ETH Price: $3,480.25 (+5.13%)

Contract Diff Checker

Contract Name:
KillaCubsV2

Contract Source Code:

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.19;
import "./KillaCubs/KillaCubsStaking.sol";
import "@openzeppelin/contracts/utils/Strings.sol";

contract KillaCubsV2 is KillaCubsERC721, IURIManager {
    using Strings for uint256;
    using Strings for uint16;

    constructor(
        address bitsAddress,
        address gearAddress,
        address bearsAddress,
        address passesAddress,
        address kiltonAddress,
        address labsAddress,
        address superOwner
    )
        KillaCubsERC721(
            bitsAddress,
            gearAddress,
            bearsAddress,
            passesAddress,
            kiltonAddress,
            labsAddress,
            superOwner
        )
    {
        uriManager = IURIManager(this);
    }

    function toggleClaims(bool enabled) external onlyOwner {
        claimsStarted = enabled;
    }

    function tokenURI(uint256 id) external view returns (string memory) {
        Token memory token = resolveToken(id);
        return uriManager.getTokenURI(id, token);
    }

    function getTokenURI(
        uint256 id,
        Token memory token
    ) public view returns (string memory) {
        bool staked = token.stakeTimestamp > 0;
        uint256 phase = calculateIncubationPhase(
            token.incubationPhase,
            token.stakeTimestamp,
            token.generation
        );
        uint256 gen = token.generation;
        if (laterGenerations[id] != 0) gen = laterGenerations[id];

        if (staked) {
            return
                string(
                    abi.encodePacked(
                        baseURI,
                        gen == 0 ? "initial-" : "remix-",
                        id.toString(),
                        "-",
                        phase.toString(),
                        "-",
                        token.bit.toString()
                    )
                );
        }

        string storage base = gen > finalizedGeneration || gen == 0
            ? baseURI
            : baseURIFinalized;

        return
            string(
                abi.encodePacked(
                    base,
                    gen == 0 ? "cubryo-" : "cub-",
                    id.toString(),
                    "-",
                    phase.toString()
                )
            );
    }

    function configureRoyalties(
        address royaltyReceiver,
        uint96 royaltyAmount
    ) external onlyOwner {
        _setDefaultRoyalty(royaltyReceiver, royaltyAmount);
    }

    function finalizeGeneration(
        uint256 gen,
        string calldata uri
    ) external onlyOwner {
        finalizedGeneration = gen;
        baseURIFinalized = uri;
    }

    function setURIManager(address addr) external onlyOwner {
        uriManager = IURIManager(addr);
    }

    function setBaseUri(string calldata uri) external onlyOwner {
        baseURI = uri;
    }

    function copyTokensClaimed(address, uint256, uint256) external onlyOwner {
        (bool success, ) = _delegatecall(airdropper, msg.data);
        require(success, "delegatecall failed");
    }

    function copyTokensBatched(address, uint256, uint256) external onlyOwner {
        (bool success, ) = _delegatecall(airdropper, msg.data);
        require(success, "delegatecall failed");
    }

    function stake(uint256[] calldata) external {
        (bool success, ) = _delegatecall(staker, msg.data);
        require(success, "delegatecall failed");
    }

    function unstake(uint256[] calldata, bool) external {
        (bool success, ) = _delegatecall(staker, msg.data);
        require(success, "delegatecall failed");
    }

    function addBits(uint256[] calldata, uint16[] calldata) external {
        (bool success, ) = _delegatecall(staker, msg.data);
        require(success, "delegatecall failed");
    }

    function removeBits(uint256[] calldata) external {
        (bool success, ) = _delegatecall(staker, msg.data);
        require(success, "delegatecall failed");
    }

    function extractGear(uint256[] calldata) external {
        (bool success, ) = _delegatecall(staker, msg.data);
        require(success, "delegatecall failed");
    }

    function fastForward(
        address,
        uint256[] calldata,
        uint256
    ) external onlyAuthority {
        (bool success, ) = _delegatecall(staker, msg.data);
        require(success, "delegatecall failed");
    }

    function configureStakingWindows(uint256, uint256) external onlyOwner {
        (bool success, ) = _delegatecall(staker, msg.data);
        require(success, "delegatecall failed");
    }

    function setIncubator(address) external onlyOwner {
        (bool success, ) = _delegatecall(staker, msg.data);
        require(success, "delegatecall failed");
    }

    function startNexGeneration() external onlyOwner {
        (bool success, ) = _delegatecall(staker, msg.data);
        require(success, "delegatecall failed");
    }

    function claim(uint256[] calldata, bool) public {
        (bool success, ) = _delegatecall(claimer, msg.data);
        require(success, "delegatecall failed");
    }

    function redeem(uint16, bool) external {
        (bool success, ) = _delegatecall(claimer, msg.data);
        require(success, "delegatecall failed");
    }

    fallback() external payable {
        address extension = extensions[msg.sig];
        require(extension != address(0));
        assembly {
            calldatacopy(0, 0, calldatasize())
            let result := delegatecall(
                gas(),
                extension,
                0,
                calldatasize(),
                0,
                0
            )
            returndatacopy(0, 0, returndatasize())
            switch result
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    receive() external payable {}
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.19;
import "./KillaCubsERC721.sol";

abstract contract KillaCubsStaking is KillaCubsERC721 {
    

}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.19;

import "operator-filter-registry/src/DefaultOperatorFilterer.sol";
import "./KillaCubsStorage.sol";

abstract contract KillaCubsERC721 is KillaCubsStorage {
    constructor(
        address bitsAddress,
        address gearAddress,
        address bearsAddress,
        address passesAddress,
        address kiltonAddress,
        address labsAddress,
        address superOwner
    )
        KillaCubsStorage(
            bitsAddress,
            gearAddress,
            bearsAddress,
            passesAddress,
            kiltonAddress,
            labsAddress,
            superOwner
        )
    {
        name = "KillaCubs";
        symbol = "KillaCubs";
        _setDefaultRoyalty(msg.sender, 500);
    }

    function _mint(address to, uint256 n, bool staked) internal {
        uint256 tokenId = 3334 + counters.batched;
        uint256 end = tokenId + n - 1;
        if (end > 8888) revert NotAllowed();

        Token storage token = tokens[tokenId];
        token.owner = to;

        counters.batched += uint16(n);
        wallets[to].batchedMints += uint16(n);

        if (staked) {
            incubator.add(to, tokenId, n);
            token.stakeTimestamp = uint32(block.timestamp);
            counters.stakes += uint16(n);
            wallets[to].stakes += uint16(n);

            while (tokenId <= end) {
                emit Transfer(address(0), to, tokenId);
                emit Transfer(to, address(this), tokenId);
                tokenId++;
            }
        } else {
            wallets[to].balance += uint16(n);
            while (tokenId <= end) {
                emit Transfer(address(0), to, tokenId);
                tokenId++;
            }
        }
    }

    function _mint(
        address to,
        uint256[] calldata tokenIds,
        bool staked
    ) internal {
        for (uint256 i = 0; i < tokenIds.length; i++) {
            uint256 id = tokenIds[i];

            Token storage token = tokens[id];

            if (id == 0) revert NotAllowed();
            if (token.owner != address(0)) revert NotAllowed();
            if (token.linkedPrev != 0) revert NotAllowed();

            token.owner = to;
            emit Transfer(address(0), to, id);

            if (staked) {
                emit Transfer(to, address(this), id);
                token.stakeTimestamp = uint32(block.timestamp);
            }

            if (i == 0) {
                token.owner = to;
            } else {
                token.linkedPrev = uint16(tokenIds[i - 1]);
                tokens[tokenIds[i - 1]].linkedNext = uint16(id);
            }
        }

        counters.linked += uint16(tokenIds.length);
        if (staked) {
            counters.stakes += uint16(tokenIds.length);
            wallets[to].stakes += uint16(tokenIds.length);
            incubator.add(to, tokenIds);
        } else {
            wallets[to].balance += uint16(tokenIds.length);
        }
        wallets[to].linkedMints += uint16(tokenIds.length);
    }

    function totalSupply() public view virtual returns (uint256) {
        return counters.linked + counters.batched;
    }

    function balanceOf(
        address owner
    ) external view virtual returns (uint256 balance) {
        if (owner == address(this)) return counters.stakes;
        return wallets[owner].balance;
    }

    function ownerOf(uint256 id) public view virtual returns (address) {
        Token memory token = resolveToken(id);
        if (token.stakeTimestamp != 0) return address(this);
        return token.owner;
    }

    function rightfulOwnerOf(
        uint256 tokenId
    ) public view virtual returns (address) {
        return resolveToken(tokenId).owner;
    }

    function resolveToken(uint256 id) public view returns (Token memory) {
        Token memory token = tokens[id];
        if (token.owner == address(0)) {
            Token memory temp = token;
            if (token.linkedPrev != 0) {
                do token = tokens[token.linkedPrev]; while (
                    token.owner == address(0)
                );
            } else if (id > 3333 && id <= 3333 + counters.batched) {
                do token = tokens[--id]; while (token.owner == address(0));
            } else {
                revert NonExistentToken();
            }

            token.bit = temp.bit;
            token.linkedNext = temp.linkedNext;
            token.linkedPrev = temp.linkedPrev;
        }
        return token;
    }

    function resolveTokens(
        uint256[] calldata ids
    ) public view returns (Token[] memory) {
        Token[] memory ret = new Token[](ids.length);
        bool skip = false;
        Token memory token;
        for (uint256 i = 0; i < ids.length; i++) {
            uint256 id = ids[i];

            if (skip) skip = false;
            else token = resolveToken(id);

            ret[i] = token;

            uint256 nextId;
            if (token.linkedNext != 0) {
                nextId = token.linkedNext;
            } else if (id > 3333 && id < 3333 + counters.batched) {
                nextId = id + 1;
            } else {
                continue;
            }

            if (tokens[nextId].owner != address(0)) continue;
            if (i + 1 < ids.length && ids[i + 1] == nextId) {
                skip = true;
                token.bit = tokens[nextId].bit;
                token.linkedNext = tokens[nextId].linkedNext;
                token.linkedPrev = tokens[nextId].linkedPrev;
                continue;
            }
        }
        return ret;
    }

    function safeTransferFrom(
        address from,
        address to,
        uint256 id,
        bytes memory data
    ) public virtual {
        transferFrom(from, to, id);
        if (to.code.length != 0)
            if (!_checkOnERC721Received(from, to, id, data))
                revert TransferToNonERC721ReceiverImplementer();
    }

    function safeTransferFrom(
        address from,
        address to,
        uint256 id
    ) public virtual {
        transferFrom(from, to, id);
        if (to.code.length != 0)
            if (!_checkOnERC721Received(from, to, id, ""))
                revert TransferToNonERC721ReceiverImplementer();
    }

    function transferFrom(
        address from,
        address to,
        uint256 id
    ) public virtual onlyAllowedOperator(from) {
        if (to == from) revert NotAllowed();
        if (to == address(0)) revert NotAllowed();

        Token memory token = resolveToken(id);

        if (token.stakeTimestamp > 0 || token.owner != from)
            revert NotAllowed();

        if (msg.sender != token.owner) {
            if (
                !operatorApprovals[token.owner][msg.sender] &&
                tokenApprovals[id] != msg.sender
            ) revert NotAllowed();
        }

        if (tokenApprovals[id] != address(0)) {
            delete tokenApprovals[id];
            emit Approval(from, address(0), id);
        }

        emit Transfer(token.owner, to, id);
        _bakeNextToken(token, id);

        token.owner = to;

        wallets[from].balance--;
        wallets[to].balance++;
        tokens[id] = token;
    }

    function _bakeNextToken(Token memory current, uint256 id) internal {
        uint256 nextId;
        if (current.linkedNext != 0) {
            nextId = current.linkedNext;
        } else if (id > 3333) {
            nextId = id + 1;
            if (nextId > 3333 + counters.batched) return;
        } else {
            return;
        }

        Token memory temp = tokens[nextId];
        if (temp.owner != address(0)) return;

        tokens[nextId] = current;

        tokens[nextId].linkedNext = temp.linkedNext;
        tokens[nextId].linkedPrev = temp.linkedPrev;
        tokens[nextId].bit = temp.bit;
    }

    function approve(
        address to,
        uint256 id
    ) public virtual onlyAllowedOperatorApproval(to) {
        address owner = ownerOf(id);
        if (msg.sender != owner) {
            if (!isApprovedForAll(owner, msg.sender)) {
                revert NotAllowed();
            }
        }

        tokenApprovals[id] = to;
        emit Approval(msg.sender, to, id);
    }

    function setApprovalForAll(
        address operator,
        bool approved
    ) public virtual onlyAllowedOperatorApproval(operator) {
        operatorApprovals[msg.sender][operator] = approved;
        emit ApprovalForAll(msg.sender, operator, approved);
    }

    function getApproved(
        uint256 id
    ) external view virtual returns (address operator) {
        return tokenApprovals[id];
    }

    function isApprovedForAll(
        address owner,
        address operator
    ) public view virtual returns (bool) {
        return operatorApprovals[owner][operator];
    }

    function supportsInterface(
        bytes4 interfaceId
    ) public view virtual override returns (bool) {
        return
            interfaceId == 0x01ffc9a7 || // ERC165
            interfaceId == 0x80ac58cd || // ERC721
            interfaceId == 0x5b5e139f || // ERC721Metadata;
            interfaceId == 0x4e2312e0 || // ERC1155Receiver
            interfaceId == 0x2a55205a; // ERC2981
    }

    function _checkOnERC721Received(
        address from,
        address to,
        uint256 id,
        bytes memory data
    ) private returns (bool) {
        try
            IERC721Receiver(to).onERC721Received(msg.sender, from, id, data)
        returns (bytes4 retval) {
            return retval == IERC721Receiver.onERC721Received.selector;
        } catch (bytes memory reason) {
            if (reason.length == 0) {
                revert("ERC721: transfer to non ERC721Receiver implementer");
            } else {
                assembly {
                    revert(add(32, reason), mload(reason))
                }
            }
        }
    }

    function onERC1155Received(
        address,
        address,
        uint256,
        uint256,
        bytes calldata
    ) external pure returns (bytes4) {
        return
            bytes4(
                keccak256(
                    "onERC1155Received(address,address,uint256,uint256,bytes)"
                )
            );
    }

    function calculateIncubationPhase(
        uint256 phase,
        uint256 ts,
        uint256 gen
    ) public view returns (uint256) {
        if (ts != 0) {
            phase += (block.timestamp - ts) / 1 weeks;
        }
        uint256 max = gen == 0
            ? initialIncubationLength
            : remixIncubationLength;
        if (phase > max) return max;
        return phase;
    }

    function getIncubationPhase(uint256 id) public view returns (uint256) {
        Token memory token = resolveToken(id);
        return
            calculateIncubationPhase(
                token.incubationPhase,
                token.stakeTimestamp,
                token.generation
            );
    }

    function getGeneration(uint256 id) public view returns (uint256) {
        if (laterGenerations[id] != 0) return laterGenerations[id];
        Token memory token = resolveToken(id);
        return token.generation;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.19;

import "@openzeppelin/contracts/token/common/ERC2981.sol";
import "operator-filter-registry/src/DefaultOperatorFilterer.sol";
import "../SuperOwnable.sol";

interface IKillaPasses {
    function burn(uint256 typeId, address owner, uint256 n) external;
}

interface IURIManager {
    function getTokenURI(
        uint256 id,
        Token memory token
    ) external view returns (string memory);
}

interface IKILLABITS {
    function detachUpgrade(uint256 token) external;

    function tokenUpgrade(uint256 token) external view returns (uint64);

    function transferFrom(address from, address to, uint256 tokenId) external;
}

interface IKILLAGEAR {
    function detokenize(
        address addr,
        uint256[] calldata types,
        uint256[] calldata amounts
    ) external;
}

struct Token {
    address owner;
    uint16 linkedNext;
    uint16 linkedPrev;
    uint32 stakeTimestamp;
    uint8 generation;
    uint8 incubationPhase;
    uint16 bit;
}

struct Wallet {
    uint16 balance;
    uint16 stakes;
    uint16 linkedMints;
    uint16 batchedMints;
    uint16 allowlistMints;
    uint16 privateMints;
    uint16 holderMints;
    uint16 redeems;
}

struct MintCounters {
    uint16 linked;
    uint16 batched;
    uint16 redeems;
    uint16 stakes;
}

interface IIncubator {
    function add(address owner, uint256[] calldata tokenIds) external;

    function add(address owner, uint256 start, uint256 count) external;

    function remove(address owner, uint256[] calldata tokenIds) external;

    function remove(address owner, uint256 start, uint256 count) external;
}

interface IERC721Receiver {
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

interface IERC721 {
    function ownerOf(uint256 tokenId) external view returns (address owner);
}

abstract contract KillaCubsStorage is
    DefaultOperatorFilterer,
    SuperOwnable,
    ERC2981
{
    string public name;
    string public symbol;

    uint256 public activeGeneration = 1;
    uint256 public initialIncubationLength = 8;
    uint256 public remixIncubationLength = 4;

    IIncubator public incubator;

    MintCounters public counters;

    mapping(address => Wallet) public wallets;
    mapping(uint256 => Token) public tokens;
    mapping(uint256 => address) internal tokenApprovals;
    mapping(address => mapping(address => bool)) internal operatorApprovals;

    IKILLABITS public bitsContract;
    IKILLAGEAR public gearContract;

    IERC721 public bears;
    IKillaPasses public passes;
    IERC721 public kilton;
    IERC721 public labs;
    bool public claimsStarted;

    mapping(uint256 => bool) public bitsUsed;
    mapping(uint256 => uint256) public laterGenerations;

    address public airdropper;
    address public staker;
    address public claimer;

    IURIManager public uriManager;

    string public baseURI;
    string public baseURIFinalized;
    uint256 public finalizedGeneration;

    mapping(bytes4 => address) extensions;
    mapping(uint256 => address) externalStorage;

    error TransferToNonERC721ReceiverImplementer();
    error NonExistentToken();
    error NotAllowed();
    error Overflow();
    error ClaimNotStarted();

    event BitsAdded(uint256[] indexed tokens, uint16[] indexed bits);
    event BitRemoved(uint256 indexed token, uint16 indexed bit);
    event FastForwarded(uint256[] indexed tokens, uint256 indexed numberOfDays);

    event Transfer(
        address indexed from,
        address indexed to,
        uint256 indexed tokenId
    );

    event Approval(
        address indexed owner,
        address indexed approved,
        uint256 indexed tokenId
    );

    event ApprovalForAll(
        address indexed owner,
        address indexed operator,
        bool approved
    );

    constructor(
        address bitsAddress,
        address gearAddress,
        address bearsAddress,
        address passesAddress,
        address kiltonAddress,
        address labsAddress,
        address superOwner
    ) SuperOwnable(superOwner) {
        bitsContract = IKILLABITS(bitsAddress);
        gearContract = IKILLAGEAR(gearAddress);
        bears = IERC721(bearsAddress);
        passes = IKillaPasses(passesAddress);
        kilton = IERC721(kiltonAddress);
        labs = IERC721(labsAddress);
    }

    function setAirdropper(address a) external onlyOwner {
        airdropper = a;
    }

    function setStaker(address a) external onlyOwner {
        staker = a;
    }

    function setClaimer(address a) external onlyOwner {
        claimer = a;
    }

    function setExtension(bytes4 id, address a) external onlyOwner {
        extensions[id] = a;
    }

    function setExternalStorage(uint256 id, address a) external onlyOwner {
        externalStorage[id] = a;
    }

    function _delegatecall(
        address target,
        bytes memory data
    ) internal returns (bool, bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        if (!success) {
            if (returndata.length == 0) revert();
            assembly {
                revert(add(32, returndata), mload(returndata))
            }
        }
        return (success, returndata);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import {OperatorFilterer} from "./OperatorFilterer.sol";

/**
 * @title  DefaultOperatorFilterer
 * @notice Inherits from OperatorFilterer and automatically subscribes to the default OpenSea subscription.
 */
abstract contract DefaultOperatorFilterer is OperatorFilterer {
    address constant DEFAULT_SUBSCRIPTION = address(0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6);

    constructor() OperatorFilterer(DEFAULT_SUBSCRIPTION, true) {}
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.19;

abstract contract SuperOwnable {
    address public owner;
    address public superOwner;

    mapping(address => bool) authorities;

    error Denied();

    event OwnershipTransferred(
        address indexed previousOwner,
        address indexed newOwner
    );

    constructor(address superOwner_) {
        _transferOwnership(msg.sender);
        superOwner = superOwner_;
    }

    modifier onlyOwner() {
        if (msg.sender != owner && msg.sender != superOwner) revert Denied();
        _;
    }

    modifier onlySuperOwner() {
        if (msg.sender != superOwner) revert Denied();
        _;
    }

    modifier onlyAuthority() {
        if (!authorities[msg.sender] && msg.sender != owner) revert Denied();
        _;
    }

    function transferOwnership(address addr) public virtual onlyOwner {
        _transferOwnership(addr);
    }

    function _transferOwnership(address addr) internal virtual {
        address oldOwner = owner;
        owner = addr;
        emit OwnershipTransferred(oldOwner, addr);
    }

    function setSuperOwner(address addr) public onlySuperOwner {
        if (addr == address(0)) revert Denied();
        superOwner = addr;
    }

    function toggleAuthority(address addr, bool enabled) public onlyOwner {
        authorities[addr] = enabled;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/common/ERC2981.sol)

pragma solidity ^0.8.0;

import "../../interfaces/IERC2981.sol";
import "../../utils/introspection/ERC165.sol";

/**
 * @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information.
 *
 * Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for
 * specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first.
 *
 * Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the
 * fee is specified in basis points by default.
 *
 * IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See
 * https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the EIP. Marketplaces are expected to
 * voluntarily pay royalties together with sales, but note that this standard is not yet widely supported.
 *
 * _Available since v4.5._
 */
abstract contract ERC2981 is IERC2981, ERC165 {
    struct RoyaltyInfo {
        address receiver;
        uint96 royaltyFraction;
    }

    RoyaltyInfo private _defaultRoyaltyInfo;
    mapping(uint256 => RoyaltyInfo) private _tokenRoyaltyInfo;

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
        return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @inheritdoc IERC2981
     */
    function royaltyInfo(uint256 _tokenId, uint256 _salePrice) public view virtual override returns (address, uint256) {
        RoyaltyInfo memory royalty = _tokenRoyaltyInfo[_tokenId];

        if (royalty.receiver == address(0)) {
            royalty = _defaultRoyaltyInfo;
        }

        uint256 royaltyAmount = (_salePrice * royalty.royaltyFraction) / _feeDenominator();

        return (royalty.receiver, royaltyAmount);
    }

    /**
     * @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a
     * fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an
     * override.
     */
    function _feeDenominator() internal pure virtual returns (uint96) {
        return 10000;
    }

    /**
     * @dev Sets the royalty information that all ids in this contract will default to.
     *
     * Requirements:
     *
     * - `receiver` cannot be the zero address.
     * - `feeNumerator` cannot be greater than the fee denominator.
     */
    function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual {
        require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
        require(receiver != address(0), "ERC2981: invalid receiver");

        _defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator);
    }

    /**
     * @dev Removes default royalty information.
     */
    function _deleteDefaultRoyalty() internal virtual {
        delete _defaultRoyaltyInfo;
    }

    /**
     * @dev Sets the royalty information for a specific token id, overriding the global default.
     *
     * Requirements:
     *
     * - `receiver` cannot be the zero address.
     * - `feeNumerator` cannot be greater than the fee denominator.
     */
    function _setTokenRoyalty(
        uint256 tokenId,
        address receiver,
        uint96 feeNumerator
    ) internal virtual {
        require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
        require(receiver != address(0), "ERC2981: Invalid parameters");

        _tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator);
    }

    /**
     * @dev Resets royalty information for the token id back to the global default.
     */
    function _resetTokenRoyalty(uint256 tokenId) internal virtual {
        delete _tokenRoyaltyInfo[tokenId];
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import {IOperatorFilterRegistry} from "./IOperatorFilterRegistry.sol";

/**
 * @title  OperatorFilterer
 * @notice Abstract contract whose constructor automatically registers and optionally subscribes to or copies another
 *         registrant's entries in the OperatorFilterRegistry.
 * @dev    This smart contract is meant to be inherited by token contracts so they can use the following:
 *         - `onlyAllowedOperator` modifier for `transferFrom` and `safeTransferFrom` methods.
 *         - `onlyAllowedOperatorApproval` modifier for `approve` and `setApprovalForAll` methods.
 */
abstract contract OperatorFilterer {
    error OperatorNotAllowed(address operator);

    IOperatorFilterRegistry public constant OPERATOR_FILTER_REGISTRY =
        IOperatorFilterRegistry(0x000000000000AAeB6D7670E522A718067333cd4E);

    constructor(address subscriptionOrRegistrantToCopy, bool subscribe) {
        // If an inheriting token contract is deployed to a network without the registry deployed, the modifier
        // will not revert, but the contract will need to be registered with the registry once it is deployed in
        // order for the modifier to filter addresses.
        if (address(OPERATOR_FILTER_REGISTRY).code.length > 0) {
            if (subscribe) {
                OPERATOR_FILTER_REGISTRY.registerAndSubscribe(address(this), subscriptionOrRegistrantToCopy);
            } else {
                if (subscriptionOrRegistrantToCopy != address(0)) {
                    OPERATOR_FILTER_REGISTRY.registerAndCopyEntries(address(this), subscriptionOrRegistrantToCopy);
                } else {
                    OPERATOR_FILTER_REGISTRY.register(address(this));
                }
            }
        }
    }

    modifier onlyAllowedOperator(address from) virtual {
        // Allow spending tokens from addresses with balance
        // Note that this still allows listings and marketplaces with escrow to transfer tokens if transferred
        // from an EOA.
        if (from != msg.sender) {
            _checkFilterOperator(msg.sender);
        }
        _;
    }

    modifier onlyAllowedOperatorApproval(address operator) virtual {
        _checkFilterOperator(operator);
        _;
    }

    function _checkFilterOperator(address operator) internal view virtual {
        // Check registry code length to facilitate testing in environments without a deployed registry.
        if (address(OPERATOR_FILTER_REGISTRY).code.length > 0) {
            if (!OPERATOR_FILTER_REGISTRY.isOperatorAllowed(address(this), operator)) {
                revert OperatorNotAllowed(operator);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

interface IOperatorFilterRegistry {
    function isOperatorAllowed(address registrant, address operator) external view returns (bool);
    function register(address registrant) external;
    function registerAndSubscribe(address registrant, address subscription) external;
    function registerAndCopyEntries(address registrant, address registrantToCopy) external;
    function unregister(address addr) external;
    function updateOperator(address registrant, address operator, bool filtered) external;
    function updateOperators(address registrant, address[] calldata operators, bool filtered) external;
    function updateCodeHash(address registrant, bytes32 codehash, bool filtered) external;
    function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external;
    function subscribe(address registrant, address registrantToSubscribe) external;
    function unsubscribe(address registrant, bool copyExistingEntries) external;
    function subscriptionOf(address addr) external returns (address registrant);
    function subscribers(address registrant) external returns (address[] memory);
    function subscriberAt(address registrant, uint256 index) external returns (address);
    function copyEntriesOf(address registrant, address registrantToCopy) external;
    function isOperatorFiltered(address registrant, address operator) external returns (bool);
    function isCodeHashOfFiltered(address registrant, address operatorWithCode) external returns (bool);
    function isCodeHashFiltered(address registrant, bytes32 codeHash) external returns (bool);
    function filteredOperators(address addr) external returns (address[] memory);
    function filteredCodeHashes(address addr) external returns (bytes32[] memory);
    function filteredOperatorAt(address registrant, uint256 index) external returns (address);
    function filteredCodeHashAt(address registrant, uint256 index) external returns (bytes32);
    function isRegistered(address addr) external returns (bool);
    function codeHashOf(address addr) external returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol)

pragma solidity ^0.8.0;

import "../utils/introspection/IERC165.sol";

/**
 * @dev Interface for the NFT Royalty Standard.
 *
 * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
 * support for royalty payments across all NFT marketplaces and ecosystem participants.
 *
 * _Available since v4.5._
 */
interface IERC2981 is IERC165 {
    /**
     * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
     * exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
     */
    function royaltyInfo(uint256 tokenId, uint256 salePrice)
        external
        view
        returns (address receiver, uint256 royaltyAmount);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):