ETH Price: $2,522.43 (-1.12%)

Contract Diff Checker

Contract Name:
BrawlerBearzBattlePassSeason4

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC1155/IERC1155.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165Upgradeable.sol";

/**
 * @dev Required interface of an ERC1155 compliant contract, as defined in the
 * https://eips.ethereum.org/EIPS/eip-1155[EIP].
 *
 * _Available since v3.1._
 */
interface IERC1155Upgradeable is IERC165Upgradeable {
    /**
     * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`.
     */
    event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);

    /**
     * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
     * transfers.
     */
    event TransferBatch(
        address indexed operator,
        address indexed from,
        address indexed to,
        uint256[] ids,
        uint256[] values
    );

    /**
     * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
     * `approved`.
     */
    event ApprovalForAll(address indexed account, address indexed operator, bool approved);

    /**
     * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
     *
     * If an {URI} event was emitted for `id`, the standard
     * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
     * returned by {IERC1155MetadataURI-uri}.
     */
    event URI(string value, uint256 indexed id);

    /**
     * @dev Returns the amount of tokens of token type `id` owned by `account`.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function balanceOf(address account, uint256 id) external view returns (uint256);

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] calldata accounts,
        uint256[] calldata ids
    ) external view returns (uint256[] memory);

    /**
     * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the caller.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address account, address operator) external view returns (bool);

    /**
     * @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
     * - `from` must have a balance of tokens of type `id` of at least `amount`.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 amount, bytes calldata data) external;

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - `ids` and `amounts` must have the same length.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] calldata ids,
        uint256[] calldata amounts,
        bytes calldata data
    ) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165Upgradeable {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "erc721a/contracts/extensions/ERC721AQueryable.sol";
import "erc721a/contracts/extensions/ERC721ABurnable.sol";
import {IBrawlerBearzDynamicItems} from "./interfaces/IBrawlerBearzDynamicItems.sol";
import "./tunnel/FxBaseRootTunnel.sol";

/*******************************************************************************
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|(@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|,|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&&@@@@@@@@@@@|,*|&@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@%,**%@@@@@@@@%|******%&@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&##*****|||**,(%%%%%**|%@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@***,#%%%%**#&@@@@@#**,|@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@*,(@@@@@@@@@@**,(&@@@@#**%@@@@@@||(%@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@%|,****&@((@&***&@@@@@@%||||||||#%&@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@&%#*****||||||**#%&@%%||||||||#@&%#(@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@&**,(&@@@@@%|||||*##&&&&##|||||(%@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@**,%@@@@@@@(|*|#%@@@@@@@@#||#%%@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@#||||#@@@@||*|%@@@@@@@@&|||%%&@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@#,,,,,,*|**||%|||||||###&@@@@@@@#|||#%@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@&#||*|||||%%%@%%%#|||%@@@@@@@@&(|(%&@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@&&%%(||||@@@@@@&|||||(%&((||(#%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@%%(||||||||||#%#(|||||%%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@&%#######%%@@**||(#%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@%##%%&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
********************************************************************************/

/**
 * @title BrawlerBearzBattlePassSeason4
 * @author @scottybmitch
 * @dev Battle pass public mint and L2 sync on mint, non-transferable, or sellable
 */
contract BrawlerBearzBattlePassSeason4 is
    FxBaseRootTunnel,
    ERC721AQueryable,
    ERC721ABurnable,
    Ownable
{
    using Strings for uint256;

    /// @dev Sync actions
    bytes32 public constant MINTED = keccak256("MINTED");

    /// @notice Vendor contract
    IBrawlerBearzDynamicItems public vendorContract;

    // @dev Base uri for the nft
    string private baseURI =
        "ipfs://bafybeielzvnm3axmc4fy5bd26ootdscrybbi6hezhu7gzristdroaxt4au/";

    /// @notice Pro battle pass tier
    uint256 constant PRO_PASS = 1;

    /// @notice Pro pass mint price
    uint256 public proPrice = 0.045 ether;

    /// @notice Pro battle pass tier
    uint256 constant ENTRY_PASS = 2;

    /// @notice Pro pass mint price
    uint256 public entryPrice = 0.01 ether;

    // @dev Treasury
    address public treasury =
        payable(0x39bfA2b4319581bc885A2d4b9F0C90C2e1c24B87);

    /*
     * @notice All mints live ~ December 2nd, 9AM EST
     * @dev Mints go live date
     */
    uint256 public liveAt = 1701525600;

    /*
     * @notice All mints expired
     * @dev Mints expire at
     */
    uint256 public expiresAt = 1702746000;

    /// @notice Mapping of token id to the pass type
    mapping(uint256 => uint256) private tokenIdToPassType;

    /// @dev Thrown on approval
    error CannotApproveAll();

    /// @dev Thrown on transfer
    error Nontransferable();

    modifier mintIsActive() {
        require(
            block.timestamp > liveAt && block.timestamp < expiresAt,
            "Minting is not active."
        );
        _;
    }

    constructor(
        address _checkpointManager,
        address _fxRoot,
        address _vendorContractAddress
    )
        FxBaseRootTunnel(_checkpointManager, _fxRoot)
        ERC721A("Brawler Bearz Battle Pass: S4", "BBBPS4")
    {
        vendorContract = IBrawlerBearzDynamicItems(_vendorContractAddress);
    }

    /**
     * @notice Pro pass mints
     * @param _amount The amount of passes to mint
     **/
    function proPassMint(uint256 _amount) external payable mintIsActive {
        require(msg.value >= _amount * proPrice, "Not enough funds.");
        address to = _msgSender();

        // Mint a supply crate per mint
        uint256[] memory itemIds = new uint256[](_amount);
        uint256[] memory tokenIds = new uint256[](_amount);
        uint256 nextTokenId = _nextTokenId();

        for (uint256 i; i < _amount; ) {
            itemIds[i] = 364; // https://opensea.io/assets/ethereum/0xbd24a76f4135f930f5c49f6c30e0e30a61b97537/364
            tokenIds[i] = nextTokenId + i;
            tokenIdToPassType[nextTokenId + i] = PRO_PASS; // Set pass type
            unchecked {
                ++i;
            }
        }

        vendorContract.dropItems(to, itemIds);

        // Mint passes
        _mint(to, _amount);

        // Sync w/ child
        _sendMessageToChild(
            abi.encode(MINTED, abi.encode(to, PRO_PASS, tokenIds))
        );
    }

    /**
     * @notice Entry pass mints
     * @param _amount The amount of passes to mint
     **/
    function entryPassMint(uint256 _amount) external payable mintIsActive {
        require(msg.value >= _amount * entryPrice, "Not enough funds.");
        address to = _msgSender();

        uint256[] memory tokenIds = new uint256[](_amount);
        uint256 nextTokenId = _nextTokenId();

        for (uint256 i; i < _amount; ) {
            tokenIds[i] = nextTokenId + i;
            tokenIdToPassType[nextTokenId + i] = ENTRY_PASS;
            unchecked {
                ++i;
            }
        }

        // Mint passes
        _mint(to, _amount);

        // Sync w/ child
        _sendMessageToChild(
            abi.encode(MINTED, abi.encode(to, ENTRY_PASS, tokenIds))
        );
    }

    /**
     * @notice Returns the URI for a given token id
     * @param _tokenId A tokenId
     */
    function tokenURI(
        uint256 _tokenId
    ) public view override returns (string memory) {
        if (!_exists(_tokenId)) revert OwnerQueryForNonexistentToken();
        return
            string(
                abi.encodePacked(
                    baseURI,
                    Strings.toString(tokenIdToPassType[_tokenId])
                )
            );
    }

    // @dev Check if mint is live
    function isLive() public view returns (bool) {
        return block.timestamp > liveAt && block.timestamp < expiresAt;
    }

    // @dev Returns the starting token ID.
    function _startTokenId() internal view virtual override returns (uint256) {
        return 1;
    }

    /**
     * @notice Sets entries price
     * @param _entryPrice A base uri
     */
    function setEntryPrice(uint256 _entryPrice) external onlyOwner {
        entryPrice = _entryPrice;
    }

    /**
     * @notice Sets pro price
     * @param _proPrice A base uri
     */
    function setProPrice(uint256 _proPrice) external onlyOwner {
        proPrice = _proPrice;
    }

    /**
     * @notice Sets the base URI of the NFT
     * @param _baseURI A base uri
     */
    function setBaseURI(string calldata _baseURI) external onlyOwner {
        baseURI = _baseURI;
    }

    /**
     * @notice Treasury mints
     * @param _amount The amount of passes to mint to the treasury wallet
     **/
    function treasuryMint(uint256 _amount) external onlyOwner {
        _mint(treasury, _amount);
    }

    /**
     * @notice Sets timestamps for live and expires timeframe
     * @param _liveAt A unix timestamp for live date
     * @param _expiresAt A unix timestamp for expiration date
     */
    function setMintWindow(
        uint256 _liveAt,
        uint256 _expiresAt
    ) external onlyOwner {
        liveAt = _liveAt;
        expiresAt = _expiresAt;
    }

    /**
     * @notice Sets the treasury recipient
     * @param _treasury The treasury address
     */
    function setTreasury(address _treasury) public onlyOwner {
        treasury = payable(_treasury);
    }

    /**
     * Set FxChildTunnel
     * @param _fxChildTunnel - the fxChildTunnel address
     */
    function setFxChildTunnel(
        address _fxChildTunnel
    ) public override onlyOwner {
        fxChildTunnel = _fxChildTunnel;
    }

    /**
     * @notice Sets the bearz vendor item contract
     * @dev only owner call this function
     * @param _vendorContractAddress The new contract address
     */
    function setVendorContractAddress(
        address _vendorContractAddress
    ) external onlyOwner {
        vendorContract = IBrawlerBearzDynamicItems(_vendorContractAddress);
    }

    /// @notice Withdraws funds from contract
    function withdraw() public onlyOwner {
        (bool success, ) = treasury.call{value: address(this).balance}("");
        require(success, "999");
    }

    /// @dev Prevent approvals of token outside of the treasury wallet
    function setApprovalForAll(
        address operator,
        bool approved
    ) public virtual override {
        if (_msgSenderERC721A() != treasury) {
            revert CannotApproveAll();
        }
        super.setApprovalForAll(operator, approved);
    }

    /// @dev Prevent token transfer unless burning
    function _beforeTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal override(ERC721A) {
        // Treasury is allowed to sell passes
        if (from == treasury) {
            // If the item is coming from the treasury, we process as if it were a processing a pro pass mint
            uint256[] memory itemIds = new uint256[](quantity);
            uint256[] memory tokenIds = new uint256[](quantity);
            uint256 nextTokenId = startTokenId;

            for (uint256 i; i < quantity; ) {
                itemIds[i] = 364; // https://opensea.io/assets/ethereum/0xbd24a76f4135f930f5c49f6c30e0e30a61b97537/364
                tokenIds[i] = nextTokenId + i;
                tokenIdToPassType[nextTokenId + i] = PRO_PASS;
                unchecked {
                    ++i;
                }
            }

            // Mint a supply crate per mint
            vendorContract.dropItems(to, itemIds);

            // Sync w/ child
            _sendMessageToChild(
                abi.encode(MINTED, abi.encode(to, PRO_PASS, tokenIds))
            );
        } else if (to != address(0) && from != address(0)) {
            // Cannot transfer otherwise, soul bound
            revert Nontransferable();
        }

        super._beforeTokenTransfers(from, to, startTokenId, quantity);
    }

    function _processMessageFromChild(bytes memory message) internal override {
        // noop
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "@openzeppelin/contracts-upgradeable/token/ERC1155/IERC1155Upgradeable.sol";

interface IBrawlerBearzDynamicItems is IERC1155Upgradeable {
    struct CustomMetadata {
        string typeOf;
        string name;
        uint256 xp; // Min XP required to equip
        string rarity; // LEGENDARY, SUPER_RARE, RARE, UNCOMMON, COMMON
        uint256 atk; // Correlated to Strength
        uint256 def; // Correlated to Endurance
        uint256 usageChance; // Duration
        string usageDuration; // Persistent / Consumable
        string description;
        uint256 intel; // Correlated to intelligence
        uint256 luck; // Correlated to luck
    }

    function getMetadata(uint256 tokenId)
        external
        view
        returns (CustomMetadata memory);

    function getMetadataBatch(uint256[] calldata tokenIds)
        external
        view
        returns (CustomMetadata[] memory);

    function getItemType(uint256 tokenId) external view returns (string memory);

    function getItemName(uint256 tokenId) external view returns (string memory);

    function getItemXPReq(uint256 tokenId) external view returns (uint256);

    function setItemMetadata(
        uint256 tokenId,
        string calldata typeOf,
        string calldata name,
        uint256 xp
    ) external;

    function setItemMetadataStruct(
        uint256 tokenId,
        CustomMetadata memory metadata
    ) external;

    function shopDrop(address _toAddress, uint256 _amount) external;

    function dropItems(address _toAddress, uint256[] calldata itemIds) external;

    function burnItemForOwnerAddress(
        uint256 _typeId,
        uint256 _quantity,
        address _materialOwnerAddress
    ) external;

    function burnItemsForOwnerAddress(
        uint256[] memory _typeIds,
        uint256[] memory _quantities,
        address _materialOwnerAddress
    ) external;

    function mintItemToAddress(
        uint256 _typeId,
        uint256 _quantity,
        address _toAddress
    ) external;

    function mintBatchItemsToAddress(
        uint256[] memory _typeIds,
        uint256[] memory _quantities,
        address _toAddress
    ) external;

    function bulkSafeTransfer(
        uint256 _typeId,
        uint256 _quantityPerRecipient,
        address[] calldata recipients
    ) external;
}

pragma solidity ^0.8.0;

import {RLPReader} from "./RLPReader.sol";

library ExitPayloadReader {
    using RLPReader for bytes;
    using RLPReader for RLPReader.RLPItem;

    uint8 constant WORD_SIZE = 32;

    struct ExitPayload {
        RLPReader.RLPItem[] data;
    }

    struct Receipt {
        RLPReader.RLPItem[] data;
        bytes raw;
        uint256 logIndex;
    }

    struct Log {
        RLPReader.RLPItem data;
        RLPReader.RLPItem[] list;
    }

    struct LogTopics {
        RLPReader.RLPItem[] data;
    }

    // copy paste of private copy() from RLPReader to avoid changing of existing contracts
    function copy(
        uint256 src,
        uint256 dest,
        uint256 len
    ) private pure {
        if (len == 0) return;

        // copy as many word sizes as possible
        for (; len >= WORD_SIZE; len -= WORD_SIZE) {
            assembly {
                mstore(dest, mload(src))
            }

            src += WORD_SIZE;
            dest += WORD_SIZE;
        }

        // left over bytes. Mask is used to remove unwanted bytes from the word
        uint256 mask = 256**(WORD_SIZE - len) - 1;
        assembly {
            let srcpart := and(mload(src), not(mask)) // zero out src
            let destpart := and(mload(dest), mask) // retrieve the bytes
            mstore(dest, or(destpart, srcpart))
        }
    }

    function toExitPayload(bytes memory data) internal pure returns (ExitPayload memory) {
        RLPReader.RLPItem[] memory payloadData = data.toRlpItem().toList();

        return ExitPayload(payloadData);
    }

    function getHeaderNumber(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[0].toUint();
    }

    function getBlockProof(ExitPayload memory payload) internal pure returns (bytes memory) {
        return payload.data[1].toBytes();
    }

    function getBlockNumber(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[2].toUint();
    }

    function getBlockTime(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[3].toUint();
    }

    function getTxRoot(ExitPayload memory payload) internal pure returns (bytes32) {
        return bytes32(payload.data[4].toUint());
    }

    function getReceiptRoot(ExitPayload memory payload) internal pure returns (bytes32) {
        return bytes32(payload.data[5].toUint());
    }

    function getReceipt(ExitPayload memory payload) internal pure returns (Receipt memory receipt) {
        receipt.raw = payload.data[6].toBytes();
        RLPReader.RLPItem memory receiptItem = receipt.raw.toRlpItem();

        if (receiptItem.isList()) {
            // legacy tx
            receipt.data = receiptItem.toList();
        } else {
            // pop first byte before parsting receipt
            bytes memory typedBytes = receipt.raw;
            bytes memory result = new bytes(typedBytes.length - 1);
            uint256 srcPtr;
            uint256 destPtr;
            assembly {
                srcPtr := add(33, typedBytes)
                destPtr := add(0x20, result)
            }

            copy(srcPtr, destPtr, result.length);
            receipt.data = result.toRlpItem().toList();
        }

        receipt.logIndex = getReceiptLogIndex(payload);
        return receipt;
    }

    function getReceiptProof(ExitPayload memory payload) internal pure returns (bytes memory) {
        return payload.data[7].toBytes();
    }

    function getBranchMaskAsBytes(ExitPayload memory payload) internal pure returns (bytes memory) {
        return payload.data[8].toBytes();
    }

    function getBranchMaskAsUint(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[8].toUint();
    }

    function getReceiptLogIndex(ExitPayload memory payload) internal pure returns (uint256) {
        return payload.data[9].toUint();
    }

    // Receipt methods
    function toBytes(Receipt memory receipt) internal pure returns (bytes memory) {
        return receipt.raw;
    }

    function getLog(Receipt memory receipt) internal pure returns (Log memory) {
        RLPReader.RLPItem memory logData = receipt.data[3].toList()[receipt.logIndex];
        return Log(logData, logData.toList());
    }

    // Log methods
    function getEmitter(Log memory log) internal pure returns (address) {
        return RLPReader.toAddress(log.list[0]);
    }

    function getTopics(Log memory log) internal pure returns (LogTopics memory) {
        return LogTopics(log.list[1].toList());
    }

    function getData(Log memory log) internal pure returns (bytes memory) {
        return log.list[2].toBytes();
    }

    function toRlpBytes(Log memory log) internal pure returns (bytes memory) {
        return log.data.toRlpBytes();
    }

    // LogTopics methods
    function getField(LogTopics memory topics, uint256 index) internal pure returns (RLPReader.RLPItem memory) {
        return topics.data[index];
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

library Merkle {
    function checkMembership(
        bytes32 leaf,
        uint256 index,
        bytes32 rootHash,
        bytes memory proof
    ) internal pure returns (bool) {
        require(proof.length % 32 == 0, "Invalid proof length");
        uint256 proofHeight = proof.length / 32;
        // Proof of size n means, height of the tree is n+1.
        // In a tree of height n+1, max #leafs possible is 2 ^ n
        require(index < 2**proofHeight, "Leaf index is too big");

        bytes32 proofElement;
        bytes32 computedHash = leaf;
        for (uint256 i = 32; i <= proof.length; i += 32) {
            assembly {
                proofElement := mload(add(proof, i))
            }

            if (index % 2 == 0) {
                computedHash = keccak256(abi.encodePacked(computedHash, proofElement));
            } else {
                computedHash = keccak256(abi.encodePacked(proofElement, computedHash));
            }

            index = index / 2;
        }
        return computedHash == rootHash;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {RLPReader} from "./RLPReader.sol";

library MerklePatriciaProof {
    /*
     * @dev Verifies a merkle patricia proof.
     * @param value The terminating value in the trie.
     * @param encodedPath The path in the trie leading to value.
     * @param rlpParentNodes The rlp encoded stack of nodes.
     * @param root The root hash of the trie.
     * @return The boolean validity of the proof.
     */
    function verify(
        bytes memory value,
        bytes memory encodedPath,
        bytes memory rlpParentNodes,
        bytes32 root
    ) internal pure returns (bool) {
        RLPReader.RLPItem memory item = RLPReader.toRlpItem(rlpParentNodes);
        RLPReader.RLPItem[] memory parentNodes = RLPReader.toList(item);

        bytes memory currentNode;
        RLPReader.RLPItem[] memory currentNodeList;

        bytes32 nodeKey = root;
        uint256 pathPtr = 0;

        bytes memory path = _getNibbleArray(encodedPath);
        if (path.length == 0) {
            return false;
        }

        for (uint256 i = 0; i < parentNodes.length; i++) {
            if (pathPtr > path.length) {
                return false;
            }

            currentNode = RLPReader.toRlpBytes(parentNodes[i]);
            if (nodeKey != keccak256(currentNode)) {
                return false;
            }
            currentNodeList = RLPReader.toList(parentNodes[i]);

            if (currentNodeList.length == 17) {
                if (pathPtr == path.length) {
                    if (keccak256(RLPReader.toBytes(currentNodeList[16])) == keccak256(value)) {
                        return true;
                    } else {
                        return false;
                    }
                }

                uint8 nextPathNibble = uint8(path[pathPtr]);
                if (nextPathNibble > 16) {
                    return false;
                }
                nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[nextPathNibble]));
                pathPtr += 1;
            } else if (currentNodeList.length == 2) {
                uint256 traversed = _nibblesToTraverse(RLPReader.toBytes(currentNodeList[0]), path, pathPtr);
                if (pathPtr + traversed == path.length) {
                    //leaf node
                    if (keccak256(RLPReader.toBytes(currentNodeList[1])) == keccak256(value)) {
                        return true;
                    } else {
                        return false;
                    }
                }

                //extension node
                if (traversed == 0) {
                    return false;
                }

                pathPtr += traversed;
                nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[1]));
            } else {
                return false;
            }
        }
    }

    function _nibblesToTraverse(
        bytes memory encodedPartialPath,
        bytes memory path,
        uint256 pathPtr
    ) private pure returns (uint256) {
        uint256 len = 0;
        // encodedPartialPath has elements that are each two hex characters (1 byte), but partialPath
        // and slicedPath have elements that are each one hex character (1 nibble)
        bytes memory partialPath = _getNibbleArray(encodedPartialPath);
        bytes memory slicedPath = new bytes(partialPath.length);

        // pathPtr counts nibbles in path
        // partialPath.length is a number of nibbles
        for (uint256 i = pathPtr; i < pathPtr + partialPath.length; i++) {
            bytes1 pathNibble = path[i];
            slicedPath[i - pathPtr] = pathNibble;
        }

        if (keccak256(partialPath) == keccak256(slicedPath)) {
            len = partialPath.length;
        } else {
            len = 0;
        }
        return len;
    }

    // bytes b must be hp encoded
    function _getNibbleArray(bytes memory b) internal pure returns (bytes memory) {
        bytes memory nibbles = "";
        if (b.length > 0) {
            uint8 offset;
            uint8 hpNibble = uint8(_getNthNibbleOfBytes(0, b));
            if (hpNibble == 1 || hpNibble == 3) {
                nibbles = new bytes(b.length * 2 - 1);
                bytes1 oddNibble = _getNthNibbleOfBytes(1, b);
                nibbles[0] = oddNibble;
                offset = 1;
            } else {
                nibbles = new bytes(b.length * 2 - 2);
                offset = 0;
            }

            for (uint256 i = offset; i < nibbles.length; i++) {
                nibbles[i] = _getNthNibbleOfBytes(i - offset + 2, b);
            }
        }
        return nibbles;
    }

    function _getNthNibbleOfBytes(uint256 n, bytes memory str) private pure returns (bytes1) {
        return bytes1(n % 2 == 0 ? uint8(str[n / 2]) / 0x10 : uint8(str[n / 2]) % 0x10);
    }
}

/*
 * @author Hamdi Allam [email protected]
 * Please reach out with any questions or concerns
 */
pragma solidity ^0.8.0;

library RLPReader {
    uint8 constant STRING_SHORT_START = 0x80;
    uint8 constant STRING_LONG_START = 0xb8;
    uint8 constant LIST_SHORT_START = 0xc0;
    uint8 constant LIST_LONG_START = 0xf8;
    uint8 constant WORD_SIZE = 32;

    struct RLPItem {
        uint256 len;
        uint256 memPtr;
    }

    struct Iterator {
        RLPItem item; // Item that's being iterated over.
        uint256 nextPtr; // Position of the next item in the list.
    }

    /*
     * @dev Returns the next element in the iteration. Reverts if it has not next element.
     * @param self The iterator.
     * @return The next element in the iteration.
     */
    function next(Iterator memory self) internal pure returns (RLPItem memory) {
        require(hasNext(self));

        uint256 ptr = self.nextPtr;
        uint256 itemLength = _itemLength(ptr);
        self.nextPtr = ptr + itemLength;

        return RLPItem(itemLength, ptr);
    }

    /*
     * @dev Returns true if the iteration has more elements.
     * @param self The iterator.
     * @return true if the iteration has more elements.
     */
    function hasNext(Iterator memory self) internal pure returns (bool) {
        RLPItem memory item = self.item;
        return self.nextPtr < item.memPtr + item.len;
    }

    /*
     * @param item RLP encoded bytes
     */
    function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) {
        uint256 memPtr;
        assembly {
            memPtr := add(item, 0x20)
        }

        return RLPItem(item.length, memPtr);
    }

    /*
     * @dev Create an iterator. Reverts if item is not a list.
     * @param self The RLP item.
     * @return An 'Iterator' over the item.
     */
    function iterator(RLPItem memory self) internal pure returns (Iterator memory) {
        require(isList(self));

        uint256 ptr = self.memPtr + _payloadOffset(self.memPtr);
        return Iterator(self, ptr);
    }

    /*
     * @param item RLP encoded bytes
     */
    function rlpLen(RLPItem memory item) internal pure returns (uint256) {
        return item.len;
    }

    /*
     * @param item RLP encoded bytes
     */
    function payloadLen(RLPItem memory item) internal pure returns (uint256) {
        return item.len - _payloadOffset(item.memPtr);
    }

    /*
     * @param item RLP encoded list in bytes
     */
    function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) {
        require(isList(item));

        uint256 items = numItems(item);
        RLPItem[] memory result = new RLPItem[](items);

        uint256 memPtr = item.memPtr + _payloadOffset(item.memPtr);
        uint256 dataLen;
        for (uint256 i = 0; i < items; i++) {
            dataLen = _itemLength(memPtr);
            result[i] = RLPItem(dataLen, memPtr);
            memPtr = memPtr + dataLen;
        }

        return result;
    }

    // @return indicator whether encoded payload is a list. negate this function call for isData.
    function isList(RLPItem memory item) internal pure returns (bool) {
        if (item.len == 0) return false;

        uint8 byte0;
        uint256 memPtr = item.memPtr;
        assembly {
            byte0 := byte(0, mload(memPtr))
        }

        if (byte0 < LIST_SHORT_START) return false;
        return true;
    }

    /*
     * @dev A cheaper version of keccak256(toRlpBytes(item)) that avoids copying memory.
     * @return keccak256 hash of RLP encoded bytes.
     */
    function rlpBytesKeccak256(RLPItem memory item) internal pure returns (bytes32) {
        uint256 ptr = item.memPtr;
        uint256 len = item.len;
        bytes32 result;
        assembly {
            result := keccak256(ptr, len)
        }
        return result;
    }

    function payloadLocation(RLPItem memory item) internal pure returns (uint256, uint256) {
        uint256 offset = _payloadOffset(item.memPtr);
        uint256 memPtr = item.memPtr + offset;
        uint256 len = item.len - offset; // data length
        return (memPtr, len);
    }

    /*
     * @dev A cheaper version of keccak256(toBytes(item)) that avoids copying memory.
     * @return keccak256 hash of the item payload.
     */
    function payloadKeccak256(RLPItem memory item) internal pure returns (bytes32) {
        (uint256 memPtr, uint256 len) = payloadLocation(item);
        bytes32 result;
        assembly {
            result := keccak256(memPtr, len)
        }
        return result;
    }

    /** RLPItem conversions into data types **/

    // @returns raw rlp encoding in bytes
    function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) {
        bytes memory result = new bytes(item.len);
        if (result.length == 0) return result;

        uint256 ptr;
        assembly {
            ptr := add(0x20, result)
        }

        copy(item.memPtr, ptr, item.len);
        return result;
    }

    // any non-zero byte is considered true
    function toBoolean(RLPItem memory item) internal pure returns (bool) {
        require(item.len == 1);
        uint256 result;
        uint256 memPtr = item.memPtr;
        assembly {
            result := byte(0, mload(memPtr))
        }

        return result == 0 ? false : true;
    }

    function toAddress(RLPItem memory item) internal pure returns (address) {
        // 1 byte for the length prefix
        require(item.len == 21);

        return address(uint160(toUint(item)));
    }

    function toUint(RLPItem memory item) internal pure returns (uint256) {
        require(item.len > 0 && item.len <= 33);

        uint256 offset = _payloadOffset(item.memPtr);
        uint256 len = item.len - offset;

        uint256 result;
        uint256 memPtr = item.memPtr + offset;
        assembly {
            result := mload(memPtr)

            // shfit to the correct location if neccesary
            if lt(len, 32) {
                result := div(result, exp(256, sub(32, len)))
            }
        }

        return result;
    }

    // enforces 32 byte length
    function toUintStrict(RLPItem memory item) internal pure returns (uint256) {
        // one byte prefix
        require(item.len == 33);

        uint256 result;
        uint256 memPtr = item.memPtr + 1;
        assembly {
            result := mload(memPtr)
        }

        return result;
    }

    function toBytes(RLPItem memory item) internal pure returns (bytes memory) {
        require(item.len > 0);

        uint256 offset = _payloadOffset(item.memPtr);
        uint256 len = item.len - offset; // data length
        bytes memory result = new bytes(len);

        uint256 destPtr;
        assembly {
            destPtr := add(0x20, result)
        }

        copy(item.memPtr + offset, destPtr, len);
        return result;
    }

    /*
     * Private Helpers
     */

    // @return number of payload items inside an encoded list.
    function numItems(RLPItem memory item) private pure returns (uint256) {
        if (item.len == 0) return 0;

        uint256 count = 0;
        uint256 currPtr = item.memPtr + _payloadOffset(item.memPtr);
        uint256 endPtr = item.memPtr + item.len;
        while (currPtr < endPtr) {
            currPtr = currPtr + _itemLength(currPtr); // skip over an item
            count++;
        }

        return count;
    }

    // @return entire rlp item byte length
    function _itemLength(uint256 memPtr) private pure returns (uint256) {
        uint256 itemLen;
        uint256 byte0;
        assembly {
            byte0 := byte(0, mload(memPtr))
        }

        if (byte0 < STRING_SHORT_START) itemLen = 1;
        else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1;
        else if (byte0 < LIST_SHORT_START) {
            assembly {
                let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is
                memPtr := add(memPtr, 1) // skip over the first byte
                /* 32 byte word size */
                let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len
                itemLen := add(dataLen, add(byteLen, 1))
            }
        } else if (byte0 < LIST_LONG_START) {
            itemLen = byte0 - LIST_SHORT_START + 1;
        } else {
            assembly {
                let byteLen := sub(byte0, 0xf7)
                memPtr := add(memPtr, 1)

                let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length
                itemLen := add(dataLen, add(byteLen, 1))
            }
        }

        return itemLen;
    }

    // @return number of bytes until the data
    function _payloadOffset(uint256 memPtr) private pure returns (uint256) {
        uint256 byte0;
        assembly {
            byte0 := byte(0, mload(memPtr))
        }

        if (byte0 < STRING_SHORT_START) return 0;
        else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1;
        else if (byte0 < LIST_SHORT_START)
            // being explicit
            return byte0 - (STRING_LONG_START - 1) + 1;
        else return byte0 - (LIST_LONG_START - 1) + 1;
    }

    /*
     * @param src Pointer to source
     * @param dest Pointer to destination
     * @param len Amount of memory to copy from the source
     */
    function copy(
        uint256 src,
        uint256 dest,
        uint256 len
    ) private pure {
        if (len == 0) return;

        // copy as many word sizes as possible
        for (; len >= WORD_SIZE; len -= WORD_SIZE) {
            assembly {
                mstore(dest, mload(src))
            }

            src += WORD_SIZE;
            dest += WORD_SIZE;
        }

        if (len == 0) return;

        // left over bytes. Mask is used to remove unwanted bytes from the word
        uint256 mask = 256**(WORD_SIZE - len) - 1;

        assembly {
            let srcpart := and(mload(src), not(mask)) // zero out src
            let destpart := and(mload(dest), mask) // retrieve the bytes
            mstore(dest, or(destpart, srcpart))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {RLPReader} from "../lib/RLPReader.sol";
import {MerklePatriciaProof} from "../lib/MerklePatriciaProof.sol";
import {Merkle} from "../lib/Merkle.sol";
import "../lib/ExitPayloadReader.sol";

interface IFxStateSender {
    function sendMessageToChild(address _receiver, bytes calldata _data)
        external;
}

contract ICheckpointManager {
    struct HeaderBlock {
        bytes32 root;
        uint256 start;
        uint256 end;
        uint256 createdAt;
        address proposer;
    }

    /**
     * @notice mapping of checkpoint header numbers to block details
     * @dev These checkpoints are submited by plasma contracts
     */
    mapping(uint256 => HeaderBlock) public headerBlocks;
}

abstract contract FxBaseRootTunnel {
    using RLPReader for RLPReader.RLPItem;
    using Merkle for bytes32;
    using ExitPayloadReader for bytes;
    using ExitPayloadReader for ExitPayloadReader.ExitPayload;
    using ExitPayloadReader for ExitPayloadReader.Log;
    using ExitPayloadReader for ExitPayloadReader.LogTopics;
    using ExitPayloadReader for ExitPayloadReader.Receipt;

    // keccak256(MessageSent(bytes))
    bytes32 public constant SEND_MESSAGE_EVENT_SIG =
        0x8c5261668696ce22758910d05bab8f186d6eb247ceac2af2e82c7dc17669b036;

    // state sender contract
    IFxStateSender public fxRoot;
    // root chain manager
    ICheckpointManager public checkpointManager;
    // child tunnel contract which receives and sends messages
    address public fxChildTunnel;

    // storage to avoid duplicate exits
    mapping(bytes32 => bool) public processedExits;

    constructor(address _checkpointManager, address _fxRoot) {
        checkpointManager = ICheckpointManager(_checkpointManager);
        fxRoot = IFxStateSender(_fxRoot);
    }

    // set fxChildTunnel if not set already
    function setFxChildTunnel(address _fxChildTunnel) public virtual {
        require(
            fxChildTunnel == address(0x0),
            "FxBaseRootTunnel: CHILD_TUNNEL_ALREADY_SET"
        );
        fxChildTunnel = _fxChildTunnel;
    }

    /**
     * @notice Send bytes message to Child Tunnel
     * @param message bytes message that will be sent to Child Tunnel
     * some message examples -
     *   abi.encode(tokenId);
     *   abi.encode(tokenId, tokenMetadata);
     *   abi.encode(messageType, messageData);
     */
    function _sendMessageToChild(bytes memory message) internal {
        fxRoot.sendMessageToChild(fxChildTunnel, message);
    }

    function _validateAndExtractMessage(bytes memory inputData)
        internal
        returns (bytes memory)
    {
        ExitPayloadReader.ExitPayload memory payload = inputData
            .toExitPayload();

        bytes memory branchMaskBytes = payload.getBranchMaskAsBytes();
        uint256 blockNumber = payload.getBlockNumber();
        // checking if exit has already been processed
        // unique exit is identified using hash of (blockNumber, branchMask, receiptLogIndex)
        bytes32 exitHash = keccak256(
            abi.encodePacked(
                blockNumber,
                // first 2 nibbles are dropped while generating nibble array
                // this allows branch masks that are valid but bypass exitHash check (changing first 2 nibbles only)
                // so converting to nibble array and then hashing it
                MerklePatriciaProof._getNibbleArray(branchMaskBytes),
                payload.getReceiptLogIndex()
            )
        );
        require(
            processedExits[exitHash] == false,
            "FxRootTunnel: EXIT_ALREADY_PROCESSED"
        );
        processedExits[exitHash] = true;

        ExitPayloadReader.Receipt memory receipt = payload.getReceipt();
        ExitPayloadReader.Log memory log = receipt.getLog();

        // check child tunnel
        require(
            fxChildTunnel == log.getEmitter(),
            "FxRootTunnel: INVALID_FX_CHILD_TUNNEL"
        );

        bytes32 receiptRoot = payload.getReceiptRoot();
        // verify receipt inclusion
        require(
            MerklePatriciaProof.verify(
                receipt.toBytes(),
                branchMaskBytes,
                payload.getReceiptProof(),
                receiptRoot
            ),
            "FxRootTunnel: INVALID_RECEIPT_PROOF"
        );

        // verify checkpoint inclusion
        _checkBlockMembershipInCheckpoint(
            blockNumber,
            payload.getBlockTime(),
            payload.getTxRoot(),
            receiptRoot,
            payload.getHeaderNumber(),
            payload.getBlockProof()
        );

        ExitPayloadReader.LogTopics memory topics = log.getTopics();

        require(
            bytes32(topics.getField(0).toUint()) == SEND_MESSAGE_EVENT_SIG, // topic0 is event sig
            "FxRootTunnel: INVALID_SIGNATURE"
        );

        // received message data
        bytes memory message = abi.decode(log.getData(), (bytes)); // event decodes params again, so decoding bytes to get message
        return message;
    }

    function _checkBlockMembershipInCheckpoint(
        uint256 blockNumber,
        uint256 blockTime,
        bytes32 txRoot,
        bytes32 receiptRoot,
        uint256 headerNumber,
        bytes memory blockProof
    ) private view returns (uint256) {
        (
            bytes32 headerRoot,
            uint256 startBlock,
            ,
            uint256 createdAt,

        ) = checkpointManager.headerBlocks(headerNumber);

        require(
            keccak256(
                abi.encodePacked(blockNumber, blockTime, txRoot, receiptRoot)
            ).checkMembership(blockNumber - startBlock, headerRoot, blockProof),
            "FxRootTunnel: INVALID_HEADER"
        );
        return createdAt;
    }

    /**
     * @notice receive message from  L2 to L1, validated by proof
     * @dev This function verifies if the transaction actually happened on child chain
     *
     * @param inputData RLP encoded data of the reference tx containing following list of fields
     *  0 - headerNumber - Checkpoint header block number containing the reference tx
     *  1 - blockProof - Proof that the block header (in the child chain) is a leaf in the submitted merkle root
     *  2 - blockNumber - Block number containing the reference tx on child chain
     *  3 - blockTime - Reference tx block time
     *  4 - txRoot - Transactions root of block
     *  5 - receiptRoot - Receipts root of block
     *  6 - receipt - Receipt of the reference transaction
     *  7 - receiptProof - Merkle proof of the reference receipt
     *  8 - branchMask - 32 bits denoting the path of receipt in merkle tree
     *  9 - receiptLogIndex - Log Index to read from the receipt
     */
    function receiveMessage(bytes memory inputData) public virtual {
        bytes memory message = _validateAndExtractMessage(inputData);
        _processMessageFromChild(message);
    }

    /**
     * @notice Process message received from Child Tunnel
     * @dev function needs to be implemented to handle message as per requirement
     * This is called by onStateReceive function.
     * Since it is called via a system call, any event will not be emitted during its execution.
     * @param message bytes message that was sent from Child Tunnel
     */
    function _processMessageFromChild(bytes memory message) internal virtual;
}

// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

import './IERC721A.sol';

/**
 * @dev Interface of ERC721 token receiver.
 */
interface ERC721A__IERC721Receiver {
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

/**
 * @title ERC721A
 *
 * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
 * Non-Fungible Token Standard, including the Metadata extension.
 * Optimized for lower gas during batch mints.
 *
 * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
 * starting from `_startTokenId()`.
 *
 * Assumptions:
 *
 * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
 * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
 */
contract ERC721A is IERC721A {
    // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
    struct TokenApprovalRef {
        address value;
    }

    // =============================================================
    //                           CONSTANTS
    // =============================================================

    // Mask of an entry in packed address data.
    uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;

    // The bit position of `numberMinted` in packed address data.
    uint256 private constant _BITPOS_NUMBER_MINTED = 64;

    // The bit position of `numberBurned` in packed address data.
    uint256 private constant _BITPOS_NUMBER_BURNED = 128;

    // The bit position of `aux` in packed address data.
    uint256 private constant _BITPOS_AUX = 192;

    // Mask of all 256 bits in packed address data except the 64 bits for `aux`.
    uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;

    // The bit position of `startTimestamp` in packed ownership.
    uint256 private constant _BITPOS_START_TIMESTAMP = 160;

    // The bit mask of the `burned` bit in packed ownership.
    uint256 private constant _BITMASK_BURNED = 1 << 224;

    // The bit position of the `nextInitialized` bit in packed ownership.
    uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;

    // The bit mask of the `nextInitialized` bit in packed ownership.
    uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;

    // The bit position of `extraData` in packed ownership.
    uint256 private constant _BITPOS_EXTRA_DATA = 232;

    // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
    uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;

    // The mask of the lower 160 bits for addresses.
    uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

    // The maximum `quantity` that can be minted with {_mintERC2309}.
    // This limit is to prevent overflows on the address data entries.
    // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
    // is required to cause an overflow, which is unrealistic.
    uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;

    // The `Transfer` event signature is given by:
    // `keccak256(bytes("Transfer(address,address,uint256)"))`.
    bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
        0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;

    // =============================================================
    //                            STORAGE
    // =============================================================

    // The next token ID to be minted.
    uint256 private _currentIndex;

    // The number of tokens burned.
    uint256 private _burnCounter;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    // Mapping from token ID to ownership details
    // An empty struct value does not necessarily mean the token is unowned.
    // See {_packedOwnershipOf} implementation for details.
    //
    // Bits Layout:
    // - [0..159]   `addr`
    // - [160..223] `startTimestamp`
    // - [224]      `burned`
    // - [225]      `nextInitialized`
    // - [232..255] `extraData`
    mapping(uint256 => uint256) private _packedOwnerships;

    // Mapping owner address to address data.
    //
    // Bits Layout:
    // - [0..63]    `balance`
    // - [64..127]  `numberMinted`
    // - [128..191] `numberBurned`
    // - [192..255] `aux`
    mapping(address => uint256) private _packedAddressData;

    // Mapping from token ID to approved address.
    mapping(uint256 => TokenApprovalRef) private _tokenApprovals;

    // Mapping from owner to operator approvals
    mapping(address => mapping(address => bool)) private _operatorApprovals;

    // =============================================================
    //                          CONSTRUCTOR
    // =============================================================

    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        _currentIndex = _startTokenId();
    }

    // =============================================================
    //                   TOKEN COUNTING OPERATIONS
    // =============================================================

    /**
     * @dev Returns the starting token ID.
     * To change the starting token ID, please override this function.
     */
    function _startTokenId() internal view virtual returns (uint256) {
        return 0;
    }

    /**
     * @dev Returns the next token ID to be minted.
     */
    function _nextTokenId() internal view virtual returns (uint256) {
        return _currentIndex;
    }

    /**
     * @dev Returns the total number of tokens in existence.
     * Burned tokens will reduce the count.
     * To get the total number of tokens minted, please see {_totalMinted}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        // Counter underflow is impossible as _burnCounter cannot be incremented
        // more than `_currentIndex - _startTokenId()` times.
        unchecked {
            return _currentIndex - _burnCounter - _startTokenId();
        }
    }

    /**
     * @dev Returns the total amount of tokens minted in the contract.
     */
    function _totalMinted() internal view virtual returns (uint256) {
        // Counter underflow is impossible as `_currentIndex` does not decrement,
        // and it is initialized to `_startTokenId()`.
        unchecked {
            return _currentIndex - _startTokenId();
        }
    }

    /**
     * @dev Returns the total number of tokens burned.
     */
    function _totalBurned() internal view virtual returns (uint256) {
        return _burnCounter;
    }

    // =============================================================
    //                    ADDRESS DATA OPERATIONS
    // =============================================================

    /**
     * @dev Returns the number of tokens in `owner`'s account.
     */
    function balanceOf(address owner) public view virtual override returns (uint256) {
        if (owner == address(0)) revert BalanceQueryForZeroAddress();
        return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the number of tokens minted by `owner`.
     */
    function _numberMinted(address owner) internal view returns (uint256) {
        return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the number of tokens burned by or on behalf of `owner`.
     */
    function _numberBurned(address owner) internal view returns (uint256) {
        return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
     */
    function _getAux(address owner) internal view returns (uint64) {
        return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
    }

    /**
     * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
     * If there are multiple variables, please pack them into a uint64.
     */
    function _setAux(address owner, uint64 aux) internal virtual {
        uint256 packed = _packedAddressData[owner];
        uint256 auxCasted;
        // Cast `aux` with assembly to avoid redundant masking.
        assembly {
            auxCasted := aux
        }
        packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
        _packedAddressData[owner] = packed;
    }

    // =============================================================
    //                            IERC165
    // =============================================================

    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30000 gas.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        // The interface IDs are constants representing the first 4 bytes
        // of the XOR of all function selectors in the interface.
        // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
        // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
        return
            interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
            interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
            interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
    }

    // =============================================================
    //                        IERC721Metadata
    // =============================================================

    /**
     * @dev Returns the token collection name.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        if (!_exists(tokenId)) revert URIQueryForNonexistentToken();

        string memory baseURI = _baseURI();
        return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, it can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return '';
    }

    // =============================================================
    //                     OWNERSHIPS OPERATIONS
    // =============================================================

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) public view virtual override returns (address) {
        return address(uint160(_packedOwnershipOf(tokenId)));
    }

    /**
     * @dev Gas spent here starts off proportional to the maximum mint batch size.
     * It gradually moves to O(1) as tokens get transferred around over time.
     */
    function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
        return _unpackedOwnership(_packedOwnershipOf(tokenId));
    }

    /**
     * @dev Returns the unpacked `TokenOwnership` struct at `index`.
     */
    function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
        return _unpackedOwnership(_packedOwnerships[index]);
    }

    /**
     * @dev Initializes the ownership slot minted at `index` for efficiency purposes.
     */
    function _initializeOwnershipAt(uint256 index) internal virtual {
        if (_packedOwnerships[index] == 0) {
            _packedOwnerships[index] = _packedOwnershipOf(index);
        }
    }

    /**
     * Returns the packed ownership data of `tokenId`.
     */
    function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) {
        uint256 curr = tokenId;

        unchecked {
            if (_startTokenId() <= curr)
                if (curr < _currentIndex) {
                    uint256 packed = _packedOwnerships[curr];
                    // If not burned.
                    if (packed & _BITMASK_BURNED == 0) {
                        // Invariant:
                        // There will always be an initialized ownership slot
                        // (i.e. `ownership.addr != address(0) && ownership.burned == false`)
                        // before an unintialized ownership slot
                        // (i.e. `ownership.addr == address(0) && ownership.burned == false`)
                        // Hence, `curr` will not underflow.
                        //
                        // We can directly compare the packed value.
                        // If the address is zero, packed will be zero.
                        while (packed == 0) {
                            packed = _packedOwnerships[--curr];
                        }
                        return packed;
                    }
                }
        }
        revert OwnerQueryForNonexistentToken();
    }

    /**
     * @dev Returns the unpacked `TokenOwnership` struct from `packed`.
     */
    function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
        ownership.addr = address(uint160(packed));
        ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
        ownership.burned = packed & _BITMASK_BURNED != 0;
        ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
    }

    /**
     * @dev Packs ownership data into a single uint256.
     */
    function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
        assembly {
            // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
            owner := and(owner, _BITMASK_ADDRESS)
            // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
            result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
        }
    }

    /**
     * @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
     */
    function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
        // For branchless setting of the `nextInitialized` flag.
        assembly {
            // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
            result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
        }
    }

    // =============================================================
    //                      APPROVAL OPERATIONS
    // =============================================================

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the
     * zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) public payable virtual override {
        address owner = ownerOf(tokenId);

        if (_msgSenderERC721A() != owner)
            if (!isApprovedForAll(owner, _msgSenderERC721A())) {
                revert ApprovalCallerNotOwnerNorApproved();
            }

        _tokenApprovals[tokenId].value = to;
        emit Approval(owner, to, tokenId);
    }

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) public view virtual override returns (address) {
        if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();

        return _tokenApprovals[tokenId].value;
    }

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom}
     * for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) public virtual override {
        _operatorApprovals[_msgSenderERC721A()][operator] = approved;
        emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
    }

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev Returns whether `tokenId` exists.
     *
     * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
     *
     * Tokens start existing when they are minted. See {_mint}.
     */
    function _exists(uint256 tokenId) internal view virtual returns (bool) {
        return
            _startTokenId() <= tokenId &&
            tokenId < _currentIndex && // If within bounds,
            _packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
    }

    /**
     * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
     */
    function _isSenderApprovedOrOwner(
        address approvedAddress,
        address owner,
        address msgSender
    ) private pure returns (bool result) {
        assembly {
            // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
            owner := and(owner, _BITMASK_ADDRESS)
            // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
            msgSender := and(msgSender, _BITMASK_ADDRESS)
            // `msgSender == owner || msgSender == approvedAddress`.
            result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
        }
    }

    /**
     * @dev Returns the storage slot and value for the approved address of `tokenId`.
     */
    function _getApprovedSlotAndAddress(uint256 tokenId)
        private
        view
        returns (uint256 approvedAddressSlot, address approvedAddress)
    {
        TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
        // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
        assembly {
            approvedAddressSlot := tokenApproval.slot
            approvedAddress := sload(approvedAddressSlot)
        }
    }

    // =============================================================
    //                      TRANSFER OPERATIONS
    // =============================================================

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable virtual override {
        uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);

        if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();

        (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);

        // The nested ifs save around 20+ gas over a compound boolean condition.
        if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
            if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();

        if (to == address(0)) revert TransferToZeroAddress();

        _beforeTokenTransfers(from, to, tokenId, 1);

        // Clear approvals from the previous owner.
        assembly {
            if approvedAddress {
                // This is equivalent to `delete _tokenApprovals[tokenId]`.
                sstore(approvedAddressSlot, 0)
            }
        }

        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
        unchecked {
            // We can directly increment and decrement the balances.
            --_packedAddressData[from]; // Updates: `balance -= 1`.
            ++_packedAddressData[to]; // Updates: `balance += 1`.

            // Updates:
            // - `address` to the next owner.
            // - `startTimestamp` to the timestamp of transfering.
            // - `burned` to `false`.
            // - `nextInitialized` to `true`.
            _packedOwnerships[tokenId] = _packOwnershipData(
                to,
                _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
            );

            // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
            if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                uint256 nextTokenId = tokenId + 1;
                // If the next slot's address is zero and not burned (i.e. packed value is zero).
                if (_packedOwnerships[nextTokenId] == 0) {
                    // If the next slot is within bounds.
                    if (nextTokenId != _currentIndex) {
                        // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                        _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                    }
                }
            }
        }

        emit Transfer(from, to, tokenId);
        _afterTokenTransfers(from, to, tokenId, 1);
    }

    /**
     * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable virtual override {
        safeTransferFrom(from, to, tokenId, '');
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) public payable virtual override {
        transferFrom(from, to, tokenId);
        if (to.code.length != 0)
            if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
                revert TransferToNonERC721ReceiverImplementer();
            }
    }

    /**
     * @dev Hook that is called before a set of serially-ordered token IDs
     * are about to be transferred. This includes minting.
     * And also called before burning one token.
     *
     * `startTokenId` - the first token ID to be transferred.
     * `quantity` - the amount to be transferred.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
     * transferred to `to`.
     * - When `from` is zero, `tokenId` will be minted for `to`.
     * - When `to` is zero, `tokenId` will be burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _beforeTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal virtual {}

    /**
     * @dev Hook that is called after a set of serially-ordered token IDs
     * have been transferred. This includes minting.
     * And also called after one token has been burned.
     *
     * `startTokenId` - the first token ID to be transferred.
     * `quantity` - the amount to be transferred.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
     * transferred to `to`.
     * - When `from` is zero, `tokenId` has been minted for `to`.
     * - When `to` is zero, `tokenId` has been burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _afterTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal virtual {}

    /**
     * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
     *
     * `from` - Previous owner of the given token ID.
     * `to` - Target address that will receive the token.
     * `tokenId` - Token ID to be transferred.
     * `_data` - Optional data to send along with the call.
     *
     * Returns whether the call correctly returned the expected magic value.
     */
    function _checkContractOnERC721Received(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) private returns (bool) {
        try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
            bytes4 retval
        ) {
            return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
        } catch (bytes memory reason) {
            if (reason.length == 0) {
                revert TransferToNonERC721ReceiverImplementer();
            } else {
                assembly {
                    revert(add(32, reason), mload(reason))
                }
            }
        }
    }

    // =============================================================
    //                        MINT OPERATIONS
    // =============================================================

    /**
     * @dev Mints `quantity` tokens and transfers them to `to`.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `quantity` must be greater than 0.
     *
     * Emits a {Transfer} event for each mint.
     */
    function _mint(address to, uint256 quantity) internal virtual {
        uint256 startTokenId = _currentIndex;
        if (quantity == 0) revert MintZeroQuantity();

        _beforeTokenTransfers(address(0), to, startTokenId, quantity);

        // Overflows are incredibly unrealistic.
        // `balance` and `numberMinted` have a maximum limit of 2**64.
        // `tokenId` has a maximum limit of 2**256.
        unchecked {
            // Updates:
            // - `balance += quantity`.
            // - `numberMinted += quantity`.
            //
            // We can directly add to the `balance` and `numberMinted`.
            _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);

            // Updates:
            // - `address` to the owner.
            // - `startTimestamp` to the timestamp of minting.
            // - `burned` to `false`.
            // - `nextInitialized` to `quantity == 1`.
            _packedOwnerships[startTokenId] = _packOwnershipData(
                to,
                _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
            );

            uint256 toMasked;
            uint256 end = startTokenId + quantity;

            // Use assembly to loop and emit the `Transfer` event for gas savings.
            // The duplicated `log4` removes an extra check and reduces stack juggling.
            // The assembly, together with the surrounding Solidity code, have been
            // delicately arranged to nudge the compiler into producing optimized opcodes.
            assembly {
                // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
                toMasked := and(to, _BITMASK_ADDRESS)
                // Emit the `Transfer` event.
                log4(
                    0, // Start of data (0, since no data).
                    0, // End of data (0, since no data).
                    _TRANSFER_EVENT_SIGNATURE, // Signature.
                    0, // `address(0)`.
                    toMasked, // `to`.
                    startTokenId // `tokenId`.
                )

                // The `iszero(eq(,))` check ensures that large values of `quantity`
                // that overflows uint256 will make the loop run out of gas.
                // The compiler will optimize the `iszero` away for performance.
                for {
                    let tokenId := add(startTokenId, 1)
                } iszero(eq(tokenId, end)) {
                    tokenId := add(tokenId, 1)
                } {
                    // Emit the `Transfer` event. Similar to above.
                    log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
                }
            }
            if (toMasked == 0) revert MintToZeroAddress();

            _currentIndex = end;
        }
        _afterTokenTransfers(address(0), to, startTokenId, quantity);
    }

    /**
     * @dev Mints `quantity` tokens and transfers them to `to`.
     *
     * This function is intended for efficient minting only during contract creation.
     *
     * It emits only one {ConsecutiveTransfer} as defined in
     * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
     * instead of a sequence of {Transfer} event(s).
     *
     * Calling this function outside of contract creation WILL make your contract
     * non-compliant with the ERC721 standard.
     * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
     * {ConsecutiveTransfer} event is only permissible during contract creation.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `quantity` must be greater than 0.
     *
     * Emits a {ConsecutiveTransfer} event.
     */
    function _mintERC2309(address to, uint256 quantity) internal virtual {
        uint256 startTokenId = _currentIndex;
        if (to == address(0)) revert MintToZeroAddress();
        if (quantity == 0) revert MintZeroQuantity();
        if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();

        _beforeTokenTransfers(address(0), to, startTokenId, quantity);

        // Overflows are unrealistic due to the above check for `quantity` to be below the limit.
        unchecked {
            // Updates:
            // - `balance += quantity`.
            // - `numberMinted += quantity`.
            //
            // We can directly add to the `balance` and `numberMinted`.
            _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);

            // Updates:
            // - `address` to the owner.
            // - `startTimestamp` to the timestamp of minting.
            // - `burned` to `false`.
            // - `nextInitialized` to `quantity == 1`.
            _packedOwnerships[startTokenId] = _packOwnershipData(
                to,
                _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
            );

            emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);

            _currentIndex = startTokenId + quantity;
        }
        _afterTokenTransfers(address(0), to, startTokenId, quantity);
    }

    /**
     * @dev Safely mints `quantity` tokens and transfers them to `to`.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
     * - `quantity` must be greater than 0.
     *
     * See {_mint}.
     *
     * Emits a {Transfer} event for each mint.
     */
    function _safeMint(
        address to,
        uint256 quantity,
        bytes memory _data
    ) internal virtual {
        _mint(to, quantity);

        unchecked {
            if (to.code.length != 0) {
                uint256 end = _currentIndex;
                uint256 index = end - quantity;
                do {
                    if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
                        revert TransferToNonERC721ReceiverImplementer();
                    }
                } while (index < end);
                // Reentrancy protection.
                if (_currentIndex != end) revert();
            }
        }
    }

    /**
     * @dev Equivalent to `_safeMint(to, quantity, '')`.
     */
    function _safeMint(address to, uint256 quantity) internal virtual {
        _safeMint(to, quantity, '');
    }

    // =============================================================
    //                        BURN OPERATIONS
    // =============================================================

    /**
     * @dev Equivalent to `_burn(tokenId, false)`.
     */
    function _burn(uint256 tokenId) internal virtual {
        _burn(tokenId, false);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
        uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);

        address from = address(uint160(prevOwnershipPacked));

        (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);

        if (approvalCheck) {
            // The nested ifs save around 20+ gas over a compound boolean condition.
            if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
        }

        _beforeTokenTransfers(from, address(0), tokenId, 1);

        // Clear approvals from the previous owner.
        assembly {
            if approvedAddress {
                // This is equivalent to `delete _tokenApprovals[tokenId]`.
                sstore(approvedAddressSlot, 0)
            }
        }

        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
        unchecked {
            // Updates:
            // - `balance -= 1`.
            // - `numberBurned += 1`.
            //
            // We can directly decrement the balance, and increment the number burned.
            // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
            _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;

            // Updates:
            // - `address` to the last owner.
            // - `startTimestamp` to the timestamp of burning.
            // - `burned` to `true`.
            // - `nextInitialized` to `true`.
            _packedOwnerships[tokenId] = _packOwnershipData(
                from,
                (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
            );

            // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
            if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                uint256 nextTokenId = tokenId + 1;
                // If the next slot's address is zero and not burned (i.e. packed value is zero).
                if (_packedOwnerships[nextTokenId] == 0) {
                    // If the next slot is within bounds.
                    if (nextTokenId != _currentIndex) {
                        // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                        _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                    }
                }
            }
        }

        emit Transfer(from, address(0), tokenId);
        _afterTokenTransfers(from, address(0), tokenId, 1);

        // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
        unchecked {
            _burnCounter++;
        }
    }

    // =============================================================
    //                     EXTRA DATA OPERATIONS
    // =============================================================

    /**
     * @dev Directly sets the extra data for the ownership data `index`.
     */
    function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
        uint256 packed = _packedOwnerships[index];
        if (packed == 0) revert OwnershipNotInitializedForExtraData();
        uint256 extraDataCasted;
        // Cast `extraData` with assembly to avoid redundant masking.
        assembly {
            extraDataCasted := extraData
        }
        packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
        _packedOwnerships[index] = packed;
    }

    /**
     * @dev Called during each token transfer to set the 24bit `extraData` field.
     * Intended to be overridden by the cosumer contract.
     *
     * `previousExtraData` - the value of `extraData` before transfer.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
     * transferred to `to`.
     * - When `from` is zero, `tokenId` will be minted for `to`.
     * - When `to` is zero, `tokenId` will be burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _extraData(
        address from,
        address to,
        uint24 previousExtraData
    ) internal view virtual returns (uint24) {}

    /**
     * @dev Returns the next extra data for the packed ownership data.
     * The returned result is shifted into position.
     */
    function _nextExtraData(
        address from,
        address to,
        uint256 prevOwnershipPacked
    ) private view returns (uint256) {
        uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
        return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
    }

    // =============================================================
    //                       OTHER OPERATIONS
    // =============================================================

    /**
     * @dev Returns the message sender (defaults to `msg.sender`).
     *
     * If you are writing GSN compatible contracts, you need to override this function.
     */
    function _msgSenderERC721A() internal view virtual returns (address) {
        return msg.sender;
    }

    /**
     * @dev Converts a uint256 to its ASCII string decimal representation.
     */
    function _toString(uint256 value) internal pure virtual returns (string memory str) {
        assembly {
            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
            // We will need 1 word for the trailing zeros padding, 1 word for the length,
            // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
            let m := add(mload(0x40), 0xa0)
            // Update the free memory pointer to allocate.
            mstore(0x40, m)
            // Assign the `str` to the end.
            str := sub(m, 0x20)
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end of the memory to calculate the length later.
            let end := str

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            // prettier-ignore
            for { let temp := value } 1 {} {
                str := sub(str, 1)
                // Write the character to the pointer.
                // The ASCII index of the '0' character is 48.
                mstore8(str, add(48, mod(temp, 10)))
                // Keep dividing `temp` until zero.
                temp := div(temp, 10)
                // prettier-ignore
                if iszero(temp) { break }
            }

            let length := sub(end, str)
            // Move the pointer 32 bytes leftwards to make room for the length.
            str := sub(str, 0x20)
            // Store the length.
            mstore(str, length)
        }
    }
}

// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

import './IERC721ABurnable.sol';
import '../ERC721A.sol';

/**
 * @title ERC721ABurnable.
 *
 * @dev ERC721A token that can be irreversibly burned (destroyed).
 */
abstract contract ERC721ABurnable is ERC721A, IERC721ABurnable {
    /**
     * @dev Burns `tokenId`. See {ERC721A-_burn}.
     *
     * Requirements:
     *
     * - The caller must own `tokenId` or be an approved operator.
     */
    function burn(uint256 tokenId) public virtual override {
        _burn(tokenId, true);
    }
}

// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

import './IERC721AQueryable.sol';
import '../ERC721A.sol';

/**
 * @title ERC721AQueryable.
 *
 * @dev ERC721A subclass with convenience query functions.
 */
abstract contract ERC721AQueryable is ERC721A, IERC721AQueryable {
    /**
     * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
     *
     * If the `tokenId` is out of bounds:
     *
     * - `addr = address(0)`
     * - `startTimestamp = 0`
     * - `burned = false`
     * - `extraData = 0`
     *
     * If the `tokenId` is burned:
     *
     * - `addr = <Address of owner before token was burned>`
     * - `startTimestamp = <Timestamp when token was burned>`
     * - `burned = true`
     * - `extraData = <Extra data when token was burned>`
     *
     * Otherwise:
     *
     * - `addr = <Address of owner>`
     * - `startTimestamp = <Timestamp of start of ownership>`
     * - `burned = false`
     * - `extraData = <Extra data at start of ownership>`
     */
    function explicitOwnershipOf(uint256 tokenId) public view virtual override returns (TokenOwnership memory) {
        TokenOwnership memory ownership;
        if (tokenId < _startTokenId() || tokenId >= _nextTokenId()) {
            return ownership;
        }
        ownership = _ownershipAt(tokenId);
        if (ownership.burned) {
            return ownership;
        }
        return _ownershipOf(tokenId);
    }

    /**
     * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
     * See {ERC721AQueryable-explicitOwnershipOf}
     */
    function explicitOwnershipsOf(uint256[] calldata tokenIds)
        external
        view
        virtual
        override
        returns (TokenOwnership[] memory)
    {
        unchecked {
            uint256 tokenIdsLength = tokenIds.length;
            TokenOwnership[] memory ownerships = new TokenOwnership[](tokenIdsLength);
            for (uint256 i; i != tokenIdsLength; ++i) {
                ownerships[i] = explicitOwnershipOf(tokenIds[i]);
            }
            return ownerships;
        }
    }

    /**
     * @dev Returns an array of token IDs owned by `owner`,
     * in the range [`start`, `stop`)
     * (i.e. `start <= tokenId < stop`).
     *
     * This function allows for tokens to be queried if the collection
     * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
     *
     * Requirements:
     *
     * - `start < stop`
     */
    function tokensOfOwnerIn(
        address owner,
        uint256 start,
        uint256 stop
    ) external view virtual override returns (uint256[] memory) {
        unchecked {
            if (start >= stop) revert InvalidQueryRange();
            uint256 tokenIdsIdx;
            uint256 stopLimit = _nextTokenId();
            // Set `start = max(start, _startTokenId())`.
            if (start < _startTokenId()) {
                start = _startTokenId();
            }
            // Set `stop = min(stop, stopLimit)`.
            if (stop > stopLimit) {
                stop = stopLimit;
            }
            uint256 tokenIdsMaxLength = balanceOf(owner);
            // Set `tokenIdsMaxLength = min(balanceOf(owner), stop - start)`,
            // to cater for cases where `balanceOf(owner)` is too big.
            if (start < stop) {
                uint256 rangeLength = stop - start;
                if (rangeLength < tokenIdsMaxLength) {
                    tokenIdsMaxLength = rangeLength;
                }
            } else {
                tokenIdsMaxLength = 0;
            }
            uint256[] memory tokenIds = new uint256[](tokenIdsMaxLength);
            if (tokenIdsMaxLength == 0) {
                return tokenIds;
            }
            // We need to call `explicitOwnershipOf(start)`,
            // because the slot at `start` may not be initialized.
            TokenOwnership memory ownership = explicitOwnershipOf(start);
            address currOwnershipAddr;
            // If the starting slot exists (i.e. not burned), initialize `currOwnershipAddr`.
            // `ownership.address` will not be zero, as `start` is clamped to the valid token ID range.
            if (!ownership.burned) {
                currOwnershipAddr = ownership.addr;
            }
            for (uint256 i = start; i != stop && tokenIdsIdx != tokenIdsMaxLength; ++i) {
                ownership = _ownershipAt(i);
                if (ownership.burned) {
                    continue;
                }
                if (ownership.addr != address(0)) {
                    currOwnershipAddr = ownership.addr;
                }
                if (currOwnershipAddr == owner) {
                    tokenIds[tokenIdsIdx++] = i;
                }
            }
            // Downsize the array to fit.
            assembly {
                mstore(tokenIds, tokenIdsIdx)
            }
            return tokenIds;
        }
    }

    /**
     * @dev Returns an array of token IDs owned by `owner`.
     *
     * This function scans the ownership mapping and is O(`totalSupply`) in complexity.
     * It is meant to be called off-chain.
     *
     * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
     * multiple smaller scans if the collection is large enough to cause
     * an out-of-gas error (10K collections should be fine).
     */
    function tokensOfOwner(address owner) external view virtual override returns (uint256[] memory) {
        unchecked {
            uint256 tokenIdsIdx;
            address currOwnershipAddr;
            uint256 tokenIdsLength = balanceOf(owner);
            uint256[] memory tokenIds = new uint256[](tokenIdsLength);
            TokenOwnership memory ownership;
            for (uint256 i = _startTokenId(); tokenIdsIdx != tokenIdsLength; ++i) {
                ownership = _ownershipAt(i);
                if (ownership.burned) {
                    continue;
                }
                if (ownership.addr != address(0)) {
                    currOwnershipAddr = ownership.addr;
                }
                if (currOwnershipAddr == owner) {
                    tokenIds[tokenIdsIdx++] = i;
                }
            }
            return tokenIds;
        }
    }
}

// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

import '../IERC721A.sol';

/**
 * @dev Interface of ERC721ABurnable.
 */
interface IERC721ABurnable is IERC721A {
    /**
     * @dev Burns `tokenId`. See {ERC721A-_burn}.
     *
     * Requirements:
     *
     * - The caller must own `tokenId` or be an approved operator.
     */
    function burn(uint256 tokenId) external;
}

// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

import '../IERC721A.sol';

/**
 * @dev Interface of ERC721AQueryable.
 */
interface IERC721AQueryable is IERC721A {
    /**
     * Invalid query range (`start` >= `stop`).
     */
    error InvalidQueryRange();

    /**
     * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
     *
     * If the `tokenId` is out of bounds:
     *
     * - `addr = address(0)`
     * - `startTimestamp = 0`
     * - `burned = false`
     * - `extraData = 0`
     *
     * If the `tokenId` is burned:
     *
     * - `addr = <Address of owner before token was burned>`
     * - `startTimestamp = <Timestamp when token was burned>`
     * - `burned = true`
     * - `extraData = <Extra data when token was burned>`
     *
     * Otherwise:
     *
     * - `addr = <Address of owner>`
     * - `startTimestamp = <Timestamp of start of ownership>`
     * - `burned = false`
     * - `extraData = <Extra data at start of ownership>`
     */
    function explicitOwnershipOf(uint256 tokenId) external view returns (TokenOwnership memory);

    /**
     * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
     * See {ERC721AQueryable-explicitOwnershipOf}
     */
    function explicitOwnershipsOf(uint256[] memory tokenIds) external view returns (TokenOwnership[] memory);

    /**
     * @dev Returns an array of token IDs owned by `owner`,
     * in the range [`start`, `stop`)
     * (i.e. `start <= tokenId < stop`).
     *
     * This function allows for tokens to be queried if the collection
     * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
     *
     * Requirements:
     *
     * - `start < stop`
     */
    function tokensOfOwnerIn(
        address owner,
        uint256 start,
        uint256 stop
    ) external view returns (uint256[] memory);

    /**
     * @dev Returns an array of token IDs owned by `owner`.
     *
     * This function scans the ownership mapping and is O(`totalSupply`) in complexity.
     * It is meant to be called off-chain.
     *
     * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
     * multiple smaller scans if the collection is large enough to cause
     * an out-of-gas error (10K collections should be fine).
     */
    function tokensOfOwner(address owner) external view returns (uint256[] memory);
}

// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

/**
 * @dev Interface of ERC721A.
 */
interface IERC721A {
    /**
     * The caller must own the token or be an approved operator.
     */
    error ApprovalCallerNotOwnerNorApproved();

    /**
     * The token does not exist.
     */
    error ApprovalQueryForNonexistentToken();

    /**
     * Cannot query the balance for the zero address.
     */
    error BalanceQueryForZeroAddress();

    /**
     * Cannot mint to the zero address.
     */
    error MintToZeroAddress();

    /**
     * The quantity of tokens minted must be more than zero.
     */
    error MintZeroQuantity();

    /**
     * The token does not exist.
     */
    error OwnerQueryForNonexistentToken();

    /**
     * The caller must own the token or be an approved operator.
     */
    error TransferCallerNotOwnerNorApproved();

    /**
     * The token must be owned by `from`.
     */
    error TransferFromIncorrectOwner();

    /**
     * Cannot safely transfer to a contract that does not implement the
     * ERC721Receiver interface.
     */
    error TransferToNonERC721ReceiverImplementer();

    /**
     * Cannot transfer to the zero address.
     */
    error TransferToZeroAddress();

    /**
     * The token does not exist.
     */
    error URIQueryForNonexistentToken();

    /**
     * The `quantity` minted with ERC2309 exceeds the safety limit.
     */
    error MintERC2309QuantityExceedsLimit();

    /**
     * The `extraData` cannot be set on an unintialized ownership slot.
     */
    error OwnershipNotInitializedForExtraData();

    // =============================================================
    //                            STRUCTS
    // =============================================================

    struct TokenOwnership {
        // The address of the owner.
        address addr;
        // Stores the start time of ownership with minimal overhead for tokenomics.
        uint64 startTimestamp;
        // Whether the token has been burned.
        bool burned;
        // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
        uint24 extraData;
    }

    // =============================================================
    //                         TOKEN COUNTERS
    // =============================================================

    /**
     * @dev Returns the total number of tokens in existence.
     * Burned tokens will reduce the count.
     * To get the total number of tokens minted, please see {_totalMinted}.
     */
    function totalSupply() external view returns (uint256);

    // =============================================================
    //                            IERC165
    // =============================================================

    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);

    // =============================================================
    //                            IERC721
    // =============================================================

    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables
     * (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in `owner`'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`,
     * checking first that contract recipients are aware of the ERC721 protocol
     * to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be have been allowed to move
     * this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external payable;

    /**
     * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external payable;

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {safeTransferFrom}
     * whenever possible.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external payable;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the
     * zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external payable;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom}
     * for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);

    // =============================================================
    //                        IERC721Metadata
    // =============================================================

    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);

    // =============================================================
    //                           IERC2309
    // =============================================================

    /**
     * @dev Emitted when tokens in `fromTokenId` to `toTokenId`
     * (inclusive) is transferred from `from` to `to`, as defined in the
     * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
     *
     * See {_mintERC2309} for more details.
     */
    event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):