rate which is the y-intercept when utilization rate is 0
     */
    uint public baseRatePerBlock;

    /**
     * @notice The multiplierPerBlock after hitting a specified utilization point
     */
    uint public jumpMultiplierPerBlock;

    /**
     * @notice The utilization point at which the jump multiplier is applied
     */
    uint public kink;

    /**
     * @notice Construct an interest rate model
     * @param baseRatePerYear The approximate target base APR, as a mantissa (scaled by 1e18)
     * @param multiplierPerYear The rate of increase in interest rate wrt utilization (scaled by 1e18)
     * @param jumpMultiplierPerYear The multiplierPerBlock after hitting a specified utilization point
     * @param kink_ The utilization point at which the jump multiplier is applied
     */
    constructor(uint baseRatePerYear, uint multiplierPerYear, uint jumpMultiplierPerYear, uint kink_) public {
        baseRatePerBlock = baseRatePerYear.div(blocksPerYear);
        multiplierPerBlock = multiplierPerYear.div(blocksPerYear);
        jumpMultiplierPerBlock = jumpMultiplierPerYear.div(blocksPerYear);
        kink = kink_;

        emit NewInterestParams(baseRatePerBlock, multiplierPerBlock, jumpMultiplierPerBlock, kink);
    }

    /**
     * @notice Calculates the utilization rate of the market: `borrows / (cash + borrows - reserves)`
     * @param cash The amount of cash in the market
     * @param borrows The amount of borrows in the market
     * @param reserves The amount of reserves in the market (currently unused)
     * @return The utilization rate as a mantissa between [0, 1e18]
     */
    function utilizationRate(uint cash, uint borrows, uint reserves) public pure returns (uint) {
        // Utilization rate is 0 when there are no borrows
        if (borrows == 0) {
            return 0;
        }

        return borrows.mul(1e18).div(cash.add(borrows).sub(reserves));
    }

    /**
     * @notice Calculates the current borrow rate per block, with the error code expected by the market
     * @param cash The amount of cash in the market
     * @param borrows The amount of borrows in the market
     * @param reserves The amount of reserves in the market
     * @return The borrow rate percentage per block as a mantissa (scaled by 1e18)
     */
    function getBorrowRate(uint cash, uint borrows, uint reserves) public view returns (uint) {
        uint util = utilizationRate(cash, borrows, reserves);

        if (util <= kink) {
            return util.mul(multiplierPerBlock).div(1e18).add(baseRatePerBlock);
        } else {
            uint normalRate = kink.mul(multiplierPerBlock).div(1e18).add(baseRatePerBlock);
            uint excessUtil = util.sub(kink);
            return excessUtil.mul(jumpMultiplierPerBlock).div(1e18).add(normalRate);
        }
    }

    /**
     * @notice Calculates the current supply rate per block
     * @param cash The amount of cash in the market
     * @param borrows The amount of borrows in the market
     * @param reserves The amount of reserves in the market
     * @param reserveFactorMantissa The current reserve factor for the market
     * @return The supply rate percentage per block as a mantissa (scaled by 1e18)
     */
    function getSupplyRate(uint cash, uint borrows, uint reserves, uint reserveFactorMantissa) public view returns (uint) {
        uint oneMinusReserveFactor = uint(1e18).sub(reserveFactorMantissa);
        uint borrowRate = getBorrowRate(cash, borrows, reserves);
        uint rateToPool = borrowRate.mul(oneMinusReserveFactor).div(1e18);
        return utilizationRate(cash, borrows, reserves).mul(rateToPool).div(1e18);
    }
}

pragma solidity ^0.5.16;

import "./CToken.sol";

contract PriceOracle {
    /// @notice Indicator that this is a PriceOracle contract (for inspection)
    bool public constant isPriceOracle = true;

    /**
      * @notice Get the underlying price of a cToken asset
      * @param cToken The cToken to get the underlying price of
      * @return The underlying asset price mantissa (scaled by 1e18).
      *  Zero means the price is unavailable.
      */
    function getUnderlyingPrice(CToken cToken) external view returns (uint);
}

pragma solidity ^0.5.16;

/**
 * @title Reservoir Contract
 * @notice Distributes a token to a different contract at a fixed rate.
 * @dev This contract must be poked via the `drip()` function every so often.
 * @author Compound
 */
contract Reservoir {

  /// @notice The block number when the Reservoir started (immutable)
  uint public dripStart;

  /// @notice Tokens per block that to drip to target (immutable)
  uint public dripRate;

  /// @notice Reference to token to drip (immutable)
  EIP20Interface public token;

  /// @notice Target to receive dripped tokens (immutable)
  address public target;

  /// @notice Amount that has already been dripped
  uint public dripped;

  /**
    * @notice Constructs a Reservoir
    * @param dripRate_ Numer of tokens per block to drip
    * @param token_ The token to drip
    * @param target_ The recipient of dripped tokens
    */
  constructor(uint dripRate_, EIP20Interface token_, address target_) public {
    dripStart = block.number;
    dripRate = dripRate_;
    token = token_;
    target = target_;
    dripped = 0;
  }

  /**
    * @notice Drips the maximum amount of tokens to match the drip rate since inception
    * @dev Note: this will only drip up to the amount of tokens available.
    * @return The amount of tokens dripped in this call
    */
  function drip() public returns (uint) {
    // First, read storage into memory
    EIP20Interface token_ = token;
    uint reservoirBalance_ = token_.balanceOf(address(this)); // TODO: Verify this is a static call
    uint dripRate_ = dripRate;
    uint dripStart_ = dripStart;
    uint dripped_ = dripped;
    address target_ = target;
    uint blockNumber_ = block.number;

    // Next, calculate intermediate values
    uint dripTotal_ = mul(dripRate_, blockNumber_ - dripStart_, "dripTotal overflow");
    uint deltaDrip_ = sub(dripTotal_, dripped_, "deltaDrip underflow");
    uint toDrip_ = min(reservoirBalance_, deltaDrip_);
    uint drippedNext_ = add(dripped_, toDrip_, "tautological");

    // Finally, write new `dripped` value and transfer tokens to target
    dripped = drippedNext_;
    token_.transfer(target_, toDrip_);

    return toDrip_;
  }

  /* Internal helper functions for safe math */

  function add(uint a, uint b, string memory errorMessage) internal pure returns (uint) {
    uint c = a + b;
    require(c >= a, errorMessage);
    return c;
  }

  function sub(uint a, uint b, string memory errorMessage) internal pure returns (uint) {
    require(b <= a, errorMessage);
    uint c = a - b;
    return c;
  }

  function mul(uint a, uint b, string memory errorMessage) internal pure returns (uint) {
    if (a == 0) {
      return 0;
    }
    uint c = a * b;
    require(c / a == b, errorMessage);
    return c;
  }

  function min(uint a, uint b) internal pure returns (uint) {
    if (a <= b) {
      return a;
    } else {
      return b;
    }
  }
}

import "./EIP20Interface.sol";

pragma solidity ^0.5.16;

import "./CToken.sol";
import "./ExponentialNoError.sol";
import "./Comptroller.sol";
import "./RewardsDistributorStorage.sol";

/**
 * @title RewardsDistributorDelegate (COMP distribution logic extracted from `Comptroller`)
 * @author Compound
 */
contract RewardsDistributorDelegate is RewardsDistributorDelegateStorageV1, ExponentialNoError {
    /// @dev Notice that this contract is a RewardsDistributor
    bool public constant isRewardsDistributor = true;

    /// @notice Emitted when pendingAdmin is changed
    event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);

    /// @notice Emitted when pendingAdmin is accepted, which means admin is updated
    event NewAdmin(address oldAdmin, address newAdmin);

    /// @notice Emitted when a new COMP speed is calculated for a market
    event CompSupplySpeedUpdated(CToken indexed cToken, uint newSpeed);

    /// @notice Emitted when a new COMP speed is calculated for a market
    event CompBorrowSpeedUpdated(CToken indexed cToken, uint newSpeed);

    /// @notice Emitted when a new COMP speed is set for a contributor
    event ContributorCompSpeedUpdated(address indexed contributor, uint newSpeed);

    /// @notice Emitted when COMP is distributed to a supplier
    event DistributedSupplierComp(CToken indexed cToken, address indexed supplier, uint compDelta, uint compSupplyIndex);

    /// @notice Emitted when COMP is distributed to a borrower
    event DistributedBorrowerComp(CToken indexed cToken, address indexed borrower, uint compDelta, uint compBorrowIndex);

    /// @notice Emitted when COMP is granted by admin
    event CompGranted(address recipient, uint amount);

    /// @notice The initial COMP index for a market
    uint224 public constant compInitialIndex = 1e36;

    /// @dev Intitializer to set admin to caller and set reward token
    function initialize(address _rewardToken) external {
        require(msg.sender == admin, "Only admin can initialize.");
        require(rewardToken == address(0), "Already initialized.");
        require(_rewardToken != address(0), "Cannot initialize reward token to the zero address.");
        rewardToken = _rewardToken;
    }

    /*** Set Admin ***/

    /**
      * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
      * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
      * @param newPendingAdmin New pending admin.
      */
    function _setPendingAdmin(address newPendingAdmin) external {
        // Check caller = admin
        require(msg.sender == admin, "RewardsDistributor:_setPendingAdmin: admin only");

        // Save current value, if any, for inclusion in log
        address oldPendingAdmin = pendingAdmin;

        // Store pendingAdmin with value newPendingAdmin
        pendingAdmin = newPendingAdmin;

        // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)
        emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);
    }

    /**
      * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin
      * @dev Admin function for pending admin to accept role and update admin
      */
    function _acceptAdmin() external {
        // Check caller is pendingAdmin and pendingAdmin ≠ address(0)
        require(msg.sender == pendingAdmin && msg.sender != address(0), "RewardsDistributor:_acceptAdmin: pending admin only");

        // Save current values for inclusion in log
        address oldAdmin = admin;
        address oldPendingAdmin = pendingAdmin;

        // Store admin with value pendingAdmin
        admin = pendingAdmin;

        // Clear the pending value
        pendingAdmin = address(0);

        emit NewAdmin(oldAdmin, admin);
        emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);
    }

    /*** Comp Distribution ***/

    /**
     * @notice Check the cToken before adding
     * @param cToken The market to add
     */
    function checkCToken(CToken cToken) internal view {
        // Make sure cToken is listed
        Comptroller comptroller = Comptroller(address(cToken.comptroller()));
        (bool isListed, ) = comptroller.markets(address(cToken));
        require(isListed == true, "comp market is not listed");

        // Make sure distributor is added
        bool distributorAdded = false;
        address[] memory distributors = comptroller.getRewardsDistributors();
        for (uint256 i = 0; i < distributors.length; i++) if (distributors[i] == address(this)) distributorAdded = true; 
        require(distributorAdded == true, "distributor not added");
    }

    /**
     * @notice Set COMP speed for a single market
     * @param cToken The market whose COMP speed to update
     * @param compSpeed New COMP speed for market
     */
    function setCompSupplySpeedInternal(CToken cToken, uint compSpeed) internal {
        uint currentCompSpeed = compSupplySpeeds[address(cToken)];
        if (currentCompSpeed != 0) {
            // note that COMP speed could be set to 0 to halt liquidity rewards for a market
            updateCompSupplyIndex(address(cToken));
        } else if (compSpeed != 0) {
            // Make sure cToken is listed and distributor is added
            checkCToken(cToken);

            // Add the COMP market
            if (compSupplyState[address(cToken)].index == 0) {
                compSupplyState[address(cToken)] = CompMarketState({
                    index: compInitialIndex,
                    block: safe32(getBlockNumber(), "block number exceeds 32 bits")
                });

                // Add to allMarkets array if not already there
                if (compBorrowState[address(cToken)].index == 0) {
                    allMarkets.push(cToken);
                }
            } else {
                // Update block number to ensure extra interest is not accrued during the prior period
                compSupplyState[address(cToken)].block = safe32(getBlockNumber(), "block number exceeds 32 bits");
            }
        }

        if (currentCompSpeed != compSpeed) {
            compSupplySpeeds[address(cToken)] = compSpeed;
            emit CompSupplySpeedUpdated(cToken, compSpeed);
        }
    }

    /**
     * @notice Set COMP speed for a single market
     * @param cToken The market whose COMP speed to update
     * @param compSpeed New COMP speed for market
     */
    function setCompBorrowSpeedInternal(CToken cToken, uint compSpeed) internal {
        uint currentCompSpeed = compBorrowSpeeds[address(cToken)];
        if (currentCompSpeed != 0) {
            // note that COMP speed could be set to 0 to halt liquidity rewards for a market
            Exp memory borrowIndex = Exp({mantissa: cToken.borrowIndex()});
            updateCompBorrowIndex(address(cToken), borrowIndex);
        } else if (compSpeed != 0) {
            // Make sure cToken is listed and distributor is added
            checkCToken(cToken);

            // Add the COMP market
            if (compBorrowState[address(cToken)].index == 0) {
                compBorrowState[address(cToken)] = CompMarketState({
                    index: compInitialIndex,
                    block: safe32(getBlockNumber(), "block number exceeds 32 bits")
                });

                // Add to allMarkets array if not already there
                if (compSupplyState[address(cToken)].index == 0) {
                    allMarkets.push(cToken);
                }
            } else {
                // Update block number to ensure extra interest is not accrued during the prior period
                compBorrowState[address(cToken)].block = safe32(getBlockNumber(), "block number exceeds 32 bits");
            }
        }

        if (currentCompSpeed != compSpeed) {
            compBorrowSpeeds[address(cToken)] = compSpeed;
            emit CompBorrowSpeedUpdated(cToken, compSpeed);
        }
    }

    /**
     * @notice Accrue COMP to the market by updating the supply index
     * @param cToken The market whose supply index to update
     */
    function updateCompSupplyIndex(address cToken) internal {
        CompMarketState storage supplyState = compSupplyState[cToken];
        uint supplySpeed = compSupplySpeeds[cToken];
        uint blockNumber = getBlockNumber();
        uint deltaBlocks = sub_(blockNumber, uint(supplyState.block));
        if (deltaBlocks > 0 && supplySpeed > 0) {
            uint supplyTokens = CToken(cToken).totalSupply();
            uint compAccrued_ = mul_(deltaBlocks, supplySpeed);
            Double memory ratio = supplyTokens > 0 ? fraction(compAccrued_, supplyTokens) : Double({mantissa: 0});
            Double memory index = add_(Double({mantissa: supplyState.index}), ratio);
            compSupplyState[cToken] = CompMarketState({
                index: safe224(index.mantissa, "new index exceeds 224 bits"),
                block: safe32(blockNumber, "block number exceeds 32 bits")
            });
        } else if (deltaBlocks > 0 && supplyState.index > 0) {
            supplyState.block = safe32(blockNumber, "block number exceeds 32 bits");
        }
    }

    /**
     * @notice Accrue COMP to the market by updating the borrow index
     * @param cToken The market whose borrow index to update
     */
    function updateCompBorrowIndex(address cToken, Exp memory marketBorrowIndex) internal {
        CompMarketState storage borrowState = compBorrowState[cToken];
        uint borrowSpeed = compBorrowSpeeds[cToken];
        uint blockNumber = getBlockNumber();
        uint deltaBlocks = sub_(blockNumber, uint(borrowState.block));
        if (deltaBlocks > 0 && borrowSpeed > 0) {
            uint borrowAmount = div_(CToken(cToken).totalBorrows(), marketBorrowIndex);
            uint compAccrued_ = mul_(deltaBlocks, borrowSpeed);
            Double memory ratio = borrowAmount > 0 ? fraction(compAccrued_, borrowAmount) : Double({mantissa: 0});
            Double memory index = add_(Double({mantissa: borrowState.index}), ratio);
            compBorrowState[cToken] = CompMarketState({
                index: safe224(index.mantissa, "new index exceeds 224 bits"),
                block: safe32(blockNumber, "block number exceeds 32 bits")
            });
        } else if (deltaBlocks > 0 && borrowState.index > 0) {
            borrowState.block = safe32(blockNumber, "block number exceeds 32 bits");
        }
    }

    /**
     * @notice Calculate COMP accrued by a supplier and possibly transfer it to them
     * @param cToken The market in which the supplier is interacting
     * @param supplier The address of the supplier to distribute COMP to
     */
    function distributeSupplierComp(address cToken, address supplier) internal {
        CompMarketState storage supplyState = compSupplyState[cToken];
        Double memory supplyIndex = Double({mantissa: supplyState.index});
        Double memory supplierIndex = Double({mantissa: compSupplierIndex[cToken][supplier]});
        compSupplierIndex[cToken][supplier] = supplyIndex.mantissa;

        if (supplierIndex.mantissa == 0 && supplyIndex.mantissa > 0) {
            supplierIndex.mantissa = compInitialIndex;
        }

        Double memory deltaIndex = sub_(supplyIndex, supplierIndex);
        uint supplierTokens = CToken(cToken).balanceOf(supplier);
        uint supplierDelta = mul_(supplierTokens, deltaIndex);
        uint supplierAccrued = add_(compAccrued[supplier], supplierDelta);
        compAccrued[supplier] = supplierAccrued;
        emit DistributedSupplierComp(CToken(cToken), supplier, supplierDelta, supplyIndex.mantissa);
    }

    /**
     * @notice Calculate COMP accrued by a borrower and possibly transfer it to them
     * @dev Borrowers will not begin to accrue until after the first interaction with the protocol.
     * @param cToken The market in which the borrower is interacting
     * @param borrower The address of the borrower to distribute COMP to
     */
    function distributeBorrowerComp(address cToken, address borrower, Exp memory marketBorrowIndex) internal {
        CompMarketState storage borrowState = compBorrowState[cToken];
        Double memory borrowIndex = Double({mantissa: borrowState.index});
        Double memory borrowerIndex = Double({mantissa: compBorrowerIndex[cToken][borrower]});
        compBorrowerIndex[cToken][borrower] = borrowIndex.mantissa;

        if (borrowerIndex.mantissa > 0) {
            Double memory deltaIndex = sub_(borrowIndex, borrowerIndex);
            uint borrowerAmount = div_(CToken(cToken).borrowBalanceStored(borrower), marketBorrowIndex);
            uint borrowerDelta = mul_(borrowerAmount, deltaIndex);
            uint borrowerAccrued = add_(compAccrued[borrower], borrowerDelta);
            compAccrued[borrower] = borrowerAccrued;
            emit DistributedBorrowerComp(CToken(cToken), borrower, borrowerDelta, borrowIndex.mantissa);
        }
    }

    /**
     * @notice Keeps the flywheel moving pre-mint and pre-redeem
     * @dev Called by the Comptroller
     * @param cToken The relevant market
     * @param supplier The minter/redeemer
     */
    function flywheelPreSupplierAction(address cToken, address supplier) external {
        if (compSupplyState[cToken].index > 0) {
            updateCompSupplyIndex(cToken);
            distributeSupplierComp(cToken, supplier);
        }
    }

    /**
     * @notice Keeps the flywheel moving pre-borrow and pre-repay
     * @dev Called by the Comptroller
     * @param cToken The relevant market
     * @param borrower The borrower
     */
    function flywheelPreBorrowerAction(address cToken, address borrower) external {
        if (compBorrowState[cToken].index > 0) {
            Exp memory borrowIndex = Exp({mantissa: CToken(cToken).borrowIndex()});
            updateCompBorrowIndex(cToken, borrowIndex);
            distributeBorrowerComp(cToken, borrower, borrowIndex);
        }
    }

    /**
     * @notice Keeps the flywheel moving pre-transfer and pre-seize
     * @dev Called by the Comptroller
     * @param cToken The relevant market
     * @param src The account which sources the tokens
     * @param dst The account which receives the tokens
     */
    function flywheelPreTransferAction(address cToken, address src, address dst) external {
        if (compSupplyState[cToken].index > 0) {
            updateCompSupplyIndex(cToken);
            distributeSupplierComp(cToken, src);
            distributeSupplierComp(cToken, dst);
        }
    }

    /**
     * @notice Calculate additional accrued COMP for a contributor since last accrual
     * @param contributor The address to calculate contributor rewards for
     */
    function updateContributorRewards(address contributor) public {
        uint compSpeed = compContributorSpeeds[contributor];
        uint blockNumber = getBlockNumber();
        uint deltaBlocks = sub_(blockNumber, lastContributorBlock[contributor]);
        if (deltaBlocks > 0 && compSpeed > 0) {
            uint newAccrued = mul_(deltaBlocks, compSpeed);
            uint contributorAccrued = add_(compAccrued[contributor], newAccrued);

            compAccrued[contributor] = contributorAccrued;
            lastContributorBlock[contributor] = blockNumber;
        }
    }

    /**
     * @notice Claim all the comp accrued by holder in all markets
     * @param holder The address to claim COMP for
     */
    function claimRewards(address holder) public {
        return claimRewards(holder, allMarkets);
    }

    /**
     * @notice Claim all the comp accrued by holder in the specified markets
     * @param holder The address to claim COMP for
     * @param cTokens The list of markets to claim COMP in
     */
    function claimRewards(address holder, CToken[] memory cTokens) public {
        address[] memory holders = new address[](1);
        holders[0] = holder;
        claimRewards(holders, cTokens, true, true);
    }

    /**
     * @notice Claim all comp accrued by the holders
     * @param holders The addresses to claim COMP for
     * @param cTokens The list of markets to claim COMP in
     * @param borrowers Whether or not to claim COMP earned by borrowing
     * @param suppliers Whether or not to claim COMP earned by supplying
     */
    function claimRewards(address[] memory holders, CToken[] memory cTokens, bool borrowers, bool suppliers) public {
        for (uint i = 0; i < cTokens.length; i++) {
            CToken cToken = cTokens[i];
            if (borrowers == true && compBorrowState[address(cToken)].index > 0) {
                Exp memory borrowIndex = Exp({mantissa: cToken.borrowIndex()});
                updateCompBorrowIndex(address(cToken), borrowIndex);
                for (uint j = 0; j < holders.length; j++) {
                    distributeBorrowerComp(address(cToken), holders[j], borrowIndex);
                }
            }
            if (suppliers == true && compSupplyState[address(cToken)].index > 0) {
                updateCompSupplyIndex(address(cToken));
                for (uint j = 0; j < holders.length; j++) {
                    distributeSupplierComp(address(cToken), holders[j]);
                }
            }
        }
        for (uint j = 0; j < holders.length; j++) {
            compAccrued[holders[j]] = grantCompInternal(holders[j], compAccrued[holders[j]]);
        }
    }

    /**
     * @notice Transfer COMP to the user
     * @dev Note: If there is not enough COMP, we do not perform the transfer all.
     * @param user The address of the user to transfer COMP to
     * @param amount The amount of COMP to (possibly) transfer
     * @return The amount of COMP which was NOT transferred to the user
     */
    function grantCompInternal(address user, uint amount) internal returns (uint) {
        EIP20NonStandardInterface comp = EIP20NonStandardInterface(rewardToken);
        uint compRemaining = comp.balanceOf(address(this));
        if (amount > 0 && amount <= compRemaining) {
            comp.transfer(user, amount);
            return 0;
        }
        return amount;
    }

    /*** Comp Distribution Admin ***/

    /**
     * @notice Transfer COMP to the recipient
     * @dev Note: If there is not enough COMP, we do not perform the transfer all.
     * @param recipient The address of the recipient to transfer COMP to
     * @param amount The amount of COMP to (possibly) transfer
     */
    function _grantComp(address recipient, uint amount) public {
        require(msg.sender == admin, "only admin can grant comp");
        uint amountLeft = grantCompInternal(recipient, amount);
        require(amountLeft == 0, "insufficient comp for grant");
        emit CompGranted(recipient, amount);
    }

    /**
     * @notice Set COMP speed for a single market
     * @param cToken The market whose COMP speed to update
     * @param compSpeed New COMP speed for market
     */
    function _setCompSupplySpeed(CToken cToken, uint compSpeed) public {
        require(msg.sender == admin, "only admin can set comp speed");
        setCompSupplySpeedInternal(cToken, compSpeed);
    }

    /**
     * @notice Set COMP speed for a single market
     * @param cToken The market whose COMP speed to update
     * @param compSpeed New COMP speed for market
     */
    function _setCompBorrowSpeed(CToken cToken, uint compSpeed) public {
        require(msg.sender == admin, "only admin can set comp speed");
        setCompBorrowSpeedInternal(cToken, compSpeed);
    }

    /**
     * @notice Set COMP borrow and supply speeds for the specified markets.
     * @param cTokens The markets whose COMP speed to update.
     * @param supplySpeeds New supply-side COMP speed for the corresponding market.
     * @param borrowSpeeds New borrow-side COMP speed for the corresponding market.
     */
    function _setCompSpeeds(CToken[] memory cTokens, uint[] memory supplySpeeds, uint[] memory borrowSpeeds) public {
        require(msg.sender == admin, "only admin can set comp speed");

        uint numTokens = cTokens.length;
        require(numTokens == supplySpeeds.length && numTokens == borrowSpeeds.length, "RewardsDistributor::_setCompSpeeds invalid input");

        for (uint i = 0; i < numTokens; ++i) {
            setCompSupplySpeedInternal(cTokens[i], supplySpeeds[i]);
            setCompBorrowSpeedInternal(cTokens[i], borrowSpeeds[i]);
        }
    }

    /**
     * @notice Set COMP speed for a single contributor
     * @param contributor The contributor whose COMP speed to update
     * @param compSpeed New COMP speed for contributor
     */
    function _setContributorCompSpeed(address contributor, uint compSpeed) public {
        require(msg.sender == admin, "only admin can set comp speed");

        // note that COMP speed could be set to 0 to halt liquidity rewards for a contributor
        updateContributorRewards(contributor);
        if (compSpeed == 0) {
            // release storage
            delete lastContributorBlock[contributor];
        } else {
            lastContributorBlock[contributor] = getBlockNumber();
        }
        compContributorSpeeds[contributor] = compSpeed;

        emit ContributorCompSpeedUpdated(contributor, compSpeed);
    }

    /*** Helper Functions */

    function getBlockNumber() public view returns (uint) {
        return block.number;
    }

    /**
     * @notice Returns an array of all markets.
     */
    function getAllMarkets() external view returns (CToken[] memory) {
        return allMarkets;
    }
}

pragma solidity ^0.5.16;

import "./RewardsDistributorStorage.sol";

contract RewardsDistributorDelegator is RewardsDistributorDelegatorStorage {
    /// @notice Emitted when implementation is changed
    event NewImplementation(address oldImplementation, address newImplementation);

	constructor(
			address admin_,
			address rewardToken_,
	        address implementation_) public {

        // Admin set to msg.sender for initialization
        admin = msg.sender;

        delegateTo(implementation_, abi.encodeWithSignature("initialize(address)", rewardToken_));

        _setImplementation(implementation_);

        admin = admin_;
	}


	/**
     * @notice Called by the admin to update the implementation of the delegator
     * @param implementation_ The address of the new implementation for delegation
     */
    function _setImplementation(address implementation_) public {
        require(msg.sender == admin, "RewardsDistributorDelegator::_setImplementation: admin only");
        require(implementation_ != address(0), "RewardsDistributorDelegator::_setImplementation: invalid implementation address");

        address oldImplementation = implementation;
        implementation = implementation_;

        emit NewImplementation(oldImplementation, implementation);
    }

    /**
     * @notice Internal method to delegate execution to another contract
     * @dev It returns to the external caller whatever the implementation returns or forwards reverts
     * @param callee The contract to delegatecall
     * @param data The raw data to delegatecall
     */
    function delegateTo(address callee, bytes memory data) internal {
        (bool success, bytes memory returnData) = callee.delegatecall(data);
        assembly {
            if eq(success, 0) {
                revert(add(returnData, 0x20), returndatasize)
            }
        }
    }

	/**
     * @dev Delegates execution to an implementation contract.
     * It returns to the external caller whatever the implementation returns
     * or forwards reverts.
     */
    function () external payable {
        // delegate all other functions to current implementation
        (bool success, ) = implementation.delegatecall(msg.data);

        assembly {
              let free_mem_ptr := mload(0x40)
              returndatacopy(free_mem_ptr, 0, returndatasize)

              switch success
              case 0 { revert(free_mem_ptr, returndatasize) }
              default { return(free_mem_ptr, returndatasize) }
        }
    }
}

pragma solidity ^0.5.16;

import "./CToken.sol";

contract RewardsDistributorDelegatorStorage {
    /// @notice Administrator for this contract
    address public admin;

    /// @notice Pending administrator for this contract
    address public pendingAdmin;

    /// @notice Active brains of RewardsDistributor
    address public implementation;
}

/**
 * @title Storage for RewardsDistributorDelegate
 * @notice For future upgrades, do not change RewardsDistributorDelegateStorageV1. Create a new
 * contract which implements RewardsDistributorDelegateStorageV1 and following the naming convention
 * RewardsDistributorDelegateStorageVX.
 */
contract RewardsDistributorDelegateStorageV1 is RewardsDistributorDelegatorStorage {
    /// @dev The token to reward (i.e., COMP)
    address public rewardToken;

    struct CompMarketState {
        /// @notice The market's last updated compBorrowIndex or compSupplyIndex
        uint224 index;

        /// @notice The block number the index was last updated at
        uint32 block;
    }

    /// @notice A list of all markets
    CToken[] public allMarkets;

    /// @notice The portion of compRate that each market currently receives
    mapping(address => uint) public compSupplySpeeds;

    /// @notice The portion of compRate that each market currently receives
    mapping(address => uint) public compBorrowSpeeds;

    /// @notice The COMP market supply state for each market
    mapping(address => CompMarketState) public compSupplyState;

    /// @notice The COMP market borrow state for each market
    mapping(address => CompMarketState) public compBorrowState;

    /// @notice The COMP borrow index for each market for each supplier as of the last time they accrued COMP
    mapping(address => mapping(address => uint)) public compSupplierIndex;

    /// @notice The COMP borrow index for each market for each borrower as of the last time they accrued COMP
    mapping(address => mapping(address => uint)) public compBorrowerIndex;

    /// @notice The COMP accrued but not yet transferred to each user
    mapping(address => uint) public compAccrued;

    /// @notice The portion of COMP that each contributor receives per block
    mapping(address => uint) public compContributorSpeeds;

    /// @notice Last block at which a contributor's COMP rewards have been allocated
    mapping(address => uint) public lastContributorBlock;
}

pragma solidity ^0.5.16;

// From https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/Math.sol
// Subject to the MIT license.

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting with custom message on overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, errorMessage);

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on underflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot underflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction underflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on underflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot underflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, errorMessage);

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers.
     * Reverts on division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers.
     * Reverts with custom message on division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        // Solidity only automatically asserts when dividing by 0
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

pragma solidity ^0.5.16;

import "./ErrorReporter.sol";
import "./ComptrollerStorage.sol";

/**
 * @title Unitroller
 * @dev Storage for the comptroller is at this address, while execution is delegated to the `comptrollerImplementation`.
 * CTokens should reference this contract as their comptroller.
 */
contract Unitroller is UnitrollerAdminStorage, ComptrollerErrorReporter {
    /**
      * @notice Emitted when pendingComptrollerImplementation is changed
      */
    event NewPendingImplementation(address oldPendingImplementation, address newPendingImplementation);

    /**
      * @notice Emitted when pendingComptrollerImplementation is accepted, which means comptroller implementation is updated
      */
    event NewImplementation(address oldImplementation, address newImplementation);

    /**
      * @notice Event emitted when the Fuse admin rights are changed
      */
    event FuseAdminRightsToggled(bool hasRights);

    /**
      * @notice Event emitted when the admin rights are changed
      */
    event AdminRightsToggled(bool hasRights);

    /**
      * @notice Emitted when pendingAdmin is changed
      */
    event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);

    /**
      * @notice Emitted when pendingAdmin is accepted, which means admin is updated
      */
    event NewAdmin(address oldAdmin, address newAdmin);

    constructor() public {
        // Set admin to caller
        admin = msg.sender;
    }

    /*** Admin Functions ***/

    function _setPendingImplementation(address newPendingImplementation) public returns (uint) {
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_IMPLEMENTATION_OWNER_CHECK);
        }

        if (!fuseAdmin.comptrollerImplementationWhitelist(comptrollerImplementation, newPendingImplementation)) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_IMPLEMENTATION_CONTRACT_CHECK);
        }

        address oldPendingImplementation = pendingComptrollerImplementation;

        pendingComptrollerImplementation = newPendingImplementation;

        emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation);

        return uint(Error.NO_ERROR);
    }

    /**
    * @notice Accepts new implementation of comptroller. msg.sender must be pendingImplementation
    * @dev Admin function for new implementation to accept it's role as implementation
    * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
    */
    function _acceptImplementation() public returns (uint) {
        // Check caller is pendingImplementation and pendingImplementation ≠ address(0)
        if (msg.sender != pendingComptrollerImplementation || pendingComptrollerImplementation == address(0)) {
            return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK);
        }

        // Save current values for inclusion in log
        address oldImplementation = comptrollerImplementation;
        address oldPendingImplementation = pendingComptrollerImplementation;

        comptrollerImplementation = pendingComptrollerImplementation;

        pendingComptrollerImplementation = address(0);

        emit NewImplementation(oldImplementation, comptrollerImplementation);
        emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Toggles Fuse admin rights.
      * @param hasRights Boolean indicating if the Fuse admin is to have rights.
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function _toggleFuseAdminRights(bool hasRights) external returns (uint) {
        // Check caller = admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.TOGGLE_ADMIN_RIGHTS_OWNER_CHECK);
        }

        // Check that rights have not already been set to the desired value
        if (fuseAdminHasRights == hasRights) return uint(Error.NO_ERROR);

        // Set fuseAdminHasRights
        fuseAdminHasRights = hasRights;

        // Emit FuseAdminRightsToggled()
        emit FuseAdminRightsToggled(fuseAdminHasRights);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Toggles admin rights.
      * @param hasRights Boolean indicating if the admin is to have rights.
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function _toggleAdminRights(bool hasRights) external returns (uint) {
        // Check caller = admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.TOGGLE_ADMIN_RIGHTS_OWNER_CHECK);
        }

        // Check that rights have not already been set to the desired value
        if (adminHasRights == hasRights) return uint(Error.NO_ERROR);

        // Set adminHasRights
        adminHasRights = hasRights;

        // Emit AdminRightsToggled()
        emit AdminRightsToggled(hasRights);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
      * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
      * @param newPendingAdmin New pending admin.
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function _setPendingAdmin(address newPendingAdmin) public returns (uint) {
        // Check caller = admin
        if (!hasAdminRights()) {
            return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK);
        }

        // Save current value, if any, for inclusion in log
        address oldPendingAdmin = pendingAdmin;

        // Store pendingAdmin with value newPendingAdmin
        pendingAdmin = newPendingAdmin;

        // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)
        emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);

        return uint(Error.NO_ERROR);
    }

    /**
      * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin
      * @dev Admin function for pending admin to accept role and update admin
      * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
      */
    function _acceptAdmin() public returns (uint) {
        // Check caller is pendingAdmin and pendingAdmin ≠ address(0)
        if (msg.sender != pendingAdmin || msg.sender == address(0)) {
            return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK);
        }

        // Save current values for inclusion in log
        address oldAdmin = admin;
        address oldPendingAdmin = pendingAdmin;

        // Store admin with value pendingAdmin
        admin = pendingAdmin;

        // Clear the pending value
        pendingAdmin = address(0);

        emit NewAdmin(oldAdmin, admin);
        emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);

        return uint(Error.NO_ERROR);
    }

    /**
     * @dev Delegates execution to an implementation contract.
     * It returns to the external caller whatever the implementation returns
     * or forwards reverts.
     */
    function () payable external {
        // Check for automatic implementation
        if (msg.sender != address(this)) {
            (bool callSuccess, bytes memory data) = address(this).staticcall(abi.encodeWithSignature("autoImplementation()"));
            bool autoImplementation;
            if (callSuccess) (autoImplementation) = abi.decode(data, (bool));

            if (autoImplementation) {
                address latestComptrollerImplementation = fuseAdmin.latestComptrollerImplementation(comptrollerImplementation);

                if (comptrollerImplementation != latestComptrollerImplementation) {
                    address oldImplementation = comptrollerImplementation; // Save current value for inclusion in log
                    comptrollerImplementation = latestComptrollerImplementation;
                    emit NewImplementation(oldImplementation, comptrollerImplementation);
                }
            }
        }

        // delegate all other functions to current implementation
        (bool success, ) = comptrollerImplementation.delegatecall(msg.data);

        assembly {
              let free_mem_ptr := mload(0x40)
              returndatacopy(free_mem_ptr, 0, returndatasize)

              switch success
              case 0 { revert(free_mem_ptr, returndatasize) }
              default { return(free_mem_ptr, returndatasize) }
        }
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):