ETH Price: $2,821.32 (+8.72%)

Contract Diff Checker

Contract Name:
Synthetix

Contract Source Code:

File 1 of 1 : Synthetix

/*

⚠⚠⚠ WARNING WARNING WARNING ⚠⚠⚠

This is a TARGET contract - DO NOT CONNECT TO IT DIRECTLY IN YOUR CONTRACTS or DAPPS!

This contract has an associated PROXY that MUST be used for all integrations - this TARGET will be REPLACED in an upcoming Synthetix release!
The proxy for this contract can be found here:

https://contracts.synthetix.io/ProxyERC20

*//*
   ____            __   __        __   _
  / __/__ __ ___  / /_ / /  ___  / /_ (_)__ __
 _\ \ / // // _ \/ __// _ \/ -_)/ __// / \ \ /
/___/ \_, //_//_/\__//_//_/\__/ \__//_/ /_\_\
     /___/

* Synthetix: Synthetix.sol
*
* Latest source (may be newer): https://github.com/Synthetixio/synthetix/blob/master/contracts/Synthetix.sol
* Docs: https://docs.synthetix.io/contracts/Synthetix
*
* Contract Dependencies: 
*	- ExternStateToken
*	- MixinResolver
*	- Owned
*	- Proxyable
*	- SelfDestructible
*	- State
* Libraries: 
*	- Math
*	- SafeDecimalMath
*	- SafeMath
*
* MIT License
* ===========
*
* Copyright (c) 2020 Synthetix
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
*/

/* ===============================================
* Flattened with Solidifier by Coinage
* 
* https://solidifier.coina.ge
* ===============================================
*/


pragma solidity ^0.4.24;

/**
 * @title SafeMath
 * @dev Math operations with safety checks that revert on error
 */
library SafeMath {

  /**
  * @dev Multiplies two numbers, reverts on overflow.
  */
  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
    // benefit is lost if 'b' is also tested.
    // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
    if (a == 0) {
      return 0;
    }

    uint256 c = a * b;
    require(c / a == b);

    return c;
  }

  /**
  * @dev Integer division of two numbers truncating the quotient, reverts on division by zero.
  */
  function div(uint256 a, uint256 b) internal pure returns (uint256) {
    require(b > 0); // Solidity only automatically asserts when dividing by 0
    uint256 c = a / b;
    // assert(a == b * c + a % b); // There is no case in which this doesn't hold

    return c;
  }

  /**
  * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend).
  */
  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
    require(b <= a);
    uint256 c = a - b;

    return c;
  }

  /**
  * @dev Adds two numbers, reverts on overflow.
  */
  function add(uint256 a, uint256 b) internal pure returns (uint256) {
    uint256 c = a + b;
    require(c >= a);

    return c;
  }

  /**
  * @dev Divides two numbers and returns the remainder (unsigned integer modulo),
  * reverts when dividing by zero.
  */
  function mod(uint256 a, uint256 b) internal pure returns (uint256) {
    require(b != 0);
    return a % b;
  }
}


// https://docs.synthetix.io/contracts/SafeDecimalMath
library SafeDecimalMath {
    using SafeMath for uint;

    /* Number of decimal places in the representations. */
    uint8 public constant decimals = 18;
    uint8 public constant highPrecisionDecimals = 27;

    /* The number representing 1.0. */
    uint public constant UNIT = 10**uint(decimals);

    /* The number representing 1.0 for higher fidelity numbers. */
    uint public constant PRECISE_UNIT = 10**uint(highPrecisionDecimals);
    uint private constant UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR = 10**uint(highPrecisionDecimals - decimals);

    /**
     * @return Provides an interface to UNIT.
     */
    function unit() external pure returns (uint) {
        return UNIT;
    }

    /**
     * @return Provides an interface to PRECISE_UNIT.
     */
    function preciseUnit() external pure returns (uint) {
        return PRECISE_UNIT;
    }

    /**
     * @return The result of multiplying x and y, interpreting the operands as fixed-point
     * decimals.
     *
     * @dev A unit factor is divided out after the product of x and y is evaluated,
     * so that product must be less than 2**256. As this is an integer division,
     * the internal division always rounds down. This helps save on gas. Rounding
     * is more expensive on gas.
     */
    function multiplyDecimal(uint x, uint y) internal pure returns (uint) {
        /* Divide by UNIT to remove the extra factor introduced by the product. */
        return x.mul(y) / UNIT;
    }

    /**
     * @return The result of safely multiplying x and y, interpreting the operands
     * as fixed-point decimals of the specified precision unit.
     *
     * @dev The operands should be in the form of a the specified unit factor which will be
     * divided out after the product of x and y is evaluated, so that product must be
     * less than 2**256.
     *
     * Unlike multiplyDecimal, this function rounds the result to the nearest increment.
     * Rounding is useful when you need to retain fidelity for small decimal numbers
     * (eg. small fractions or percentages).
     */
    function _multiplyDecimalRound(uint x, uint y, uint precisionUnit) private pure returns (uint) {
        /* Divide by UNIT to remove the extra factor introduced by the product. */
        uint quotientTimesTen = x.mul(y) / (precisionUnit / 10);

        if (quotientTimesTen % 10 >= 5) {
            quotientTimesTen += 10;
        }

        return quotientTimesTen / 10;
    }

    /**
     * @return The result of safely multiplying x and y, interpreting the operands
     * as fixed-point decimals of a precise unit.
     *
     * @dev The operands should be in the precise unit factor which will be
     * divided out after the product of x and y is evaluated, so that product must be
     * less than 2**256.
     *
     * Unlike multiplyDecimal, this function rounds the result to the nearest increment.
     * Rounding is useful when you need to retain fidelity for small decimal numbers
     * (eg. small fractions or percentages).
     */
    function multiplyDecimalRoundPrecise(uint x, uint y) internal pure returns (uint) {
        return _multiplyDecimalRound(x, y, PRECISE_UNIT);
    }

    /**
     * @return The result of safely multiplying x and y, interpreting the operands
     * as fixed-point decimals of a standard unit.
     *
     * @dev The operands should be in the standard unit factor which will be
     * divided out after the product of x and y is evaluated, so that product must be
     * less than 2**256.
     *
     * Unlike multiplyDecimal, this function rounds the result to the nearest increment.
     * Rounding is useful when you need to retain fidelity for small decimal numbers
     * (eg. small fractions or percentages).
     */
    function multiplyDecimalRound(uint x, uint y) internal pure returns (uint) {
        return _multiplyDecimalRound(x, y, UNIT);
    }

    /**
     * @return The result of safely dividing x and y. The return value is a high
     * precision decimal.
     *
     * @dev y is divided after the product of x and the standard precision unit
     * is evaluated, so the product of x and UNIT must be less than 2**256. As
     * this is an integer division, the result is always rounded down.
     * This helps save on gas. Rounding is more expensive on gas.
     */
    function divideDecimal(uint x, uint y) internal pure returns (uint) {
        /* Reintroduce the UNIT factor that will be divided out by y. */
        return x.mul(UNIT).div(y);
    }

    /**
     * @return The result of safely dividing x and y. The return value is as a rounded
     * decimal in the precision unit specified in the parameter.
     *
     * @dev y is divided after the product of x and the specified precision unit
     * is evaluated, so the product of x and the specified precision unit must
     * be less than 2**256. The result is rounded to the nearest increment.
     */
    function _divideDecimalRound(uint x, uint y, uint precisionUnit) private pure returns (uint) {
        uint resultTimesTen = x.mul(precisionUnit * 10).div(y);

        if (resultTimesTen % 10 >= 5) {
            resultTimesTen += 10;
        }

        return resultTimesTen / 10;
    }

    /**
     * @return The result of safely dividing x and y. The return value is as a rounded
     * standard precision decimal.
     *
     * @dev y is divided after the product of x and the standard precision unit
     * is evaluated, so the product of x and the standard precision unit must
     * be less than 2**256. The result is rounded to the nearest increment.
     */
    function divideDecimalRound(uint x, uint y) internal pure returns (uint) {
        return _divideDecimalRound(x, y, UNIT);
    }

    /**
     * @return The result of safely dividing x and y. The return value is as a rounded
     * high precision decimal.
     *
     * @dev y is divided after the product of x and the high precision unit
     * is evaluated, so the product of x and the high precision unit must
     * be less than 2**256. The result is rounded to the nearest increment.
     */
    function divideDecimalRoundPrecise(uint x, uint y) internal pure returns (uint) {
        return _divideDecimalRound(x, y, PRECISE_UNIT);
    }

    /**
     * @dev Convert a standard decimal representation to a high precision one.
     */
    function decimalToPreciseDecimal(uint i) internal pure returns (uint) {
        return i.mul(UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR);
    }

    /**
     * @dev Convert a high precision decimal to a standard decimal representation.
     */
    function preciseDecimalToDecimal(uint i) internal pure returns (uint) {
        uint quotientTimesTen = i / (UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR / 10);

        if (quotientTimesTen % 10 >= 5) {
            quotientTimesTen += 10;
        }

        return quotientTimesTen / 10;
    }
}


// https://docs.synthetix.io/contracts/Owned
contract Owned {
    address public owner;
    address public nominatedOwner;

    /**
     * @dev Owned Constructor
     */
    constructor(address _owner) public {
        require(_owner != address(0), "Owner address cannot be 0");
        owner = _owner;
        emit OwnerChanged(address(0), _owner);
    }

    /**
     * @notice Nominate a new owner of this contract.
     * @dev Only the current owner may nominate a new owner.
     */
    function nominateNewOwner(address _owner) external onlyOwner {
        nominatedOwner = _owner;
        emit OwnerNominated(_owner);
    }

    /**
     * @notice Accept the nomination to be owner.
     */
    function acceptOwnership() external {
        require(msg.sender == nominatedOwner, "You must be nominated before you can accept ownership");
        emit OwnerChanged(owner, nominatedOwner);
        owner = nominatedOwner;
        nominatedOwner = address(0);
    }

    modifier onlyOwner {
        require(msg.sender == owner, "Only the contract owner may perform this action");
        _;
    }

    event OwnerNominated(address newOwner);
    event OwnerChanged(address oldOwner, address newOwner);
}


// https://docs.synthetix.io/contracts/SelfDestructible
contract SelfDestructible is Owned {
    uint public initiationTime;
    bool public selfDestructInitiated;
    address public selfDestructBeneficiary;
    uint public constant SELFDESTRUCT_DELAY = 4 weeks;

    /**
     * @dev Constructor
     * @param _owner The account which controls this contract.
     */
    constructor(address _owner) public Owned(_owner) {
        require(_owner != address(0), "Owner must not be zero");
        selfDestructBeneficiary = _owner;
        emit SelfDestructBeneficiaryUpdated(_owner);
    }

    /**
     * @notice Set the beneficiary address of this contract.
     * @dev Only the contract owner may call this. The provided beneficiary must be non-null.
     * @param _beneficiary The address to pay any eth contained in this contract to upon self-destruction.
     */
    function setSelfDestructBeneficiary(address _beneficiary) external onlyOwner {
        require(_beneficiary != address(0), "Beneficiary must not be zero");
        selfDestructBeneficiary = _beneficiary;
        emit SelfDestructBeneficiaryUpdated(_beneficiary);
    }

    /**
     * @notice Begin the self-destruction counter of this contract.
     * Once the delay has elapsed, the contract may be self-destructed.
     * @dev Only the contract owner may call this.
     */
    function initiateSelfDestruct() external onlyOwner {
        initiationTime = now;
        selfDestructInitiated = true;
        emit SelfDestructInitiated(SELFDESTRUCT_DELAY);
    }

    /**
     * @notice Terminate and reset the self-destruction timer.
     * @dev Only the contract owner may call this.
     */
    function terminateSelfDestruct() external onlyOwner {
        initiationTime = 0;
        selfDestructInitiated = false;
        emit SelfDestructTerminated();
    }

    /**
     * @notice If the self-destruction delay has elapsed, destroy this contract and
     * remit any ether it owns to the beneficiary address.
     * @dev Only the contract owner may call this.
     */
    function selfDestruct() external onlyOwner {
        require(selfDestructInitiated, "Self Destruct not yet initiated");
        require(initiationTime + SELFDESTRUCT_DELAY < now, "Self destruct delay not met");
        address beneficiary = selfDestructBeneficiary;
        emit SelfDestructed(beneficiary);
        selfdestruct(beneficiary);
    }

    event SelfDestructTerminated();
    event SelfDestructed(address beneficiary);
    event SelfDestructInitiated(uint selfDestructDelay);
    event SelfDestructBeneficiaryUpdated(address newBeneficiary);
}


// https://docs.synthetix.io/contracts/State
contract State is Owned {
    // the address of the contract that can modify variables
    // this can only be changed by the owner of this contract
    address public associatedContract;

    constructor(address _owner, address _associatedContract) public Owned(_owner) {
        associatedContract = _associatedContract;
        emit AssociatedContractUpdated(_associatedContract);
    }

    /* ========== SETTERS ========== */

    // Change the associated contract to a new address
    function setAssociatedContract(address _associatedContract) external onlyOwner {
        associatedContract = _associatedContract;
        emit AssociatedContractUpdated(_associatedContract);
    }

    /* ========== MODIFIERS ========== */

    modifier onlyAssociatedContract {
        require(msg.sender == associatedContract, "Only the associated contract can perform this action");
        _;
    }

    /* ========== EVENTS ========== */

    event AssociatedContractUpdated(address associatedContract);
}


// https://docs.synthetix.io/contracts/TokenState
contract TokenState is State {
    /* ERC20 fields. */
    mapping(address => uint) public balanceOf;
    mapping(address => mapping(address => uint)) public allowance;

    /**
     * @dev Constructor
     * @param _owner The address which controls this contract.
     * @param _associatedContract The ERC20 contract whose state this composes.
     */
    constructor(address _owner, address _associatedContract) public State(_owner, _associatedContract) {}

    /* ========== SETTERS ========== */

    /**
     * @notice Set ERC20 allowance.
     * @dev Only the associated contract may call this.
     * @param tokenOwner The authorising party.
     * @param spender The authorised party.
     * @param value The total value the authorised party may spend on the
     * authorising party's behalf.
     */
    function setAllowance(address tokenOwner, address spender, uint value) external onlyAssociatedContract {
        allowance[tokenOwner][spender] = value;
    }

    /**
     * @notice Set the balance in a given account
     * @dev Only the associated contract may call this.
     * @param account The account whose value to set.
     * @param value The new balance of the given account.
     */
    function setBalanceOf(address account, uint value) external onlyAssociatedContract {
        balanceOf[account] = value;
    }
}


// https://docs.synthetix.io/contracts/Proxy
contract Proxy is Owned {
    Proxyable public target;
    bool public useDELEGATECALL;

    constructor(address _owner) public Owned(_owner) {}

    function setTarget(Proxyable _target) external onlyOwner {
        target = _target;
        emit TargetUpdated(_target);
    }

    function setUseDELEGATECALL(bool value) external onlyOwner {
        useDELEGATECALL = value;
    }

    function _emit(bytes callData, uint numTopics, bytes32 topic1, bytes32 topic2, bytes32 topic3, bytes32 topic4)
        external
        onlyTarget
    {
        uint size = callData.length;
        bytes memory _callData = callData;

        assembly {
            /* The first 32 bytes of callData contain its length (as specified by the abi).
             * Length is assumed to be a uint256 and therefore maximum of 32 bytes
             * in length. It is also leftpadded to be a multiple of 32 bytes.
             * This means moving call_data across 32 bytes guarantees we correctly access
             * the data itself. */
            switch numTopics
                case 0 {
                    log0(add(_callData, 32), size)
                }
                case 1 {
                    log1(add(_callData, 32), size, topic1)
                }
                case 2 {
                    log2(add(_callData, 32), size, topic1, topic2)
                }
                case 3 {
                    log3(add(_callData, 32), size, topic1, topic2, topic3)
                }
                case 4 {
                    log4(add(_callData, 32), size, topic1, topic2, topic3, topic4)
                }
        }
    }

    function() external payable {
        if (useDELEGATECALL) {
            assembly {
                /* Copy call data into free memory region. */
                let free_ptr := mload(0x40)
                calldatacopy(free_ptr, 0, calldatasize)

                /* Forward all gas and call data to the target contract. */
                let result := delegatecall(gas, sload(target_slot), free_ptr, calldatasize, 0, 0)
                returndatacopy(free_ptr, 0, returndatasize)

                /* Revert if the call failed, otherwise return the result. */
                if iszero(result) {
                    revert(free_ptr, returndatasize)
                }
                return(free_ptr, returndatasize)
            }
        } else {
            /* Here we are as above, but must send the messageSender explicitly
             * since we are using CALL rather than DELEGATECALL. */
            target.setMessageSender(msg.sender);
            assembly {
                let free_ptr := mload(0x40)
                calldatacopy(free_ptr, 0, calldatasize)

                /* We must explicitly forward ether to the underlying contract as well. */
                let result := call(gas, sload(target_slot), callvalue, free_ptr, calldatasize, 0, 0)
                returndatacopy(free_ptr, 0, returndatasize)

                if iszero(result) {
                    revert(free_ptr, returndatasize)
                }
                return(free_ptr, returndatasize)
            }
        }
    }

    modifier onlyTarget {
        require(Proxyable(msg.sender) == target, "Must be proxy target");
        _;
    }

    event TargetUpdated(Proxyable newTarget);
}


// https://docs.synthetix.io/contracts/Proxyable
contract Proxyable is Owned {
    // This contract should be treated like an abstract contract

    /* The proxy this contract exists behind. */
    Proxy public proxy;
    Proxy public integrationProxy;

    /* The caller of the proxy, passed through to this contract.
     * Note that every function using this member must apply the onlyProxy or
     * optionalProxy modifiers, otherwise their invocations can use stale values. */
    address public messageSender;

    constructor(address _proxy, address _owner) public Owned(_owner) {
        proxy = Proxy(_proxy);
        emit ProxyUpdated(_proxy);
    }

    function setProxy(address _proxy) external onlyOwner {
        proxy = Proxy(_proxy);
        emit ProxyUpdated(_proxy);
    }

    function setIntegrationProxy(address _integrationProxy) external onlyOwner {
        integrationProxy = Proxy(_integrationProxy);
    }

    function setMessageSender(address sender) external onlyProxy {
        messageSender = sender;
    }

    modifier onlyProxy {
        require(Proxy(msg.sender) == proxy || Proxy(msg.sender) == integrationProxy, "Only the proxy can call");
        _;
    }

    modifier optionalProxy {
        if (Proxy(msg.sender) != proxy && Proxy(msg.sender) != integrationProxy && messageSender != msg.sender) {
            messageSender = msg.sender;
        }
        _;
    }

    modifier optionalProxy_onlyOwner {
        if (Proxy(msg.sender) != proxy && Proxy(msg.sender) != integrationProxy && messageSender != msg.sender) {
            messageSender = msg.sender;
        }
        require(messageSender == owner, "Owner only function");
        _;
    }

    event ProxyUpdated(address proxyAddress);
}


// https://docs.synthetix.io/contracts/ExternStateToken
contract ExternStateToken is SelfDestructible, Proxyable {
    using SafeMath for uint;
    using SafeDecimalMath for uint;

    /* ========== STATE VARIABLES ========== */

    /* Stores balances and allowances. */
    TokenState public tokenState;

    /* Other ERC20 fields. */
    string public name;
    string public symbol;
    uint public totalSupply;
    uint8 public decimals;

    /**
     * @dev Constructor.
     * @param _proxy The proxy associated with this contract.
     * @param _name Token's ERC20 name.
     * @param _symbol Token's ERC20 symbol.
     * @param _totalSupply The total supply of the token.
     * @param _tokenState The TokenState contract address.
     * @param _owner The owner of this contract.
     */
    constructor(
        address _proxy,
        TokenState _tokenState,
        string _name,
        string _symbol,
        uint _totalSupply,
        uint8 _decimals,
        address _owner
    ) public SelfDestructible(_owner) Proxyable(_proxy, _owner) {
        tokenState = _tokenState;

        name = _name;
        symbol = _symbol;
        totalSupply = _totalSupply;
        decimals = _decimals;
    }

    /* ========== VIEWS ========== */

    /**
     * @notice Returns the ERC20 allowance of one party to spend on behalf of another.
     * @param owner The party authorising spending of their funds.
     * @param spender The party spending tokenOwner's funds.
     */
    function allowance(address owner, address spender) public view returns (uint) {
        return tokenState.allowance(owner, spender);
    }

    /**
     * @notice Returns the ERC20 token balance of a given account.
     */
    function balanceOf(address account) public view returns (uint) {
        return tokenState.balanceOf(account);
    }

    /* ========== MUTATIVE FUNCTIONS ========== */

    /**
     * @notice Set the address of the TokenState contract.
     * @dev This can be used to "pause" transfer functionality, by pointing the tokenState at 0x000..
     * as balances would be unreachable.
     */
    function setTokenState(TokenState _tokenState) external optionalProxy_onlyOwner {
        tokenState = _tokenState;
        emitTokenStateUpdated(_tokenState);
    }

    function _internalTransfer(address from, address to, uint value) internal returns (bool) {
        /* Disallow transfers to irretrievable-addresses. */
        require(to != address(0) && to != address(this) && to != address(proxy), "Cannot transfer to this address");

        // Insufficient balance will be handled by the safe subtraction.
        tokenState.setBalanceOf(from, tokenState.balanceOf(from).sub(value));
        tokenState.setBalanceOf(to, tokenState.balanceOf(to).add(value));

        // Emit a standard ERC20 transfer event
        emitTransfer(from, to, value);

        return true;
    }

    /**
     * @dev Perform an ERC20 token transfer. Designed to be called by transfer functions possessing
     * the onlyProxy or optionalProxy modifiers.
     */
    function _transfer_byProxy(address from, address to, uint value) internal returns (bool) {
        return _internalTransfer(from, to, value);
    }

    /**
     * @dev Perform an ERC20 token transferFrom. Designed to be called by transferFrom functions
     * possessing the optionalProxy or optionalProxy modifiers.
     */
    function _transferFrom_byProxy(address sender, address from, address to, uint value) internal returns (bool) {
        /* Insufficient allowance will be handled by the safe subtraction. */
        tokenState.setAllowance(from, sender, tokenState.allowance(from, sender).sub(value));
        return _internalTransfer(from, to, value);
    }

    /**
     * @notice Approves spender to transfer on the message sender's behalf.
     */
    function approve(address spender, uint value) public optionalProxy returns (bool) {
        address sender = messageSender;

        tokenState.setAllowance(sender, spender, value);
        emitApproval(sender, spender, value);
        return true;
    }

    /* ========== EVENTS ========== */

    event Transfer(address indexed from, address indexed to, uint value);
    bytes32 constant TRANSFER_SIG = keccak256("Transfer(address,address,uint256)");

    function emitTransfer(address from, address to, uint value) internal {
        proxy._emit(abi.encode(value), 3, TRANSFER_SIG, bytes32(from), bytes32(to), 0);
    }

    event Approval(address indexed owner, address indexed spender, uint value);
    bytes32 constant APPROVAL_SIG = keccak256("Approval(address,address,uint256)");

    function emitApproval(address owner, address spender, uint value) internal {
        proxy._emit(abi.encode(value), 3, APPROVAL_SIG, bytes32(owner), bytes32(spender), 0);
    }

    event TokenStateUpdated(address newTokenState);
    bytes32 constant TOKENSTATEUPDATED_SIG = keccak256("TokenStateUpdated(address)");

    function emitTokenStateUpdated(address newTokenState) internal {
        proxy._emit(abi.encode(newTokenState), 1, TOKENSTATEUPDATED_SIG, 0, 0, 0);
    }
}


// https://docs.synthetix.io/contracts/AddressResolver
contract AddressResolver is Owned {
    mapping(bytes32 => address) public repository;

    constructor(address _owner) public Owned(_owner) {}

    /* ========== MUTATIVE FUNCTIONS ========== */

    function importAddresses(bytes32[] names, address[] destinations) public onlyOwner {
        require(names.length == destinations.length, "Input lengths must match");

        for (uint i = 0; i < names.length; i++) {
            repository[names[i]] = destinations[i];
        }
    }

    /* ========== VIEWS ========== */

    function getAddress(bytes32 name) public view returns (address) {
        return repository[name];
    }

    function requireAndGetAddress(bytes32 name, string reason) public view returns (address) {
        address _foundAddress = repository[name];
        require(_foundAddress != address(0), reason);
        return _foundAddress;
    }
}


// https://docs.synthetix.io/contracts/MixinResolver
contract MixinResolver is Owned {
    AddressResolver public resolver;

    mapping(bytes32 => address) private addressCache;

    bytes32[] public resolverAddressesRequired;

    uint public constant MAX_ADDRESSES_FROM_RESOLVER = 24;

    constructor(address _owner, address _resolver, bytes32[MAX_ADDRESSES_FROM_RESOLVER] _addressesToCache)
        public
        Owned(_owner)
    {
        for (uint i = 0; i < _addressesToCache.length; i++) {
            if (_addressesToCache[i] != bytes32(0)) {
                resolverAddressesRequired.push(_addressesToCache[i]);
            } else {
                // End early once an empty item is found - assumes there are no empty slots in
                // _addressesToCache
                break;
            }
        }
        resolver = AddressResolver(_resolver);
        // Do not sync the cache as addresses may not be in the resolver yet
    }

    /* ========== SETTERS ========== */
    function setResolverAndSyncCache(AddressResolver _resolver) external onlyOwner {
        resolver = _resolver;

        for (uint i = 0; i < resolverAddressesRequired.length; i++) {
            bytes32 name = resolverAddressesRequired[i];
            // Note: can only be invoked once the resolver has all the targets needed added
            addressCache[name] = resolver.requireAndGetAddress(name, "Resolver missing target");
        }
    }

    /* ========== VIEWS ========== */

    function requireAndGetAddress(bytes32 name, string reason) internal view returns (address) {
        address _foundAddress = addressCache[name];
        require(_foundAddress != address(0), reason);
        return _foundAddress;
    }

    // Note: this could be made external in a utility contract if addressCache was made public
    // (used for deployment)
    function isResolverCached(AddressResolver _resolver) external view returns (bool) {
        if (resolver != _resolver) {
            return false;
        }

        // otherwise, check everything
        for (uint i = 0; i < resolverAddressesRequired.length; i++) {
            bytes32 name = resolverAddressesRequired[i];
            // false if our cache is invalid or if the resolver doesn't have the required address
            if (resolver.getAddress(name) != addressCache[name] || addressCache[name] == address(0)) {
                return false;
            }
        }

        return true;
    }

    // Note: can be made external into a utility contract (used for deployment)
    function getResolverAddressesRequired() external view returns (bytes32[MAX_ADDRESSES_FROM_RESOLVER] addressesRequired) {
        for (uint i = 0; i < resolverAddressesRequired.length; i++) {
            addressesRequired[i] = resolverAddressesRequired[i];
        }
    }

    /* ========== INTERNAL FUNCTIONS ========== */
    function appendToAddressCache(bytes32 name) internal {
        resolverAddressesRequired.push(name);
        require(resolverAddressesRequired.length < MAX_ADDRESSES_FROM_RESOLVER, "Max resolver cache size met");
        // Because this is designed to be called internally in constructors, we don't
        // check the address exists already in the resolver
        addressCache[name] = resolver.getAddress(name);
    }
}


// https://docs.synthetix.io/contracts/Math
library Math {
    using SafeMath for uint;
    using SafeDecimalMath for uint;

    /**
     * @dev Uses "exponentiation by squaring" algorithm where cost is 0(logN)
     * vs 0(N) for naive repeated multiplication.
     * Calculates x^n with x as fixed-point and n as regular unsigned int.
     * Calculates to 18 digits of precision with SafeDecimalMath.unit()
     */
    function powDecimal(uint x, uint n) internal pure returns (uint) {
        // https://mpark.github.io/programming/2014/08/18/exponentiation-by-squaring/

        uint result = SafeDecimalMath.unit();
        while (n > 0) {
            if (n % 2 != 0) {
                result = result.multiplyDecimal(x);
            }
            x = x.multiplyDecimal(x);
            n /= 2;
        }
        return result;
    }
}


/**
 * @title SynthetixState interface contract
 * @notice Abstract contract to hold public getters
 */
contract ISynthetixState {
    // A struct for handing values associated with an individual user's debt position
    struct IssuanceData {
        // Percentage of the total debt owned at the time
        // of issuance. This number is modified by the global debt
        // delta array. You can figure out a user's exit price and
        // collateralisation ratio using a combination of their initial
        // debt and the slice of global debt delta which applies to them.
        uint initialDebtOwnership;
        // This lets us know when (in relative terms) the user entered
        // the debt pool so we can calculate their exit price and
        // collateralistion ratio
        uint debtEntryIndex;
    }

    uint[] public debtLedger;
    uint public issuanceRatio;
    mapping(address => IssuanceData) public issuanceData;

    function debtLedgerLength() external view returns (uint);

    function hasIssued(address account) external view returns (bool);

    function incrementTotalIssuerCount() external;

    function decrementTotalIssuerCount() external;

    function setCurrentIssuanceData(address account, uint initialDebtOwnership) external;

    function lastDebtLedgerEntry() external view returns (uint);

    function appendDebtLedgerValue(uint value) external;

    function clearIssuanceData(address account) external;
}


interface ISynth {
    function burn(address account, uint amount) external;

    function issue(address account, uint amount) external;

    function transfer(address to, uint value) external returns (bool);

    function transferFrom(address from, address to, uint value) external returns (bool);

    function transferFromAndSettle(address from, address to, uint value) external returns (bool);

    function balanceOf(address owner) external view returns (uint);
}


/**
 * @title SynthetixEscrow interface
 */
interface ISynthetixEscrow {
    function balanceOf(address account) public view returns (uint);

    function appendVestingEntry(address account, uint quantity) public;
}


/**
 * @title FeePool Interface
 * @notice Abstract contract to hold public getters
 */
contract IFeePool {
    address public FEE_ADDRESS;
    uint public exchangeFeeRate;

    function amountReceivedFromExchange(uint value) external view returns (uint);

    function amountReceivedFromTransfer(uint value) external view returns (uint);

    function recordFeePaid(uint sUSDAmount) external;

    function appendAccountIssuanceRecord(address account, uint lockedAmount, uint debtEntryIndex) external;

    function setRewardsToDistribute(uint amount) external;
}


/**
 * @title ExchangeRates interface
 */
interface IExchangeRates {
    function effectiveValue(bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey)
        external
        view
        returns (uint);

    function rateForCurrency(bytes32 currencyKey) external view returns (uint);

    function ratesForCurrencies(bytes32[] currencyKeys) external view returns (uint[] memory);

    function rateIsStale(bytes32 currencyKey) external view returns (bool);

    function rateIsFrozen(bytes32 currencyKey) external view returns (bool);

    function anyRateIsStale(bytes32[] currencyKeys) external view returns (bool);

    function getCurrentRoundId(bytes32 currencyKey) external view returns (uint);

    function effectiveValueAtRound(
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey,
        uint roundIdForSrc,
        uint roundIdForDest
    ) external view returns (uint);

    function getLastRoundIdBeforeElapsedSecs(
        bytes32 currencyKey,
        uint startingRoundId,
        uint startingTimestamp,
        uint timediff
    ) external view returns (uint);

    function ratesAndStaleForCurrencies(bytes32[] currencyKeys) external view returns (uint[], bool);

    function rateAndTimestampAtRound(bytes32 currencyKey, uint roundId) external view returns (uint rate, uint time);
}


interface ISystemStatus {
    function requireSystemActive() external view;

    function requireIssuanceActive() external view;

    function requireExchangeActive() external view;

    function requireSynthActive(bytes32 currencyKey) external view;

    function requireSynthsActive(bytes32 sourceCurrencyKey, bytes32 destinationCurrencyKey) external view;
}


interface IExchanger {
    function maxSecsLeftInWaitingPeriod(address account, bytes32 currencyKey) external view returns (uint);

    function feeRateForExchange(bytes32 sourceCurrencyKey, bytes32 destinationCurrencyKey) external view returns (uint);

    function settlementOwing(address account, bytes32 currencyKey)
        external
        view
        returns (uint reclaimAmount, uint rebateAmount, uint numEntries);

    function settle(address from, bytes32 currencyKey) external returns (uint reclaimed, uint refunded, uint numEntries);

    function exchange(
        address from,
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey,
        address destinationAddress
    ) external returns (uint amountReceived);

    function exchangeOnBehalf(
        address exchangeForAddress,
        address from,
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey
    ) external returns (uint amountReceived);

    function calculateAmountAfterSettlement(address from, bytes32 currencyKey, uint amount, uint refunded)
        external
        view
        returns (uint amountAfterSettlement);
}


interface IIssuer {
    function issueSynths(address from, uint amount) external;

    function issueSynthsOnBehalf(address issueFor, address from, uint amount) external;

    function issueMaxSynths(address from) external;

    function issueMaxSynthsOnBehalf(address issueFor, address from) external;

    function burnSynths(address from, uint amount) external;

    function burnSynthsOnBehalf(address burnForAddress, address from, uint amount) external;

    function burnSynthsToTarget(address from) external;

    function burnSynthsToTargetOnBehalf(address burnForAddress, address from) external;

    function canBurnSynths(address account) external view returns (bool);

    function lastIssueEvent(address account) external view returns (uint);
}


// https://docs.synthetix.io/contracts/Synth
contract Synth is ExternStateToken, MixinResolver {
    /* ========== STATE VARIABLES ========== */

    // Currency key which identifies this Synth to the Synthetix system
    bytes32 public currencyKey;

    uint8 public constant DECIMALS = 18;

    // Where fees are pooled in sUSD
    address public constant FEE_ADDRESS = 0xfeEFEEfeefEeFeefEEFEEfEeFeefEEFeeFEEFEeF;

    /* ========== ADDRESS RESOLVER CONFIGURATION ========== */

    bytes32 private constant CONTRACT_SYSTEMSTATUS = "SystemStatus";
    bytes32 private constant CONTRACT_SYNTHETIX = "Synthetix";
    bytes32 private constant CONTRACT_EXCHANGER = "Exchanger";
    bytes32 private constant CONTRACT_ISSUER = "Issuer";
    bytes32 private constant CONTRACT_FEEPOOL = "FeePool";

    bytes32[24] internal addressesToCache = [
        CONTRACT_SYSTEMSTATUS,
        CONTRACT_SYNTHETIX,
        CONTRACT_EXCHANGER,
        CONTRACT_ISSUER,
        CONTRACT_FEEPOOL
    ];

    /* ========== CONSTRUCTOR ========== */

    constructor(
        address _proxy,
        TokenState _tokenState,
        string _tokenName,
        string _tokenSymbol,
        address _owner,
        bytes32 _currencyKey,
        uint _totalSupply,
        address _resolver
    )
        public
        ExternStateToken(_proxy, _tokenState, _tokenName, _tokenSymbol, _totalSupply, DECIMALS, _owner)
        MixinResolver(_owner, _resolver, addressesToCache)
    {
        require(_proxy != address(0), "_proxy cannot be 0");
        require(_owner != 0, "_owner cannot be 0");

        currencyKey = _currencyKey;
    }

    /* ========== MUTATIVE FUNCTIONS ========== */

    function transfer(address to, uint value) public optionalProxy returns (bool) {
        _ensureCanTransfer(messageSender, value);

        // transfers to FEE_ADDRESS will be exchanged into sUSD and recorded as fee
        if (to == FEE_ADDRESS) {
            return _transferToFeeAddress(to, value);
        }

        // transfers to 0x address will be burned
        if (to == address(0)) {
            return _internalBurn(messageSender, value);
        }

        return super._internalTransfer(messageSender, to, value);
    }

    function transferAndSettle(address to, uint value) public optionalProxy returns (bool) {
        systemStatus().requireSynthActive(currencyKey);

        (, , uint numEntriesSettled) = exchanger().settle(messageSender, currencyKey);

        // Save gas instead of calling transferableSynths
        uint balanceAfter = value;

        if (numEntriesSettled > 0) {
            balanceAfter = tokenState.balanceOf(messageSender);
        }

        // Reduce the value to transfer if balance is insufficient after reclaimed
        value = value > balanceAfter ? balanceAfter : value;

        return super._internalTransfer(messageSender, to, value);
    }

    function transferFrom(address from, address to, uint value) public optionalProxy returns (bool) {
        _ensureCanTransfer(from, value);

        return _internalTransferFrom(from, to, value);
    }

    function transferFromAndSettle(address from, address to, uint value) public optionalProxy returns (bool) {
        systemStatus().requireSynthActive(currencyKey);

        (, , uint numEntriesSettled) = exchanger().settle(from, currencyKey);

        // Save gas instead of calling transferableSynths
        uint balanceAfter = value;

        if (numEntriesSettled > 0) {
            balanceAfter = tokenState.balanceOf(from);
        }

        // Reduce the value to transfer if balance is insufficient after reclaimed
        value = value >= balanceAfter ? balanceAfter : value;

        return _internalTransferFrom(from, to, value);
    }

    /**
     * @notice _transferToFeeAddress function
     * non-sUSD synths are exchanged into sUSD via synthInitiatedExchange
     * notify feePool to record amount as fee paid to feePool */
    function _transferToFeeAddress(address to, uint value) internal returns (bool) {
        uint amountInUSD;

        // sUSD can be transferred to FEE_ADDRESS directly
        if (currencyKey == "sUSD") {
            amountInUSD = value;
            super._internalTransfer(messageSender, to, value);
        } else {
            // else exchange synth into sUSD and send to FEE_ADDRESS
            amountInUSD = exchanger().exchange(messageSender, currencyKey, value, "sUSD", FEE_ADDRESS);
        }

        // Notify feePool to record sUSD to distribute as fees
        feePool().recordFeePaid(amountInUSD);

        return true;
    }

    // Allow synthetix to issue a certain number of synths from an account.
    // forward call to _internalIssue
    function issue(address account, uint amount) external onlyInternalContracts {
        _internalIssue(account, amount);
    }

    // Allow synthetix or another synth contract to burn a certain number of synths from an account.
    // forward call to _internalBurn
    function burn(address account, uint amount) external onlyInternalContracts {
        _internalBurn(account, amount);
    }

    function _internalIssue(address account, uint amount) internal {
        tokenState.setBalanceOf(account, tokenState.balanceOf(account).add(amount));
        totalSupply = totalSupply.add(amount);
        emitTransfer(address(0), account, amount);
        emitIssued(account, amount);
    }

    function _internalBurn(address account, uint amount) internal returns (bool) {
        tokenState.setBalanceOf(account, tokenState.balanceOf(account).sub(amount));
        totalSupply = totalSupply.sub(amount);
        emitTransfer(account, address(0), amount);
        emitBurned(account, amount);

        return true;
    }

    // Allow owner to set the total supply on import.
    function setTotalSupply(uint amount) external optionalProxy_onlyOwner {
        totalSupply = amount;
    }

    /* ========== VIEWS ========== */
    function systemStatus() internal view returns (ISystemStatus) {
        return ISystemStatus(requireAndGetAddress(CONTRACT_SYSTEMSTATUS, "Missing SystemStatus address"));
    }

    function synthetix() internal view returns (ISynthetix) {
        return ISynthetix(requireAndGetAddress(CONTRACT_SYNTHETIX, "Missing Synthetix address"));
    }

    function feePool() internal view returns (IFeePool) {
        return IFeePool(requireAndGetAddress(CONTRACT_FEEPOOL, "Missing FeePool address"));
    }

    function exchanger() internal view returns (IExchanger) {
        return IExchanger(requireAndGetAddress(CONTRACT_EXCHANGER, "Missing Exchanger address"));
    }

    function issuer() internal view returns (IIssuer) {
        return IIssuer(requireAndGetAddress(CONTRACT_ISSUER, "Missing Issuer address"));
    }

    function _ensureCanTransfer(address from, uint value) internal view {
        require(exchanger().maxSecsLeftInWaitingPeriod(from, currencyKey) == 0, "Cannot transfer during waiting period");
        require(transferableSynths(from) >= value, "Insufficient balance after any settlement owing");
        systemStatus().requireSynthActive(currencyKey);
    }

    function transferableSynths(address account) public view returns (uint) {
        (uint reclaimAmount, , ) = exchanger().settlementOwing(account, currencyKey);

        // Note: ignoring rebate amount here because a settle() is required in order to
        // allow the transfer to actually work

        uint balance = tokenState.balanceOf(account);

        if (reclaimAmount > balance) {
            return 0;
        } else {
            return balance.sub(reclaimAmount);
        }
    }

    /* ========== INTERNAL FUNCTIONS ========== */

    function _internalTransferFrom(address from, address to, uint value) internal returns (bool) {
        // Skip allowance update in case of infinite allowance
        if (tokenState.allowance(from, messageSender) != uint(-1)) {
            // Reduce the allowance by the amount we're transferring.
            // The safeSub call will handle an insufficient allowance.
            tokenState.setAllowance(from, messageSender, tokenState.allowance(from, messageSender).sub(value));
        }

        return super._internalTransfer(from, to, value);
    }

    /* ========== MODIFIERS ========== */

    modifier onlyInternalContracts() {
        bool isSynthetix = msg.sender == address(synthetix());
        bool isFeePool = msg.sender == address(feePool());
        bool isExchanger = msg.sender == address(exchanger());
        bool isIssuer = msg.sender == address(issuer());

        require(
            isSynthetix || isFeePool || isExchanger || isIssuer,
            "Only Synthetix, FeePool, Exchanger or Issuer contracts allowed"
        );
        _;
    }

    /* ========== EVENTS ========== */
    event Issued(address indexed account, uint value);
    bytes32 private constant ISSUED_SIG = keccak256("Issued(address,uint256)");

    function emitIssued(address account, uint value) internal {
        proxy._emit(abi.encode(value), 2, ISSUED_SIG, bytes32(account), 0, 0);
    }

    event Burned(address indexed account, uint value);
    bytes32 private constant BURNED_SIG = keccak256("Burned(address,uint256)");

    function emitBurned(address account, uint value) internal {
        proxy._emit(abi.encode(value), 2, BURNED_SIG, bytes32(account), 0, 0);
    }
}


/**
 * @title Synthetix interface contract
 * @notice Abstract contract to hold public getters
 * @dev pseudo interface, actually declared as contract to hold the public getters
 */


contract ISynthetix {
    // ========== PUBLIC STATE VARIABLES ==========

    uint public totalSupply;

    mapping(bytes32 => Synth) public synths;

    mapping(address => bytes32) public synthsByAddress;

    // ========== PUBLIC FUNCTIONS ==========

    function balanceOf(address account) public view returns (uint);

    function transfer(address to, uint value) public returns (bool);

    function transferFrom(address from, address to, uint value) public returns (bool);

    function exchange(bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey)
        external
        returns (uint amountReceived);

    function issueSynths(uint amount) external;

    function issueMaxSynths() external;

    function burnSynths(uint amount) external;

    function burnSynthsToTarget() external;

    function settle(bytes32 currencyKey) external returns (uint reclaimed, uint refunded, uint numEntries);

    function collateralisationRatio(address issuer) public view returns (uint);

    function totalIssuedSynths(bytes32 currencyKey) public view returns (uint);

    function totalIssuedSynthsExcludeEtherCollateral(bytes32 currencyKey) public view returns (uint);

    function debtBalanceOf(address issuer, bytes32 currencyKey) public view returns (uint);

    function debtBalanceOfAndTotalDebt(address issuer, bytes32 currencyKey)
        public
        view
        returns (uint debtBalance, uint totalSystemValue);

    function remainingIssuableSynths(address issuer)
        public
        view
        returns (uint maxIssuable, uint alreadyIssued, uint totalSystemDebt);

    function maxIssuableSynths(address issuer) public view returns (uint maxIssuable);

    function isWaitingPeriod(bytes32 currencyKey) external view returns (bool);

    function emitSynthExchange(
        address account,
        bytes32 fromCurrencyKey,
        uint fromAmount,
        bytes32 toCurrencyKey,
        uint toAmount,
        address toAddress
    ) external;

    function emitExchangeReclaim(address account, bytes32 currencyKey, uint amount) external;

    function emitExchangeRebate(address account, bytes32 currencyKey, uint amount) external;
}


// https://docs.synthetix.io/contracts/SupplySchedule
contract SupplySchedule is Owned {
    using SafeMath for uint;
    using SafeDecimalMath for uint;
    using Math for uint;

    // Time of the last inflation supply mint event
    uint public lastMintEvent;

    // Counter for number of weeks since the start of supply inflation
    uint public weekCounter;

    // The number of SNX rewarded to the caller of Synthetix.mint()
    uint public minterReward = 200 * SafeDecimalMath.unit();

    // The initial weekly inflationary supply is 75m / 52 until the start of the decay rate.
    // 75e6 * SafeDecimalMath.unit() / 52
    uint public constant INITIAL_WEEKLY_SUPPLY = 1442307692307692307692307;

    // Address of the SynthetixProxy for the onlySynthetix modifier
    address public synthetixProxy;

    // Max SNX rewards for minter
    uint public constant MAX_MINTER_REWARD = 200 * SafeDecimalMath.unit();

    // How long each inflation period is before mint can be called
    uint public constant MINT_PERIOD_DURATION = 1 weeks;

    uint public constant INFLATION_START_DATE = 1551830400; // 2019-03-06T00:00:00+00:00
    uint public constant MINT_BUFFER = 1 days;
    uint8 public constant SUPPLY_DECAY_START = 40; // Week 40
    uint8 public constant SUPPLY_DECAY_END = 234; //  Supply Decay ends on Week 234 (inclusive of Week 234 for a total of 195 weeks of inflation decay)

    // Weekly percentage decay of inflationary supply from the first 40 weeks of the 75% inflation rate
    uint public constant DECAY_RATE = 12500000000000000; // 1.25% weekly

    // Percentage growth of terminal supply per annum
    uint public constant TERMINAL_SUPPLY_RATE_ANNUAL = 25000000000000000; // 2.5% pa

    constructor(address _owner, uint _lastMintEvent, uint _currentWeek) public Owned(_owner) {
        lastMintEvent = _lastMintEvent;
        weekCounter = _currentWeek;
    }

    // ========== VIEWS ==========

    /**
     * @return The amount of SNX mintable for the inflationary supply
     */
    function mintableSupply() external view returns (uint) {
        uint totalAmount;

        if (!isMintable()) {
            return totalAmount;
        }

        uint remainingWeeksToMint = weeksSinceLastIssuance();

        uint currentWeek = weekCounter;

        // Calculate total mintable supply from exponential decay function
        // The decay function stops after week 234
        while (remainingWeeksToMint > 0) {
            currentWeek++;

            if (currentWeek < SUPPLY_DECAY_START) {
                // If current week is before supply decay we add initial supply to mintableSupply
                totalAmount = totalAmount.add(INITIAL_WEEKLY_SUPPLY);
                remainingWeeksToMint--;
            } else if (currentWeek <= SUPPLY_DECAY_END) {
                // if current week before supply decay ends we add the new supply for the week
                // diff between current week and (supply decay start week - 1)
                uint decayCount = currentWeek.sub(SUPPLY_DECAY_START - 1);

                totalAmount = totalAmount.add(tokenDecaySupplyForWeek(decayCount));
                remainingWeeksToMint--;
            } else {
                // Terminal supply is calculated on the total supply of Synthetix including any new supply
                // We can compound the remaining week's supply at the fixed terminal rate
                uint totalSupply = ISynthetix(synthetixProxy).totalSupply();
                uint currentTotalSupply = totalSupply.add(totalAmount);

                totalAmount = totalAmount.add(terminalInflationSupply(currentTotalSupply, remainingWeeksToMint));
                remainingWeeksToMint = 0;
            }
        }

        return totalAmount;
    }

    /**
     * @return A unit amount of decaying inflationary supply from the INITIAL_WEEKLY_SUPPLY
     * @dev New token supply reduces by the decay rate each week calculated as supply = INITIAL_WEEKLY_SUPPLY * ()
     */
    function tokenDecaySupplyForWeek(uint counter) public pure returns (uint) {
        // Apply exponential decay function to number of weeks since
        // start of inflation smoothing to calculate diminishing supply for the week.
        uint effectiveDecay = (SafeDecimalMath.unit().sub(DECAY_RATE)).powDecimal(counter);
        uint supplyForWeek = INITIAL_WEEKLY_SUPPLY.multiplyDecimal(effectiveDecay);

        return supplyForWeek;
    }

    /**
     * @return A unit amount of terminal inflation supply
     * @dev Weekly compound rate based on number of weeks
     */
    function terminalInflationSupply(uint totalSupply, uint numOfWeeks) public pure returns (uint) {
        // rate = (1 + weekly rate) ^ num of weeks
        uint effectiveCompoundRate = SafeDecimalMath.unit().add(TERMINAL_SUPPLY_RATE_ANNUAL.div(52)).powDecimal(numOfWeeks);

        // return Supply * (effectiveRate - 1) for extra supply to issue based on number of weeks
        return totalSupply.multiplyDecimal(effectiveCompoundRate.sub(SafeDecimalMath.unit()));
    }

    /**
     * @dev Take timeDiff in seconds (Dividend) and MINT_PERIOD_DURATION as (Divisor)
     * @return Calculate the numberOfWeeks since last mint rounded down to 1 week
     */
    function weeksSinceLastIssuance() public view returns (uint) {
        // Get weeks since lastMintEvent
        // If lastMintEvent not set or 0, then start from inflation start date.
        uint timeDiff = lastMintEvent > 0 ? now.sub(lastMintEvent) : now.sub(INFLATION_START_DATE);
        return timeDiff.div(MINT_PERIOD_DURATION);
    }

    /**
     * @return boolean whether the MINT_PERIOD_DURATION (7 days)
     * has passed since the lastMintEvent.
     * */
    function isMintable() public view returns (bool) {
        if (now - lastMintEvent > MINT_PERIOD_DURATION) {
            return true;
        }
        return false;
    }

    // ========== MUTATIVE FUNCTIONS ==========

    /**
     * @notice Record the mint event from Synthetix by incrementing the inflation
     * week counter for the number of weeks minted (probabaly always 1)
     * and store the time of the event.
     * @param supplyMinted the amount of SNX the total supply was inflated by.
     * */
    function recordMintEvent(uint supplyMinted) external onlySynthetix returns (bool) {
        uint numberOfWeeksIssued = weeksSinceLastIssuance();

        // add number of weeks minted to weekCounter
        weekCounter = weekCounter.add(numberOfWeeksIssued);

        // Update mint event to latest week issued (start date + number of weeks issued * seconds in week)
        // 1 day time buffer is added so inflation is minted after feePeriod closes
        lastMintEvent = INFLATION_START_DATE.add(weekCounter.mul(MINT_PERIOD_DURATION)).add(MINT_BUFFER);

        emit SupplyMinted(supplyMinted, numberOfWeeksIssued, lastMintEvent, now);
        return true;
    }

    /**
     * @notice Sets the reward amount of SNX for the caller of the public
     * function Synthetix.mint().
     * This incentivises anyone to mint the inflationary supply and the mintr
     * Reward will be deducted from the inflationary supply and sent to the caller.
     * @param amount the amount of SNX to reward the minter.
     * */
    function setMinterReward(uint amount) external onlyOwner {
        require(amount <= MAX_MINTER_REWARD, "Reward cannot exceed max minter reward");
        minterReward = amount;
        emit MinterRewardUpdated(minterReward);
    }

    // ========== SETTERS ========== */

    /**
     * @notice Set the SynthetixProxy should it ever change.
     * SupplySchedule requires Synthetix address as it has the authority
     * to record mint event.
     * */
    function setSynthetixProxy(ISynthetix _synthetixProxy) external onlyOwner {
        require(_synthetixProxy != address(0), "Address cannot be 0");
        synthetixProxy = _synthetixProxy;
        emit SynthetixProxyUpdated(synthetixProxy);
    }

    // ========== MODIFIERS ==========

    /**
     * @notice Only the Synthetix contract is authorised to call this function
     * */
    modifier onlySynthetix() {
        require(
            msg.sender == address(Proxy(synthetixProxy).target()),
            "Only the synthetix contract can perform this action"
        );
        _;
    }

    /* ========== EVENTS ========== */
    /**
     * @notice Emitted when the inflationary supply is minted
     * */
    event SupplyMinted(uint supplyMinted, uint numberOfWeeksIssued, uint lastMintEvent, uint timestamp);

    /**
     * @notice Emitted when the SNX minter reward amount is updated
     * */
    event MinterRewardUpdated(uint newRewardAmount);

    /**
     * @notice Emitted when setSynthetixProxy is called changing the Synthetix Proxy address
     * */
    event SynthetixProxyUpdated(address newAddress);
}


/**
 * @title RewardsDistribution interface
 */
interface IRewardsDistribution {
    function distributeRewards(uint amount) external;
}


contract IEtherCollateral {
    uint256 public totalIssuedSynths;
}


// https://docs.synthetix.io/contracts/Synthetix
contract Synthetix is ExternStateToken, MixinResolver {
    // ========== STATE VARIABLES ==========

    // Available Synths which can be used with the system
    Synth[] public availableSynths;
    mapping(bytes32 => Synth) public synths;
    mapping(address => bytes32) public synthsByAddress;

    string constant TOKEN_NAME = "Synthetix Network Token";
    string constant TOKEN_SYMBOL = "SNX";
    uint8 constant DECIMALS = 18;
    bytes32 constant sUSD = "sUSD";

    /* ========== ADDRESS RESOLVER CONFIGURATION ========== */

    bytes32 private constant CONTRACT_SYSTEMSTATUS = "SystemStatus";
    bytes32 private constant CONTRACT_EXCHANGER = "Exchanger";
    bytes32 private constant CONTRACT_ETHERCOLLATERAL = "EtherCollateral";
    bytes32 private constant CONTRACT_ISSUER = "Issuer";
    bytes32 private constant CONTRACT_SYNTHETIXSTATE = "SynthetixState";
    bytes32 private constant CONTRACT_EXRATES = "ExchangeRates";
    bytes32 private constant CONTRACT_FEEPOOL = "FeePool";
    bytes32 private constant CONTRACT_SUPPLYSCHEDULE = "SupplySchedule";
    bytes32 private constant CONTRACT_REWARDESCROW = "RewardEscrow";
    bytes32 private constant CONTRACT_SYNTHETIXESCROW = "SynthetixEscrow";
    bytes32 private constant CONTRACT_REWARDSDISTRIBUTION = "RewardsDistribution";

    bytes32[24] private addressesToCache = [
        CONTRACT_SYSTEMSTATUS,
        CONTRACT_EXCHANGER,
        CONTRACT_ETHERCOLLATERAL,
        CONTRACT_ISSUER,
        CONTRACT_SYNTHETIXSTATE,
        CONTRACT_EXRATES,
        CONTRACT_FEEPOOL,
        CONTRACT_SUPPLYSCHEDULE,
        CONTRACT_REWARDESCROW,
        CONTRACT_SYNTHETIXESCROW,
        CONTRACT_REWARDSDISTRIBUTION
    ];

    // ========== CONSTRUCTOR ==========

    /**
     * @dev Constructor
     * @param _proxy The main token address of the Proxy contract. This will be ProxyERC20.sol
     * @param _tokenState Address of the external immutable contract containing token balances.
     * @param _owner The owner of this contract.
     * @param _totalSupply On upgrading set to reestablish the current total supply (This should be in SynthetixState if ever updated)
     * @param _resolver The address of the Synthetix Address Resolver
     */
    constructor(address _proxy, TokenState _tokenState, address _owner, uint _totalSupply, address _resolver)
        public
        ExternStateToken(_proxy, _tokenState, TOKEN_NAME, TOKEN_SYMBOL, _totalSupply, DECIMALS, _owner)
        MixinResolver(_owner, _resolver, addressesToCache)
    {}

    /* ========== VIEWS ========== */

    function systemStatus() internal view returns (ISystemStatus) {
        return ISystemStatus(requireAndGetAddress(CONTRACT_SYSTEMSTATUS, "Missing SystemStatus address"));
    }

    function exchanger() internal view returns (IExchanger) {
        return IExchanger(requireAndGetAddress(CONTRACT_EXCHANGER, "Missing Exchanger address"));
    }

    function etherCollateral() internal view returns (IEtherCollateral) {
        return IEtherCollateral(requireAndGetAddress(CONTRACT_ETHERCOLLATERAL, "Missing EtherCollateral address"));
    }

    function issuer() internal view returns (IIssuer) {
        return IIssuer(requireAndGetAddress(CONTRACT_ISSUER, "Missing Issuer address"));
    }

    function synthetixState() internal view returns (ISynthetixState) {
        return ISynthetixState(requireAndGetAddress(CONTRACT_SYNTHETIXSTATE, "Missing SynthetixState address"));
    }

    function exchangeRates() internal view returns (IExchangeRates) {
        return IExchangeRates(requireAndGetAddress(CONTRACT_EXRATES, "Missing ExchangeRates address"));
    }

    function feePool() internal view returns (IFeePool) {
        return IFeePool(requireAndGetAddress(CONTRACT_FEEPOOL, "Missing FeePool address"));
    }

    function supplySchedule() internal view returns (SupplySchedule) {
        return SupplySchedule(requireAndGetAddress(CONTRACT_SUPPLYSCHEDULE, "Missing SupplySchedule address"));
    }

    function rewardEscrow() internal view returns (ISynthetixEscrow) {
        return ISynthetixEscrow(requireAndGetAddress(CONTRACT_REWARDESCROW, "Missing RewardEscrow address"));
    }

    function synthetixEscrow() internal view returns (ISynthetixEscrow) {
        return ISynthetixEscrow(requireAndGetAddress(CONTRACT_SYNTHETIXESCROW, "Missing SynthetixEscrow address"));
    }

    function rewardsDistribution() internal view returns (IRewardsDistribution) {
        return
            IRewardsDistribution(requireAndGetAddress(CONTRACT_REWARDSDISTRIBUTION, "Missing RewardsDistribution address"));
    }

    /**
     * @notice Total amount of synths issued by the system, priced in currencyKey
     * @param currencyKey The currency to value the synths in
     */
    function _totalIssuedSynths(bytes32 currencyKey, bool excludeEtherCollateral) internal view returns (uint) {
        IExchangeRates exRates = exchangeRates();
        uint total = 0;
        uint currencyRate = exRates.rateForCurrency(currencyKey);

        (uint[] memory rates, bool anyRateStale) = exRates.ratesAndStaleForCurrencies(availableCurrencyKeys());
        require(!anyRateStale, "Rates are stale");

        for (uint i = 0; i < availableSynths.length; i++) {
            // What's the total issued value of that synth in the destination currency?
            // Note: We're not using exchangeRates().effectiveValue() because we don't want to go get the
            //       rate for the destination currency and check if it's stale repeatedly on every
            //       iteration of the loop
            uint totalSynths = availableSynths[i].totalSupply();

            // minus total issued synths from Ether Collateral from sETH.totalSupply()
            if (excludeEtherCollateral && availableSynths[i] == synths["sETH"]) {
                totalSynths = totalSynths.sub(etherCollateral().totalIssuedSynths());
            }

            uint synthValue = totalSynths.multiplyDecimalRound(rates[i]);
            total = total.add(synthValue);
        }

        return total.divideDecimalRound(currencyRate);
    }

    /**
     * @notice Total amount of synths issued by the system priced in currencyKey
     * @param currencyKey The currency to value the synths in
     */
    function totalIssuedSynths(bytes32 currencyKey) public view returns (uint) {
        return _totalIssuedSynths(currencyKey, false);
    }

    /**
     * @notice Total amount of synths issued by the system priced in currencyKey, excluding ether collateral
     * @param currencyKey The currency to value the synths in
     */
    function totalIssuedSynthsExcludeEtherCollateral(bytes32 currencyKey) public view returns (uint) {
        return _totalIssuedSynths(currencyKey, true);
    }

    /**
     * @notice Returns the currencyKeys of availableSynths for rate checking
     */
    function availableCurrencyKeys() public view returns (bytes32[]) {
        bytes32[] memory currencyKeys = new bytes32[](availableSynths.length);

        for (uint i = 0; i < availableSynths.length; i++) {
            currencyKeys[i] = synthsByAddress[availableSynths[i]];
        }

        return currencyKeys;
    }

    /**
     * @notice Returns the count of available synths in the system, which you can use to iterate availableSynths
     */
    function availableSynthCount() public view returns (uint) {
        return availableSynths.length;
    }

    function isWaitingPeriod(bytes32 currencyKey) external view returns (bool) {
        return exchanger().maxSecsLeftInWaitingPeriod(messageSender, currencyKey) > 0;
    }

    // ========== MUTATIVE FUNCTIONS ==========

    /**
     * @notice Add an associated Synth contract to the Synthetix system
     * @dev Only the contract owner may call this.
     */
    function addSynth(Synth synth) external optionalProxy_onlyOwner {
        bytes32 currencyKey = synth.currencyKey();

        require(synths[currencyKey] == Synth(0), "Synth already exists");
        require(synthsByAddress[synth] == bytes32(0), "Synth address already exists");

        availableSynths.push(synth);
        synths[currencyKey] = synth;
        synthsByAddress[synth] = currencyKey;
    }

    /**
     * @notice Remove an associated Synth contract from the Synthetix system
     * @dev Only the contract owner may call this.
     */
    function removeSynth(bytes32 currencyKey) external optionalProxy_onlyOwner {
        require(synths[currencyKey] != address(0), "Synth does not exist");
        require(synths[currencyKey].totalSupply() == 0, "Synth supply exists");
        require(currencyKey != sUSD, "Cannot remove synth");

        // Save the address we're removing for emitting the event at the end.
        address synthToRemove = synths[currencyKey];

        // Remove the synth from the availableSynths array.
        for (uint i = 0; i < availableSynths.length; i++) {
            if (availableSynths[i] == synthToRemove) {
                delete availableSynths[i];

                // Copy the last synth into the place of the one we just deleted
                // If there's only one synth, this is synths[0] = synths[0].
                // If we're deleting the last one, it's also a NOOP in the same way.
                availableSynths[i] = availableSynths[availableSynths.length - 1];

                // Decrease the size of the array by one.
                availableSynths.length--;

                break;
            }
        }

        // And remove it from the synths mapping
        delete synthsByAddress[synths[currencyKey]];
        delete synths[currencyKey];

        // Note: No event here as Synthetix contract exceeds max contract size
        // with these events, and it's unlikely people will need to
        // track these events specifically.

    }

    /**
     * @notice ERC20 transfer function.
     */
    function transfer(address to, uint value) public optionalProxy returns (bool) {
        systemStatus().requireSystemActive();

        // Ensure they're not trying to exceed their staked SNX amount
        require(value <= transferableSynthetix(messageSender), "Cannot transfer staked or escrowed SNX");

        // Perform the transfer: if there is a problem an exception will be thrown in this call.
        _transfer_byProxy(messageSender, to, value);

        return true;
    }

    /**
     * @notice ERC20 transferFrom function.
     */
    function transferFrom(address from, address to, uint value) public optionalProxy returns (bool) {
        systemStatus().requireSystemActive();

        // Ensure they're not trying to exceed their locked amount
        require(value <= transferableSynthetix(from), "Cannot transfer staked or escrowed SNX");

        // Perform the transfer: if there is a problem,
        // an exception will be thrown in this call.
        return _transferFrom_byProxy(messageSender, from, to, value);
    }

    function issueSynths(uint amount) external optionalProxy {
        systemStatus().requireIssuanceActive();

        return issuer().issueSynths(messageSender, amount);
    }

    function issueSynthsOnBehalf(address issueForAddress, uint amount) external optionalProxy {
        systemStatus().requireIssuanceActive();

        return issuer().issueSynthsOnBehalf(issueForAddress, messageSender, amount);
    }

    function issueMaxSynths() external optionalProxy {
        systemStatus().requireIssuanceActive();

        return issuer().issueMaxSynths(messageSender);
    }

    function issueMaxSynthsOnBehalf(address issueForAddress) external optionalProxy {
        systemStatus().requireIssuanceActive();

        return issuer().issueMaxSynthsOnBehalf(issueForAddress, messageSender);
    }

    function burnSynths(uint amount) external optionalProxy {
        systemStatus().requireIssuanceActive();

        return issuer().burnSynths(messageSender, amount);
    }

    function burnSynthsOnBehalf(address burnForAddress, uint amount) external optionalProxy {
        systemStatus().requireIssuanceActive();

        return issuer().burnSynthsOnBehalf(burnForAddress, messageSender, amount);
    }

    function burnSynthsToTarget() external optionalProxy {
        systemStatus().requireIssuanceActive();

        return issuer().burnSynthsToTarget(messageSender);
    }

    function burnSynthsToTargetOnBehalf(address burnForAddress) external optionalProxy {
        systemStatus().requireIssuanceActive();

        return issuer().burnSynthsToTargetOnBehalf(burnForAddress, messageSender);
    }

    function exchange(bytes32 sourceCurrencyKey, uint sourceAmount, bytes32 destinationCurrencyKey)
        external
        optionalProxy
        returns (uint amountReceived)
    {
        systemStatus().requireExchangeActive();

        systemStatus().requireSynthsActive(sourceCurrencyKey, destinationCurrencyKey);

        return exchanger().exchange(messageSender, sourceCurrencyKey, sourceAmount, destinationCurrencyKey, messageSender);
    }

    function exchangeOnBehalf(
        address exchangeForAddress,
        bytes32 sourceCurrencyKey,
        uint sourceAmount,
        bytes32 destinationCurrencyKey
    ) external optionalProxy returns (uint amountReceived) {
        systemStatus().requireExchangeActive();

        systemStatus().requireSynthsActive(sourceCurrencyKey, destinationCurrencyKey);

        return
            exchanger().exchangeOnBehalf(
                exchangeForAddress,
                messageSender,
                sourceCurrencyKey,
                sourceAmount,
                destinationCurrencyKey
            );
    }

    function settle(bytes32 currencyKey)
        external
        optionalProxy
        returns (uint reclaimed, uint refunded, uint numEntriesSettled)
    {
        return exchanger().settle(messageSender, currencyKey);
    }

    // ========== Issuance/Burning ==========

    /**
     * @notice The maximum synths an issuer can issue against their total synthetix quantity.
     * This ignores any already issued synths, and is purely giving you the maximimum amount the user can issue.
     */
    function maxIssuableSynths(address _issuer)
        public
        view
        returns (
            // We don't need to check stale rates here as effectiveValue will do it for us.
            uint
        )
    {
        // What is the value of their SNX balance in the destination currency?
        uint destinationValue = exchangeRates().effectiveValue("SNX", collateral(_issuer), sUSD);

        // They're allowed to issue up to issuanceRatio of that value
        return destinationValue.multiplyDecimal(synthetixState().issuanceRatio());
    }

    /**
     * @notice The current collateralisation ratio for a user. Collateralisation ratio varies over time
     * as the value of the underlying Synthetix asset changes,
     * e.g. based on an issuance ratio of 20%. if a user issues their maximum available
     * synths when they hold $10 worth of Synthetix, they will have issued $2 worth of synths. If the value
     * of Synthetix changes, the ratio returned by this function will adjust accordingly. Users are
     * incentivised to maintain a collateralisation ratio as close to the issuance ratio as possible by
     * altering the amount of fees they're able to claim from the system.
     */
    function collateralisationRatio(address _issuer) public view returns (uint) {
        uint totalOwnedSynthetix = collateral(_issuer);
        if (totalOwnedSynthetix == 0) return 0;

        uint debtBalance = debtBalanceOf(_issuer, "SNX");
        return debtBalance.divideDecimalRound(totalOwnedSynthetix);
    }

    /**
     * @notice If a user issues synths backed by SNX in their wallet, the SNX become locked. This function
     * will tell you how many synths a user has to give back to the system in order to unlock their original
     * debt position. This is priced in whichever synth is passed in as a currency key, e.g. you can price
     * the debt in sUSD, or any other synth you wish.
     */
    function debtBalanceOf(address _issuer, bytes32 currencyKey)
        public
        view
        returns (
            // Don't need to check for stale rates here because totalIssuedSynths will do it for us
            uint
        )
    {
        ISynthetixState state = synthetixState();

        // What was their initial debt ownership?
        (uint initialDebtOwnership, ) = state.issuanceData(_issuer);

        // If it's zero, they haven't issued, and they have no debt.
        if (initialDebtOwnership == 0) return 0;

        (uint debtBalance, ) = debtBalanceOfAndTotalDebt(_issuer, currencyKey);
        return debtBalance;
    }

    function debtBalanceOfAndTotalDebt(address _issuer, bytes32 currencyKey)
        public
        view
        returns (uint debtBalance, uint totalSystemValue)
    {
        ISynthetixState state = synthetixState();

        // What was their initial debt ownership?
        uint initialDebtOwnership;
        uint debtEntryIndex;
        (initialDebtOwnership, debtEntryIndex) = state.issuanceData(_issuer);

        // What's the total value of the system excluding ETH backed synths in their requested currency?
        totalSystemValue = totalIssuedSynthsExcludeEtherCollateral(currencyKey);

        // If it's zero, they haven't issued, and they have no debt.
        if (initialDebtOwnership == 0) return (0, totalSystemValue);

        // Figure out the global debt percentage delta from when they entered the system.
        // This is a high precision integer of 27 (1e27) decimals.
        uint currentDebtOwnership = state
            .lastDebtLedgerEntry()
            .divideDecimalRoundPrecise(state.debtLedger(debtEntryIndex))
            .multiplyDecimalRoundPrecise(initialDebtOwnership);

        // Their debt balance is their portion of the total system value.
        uint highPrecisionBalance = totalSystemValue.decimalToPreciseDecimal().multiplyDecimalRoundPrecise(
            currentDebtOwnership
        );

        // Convert back into 18 decimals (1e18)
        debtBalance = highPrecisionBalance.preciseDecimalToDecimal();
    }

    /**
     * @notice The remaining synths an issuer can issue against their total synthetix balance.
     * @param _issuer The account that intends to issue
     */
    function remainingIssuableSynths(address _issuer)
        public
        view
        returns (
            // Don't need to check for synth existing or stale rates because maxIssuableSynths will do it for us.
            uint maxIssuable,
            uint alreadyIssued,
            uint totalSystemDebt
        )
    {
        (alreadyIssued, totalSystemDebt) = debtBalanceOfAndTotalDebt(_issuer, sUSD);
        maxIssuable = maxIssuableSynths(_issuer);

        if (alreadyIssued >= maxIssuable) {
            maxIssuable = 0;
        } else {
            maxIssuable = maxIssuable.sub(alreadyIssued);
        }
    }

    /**
     * @notice The total SNX owned by this account, both escrowed and unescrowed,
     * against which synths can be issued.
     * This includes those already being used as collateral (locked), and those
     * available for further issuance (unlocked).
     */
    function collateral(address account) public view returns (uint) {
        uint balance = tokenState.balanceOf(account);

        if (synthetixEscrow() != address(0)) {
            balance = balance.add(synthetixEscrow().balanceOf(account));
        }

        if (rewardEscrow() != address(0)) {
            balance = balance.add(rewardEscrow().balanceOf(account));
        }

        return balance;
    }

    /**
     * @notice The number of SNX that are free to be transferred for an account.
     * @dev Escrowed SNX are not transferable, so they are not included
     * in this calculation.
     * @notice SNX rate not stale is checked within debtBalanceOf
     */
    function transferableSynthetix(address account)
        public
        view
        rateNotStale("SNX") // SNX is not a synth so is not checked in totalIssuedSynths
        returns (uint)
    {
        // How many SNX do they have, excluding escrow?
        // Note: We're excluding escrow here because we're interested in their transferable amount
        // and escrowed SNX are not transferable.
        uint balance = tokenState.balanceOf(account);

        // How many of those will be locked by the amount they've issued?
        // Assuming issuance ratio is 20%, then issuing 20 SNX of value would require
        // 100 SNX to be locked in their wallet to maintain their collateralisation ratio
        // The locked synthetix value can exceed their balance.
        uint lockedSynthetixValue = debtBalanceOf(account, "SNX").divideDecimalRound(synthetixState().issuanceRatio());

        // If we exceed the balance, no SNX are transferable, otherwise the difference is.
        if (lockedSynthetixValue >= balance) {
            return 0;
        } else {
            return balance.sub(lockedSynthetixValue);
        }
    }

    /**
     * @notice Mints the inflationary SNX supply. The inflation shedule is
     * defined in the SupplySchedule contract.
     * The mint() function is publicly callable by anyone. The caller will
     receive a minter reward as specified in supplySchedule.minterReward().
     */
    function mint() external returns (bool) {
        require(rewardsDistribution() != address(0), "RewardsDistribution not set");

        systemStatus().requireIssuanceActive();

        SupplySchedule _supplySchedule = supplySchedule();
        IRewardsDistribution _rewardsDistribution = rewardsDistribution();

        uint supplyToMint = _supplySchedule.mintableSupply();
        require(supplyToMint > 0, "No supply is mintable");

        // record minting event before mutation to token supply
        _supplySchedule.recordMintEvent(supplyToMint);

        // Set minted SNX balance to RewardEscrow's balance
        // Minus the minterReward and set balance of minter to add reward
        uint minterReward = _supplySchedule.minterReward();
        // Get the remainder
        uint amountToDistribute = supplyToMint.sub(minterReward);

        // Set the token balance to the RewardsDistribution contract
        tokenState.setBalanceOf(_rewardsDistribution, tokenState.balanceOf(_rewardsDistribution).add(amountToDistribute));
        emitTransfer(this, _rewardsDistribution, amountToDistribute);

        // Kick off the distribution of rewards
        _rewardsDistribution.distributeRewards(amountToDistribute);

        // Assign the minters reward.
        tokenState.setBalanceOf(msg.sender, tokenState.balanceOf(msg.sender).add(minterReward));
        emitTransfer(this, msg.sender, minterReward);

        totalSupply = totalSupply.add(supplyToMint);

        return true;
    }

    // ========== MODIFIERS ==========

    modifier rateNotStale(bytes32 currencyKey) {
        require(!exchangeRates().rateIsStale(currencyKey), "Rate stale or not a synth");
        _;
    }

    modifier onlyExchanger() {
        require(msg.sender == address(exchanger()), "Only the exchanger contract can invoke this function");
        _;
    }

    // ========== EVENTS ==========
    /* solium-disable */
    event SynthExchange(
        address indexed account,
        bytes32 fromCurrencyKey,
        uint256 fromAmount,
        bytes32 toCurrencyKey,
        uint256 toAmount,
        address toAddress
    );
    bytes32 constant SYNTHEXCHANGE_SIG = keccak256("SynthExchange(address,bytes32,uint256,bytes32,uint256,address)");

    function emitSynthExchange(
        address account,
        bytes32 fromCurrencyKey,
        uint256 fromAmount,
        bytes32 toCurrencyKey,
        uint256 toAmount,
        address toAddress
    ) external onlyExchanger {
        proxy._emit(
            abi.encode(fromCurrencyKey, fromAmount, toCurrencyKey, toAmount, toAddress),
            2,
            SYNTHEXCHANGE_SIG,
            bytes32(account),
            0,
            0
        );
    }

    event ExchangeReclaim(address indexed account, bytes32 currencyKey, uint amount);
    bytes32 constant EXCHANGERECLAIM_SIG = keccak256("ExchangeReclaim(address,bytes32,uint256)");

    function emitExchangeReclaim(address account, bytes32 currencyKey, uint256 amount) external onlyExchanger {
        proxy._emit(abi.encode(currencyKey, amount), 2, EXCHANGERECLAIM_SIG, bytes32(account), 0, 0);
    }

    event ExchangeRebate(address indexed account, bytes32 currencyKey, uint amount);
    bytes32 constant EXCHANGEREBATE_SIG = keccak256("ExchangeRebate(address,bytes32,uint256)");

    function emitExchangeRebate(address account, bytes32 currencyKey, uint256 amount) external onlyExchanger {
        proxy._emit(abi.encode(currencyKey, amount), 2, EXCHANGEREBATE_SIG, bytes32(account), 0, 0);
    }
    /* solium-enable */
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):