Contract Name:
CEtherDelegator
Contract Source Code:
pragma solidity ^0.5.16;
/**
* @title Careful Math
* @author Compound
* @notice Derived from OpenZeppelin's SafeMath library
* https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
*/
contract CarefulMath {
/**
* @dev Possible error codes that we can return
*/
enum MathError {
NO_ERROR,
DIVISION_BY_ZERO,
INTEGER_OVERFLOW,
INTEGER_UNDERFLOW
}
/**
* @dev Multiplies two numbers, returns an error on overflow.
*/
function mulUInt(uint a, uint b) internal pure returns (MathError, uint) {
if (a == 0) {
return (MathError.NO_ERROR, 0);
}
uint c = a * b;
if (c / a != b) {
return (MathError.INTEGER_OVERFLOW, 0);
} else {
return (MathError.NO_ERROR, c);
}
}
/**
* @dev Integer division of two numbers, truncating the quotient.
*/
function divUInt(uint a, uint b) internal pure returns (MathError, uint) {
if (b == 0) {
return (MathError.DIVISION_BY_ZERO, 0);
}
return (MathError.NO_ERROR, a / b);
}
/**
* @dev Subtracts two numbers, returns an error on overflow (i.e. if subtrahend is greater than minuend).
*/
function subUInt(uint a, uint b) internal pure returns (MathError, uint) {
if (b <= a) {
return (MathError.NO_ERROR, a - b);
} else {
return (MathError.INTEGER_UNDERFLOW, 0);
}
}
/**
* @dev Adds two numbers, returns an error on overflow.
*/
function addUInt(uint a, uint b) internal pure returns (MathError, uint) {
uint c = a + b;
if (c >= a) {
return (MathError.NO_ERROR, c);
} else {
return (MathError.INTEGER_OVERFLOW, 0);
}
}
/**
* @dev add a and b and then subtract c
*/
function addThenSubUInt(uint a, uint b, uint c) internal pure returns (MathError, uint) {
(MathError err0, uint sum) = addUInt(a, b);
if (err0 != MathError.NO_ERROR) {
return (err0, 0);
}
return subUInt(sum, c);
}
}
pragma solidity ^0.5.16;
import "./CErc20Delegate.sol";
/**
* @title Compound's CDai Contract
* @notice CToken which wraps Multi-Collateral DAI
* @author Compound
*/
contract CDaiDelegate is CErc20Delegate {
/**
* @notice DAI adapter address
*/
address public daiJoinAddress;
/**
* @notice DAI Savings Rate (DSR) pot address
*/
address public potAddress;
/**
* @notice DAI vat address
*/
address public vatAddress;
/**
* @notice Delegate interface to become the implementation
* @param data The encoded arguments for becoming
*/
function _becomeImplementation(bytes calldata data) external {
require(msg.sender == address(this) || hasAdminRights(), "only self or admin may call _becomeImplementation");
// Decode data
(address daiJoinAddress_, address potAddress_) = abi.decode(data, (address, address));
return _becomeImplementation(daiJoinAddress_, potAddress_);
}
/**
* @notice Explicit interface to become the implementation
* @param daiJoinAddress_ DAI adapter address
* @param potAddress_ DAI Savings Rate (DSR) pot address
*/
function _becomeImplementation(address daiJoinAddress_, address potAddress_) internal {
// Get dai and vat and sanity check the underlying
DaiJoinLike daiJoin = DaiJoinLike(daiJoinAddress_);
PotLike pot = PotLike(potAddress_);
GemLike dai = daiJoin.dai();
VatLike vat = daiJoin.vat();
require(address(dai) == underlying, "DAI must be the same as underlying");
// Remember the relevant addresses
daiJoinAddress = daiJoinAddress_;
potAddress = potAddress_;
vatAddress = address(vat);
// Approve moving our DAI into the vat through daiJoin
dai.approve(daiJoinAddress, uint(-1));
// Approve the pot to transfer our funds within the vat
vat.hope(potAddress);
vat.hope(daiJoinAddress);
// Accumulate DSR interest -- must do this in order to doTransferIn
pot.drip();
// Transfer all cash in (doTransferIn does this regardless of amount)
doTransferIn(address(this), 0);
}
/**
* @notice Delegate interface to resign the implementation
*/
function _resignImplementation() internal {
// Transfer all cash out of the DSR - note that this relies on self-transfer
DaiJoinLike daiJoin = DaiJoinLike(daiJoinAddress);
PotLike pot = PotLike(potAddress);
VatLike vat = VatLike(vatAddress);
// Accumulate interest
pot.drip();
// Calculate the total amount in the pot, and move it out
uint pie = pot.pie(address(this));
pot.exit(pie);
// Checks the actual balance of DAI in the vat after the pot exit
uint bal = vat.dai(address(this));
// Remove our whole balance
daiJoin.exit(address(this), bal / RAY);
}
/*** CToken Overrides ***/
/**
* @notice Accrues DSR then applies accrued interest to total borrows and reserves
* @dev This calculates interest accrued from the last checkpointed block
* up to the current block and writes new checkpoint to storage.
*/
function accrueInterest() public returns (uint) {
// Accumulate DSR interest
PotLike(potAddress).drip();
// Accumulate CToken interest
return super.accrueInterest();
}
/*** Safe Token ***/
/**
* @notice Gets balance of this contract in terms of the underlying
* @dev This excludes the value of the current message, if any
* @return The quantity of underlying tokens owned by this contract
*/
function getCashPrior() internal view returns (uint) {
PotLike pot = PotLike(potAddress);
uint pie = pot.pie(address(this));
return mul(pot.chi(), pie) / RAY;
}
/**
* @notice Transfer the underlying to this contract and sweep into DSR pot
* @param from Address to transfer funds from
* @param amount Amount of underlying to transfer
* @return The actual amount that is transferred
*/
function doTransferIn(address from, uint amount) internal returns (uint) {
// Perform the EIP-20 transfer in
EIP20Interface token = EIP20Interface(underlying);
require(token.transferFrom(from, address(this), amount), "unexpected EIP-20 transfer in return");
DaiJoinLike daiJoin = DaiJoinLike(daiJoinAddress);
GemLike dai = GemLike(underlying);
PotLike pot = PotLike(potAddress);
VatLike vat = VatLike(vatAddress);
// Convert all our DAI to internal DAI in the vat
daiJoin.join(address(this), dai.balanceOf(address(this)));
// Checks the actual balance of DAI in the vat after the join
uint bal = vat.dai(address(this));
// Calculate the percentage increase to th pot for the entire vat, and move it in
// Note: We may leave a tiny bit of DAI in the vat...but we do the whole thing every time
uint pie = bal / pot.chi();
pot.join(pie);
return amount;
}
/**
* @notice Transfer the underlying from this contract, after sweeping out of DSR pot
* @param to Address to transfer funds to
* @param amount Amount of underlying to transfer
*/
function doTransferOut(address payable to, uint amount) internal {
DaiJoinLike daiJoin = DaiJoinLike(daiJoinAddress);
PotLike pot = PotLike(potAddress);
// Calculate the percentage decrease from the pot, and move that much out
// Note: Use a slightly larger pie size to ensure that we get at least amount in the vat
uint pie = add(mul(amount, RAY) / pot.chi(), 1);
pot.exit(pie);
daiJoin.exit(to, amount);
}
/*** Maker Internals ***/
uint256 constant RAY = 10 ** 27;
function add(uint x, uint y) internal pure returns (uint z) {
require((z = x + y) >= x, "add-overflow");
}
function mul(uint x, uint y) internal pure returns (uint z) {
require(y == 0 || (z = x * y) / y == x, "mul-overflow");
}
}
/*** Maker Interfaces ***/
interface PotLike {
function chi() external view returns (uint);
function pie(address) external view returns (uint);
function drip() external returns (uint);
function join(uint) external;
function exit(uint) external;
}
interface GemLike {
function approve(address, uint) external;
function balanceOf(address) external view returns (uint);
function transferFrom(address, address, uint) external returns (bool);
}
interface VatLike {
function dai(address) external view returns (uint);
function hope(address) external;
}
interface DaiJoinLike {
function vat() external returns (VatLike);
function dai() external returns (GemLike);
function join(address, uint) external payable;
function exit(address, uint) external;
}
pragma solidity ^0.5.16;
import "./CToken.sol";
interface CompLike {
function delegate(address delegatee) external;
}
/**
* @title Compound's CErc20 Contract
* @notice CTokens which wrap an EIP-20 underlying
* @dev This contract should not to be deployed on its own; instead, deploy `CErc20Delegator` (proxy contract) and `CErc20Delegate` (logic/implementation contract).
* @author Compound
*/
contract CErc20 is CToken, CErc20Interface {
/**
* @notice Initialize the new money market
* @param underlying_ The address of the underlying asset
* @param comptroller_ The address of the Comptroller
* @param interestRateModel_ The address of the interest rate model
* @param name_ ERC-20 name of this token
* @param symbol_ ERC-20 symbol of this token
*/
function initialize(address underlying_,
ComptrollerInterface comptroller_,
InterestRateModel interestRateModel_,
string memory name_,
string memory symbol_,
uint256 reserveFactorMantissa_,
uint256 adminFeeMantissa_) public {
// CToken initialize does the bulk of the work
uint256 initialExchangeRateMantissa_ = 0.2e18;
uint8 decimals_ = EIP20Interface(underlying_).decimals();
super.initialize(comptroller_, interestRateModel_, initialExchangeRateMantissa_, name_, symbol_, decimals_, reserveFactorMantissa_, adminFeeMantissa_);
// Set underlying and sanity check it
underlying = underlying_;
EIP20Interface(underlying).totalSupply();
}
/*** User Interface ***/
/**
* @notice Sender supplies assets into the market and receives cTokens in exchange
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param mintAmount The amount of the underlying asset to supply
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function mint(uint mintAmount) external returns (uint) {
(uint err,) = mintInternal(mintAmount);
return err;
}
/**
* @notice Sender redeems cTokens in exchange for the underlying asset
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param redeemTokens The number of cTokens to redeem into underlying
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function redeem(uint redeemTokens) external returns (uint) {
return redeemInternal(redeemTokens);
}
/**
* @notice Sender redeems cTokens in exchange for a specified amount of underlying asset
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param redeemAmount The amount of underlying to redeem
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function redeemUnderlying(uint redeemAmount) external returns (uint) {
return redeemUnderlyingInternal(redeemAmount);
}
/**
* @notice Sender borrows assets from the protocol to their own address
* @param borrowAmount The amount of the underlying asset to borrow
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function borrow(uint borrowAmount) external returns (uint) {
return borrowInternal(borrowAmount);
}
/**
* @notice Sender repays their own borrow
* @param repayAmount The amount to repay
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function repayBorrow(uint repayAmount) external returns (uint) {
(uint err,) = repayBorrowInternal(repayAmount);
return err;
}
/**
* @notice Sender repays a borrow belonging to borrower
* @param borrower the account with the debt being payed off
* @param repayAmount The amount to repay
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function repayBorrowBehalf(address borrower, uint repayAmount) external returns (uint) {
(uint err,) = repayBorrowBehalfInternal(borrower, repayAmount);
return err;
}
/**
* @notice The sender liquidates the borrowers collateral.
* The collateral seized is transferred to the liquidator.
* @param borrower The borrower of this cToken to be liquidated
* @param repayAmount The amount of the underlying borrowed asset to repay
* @param cTokenCollateral The market in which to seize collateral from the borrower
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function liquidateBorrow(address borrower, uint repayAmount, CTokenInterface cTokenCollateral) external returns (uint) {
(uint err,) = liquidateBorrowInternal(borrower, repayAmount, cTokenCollateral);
return err;
}
/*** Safe Token ***/
/**
* @notice Gets balance of this contract in terms of the underlying
* @dev This excludes the value of the current message, if any
* @return The quantity of underlying tokens owned by this contract
*/
function getCashPrior() internal view returns (uint) {
EIP20Interface token = EIP20Interface(underlying);
return token.balanceOf(address(this));
}
/**
* @dev Similar to EIP20 transfer, except it handles a False result from `transferFrom` and reverts in that case.
* This will revert due to insufficient balance or insufficient allowance.
* This function returns the actual amount received,
* which may be less than `amount` if there is a fee attached to the transfer.
*
* Note: This wrapper safely handles non-standard ERC-20 tokens that do not return a value.
* See here: https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
*/
function doTransferIn(address from, uint amount) internal returns (uint) {
uint balanceBefore = EIP20Interface(underlying).balanceOf(address(this));
_callOptionalReturn(abi.encodeWithSelector(EIP20NonStandardInterface(underlying).transferFrom.selector, from, address(this), amount), "TOKEN_TRANSFER_IN_FAILED");
// Calculate the amount that was *actually* transferred
uint balanceAfter = EIP20Interface(underlying).balanceOf(address(this));
require(balanceAfter >= balanceBefore, "TOKEN_TRANSFER_IN_OVERFLOW");
return balanceAfter - balanceBefore; // underflow already checked above, just subtract
}
/**
* @dev Similar to EIP20 transfer, except it handles a False success from `transfer` and returns an explanatory
* error code rather than reverting. If caller has not called checked protocol's balance, this may revert due to
* insufficient cash held in this contract. If caller has checked protocol's balance prior to this call, and verified
* it is >= amount, this should not revert in normal conditions.
*
* Note: This wrapper safely handles non-standard ERC-20 tokens that do not return a value.
* See here: https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
*/
function doTransferOut(address payable to, uint amount) internal {
_callOptionalReturn(abi.encodeWithSelector(EIP20NonStandardInterface(underlying).transfer.selector, to, amount), "TOKEN_TRANSFER_OUT_FAILED");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param data The call data (encoded using abi.encode or one of its variants).
* @param errorMessage The revert string to return on failure.
*/
function _callOptionalReturn(bytes memory data, string memory errorMessage) internal {
bytes memory returndata = _functionCall(underlying, data, errorMessage);
if (returndata.length > 0) require(abi.decode(returndata, (bool)), errorMessage);
}
/**
* @notice Admin call to delegate the votes of the COMP-like underlying
* @param compLikeDelegatee The address to delegate votes to
* @dev CTokens whose underlying are not CompLike should revert here
*/
function _delegateCompLikeTo(address compLikeDelegatee) external {
require(hasAdminRights(), "only the admin may set the comp-like delegate");
CompLike(underlying).delegate(compLikeDelegatee);
}
}
pragma solidity ^0.5.16;
import "./CErc20.sol";
/**
* @title Compound's CErc20Delegate Contract
* @notice CTokens which wrap an EIP-20 underlying and are delegated to
* @author Compound
*/
contract CErc20Delegate is CDelegateInterface, CErc20 {
/**
* @notice Construct an empty delegate
*/
constructor() public {}
/**
* @notice Called by the delegator on a delegate to initialize it for duty
* @param data The encoded bytes data for any initialization
*/
function _becomeImplementation(bytes calldata data) external {
// Shh -- currently unused
data;
// Shh -- we don't ever want this hook to be marked pure
if (false) {
implementation = address(0);
}
require(msg.sender == address(this) || hasAdminRights(), "!self");
// Make sure admin storage is set up correctly
__admin = address(0);
__adminHasRights = false;
__fuseAdminHasRights = false;
}
/**
* @notice Called by the delegator on a delegate to forfeit its responsibility
*/
function _resignImplementation() internal {
// Shh -- we don't ever want this hook to be marked pure
if (false) {
implementation = address(0);
}
}
/**
* @dev Internal function to update the implementation of the delegator
* @param implementation_ The address of the new implementation for delegation
* @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation
* @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation
*/
function _setImplementationInternal(address implementation_, bool allowResign, bytes memory becomeImplementationData) internal {
// Check whitelist
require(fuseAdmin.cErc20DelegateWhitelist(implementation, implementation_, allowResign), "!impl");
// Call _resignImplementation internally (this delegate's code)
if (allowResign) _resignImplementation();
// Get old implementation
address oldImplementation = implementation;
// Store new implementation
implementation = implementation_;
// Call _becomeImplementation externally (delegating to new delegate's code)
_functionCall(address(this), abi.encodeWithSignature("_becomeImplementation(bytes)", becomeImplementationData), "!become");
// Emit event
emit NewImplementation(oldImplementation, implementation);
}
/**
* @notice Called by the admin to update the implementation of the delegator
* @param implementation_ The address of the new implementation for delegation
* @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation
* @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation
*/
function _setImplementationSafe(address implementation_, bool allowResign, bytes calldata becomeImplementationData) external {
// Check admin rights
require(hasAdminRights(), "!admin");
// Set implementation
_setImplementationInternal(implementation_, allowResign, becomeImplementationData);
}
/**
* @notice Function called before all delegator functions
* @dev Checks comptroller.autoImplementation and upgrades the implementation if necessary
*/
function _prepare() external payable {
if (msg.sender != address(this) && ComptrollerV3Storage(address(comptroller)).autoImplementation()) {
(address latestCErc20Delegate, bool allowResign, bytes memory becomeImplementationData) = fuseAdmin.latestCErc20Delegate(implementation);
if (implementation != latestCErc20Delegate) _setImplementationInternal(latestCErc20Delegate, allowResign, becomeImplementationData);
}
}
}
pragma solidity ^0.5.16;
import "./CTokenInterfaces.sol";
import "./ComptrollerStorage.sol";
/**
* @title Compound's CErc20Delegator Contract
* @notice CTokens which wrap an EIP-20 underlying and delegate to an implementation
* @author Compound
*/
contract CErc20Delegator is CDelegationStorage {
/**
* @notice Construct a new money market
* @param underlying_ The address of the underlying asset
* @param comptroller_ The address of the Comptroller
* @param interestRateModel_ The address of the interest rate model
* @param name_ ERC-20 name of this token
* @param symbol_ ERC-20 symbol of this token
* @param implementation_ The address of the implementation the contract delegates to
* @param becomeImplementationData The encoded args for becomeImplementation
*/
constructor(address underlying_,
ComptrollerInterface comptroller_,
InterestRateModel interestRateModel_,
string memory name_,
string memory symbol_,
address implementation_,
bytes memory becomeImplementationData,
uint256 reserveFactorMantissa_,
uint256 adminFeeMantissa_) public {
// First delegate gets to initialize the delegator (i.e. storage contract)
delegateTo(implementation_, abi.encodeWithSignature("initialize(address,address,address,string,string,uint256,uint256)",
underlying_,
comptroller_,
interestRateModel_,
name_,
symbol_,
reserveFactorMantissa_,
adminFeeMantissa_));
// New implementations always get set via the settor (post-initialize)
delegateTo(implementation_, abi.encodeWithSignature("_setImplementationSafe(address,bool,bytes)", implementation_, false, becomeImplementationData));
}
/**
* @notice Internal method to delegate execution to another contract
* @dev It returns to the external caller whatever the implementation returns or forwards reverts
* @param callee The contract to delegatecall
* @param data The raw data to delegatecall
* @return The returned bytes from the delegatecall
*/
function delegateTo(address callee, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returnData) = callee.delegatecall(data);
assembly {
if eq(success, 0) {
revert(add(returnData, 0x20), returndatasize)
}
}
return returnData;
}
/**
* @notice Delegates execution to an implementation contract
* @dev It returns to the external caller whatever the implementation returns or forwards reverts
*/
function () external payable {
// Cannot send value to CErc20Delegator
require(msg.value == 0, "CErc20Delegator:fallback: cannot send value to fallback");
// Check for automatic implementation
delegateTo(implementation, abi.encodeWithSignature("_prepare()"));
// delegate all other functions to current implementation
(bool success, ) = implementation.delegatecall(msg.data);
assembly {
let free_mem_ptr := mload(0x40)
returndatacopy(free_mem_ptr, 0, returndatasize)
switch success
case 0 { revert(free_mem_ptr, returndatasize) }
default { return(free_mem_ptr, returndatasize) }
}
}
}
pragma solidity ^0.5.16;
import "./CToken.sol";
/**
* @title Compound's CEther Contract
* @notice CToken which wraps Ether
* @dev This contract should not to be deployed on its own; instead, deploy `CEtherDelegator` (proxy contract) and `CEtherDelegate` (logic/implementation contract).
* @author Compound
*/
contract CEther is CToken, CEtherInterface {
/**
* @notice Initialize the new money market
* @param comptroller_ The address of the Comptroller
* @param interestRateModel_ The address of the interest rate model
* @param name_ ERC-20 name of this token
* @param symbol_ ERC-20 symbol of this token
*/
function initialize(ComptrollerInterface comptroller_,
InterestRateModel interestRateModel_,
string memory name_,
string memory symbol_,
uint256 reserveFactorMantissa_,
uint256 adminFeeMantissa_) public {
// CToken initialize does the bulk of the work
uint256 initialExchangeRateMantissa_ = 0.2e18;
uint8 decimals_ = 18;
super.initialize(comptroller_, interestRateModel_, initialExchangeRateMantissa_, name_, symbol_, decimals_, reserveFactorMantissa_, adminFeeMantissa_);
}
/*** User Interface ***/
/**
* @notice Sender supplies assets into the market and receives cTokens in exchange
* @dev Reverts upon any failure
*/
function mint() external payable {
(uint err,) = mintInternal(msg.value);
requireNoError(err, "mint failed");
}
/**
* @notice Sender redeems cTokens in exchange for the underlying asset
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param redeemTokens The number of cTokens to redeem into underlying
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function redeem(uint redeemTokens) external returns (uint) {
return redeemInternal(redeemTokens);
}
/**
* @notice Sender redeems cTokens in exchange for a specified amount of underlying asset
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param redeemAmount The amount of underlying to redeem
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function redeemUnderlying(uint redeemAmount) external returns (uint) {
return redeemUnderlyingInternal(redeemAmount);
}
/**
* @notice Sender borrows assets from the protocol to their own address
* @param borrowAmount The amount of the underlying asset to borrow
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function borrow(uint borrowAmount) external returns (uint) {
return borrowInternal(borrowAmount);
}
/**
* @notice Sender repays their own borrow
* @dev Reverts upon any failure
*/
function repayBorrow() external payable {
(uint err,) = repayBorrowInternal(msg.value);
requireNoError(err, "repayBorrow failed");
}
/**
* @notice Sender repays a borrow belonging to borrower
* @dev Reverts upon any failure
* @param borrower the account with the debt being payed off
*/
function repayBorrowBehalf(address borrower) external payable {
(uint err,) = repayBorrowBehalfInternal(borrower, msg.value);
requireNoError(err, "repayBorrowBehalf failed");
}
/**
* @notice The sender liquidates the borrowers collateral.
* The collateral seized is transferred to the liquidator.
* @dev Reverts upon any failure
* @param borrower The borrower of this cToken to be liquidated
* @param cTokenCollateral The market in which to seize collateral from the borrower
*/
function liquidateBorrow(address borrower, CToken cTokenCollateral) external payable {
(uint err,) = liquidateBorrowInternal(borrower, msg.value, cTokenCollateral);
requireNoError(err, "liquidateBorrow failed");
}
/**
* @notice Send Ether to CEther to mint
*/
function () external payable {
(uint err,) = mintInternal(msg.value);
requireNoError(err, "mint failed");
}
/*** Safe Token ***/
/**
* @notice Gets balance of this contract in terms of Ether, before this message
* @dev This excludes the value of the current message, if any
* @return The quantity of Ether owned by this contract
*/
function getCashPrior() internal view returns (uint) {
(MathError err, uint startingBalance) = subUInt(address(this).balance, msg.value);
require(err == MathError.NO_ERROR);
return startingBalance;
}
/**
* @notice Perform the actual transfer in, which is a no-op
* @param from Address sending the Ether
* @param amount Amount of Ether being sent
* @return The actual amount of Ether transferred
*/
function doTransferIn(address from, uint amount) internal returns (uint) {
// Sanity checks
require(msg.sender == from, "sender mismatch");
require(msg.value == amount, "value mismatch");
return amount;
}
function doTransferOut(address payable to, uint amount) internal {
// Send the Ether and revert on failure
(bool success, ) = to.call.value(amount)("");
require(success, "doTransferOut failed");
}
function requireNoError(uint errCode, string memory message) internal pure {
if (errCode == uint(Error.NO_ERROR)) {
return;
}
bytes memory fullMessage = new bytes(bytes(message).length + 7);
uint i;
for (i = 0; i < bytes(message).length; i++) {
fullMessage[i] = bytes(message)[i];
}
fullMessage[i+0] = byte(uint8(32));
fullMessage[i+1] = byte(uint8(40));
fullMessage[i+2] = byte(uint8(48 + ( errCode / 1000 )));
fullMessage[i+3] = byte(uint8(48 + ( errCode / 100 % 10 )));
fullMessage[i+4] = byte(uint8(48 + ( errCode / 10 % 10 )));
fullMessage[i+5] = byte(uint8(48 + ( errCode % 10 )));
fullMessage[i+6] = byte(uint8(41));
require(errCode == uint(Error.NO_ERROR), string(fullMessage));
}
}
pragma solidity ^0.5.16;
import "./CEther.sol";
/**
* @title Compound's CEtherDelegate Contract
* @notice CTokens which wrap Ether and are delegated to
* @author Compound
*/
contract CEtherDelegate is CDelegateInterface, CEther {
/**
* @notice Construct an empty delegate
*/
constructor() public {}
/**
* @notice Called by the delegator on a delegate to initialize it for duty
* @param data The encoded bytes data for any initialization
*/
function _becomeImplementation(bytes calldata data) external {
// Shh -- currently unused
data;
// Shh -- we don't ever want this hook to be marked pure
if (false) {
implementation = address(0);
}
require(msg.sender == address(this) || hasAdminRights(), "!self");
// Make sure admin storage is set up correctly
__admin = address(0);
__adminHasRights = false;
__fuseAdminHasRights = false;
}
/**
* @notice Called by the delegator on a delegate to forfeit its responsibility
*/
function _resignImplementation() internal {
// Shh -- we don't ever want this hook to be marked pure
if (false) {
implementation = address(0);
}
}
/**
* @dev Internal function to update the implementation of the delegator
* @param implementation_ The address of the new implementation for delegation
* @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation
* @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation
*/
function _setImplementationInternal(address implementation_, bool allowResign, bytes memory becomeImplementationData) internal {
// Check whitelist
require(fuseAdmin.cEtherDelegateWhitelist(implementation, implementation_, allowResign), "!impl");
// Call _resignImplementation internally (this delegate's code)
if (allowResign) _resignImplementation();
// Get old implementation
address oldImplementation = implementation;
// Store new implementation
implementation = implementation_;
// Call _becomeImplementation externally (delegating to new delegate's code)
_functionCall(address(this), abi.encodeWithSignature("_becomeImplementation(bytes)", becomeImplementationData), "!become");
// Emit event
emit NewImplementation(oldImplementation, implementation);
}
/**
* @notice Called by the admin to update the implementation of the delegator
* @param implementation_ The address of the new implementation for delegation
* @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation
* @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation
*/
function _setImplementationSafe(address implementation_, bool allowResign, bytes calldata becomeImplementationData) external {
// Check admin rights
require(hasAdminRights(), "!admin");
// Set implementation
_setImplementationInternal(implementation_, allowResign, becomeImplementationData);
}
/**
* @notice Function called before all delegator functions
* @dev Checks comptroller.autoImplementation and upgrades the implementation if necessary
*/
function _prepare() external payable {
if (msg.sender != address(this) && ComptrollerV3Storage(address(comptroller)).autoImplementation()) {
(address latestCEtherDelegate, bool allowResign, bytes memory becomeImplementationData) = fuseAdmin.latestCEtherDelegate(implementation);
if (implementation != latestCEtherDelegate) _setImplementationInternal(latestCEtherDelegate, allowResign, becomeImplementationData);
}
}
}
pragma solidity ^0.5.16;
import "./CTokenInterfaces.sol";
import "./ComptrollerStorage.sol";
/**
* @title Compound's CEtherDelegator Contract
* @notice CTokens which wrap Ether and delegate to an implementation
* @author Compound
*/
contract CEtherDelegator is CDelegationStorage {
/**
* @notice Construct a new CEther money market
* @param comptroller_ The address of the Comptroller
* @param interestRateModel_ The address of the interest rate model
* @param name_ ERC-20 name of this token
* @param symbol_ ERC-20 symbol of this token
* @param implementation_ The address of the implementation the contract delegates to
* @param becomeImplementationData The encoded args for becomeImplementation
*/
constructor(ComptrollerInterface comptroller_,
InterestRateModel interestRateModel_,
string memory name_,
string memory symbol_,
address implementation_,
bytes memory becomeImplementationData,
uint256 reserveFactorMantissa_,
uint256 adminFeeMantissa_) public {
// First delegate gets to initialize the delegator (i.e. storage contract)
delegateTo(implementation_, abi.encodeWithSignature("initialize(address,address,string,string,uint256,uint256)",
comptroller_,
interestRateModel_,
name_,
symbol_,
reserveFactorMantissa_,
adminFeeMantissa_));
// New implementations always get set via the settor (post-initialize)
delegateTo(implementation_, abi.encodeWithSignature("_setImplementationSafe(address,bool,bytes)", implementation_, false, becomeImplementationData));
}
/**
* @notice Internal method to delegate execution to another contract
* @dev It returns to the external caller whatever the implementation returns or forwards reverts
* @param callee The contract to delegatecall
* @param data The raw data to delegatecall
* @return The returned bytes from the delegatecall
*/
function delegateTo(address callee, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returnData) = callee.delegatecall(data);
assembly {
if eq(success, 0) {
revert(add(returnData, 0x20), returndatasize)
}
}
return returnData;
}
/**
* @notice Delegates execution to an implementation contract
* @dev It returns to the external caller whatever the implementation returns or forwards reverts
*/
function () external payable {
// Check for automatic implementation
delegateTo(implementation, abi.encodeWithSignature("_prepare()"));
// delegate all other functions to current implementation
(bool success, ) = implementation.delegatecall(msg.data);
assembly {
let free_mem_ptr := mload(0x40)
returndatacopy(free_mem_ptr, 0, returndatasize)
switch success
case 0 { revert(free_mem_ptr, returndatasize) }
default { return(free_mem_ptr, returndatasize) }
}
}
}
pragma solidity ^0.5.16;
import "./CToken.sol";
import "./CErc20.sol";
import "./ErrorReporter.sol";
import "./Exponential.sol";
import "./PriceOracle.sol";
import "./ComptrollerInterface.sol";
import "./ComptrollerStorage.sol";
import "./Unitroller.sol";
import "./RewardsDistributorDelegate.sol";
/**
* @title Compound's Comptroller Contract
* @author Compound
* @dev This contract should not to be deployed alone; instead, deploy `Unitroller` (proxy contract) on top of this `Comptroller` (logic/implementation contract).
*/
contract Comptroller is ComptrollerV3Storage, ComptrollerInterface, ComptrollerErrorReporter, Exponential {
/// @notice Emitted when an admin supports a market
event MarketListed(CToken cToken);
/// @notice Emitted when an admin unsupports a market
event MarketUnlisted(CToken cToken);
/// @notice Emitted when an account enters a market
event MarketEntered(CToken cToken, address account);
/// @notice Emitted when an account exits a market
event MarketExited(CToken cToken, address account);
/// @notice Emitted when close factor is changed by admin
event NewCloseFactor(uint oldCloseFactorMantissa, uint newCloseFactorMantissa);
/// @notice Emitted when a collateral factor is changed by admin
event NewCollateralFactor(CToken cToken, uint oldCollateralFactorMantissa, uint newCollateralFactorMantissa);
/// @notice Emitted when liquidation incentive is changed by admin
event NewLiquidationIncentive(uint oldLiquidationIncentiveMantissa, uint newLiquidationIncentiveMantissa);
/// @notice Emitted when price oracle is changed
event NewPriceOracle(PriceOracle oldPriceOracle, PriceOracle newPriceOracle);
/// @notice Emitted when pause guardian is changed
event NewPauseGuardian(address oldPauseGuardian, address newPauseGuardian);
/// @notice Emitted when an action is paused globally
event ActionPaused(string action, bool pauseState);
/// @notice Emitted when an action is paused on a market
event ActionPaused(CToken cToken, string action, bool pauseState);
/// @notice Emitted when the whitelist enforcement is changed
event WhitelistEnforcementChanged(bool enforce);
/// @notice Emitted when auto implementations are toggled
event AutoImplementationsToggled(bool enabled);
/// @notice Emitted when supply cap for a cToken is changed
event NewSupplyCap(CToken indexed cToken, uint newSupplyCap);
/// @notice Emitted when borrow cap for a cToken is changed
event NewBorrowCap(CToken indexed cToken, uint newBorrowCap);
/// @notice Emitted when borrow cap guardian is changed
event NewBorrowCapGuardian(address oldBorrowCapGuardian, address newBorrowCapGuardian);
/// @notice Emitted when a new RewardsDistributor contract is added to hooks
event AddedRewardsDistributor(address rewardsDistributor);
// closeFactorMantissa must be strictly greater than this value
uint internal constant closeFactorMinMantissa = 0.05e18; // 0.05
// closeFactorMantissa must not exceed this value
uint internal constant closeFactorMaxMantissa = 0.9e18; // 0.9
// No collateralFactorMantissa may exceed this value
uint internal constant collateralFactorMaxMantissa = 0.9e18; // 0.9
// liquidationIncentiveMantissa must be no less than this value
uint internal constant liquidationIncentiveMinMantissa = 1.0e18; // 1.0
// liquidationIncentiveMantissa must be no greater than this value
uint internal constant liquidationIncentiveMaxMantissa = 1.5e18; // 1.5
/*** Assets You Are In ***/
/**
* @notice Returns the assets an account has entered
* @param account The address of the account to pull assets for
* @return A dynamic list with the assets the account has entered
*/
function getAssetsIn(address account) external view returns (CToken[] memory) {
CToken[] memory assetsIn = accountAssets[account];
return assetsIn;
}
/**
* @notice Returns whether the given account is entered in the given asset
* @param account The address of the account to check
* @param cToken The cToken to check
* @return True if the account is in the asset, otherwise false.
*/
function checkMembership(address account, CToken cToken) external view returns (bool) {
return markets[address(cToken)].accountMembership[account];
}
/**
* @notice Add assets to be included in account liquidity calculation
* @param cTokens The list of addresses of the cToken markets to be enabled
* @return Success indicator for whether each corresponding market was entered
*/
function enterMarkets(address[] memory cTokens) public returns (uint[] memory) {
uint len = cTokens.length;
uint[] memory results = new uint[](len);
for (uint i = 0; i < len; i++) {
CToken cToken = CToken(cTokens[i]);
results[i] = uint(addToMarketInternal(cToken, msg.sender));
}
return results;
}
/**
* @notice Add the market to the borrower's "assets in" for liquidity calculations
* @param cToken The market to enter
* @param borrower The address of the account to modify
* @return Success indicator for whether the market was entered
*/
function addToMarketInternal(CToken cToken, address borrower) internal returns (Error) {
Market storage marketToJoin = markets[address(cToken)];
if (!marketToJoin.isListed) {
// market is not listed, cannot join
return Error.MARKET_NOT_LISTED;
}
if (marketToJoin.accountMembership[borrower] == true) {
// already joined
return Error.NO_ERROR;
}
// survived the gauntlet, add to list
// NOTE: we store these somewhat redundantly as a significant optimization
// this avoids having to iterate through the list for the most common use cases
// that is, only when we need to perform liquidity checks
// and not whenever we want to check if an account is in a particular market
marketToJoin.accountMembership[borrower] = true;
accountAssets[borrower].push(cToken);
// Add to allBorrowers
if (!borrowers[borrower]) {
allBorrowers.push(borrower);
borrowers[borrower] = true;
borrowerIndexes[borrower] = allBorrowers.length - 1;
}
emit MarketEntered(cToken, borrower);
return Error.NO_ERROR;
}
/**
* @notice Removes asset from sender's account liquidity calculation
* @dev Sender must not have an outstanding borrow balance in the asset,
* or be providing neccessary collateral for an outstanding borrow.
* @param cTokenAddress The address of the asset to be removed
* @return Whether or not the account successfully exited the market
*/
function exitMarket(address cTokenAddress) external returns (uint) {
CToken cToken = CToken(cTokenAddress);
/* Get sender tokensHeld and amountOwed underlying from the cToken */
(uint oErr, uint tokensHeld, uint amountOwed, ) = cToken.getAccountSnapshot(msg.sender);
require(oErr == 0, "exitMarket: getAccountSnapshot failed"); // semi-opaque error code
/* Fail if the sender has a borrow balance */
if (amountOwed != 0) {
return fail(Error.NONZERO_BORROW_BALANCE, FailureInfo.EXIT_MARKET_BALANCE_OWED);
}
/* Fail if the sender is not permitted to redeem all of their tokens */
uint allowed = redeemAllowedInternal(cTokenAddress, msg.sender, tokensHeld);
if (allowed != 0) {
return failOpaque(Error.REJECTION, FailureInfo.EXIT_MARKET_REJECTION, allowed);
}
Market storage marketToExit = markets[address(cToken)];
/* Return true if the sender is not already ‘in’ the market */
if (!marketToExit.accountMembership[msg.sender]) {
return uint(Error.NO_ERROR);
}
/* Set cToken account membership to false */
delete marketToExit.accountMembership[msg.sender];
/* Delete cToken from the account’s list of assets */
// load into memory for faster iteration
CToken[] memory userAssetList = accountAssets[msg.sender];
uint len = userAssetList.length;
uint assetIndex = len;
for (uint i = 0; i < len; i++) {
if (userAssetList[i] == cToken) {
assetIndex = i;
break;
}
}
// We *must* have found the asset in the list or our redundant data structure is broken
assert(assetIndex < len);
// copy last item in list to location of item to be removed, reduce length by 1
CToken[] storage storedList = accountAssets[msg.sender];
storedList[assetIndex] = storedList[storedList.length - 1];
storedList.length--;
// If the user has exited all markets, remove them from the `allBorrowers` array
if (storedList.length == 0) {
allBorrowers[borrowerIndexes[msg.sender]] = allBorrowers[allBorrowers.length - 1]; // Copy last item in list to location of item to be removed
allBorrowers.length--; // Reduce length by 1
borrowerIndexes[allBorrowers[borrowerIndexes[msg.sender]]] = borrowerIndexes[msg.sender]; // Set borrower index of moved item to correct index
borrowerIndexes[msg.sender] = 0; // Reset sender borrower index to 0 for a gas refund
borrowers[msg.sender] = false; // Tell the contract that the sender is no longer a borrower (so it knows to add the borrower back if they enter a market in the future)
}
emit MarketExited(cToken, msg.sender);
return uint(Error.NO_ERROR);
}
/*** Policy Hooks ***/
/**
* @notice Checks if the account should be allowed to mint tokens in the given market
* @param cToken The market to verify the mint against
* @param minter The account which would get the minted tokens
* @param mintAmount The amount of underlying being supplied to the market in exchange for tokens
* @return 0 if the mint is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
*/
function mintAllowed(address cToken, address minter, uint mintAmount) external returns (uint) {
// Pausing is a very serious situation - we revert to sound the alarms
require(!mintGuardianPaused[cToken], "mint is paused");
// Shh - currently unused
minter;
mintAmount;
// Make sure market is listed
if (!markets[cToken].isListed) {
return uint(Error.MARKET_NOT_LISTED);
}
// Make sure minter is whitelisted
if (enforceWhitelist && !whitelist[minter]) {
return uint(Error.SUPPLIER_NOT_WHITELISTED);
}
// Check supply cap
uint supplyCap = supplyCaps[cToken];
// Supply cap of 0 corresponds to unlimited supplying
if (supplyCap != 0) {
uint totalCash = CToken(cToken).getCash();
uint totalBorrows = CToken(cToken).totalBorrows();
uint totalReserves = CToken(cToken).totalReserves();
uint totalFuseFees = CToken(cToken).totalFuseFees();
uint totalAdminFees = CToken(cToken).totalAdminFees();
// totalUnderlyingSupply = totalCash + totalBorrows - (totalReserves + totalFuseFees + totalAdminFees)
(MathError mathErr, uint totalUnderlyingSupply) = addThenSubUInt(totalCash, totalBorrows, add_(add_(totalReserves, totalFuseFees), totalAdminFees));
if (mathErr != MathError.NO_ERROR) return uint(Error.MATH_ERROR);
uint nextTotalUnderlyingSupply;
(mathErr, nextTotalUnderlyingSupply) = addUInt(totalUnderlyingSupply, mintAmount);
if (mathErr != MathError.NO_ERROR) return uint(Error.MATH_ERROR);
require(nextTotalUnderlyingSupply < supplyCap, "market supply cap reached");
}
// Keep the flywheel moving
flywheelPreSupplierAction(cToken, minter);
return uint(Error.NO_ERROR);
}
/**
* @notice Validates mint and reverts on rejection. May emit logs.
* @param cToken Asset being minted
* @param minter The address minting the tokens
* @param actualMintAmount The amount of the underlying asset being minted
* @param mintTokens The number of tokens being minted
*/
function mintVerify(address cToken, address minter, uint actualMintAmount, uint mintTokens) external {
// Shh - currently unused
cToken;
minter;
actualMintAmount;
mintTokens;
// Shh - we don't ever want this hook to be marked pure
if (false) {
maxAssets = maxAssets;
}
// Add minter to suppliers mapping
suppliers[minter] = true;
}
/**
* @notice Checks if the account should be allowed to redeem tokens in the given market
* @param cToken The market to verify the redeem against
* @param redeemer The account which would redeem the tokens
* @param redeemTokens The number of cTokens to exchange for the underlying asset in the market
* @return 0 if the redeem is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
*/
function redeemAllowed(address cToken, address redeemer, uint redeemTokens) external returns (uint) {
uint allowed = redeemAllowedInternal(cToken, redeemer, redeemTokens);
if (allowed != uint(Error.NO_ERROR)) {
return allowed;
}
// Keep the flywheel moving
flywheelPreSupplierAction(cToken, redeemer);
return uint(Error.NO_ERROR);
}
function redeemAllowedInternal(address cToken, address redeemer, uint redeemTokens) internal view returns (uint) {
if (!markets[cToken].isListed) {
return uint(Error.MARKET_NOT_LISTED);
}
/* If the redeemer is not 'in' the market, then we can bypass the liquidity check */
if (!markets[cToken].accountMembership[redeemer]) {
return uint(Error.NO_ERROR);
}
/* Otherwise, perform a hypothetical liquidity check to guard against shortfall */
(Error err, , uint shortfall) = getHypotheticalAccountLiquidityInternal(redeemer, CToken(cToken), redeemTokens, 0);
if (err != Error.NO_ERROR) {
return uint(err);
}
if (shortfall > 0) {
return uint(Error.INSUFFICIENT_LIQUIDITY);
}
return uint(Error.NO_ERROR);
}
/**
* @notice Validates redeem and reverts on rejection. May emit logs.
* @param cToken Asset being redeemed
* @param redeemer The address redeeming the tokens
* @param redeemAmount The amount of the underlying asset being redeemed
* @param redeemTokens The number of tokens being redeemed
*/
function redeemVerify(address cToken, address redeemer, uint redeemAmount, uint redeemTokens) external {
// Shh - currently unused
cToken;
redeemer;
// Require tokens is zero or amount is also zero
if (redeemTokens == 0 && redeemAmount > 0) {
revert("redeemTokens zero");
}
}
/**
* @notice Checks if the account should be allowed to borrow the underlying asset of the given market
* @param cToken The market to verify the borrow against
* @param borrower The account which would borrow the asset
* @param borrowAmount The amount of underlying the account would borrow
* @return 0 if the borrow is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
*/
function borrowAllowed(address cToken, address borrower, uint borrowAmount) external returns (uint) {
// Pausing is a very serious situation - we revert to sound the alarms
require(!borrowGuardianPaused[cToken], "borrow is paused");
// Make sure market is listed
if (!markets[cToken].isListed) {
return uint(Error.MARKET_NOT_LISTED);
}
if (!markets[cToken].accountMembership[borrower]) {
// only cTokens may call borrowAllowed if borrower not in market
require(msg.sender == cToken, "sender must be cToken");
// attempt to add borrower to the market
Error err = addToMarketInternal(CToken(msg.sender), borrower);
if (err != Error.NO_ERROR) {
return uint(err);
}
// it should be impossible to break the important invariant
assert(markets[cToken].accountMembership[borrower]);
}
// Make sure oracle price is available
if (oracle.getUnderlyingPrice(CToken(cToken)) == 0) {
return uint(Error.PRICE_ERROR);
}
// Make sure borrower is whitelisted
if (enforceWhitelist && !whitelist[borrower]) {
return uint(Error.SUPPLIER_NOT_WHITELISTED);
}
// Check borrow cap
uint borrowCap = borrowCaps[cToken];
// Borrow cap of 0 corresponds to unlimited borrowing
if (borrowCap != 0) {
uint totalBorrows = CToken(cToken).totalBorrows();
(MathError mathErr, uint nextTotalBorrows) = addUInt(totalBorrows, borrowAmount);
if (mathErr != MathError.NO_ERROR) return uint(Error.MATH_ERROR);
require(nextTotalBorrows < borrowCap, "market borrow cap reached");
}
// Keep the flywheel moving
flywheelPreBorrowerAction(cToken, borrower);
// Perform a hypothetical liquidity check to guard against shortfall
(Error err, , uint shortfall) = getHypotheticalAccountLiquidityInternal(borrower, CToken(cToken), 0, borrowAmount);
if (err != Error.NO_ERROR) {
return uint(err);
}
if (shortfall > 0) {
return uint(Error.INSUFFICIENT_LIQUIDITY);
}
return uint(Error.NO_ERROR);
}
/**
* @notice Checks if the account should be allowed to borrow the underlying asset of the given market
* @param cToken Asset whose underlying is being borrowed
* @param accountBorrowsNew The user's new borrow balance of the underlying asset
*/
function borrowWithinLimits(address cToken, uint accountBorrowsNew) external returns (uint) {
// Check if min borrow exists
uint minBorrowEth = fuseAdmin.minBorrowEth();
if (minBorrowEth > 0) {
// Get new underlying borrow balance of account for this cToken
uint oraclePriceMantissa = oracle.getUnderlyingPrice(CToken(cToken));
if (oraclePriceMantissa == 0) return uint(Error.PRICE_ERROR);
(MathError mathErr, uint borrowBalanceEth) = mulScalarTruncate(Exp({mantissa: oraclePriceMantissa}), accountBorrowsNew);
if (mathErr != MathError.NO_ERROR) return uint(Error.MATH_ERROR);
// Check against min borrow
if (borrowBalanceEth < minBorrowEth) return uint(Error.BORROW_BELOW_MIN);
}
// Return no error
return uint(Error.NO_ERROR);
}
/**
* @notice Checks if the account should be allowed to borrow the underlying asset of the given market
* @param cToken Asset whose underlying is being borrowed
* @param exchangeRateMantissa Underlying/cToken exchange rate
* @param accountTokens Initial account cToken balance
* @param accountTokens Underlying amount to mint
*/
function mintWithinLimits(address cToken, uint exchangeRateMantissa, uint accountTokens, uint mintAmount) external returns (uint) {
// Return no error
return uint(Error.NO_ERROR);
}
/**
* @notice Validates borrow and reverts on rejection. May emit logs.
* @param cToken Asset whose underlying is being borrowed
* @param borrower The address borrowing the underlying
* @param borrowAmount The amount of the underlying asset requested to borrow
*/
function borrowVerify(address cToken, address borrower, uint borrowAmount) external {
// Shh - currently unused
cToken;
borrower;
borrowAmount;
// Shh - we don't ever want this hook to be marked pure
if (false) {
maxAssets = maxAssets;
}
}
/**
* @notice Checks if the account should be allowed to repay a borrow in the given market
* @param cToken The market to verify the repay against
* @param payer The account which would repay the asset
* @param borrower The account which would borrowed the asset
* @param repayAmount The amount of the underlying asset the account would repay
* @return 0 if the repay is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
*/
function repayBorrowAllowed(
address cToken,
address payer,
address borrower,
uint repayAmount) external returns (uint) {
// Shh - currently unused
payer;
borrower;
repayAmount;
// Make sure market is listed
if (!markets[cToken].isListed) {
return uint(Error.MARKET_NOT_LISTED);
}
// Keep the flywheel moving
flywheelPreBorrowerAction(cToken, borrower);
return uint(Error.NO_ERROR);
}
/**
* @notice Validates repayBorrow and reverts on rejection. May emit logs.
* @param cToken Asset being repaid
* @param payer The address repaying the borrow
* @param borrower The address of the borrower
* @param actualRepayAmount The amount of underlying being repaid
*/
function repayBorrowVerify(
address cToken,
address payer,
address borrower,
uint actualRepayAmount,
uint borrowerIndex) external {
// Shh - currently unused
cToken;
payer;
borrower;
actualRepayAmount;
borrowerIndex;
// Shh - we don't ever want this hook to be marked pure
if (false) {
maxAssets = maxAssets;
}
}
/**
* @notice Checks if the liquidation should be allowed to occur
* @param cTokenBorrowed Asset which was borrowed by the borrower
* @param cTokenCollateral Asset which was used as collateral and will be seized
* @param liquidator The address repaying the borrow and seizing the collateral
* @param borrower The address of the borrower
* @param repayAmount The amount of underlying being repaid
*/
function liquidateBorrowAllowed(
address cTokenBorrowed,
address cTokenCollateral,
address liquidator,
address borrower,
uint repayAmount) external returns (uint) {
// Shh - currently unused
liquidator;
// Make sure markets are listed
if (!markets[cTokenBorrowed].isListed || !markets[cTokenCollateral].isListed) {
return uint(Error.MARKET_NOT_LISTED);
}
// Get borrowers's underlying borrow balance
uint borrowBalance = CToken(cTokenBorrowed).borrowBalanceStored(borrower);
/* allow accounts to be liquidated if the market is deprecated */
if (isDeprecated(CToken(cTokenBorrowed))) {
require(borrowBalance >= repayAmount, "Can not repay more than the total borrow");
} else {
/* The borrower must have shortfall in order to be liquidatable */
(Error err, , uint shortfall) = getAccountLiquidityInternal(borrower);
if (err != Error.NO_ERROR) {
return uint(err);
}
if (shortfall == 0) {
return uint(Error.INSUFFICIENT_SHORTFALL);
}
/* The liquidator may not repay more than what is allowed by the closeFactor */
uint maxClose = mul_ScalarTruncate(Exp({mantissa: closeFactorMantissa}), borrowBalance);
if (repayAmount > maxClose) {
return uint(Error.TOO_MUCH_REPAY);
}
}
return uint(Error.NO_ERROR);
}
/**
* @notice Validates liquidateBorrow and reverts on rejection. May emit logs.
* @param cTokenBorrowed Asset which was borrowed by the borrower
* @param cTokenCollateral Asset which was used as collateral and will be seized
* @param liquidator The address repaying the borrow and seizing the collateral
* @param borrower The address of the borrower
* @param actualRepayAmount The amount of underlying being repaid
*/
function liquidateBorrowVerify(
address cTokenBorrowed,
address cTokenCollateral,
address liquidator,
address borrower,
uint actualRepayAmount,
uint seizeTokens) external {
// Shh - currently unused
cTokenBorrowed;
cTokenCollateral;
liquidator;
borrower;
actualRepayAmount;
seizeTokens;
// Shh - we don't ever want this hook to be marked pure
if (false) {
maxAssets = maxAssets;
}
}
/**
* @notice Checks if the seizing of assets should be allowed to occur
* @param cTokenCollateral Asset which was used as collateral and will be seized
* @param cTokenBorrowed Asset which was borrowed by the borrower
* @param liquidator The address repaying the borrow and seizing the collateral
* @param borrower The address of the borrower
* @param seizeTokens The number of collateral tokens to seize
*/
function seizeAllowed(
address cTokenCollateral,
address cTokenBorrowed,
address liquidator,
address borrower,
uint seizeTokens) external returns (uint) {
// Pausing is a very serious situation - we revert to sound the alarms
require(!seizeGuardianPaused, "seize is paused");
// Shh - currently unused
liquidator;
borrower;
seizeTokens;
// Make sure markets are listed
if (!markets[cTokenCollateral].isListed || !markets[cTokenBorrowed].isListed) {
return uint(Error.MARKET_NOT_LISTED);
}
// Make sure cToken Comptrollers are identical
if (CToken(cTokenCollateral).comptroller() != CToken(cTokenBorrowed).comptroller()) {
return uint(Error.COMPTROLLER_MISMATCH);
}
// Keep the flywheel moving
flywheelPreTransferAction(cTokenCollateral, borrower, liquidator);
return uint(Error.NO_ERROR);
}
/**
* @notice Validates seize and reverts on rejection. May emit logs.
* @param cTokenCollateral Asset which was used as collateral and will be seized
* @param cTokenBorrowed Asset which was borrowed by the borrower
* @param liquidator The address repaying the borrow and seizing the collateral
* @param borrower The address of the borrower
* @param seizeTokens The number of collateral tokens to seize
*/
function seizeVerify(
address cTokenCollateral,
address cTokenBorrowed,
address liquidator,
address borrower,
uint seizeTokens) external {
// Shh - currently unused
cTokenCollateral;
cTokenBorrowed;
liquidator;
borrower;
seizeTokens;
// Shh - we don't ever want this hook to be marked pure
if (false) {
maxAssets = maxAssets;
}
}
/**
* @notice Checks if the account should be allowed to transfer tokens in the given market
* @param cToken The market to verify the transfer against
* @param src The account which sources the tokens
* @param dst The account which receives the tokens
* @param transferTokens The number of cTokens to transfer
* @return 0 if the transfer is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
*/
function transferAllowed(address cToken, address src, address dst, uint transferTokens) external returns (uint) {
// Pausing is a very serious situation - we revert to sound the alarms
require(!transferGuardianPaused, "transfer is paused");
// Currently the only consideration is whether or not
// the src is allowed to redeem this many tokens
uint allowed = redeemAllowedInternal(cToken, src, transferTokens);
if (allowed != uint(Error.NO_ERROR)) {
return allowed;
}
// Keep the flywheel moving
flywheelPreTransferAction(cToken, src, dst);
return uint(Error.NO_ERROR);
}
/**
* @notice Validates transfer and reverts on rejection. May emit logs.
* @param cToken Asset being transferred
* @param src The account which sources the tokens
* @param dst The account which receives the tokens
* @param transferTokens The number of cTokens to transfer
*/
function transferVerify(address cToken, address src, address dst, uint transferTokens) external {
// Shh - currently unused
cToken;
src;
dst;
transferTokens;
// Shh - we don't ever want this hook to be marked pure
if (false) {
maxAssets = maxAssets;
}
}
/*** Flywheel Hooks ***/
/**
* @notice Keeps the flywheel moving pre-mint and pre-redeem
* @param cToken The relevant market
* @param supplier The minter/redeemer
*/
function flywheelPreSupplierAction(address cToken, address supplier) internal {
for (uint256 i = 0; i < rewardsDistributors.length; i++) RewardsDistributorDelegate(rewardsDistributors[i]).flywheelPreSupplierAction(cToken, supplier);
}
/**
* @notice Keeps the flywheel moving pre-borrow and pre-repay
* @param cToken The relevant market
* @param borrower The borrower
*/
function flywheelPreBorrowerAction(address cToken, address borrower) internal {
for (uint256 i = 0; i < rewardsDistributors.length; i++) RewardsDistributorDelegate(rewardsDistributors[i]).flywheelPreBorrowerAction(cToken, borrower);
}
/**
* @notice Keeps the flywheel moving pre-transfer and pre-seize
* @param cToken The relevant market
* @param src The account which sources the tokens
* @param dst The account which receives the tokens
*/
function flywheelPreTransferAction(address cToken, address src, address dst) internal {
for (uint256 i = 0; i < rewardsDistributors.length; i++) RewardsDistributorDelegate(rewardsDistributors[i]).flywheelPreTransferAction(cToken, src, dst);
}
/*** Liquidity/Liquidation Calculations ***/
/**
* @dev Local vars for avoiding stack-depth limits in calculating account liquidity.
* Note that `cTokenBalance` is the number of cTokens the account owns in the market,
* whereas `borrowBalance` is the amount of underlying that the account has borrowed.
*/
struct AccountLiquidityLocalVars {
uint sumCollateral;
uint sumBorrowPlusEffects;
uint cTokenBalance;
uint borrowBalance;
uint exchangeRateMantissa;
uint oraclePriceMantissa;
Exp collateralFactor;
Exp exchangeRate;
Exp oraclePrice;
Exp tokensToDenom;
}
/**
* @notice Determine the current account liquidity wrt collateral requirements
* @return (possible error code (semi-opaque),
account liquidity in excess of collateral requirements,
* account shortfall below collateral requirements)
*/
function getAccountLiquidity(address account) public view returns (uint, uint, uint) {
(Error err, uint liquidity, uint shortfall) = getHypotheticalAccountLiquidityInternal(account, CToken(0), 0, 0);
return (uint(err), liquidity, shortfall);
}
/**
* @notice Determine the current account liquidity wrt collateral requirements
* @return (possible error code,
account liquidity in excess of collateral requirements,
* account shortfall below collateral requirements)
*/
function getAccountLiquidityInternal(address account) internal view returns (Error, uint, uint) {
return getHypotheticalAccountLiquidityInternal(account, CToken(0), 0, 0);
}
/**
* @notice Determine what the account liquidity would be if the given amounts were redeemed/borrowed
* @param cTokenModify The market to hypothetically redeem/borrow in
* @param account The account to determine liquidity for
* @param redeemTokens The number of tokens to hypothetically redeem
* @param borrowAmount The amount of underlying to hypothetically borrow
* @return (possible error code (semi-opaque),
hypothetical account liquidity in excess of collateral requirements,
* hypothetical account shortfall below collateral requirements)
*/
function getHypotheticalAccountLiquidity(
address account,
address cTokenModify,
uint redeemTokens,
uint borrowAmount) public view returns (uint, uint, uint) {
(Error err, uint liquidity, uint shortfall) = getHypotheticalAccountLiquidityInternal(account, CToken(cTokenModify), redeemTokens, borrowAmount);
return (uint(err), liquidity, shortfall);
}
/**
* @notice Determine what the account liquidity would be if the given amounts were redeemed/borrowed
* @param cTokenModify The market to hypothetically redeem/borrow in
* @param account The account to determine liquidity for
* @param redeemTokens The number of tokens to hypothetically redeem
* @param borrowAmount The amount of underlying to hypothetically borrow
* @dev Note that we calculate the exchangeRateStored for each collateral cToken using stored data,
* without calculating accumulated interest.
* @return (possible error code,
hypothetical account liquidity in excess of collateral requirements,
* hypothetical account shortfall below collateral requirements)
*/
function getHypotheticalAccountLiquidityInternal(
address account,
CToken cTokenModify,
uint redeemTokens,
uint borrowAmount) internal view returns (Error, uint, uint) {
AccountLiquidityLocalVars memory vars; // Holds all our calculation results
uint oErr;
// For each asset the account is in
CToken[] memory assets = accountAssets[account];
for (uint i = 0; i < assets.length; i++) {
CToken asset = assets[i];
// Read the balances and exchange rate from the cToken
(oErr, vars.cTokenBalance, vars.borrowBalance, vars.exchangeRateMantissa) = asset.getAccountSnapshot(account);
if (oErr != 0) { // semi-opaque error code, we assume NO_ERROR == 0 is invariant between upgrades
return (Error.SNAPSHOT_ERROR, 0, 0);
}
vars.collateralFactor = Exp({mantissa: markets[address(asset)].collateralFactorMantissa});
vars.exchangeRate = Exp({mantissa: vars.exchangeRateMantissa});
// Get the normalized price of the asset
vars.oraclePriceMantissa = oracle.getUnderlyingPrice(asset);
if (vars.oraclePriceMantissa == 0) {
return (Error.PRICE_ERROR, 0, 0);
}
vars.oraclePrice = Exp({mantissa: vars.oraclePriceMantissa});
// Pre-compute a conversion factor from tokens -> ether (normalized price value)
vars.tokensToDenom = mul_(mul_(vars.collateralFactor, vars.exchangeRate), vars.oraclePrice);
// sumCollateral += tokensToDenom * cTokenBalance
vars.sumCollateral = mul_ScalarTruncateAddUInt(vars.tokensToDenom, vars.cTokenBalance, vars.sumCollateral);
// sumBorrowPlusEffects += oraclePrice * borrowBalance
vars.sumBorrowPlusEffects = mul_ScalarTruncateAddUInt(vars.oraclePrice, vars.borrowBalance, vars.sumBorrowPlusEffects);
// Calculate effects of interacting with cTokenModify
if (asset == cTokenModify) {
// redeem effect
// sumBorrowPlusEffects += tokensToDenom * redeemTokens
vars.sumBorrowPlusEffects = mul_ScalarTruncateAddUInt(vars.tokensToDenom, redeemTokens, vars.sumBorrowPlusEffects);
// borrow effect
// sumBorrowPlusEffects += oraclePrice * borrowAmount
vars.sumBorrowPlusEffects = mul_ScalarTruncateAddUInt(vars.oraclePrice, borrowAmount, vars.sumBorrowPlusEffects);
}
}
// These are safe, as the underflow condition is checked first
if (vars.sumCollateral > vars.sumBorrowPlusEffects) {
return (Error.NO_ERROR, vars.sumCollateral - vars.sumBorrowPlusEffects, 0);
} else {
return (Error.NO_ERROR, 0, vars.sumBorrowPlusEffects - vars.sumCollateral);
}
}
/**
* @notice Calculate number of tokens of collateral asset to seize given an underlying amount
* @dev Used in liquidation (called in cToken.liquidateBorrowFresh)
* @param cTokenBorrowed The address of the borrowed cToken
* @param cTokenCollateral The address of the collateral cToken
* @param actualRepayAmount The amount of cTokenBorrowed underlying to convert into cTokenCollateral tokens
* @return (errorCode, number of cTokenCollateral tokens to be seized in a liquidation)
*/
function liquidateCalculateSeizeTokens(address cTokenBorrowed, address cTokenCollateral, uint actualRepayAmount) external view returns (uint, uint) {
/* Read oracle prices for borrowed and collateral markets */
uint priceBorrowedMantissa = oracle.getUnderlyingPrice(CToken(cTokenBorrowed));
uint priceCollateralMantissa = oracle.getUnderlyingPrice(CToken(cTokenCollateral));
if (priceBorrowedMantissa == 0 || priceCollateralMantissa == 0) {
return (uint(Error.PRICE_ERROR), 0);
}
/*
* Get the exchange rate and calculate the number of collateral tokens to seize:
* seizeAmount = actualRepayAmount * liquidationIncentive * priceBorrowed / priceCollateral
* seizeTokens = seizeAmount / exchangeRate
* = actualRepayAmount * (liquidationIncentive * priceBorrowed) / (priceCollateral * exchangeRate)
*/
uint exchangeRateMantissa = CToken(cTokenCollateral).exchangeRateStored(); // Note: reverts on error
uint seizeTokens;
Exp memory numerator;
Exp memory denominator;
Exp memory ratio;
numerator = mul_(Exp({mantissa: liquidationIncentiveMantissa}), Exp({mantissa: priceBorrowedMantissa}));
denominator = mul_(Exp({mantissa: priceCollateralMantissa}), Exp({mantissa: exchangeRateMantissa}));
ratio = div_(numerator, denominator);
seizeTokens = mul_ScalarTruncate(ratio, actualRepayAmount);
return (uint(Error.NO_ERROR), seizeTokens);
}
/*** Admin Functions ***/
/**
* @notice Add a RewardsDistributor contracts.
* @dev Admin function to add a RewardsDistributor contract
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _addRewardsDistributor(address distributor) external returns (uint) {
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.ADD_REWARDS_DISTRIBUTOR_OWNER_CHECK);
}
// Check marker method
require(RewardsDistributorDelegate(distributor).isRewardsDistributor(), "marker method returned false");
// Check for existing RewardsDistributor
for (uint i = 0; i < rewardsDistributors.length; i++) require(distributor != rewardsDistributors[i], "RewardsDistributor contract already added");
// Add RewardsDistributor to array
rewardsDistributors.push(distributor);
emit AddedRewardsDistributor(distributor);
return uint(Error.NO_ERROR);
}
/**
* @notice Sets the whitelist enforcement for the comptroller
* @dev Admin function to set a new whitelist enforcement boolean
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setWhitelistEnforcement(bool enforce) external returns (uint) {
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_WHITELIST_ENFORCEMENT_OWNER_CHECK);
}
// Check if `enforceWhitelist` already equals `enforce`
if (enforceWhitelist == enforce) {
return uint(Error.NO_ERROR);
}
// Set comptroller's `enforceWhitelist` to `enforce`
enforceWhitelist = enforce;
// Emit WhitelistEnforcementChanged(bool enforce);
emit WhitelistEnforcementChanged(enforce);
return uint(Error.NO_ERROR);
}
/**
* @notice Sets the whitelist `statuses` for `suppliers`
* @dev Admin function to set the whitelist `statuses` for `suppliers`
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setWhitelistStatuses(address[] calldata suppliers, bool[] calldata statuses) external returns (uint) {
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_WHITELIST_STATUS_OWNER_CHECK);
}
// Set whitelist statuses for suppliers
for (uint i = 0; i < suppliers.length; i++) {
address supplier = suppliers[i];
if (statuses[i]) {
// If not already whitelisted, add to whitelist
if (!whitelist[supplier]) {
whitelist[supplier] = true;
whitelistArray.push(supplier);
whitelistIndexes[supplier] = whitelistArray.length - 1;
}
} else {
// If whitelisted, remove from whitelist
if (whitelist[supplier]) {
whitelistArray[whitelistIndexes[supplier]] = whitelistArray[whitelistArray.length - 1]; // Copy last item in list to location of item to be removed
whitelistArray.length--; // Reduce length by 1
whitelistIndexes[whitelistArray[whitelistIndexes[supplier]]] = whitelistIndexes[supplier]; // Set whitelist index of moved item to correct index
whitelistIndexes[supplier] = 0; // Reset supplier whitelist index to 0 for a gas refund
whitelist[supplier] = false; // Tell the contract that the supplier is no longer whitelisted
}
}
}
return uint(Error.NO_ERROR);
}
/**
* @notice Sets a new price oracle for the comptroller
* @dev Admin function to set a new price oracle
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setPriceOracle(PriceOracle newOracle) public returns (uint) {
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_PRICE_ORACLE_OWNER_CHECK);
}
// Track the old oracle for the comptroller
PriceOracle oldOracle = oracle;
// Set comptroller's oracle to newOracle
oracle = newOracle;
// Emit NewPriceOracle(oldOracle, newOracle)
emit NewPriceOracle(oldOracle, newOracle);
return uint(Error.NO_ERROR);
}
/**
* @notice Sets the closeFactor used when liquidating borrows
* @dev Admin function to set closeFactor
* @param newCloseFactorMantissa New close factor, scaled by 1e18
* @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
*/
function _setCloseFactor(uint newCloseFactorMantissa) external returns (uint256) {
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_CLOSE_FACTOR_OWNER_CHECK);
}
// Check limits
Exp memory newCloseFactorExp = Exp({mantissa: newCloseFactorMantissa});
Exp memory lowLimit = Exp({mantissa: closeFactorMinMantissa});
if (lessThanOrEqualExp(newCloseFactorExp, lowLimit)) {
return fail(Error.INVALID_CLOSE_FACTOR, FailureInfo.SET_CLOSE_FACTOR_VALIDATION);
}
Exp memory highLimit = Exp({mantissa: closeFactorMaxMantissa});
if (lessThanExp(highLimit, newCloseFactorExp)) {
return fail(Error.INVALID_CLOSE_FACTOR, FailureInfo.SET_CLOSE_FACTOR_VALIDATION);
}
// Set pool close factor to new close factor, remember old value
uint oldCloseFactorMantissa = closeFactorMantissa;
closeFactorMantissa = newCloseFactorMantissa;
// Emit event
emit NewCloseFactor(oldCloseFactorMantissa, closeFactorMantissa);
return uint(Error.NO_ERROR);
}
/**
* @notice Sets the collateralFactor for a market
* @dev Admin function to set per-market collateralFactor
* @param cToken The market to set the factor on
* @param newCollateralFactorMantissa The new collateral factor, scaled by 1e18
* @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
*/
function _setCollateralFactor(CToken cToken, uint newCollateralFactorMantissa) public returns (uint256) {
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_COLLATERAL_FACTOR_OWNER_CHECK);
}
// Verify market is listed
Market storage market = markets[address(cToken)];
if (!market.isListed) {
return fail(Error.MARKET_NOT_LISTED, FailureInfo.SET_COLLATERAL_FACTOR_NO_EXISTS);
}
Exp memory newCollateralFactorExp = Exp({mantissa: newCollateralFactorMantissa});
// Check collateral factor <= 0.9
Exp memory highLimit = Exp({mantissa: collateralFactorMaxMantissa});
if (lessThanExp(highLimit, newCollateralFactorExp)) {
return fail(Error.INVALID_COLLATERAL_FACTOR, FailureInfo.SET_COLLATERAL_FACTOR_VALIDATION);
}
// If collateral factor != 0, fail if price == 0
if (newCollateralFactorMantissa != 0 && oracle.getUnderlyingPrice(cToken) == 0) {
return fail(Error.PRICE_ERROR, FailureInfo.SET_COLLATERAL_FACTOR_WITHOUT_PRICE);
}
// Set market's collateral factor to new collateral factor, remember old value
uint oldCollateralFactorMantissa = market.collateralFactorMantissa;
market.collateralFactorMantissa = newCollateralFactorMantissa;
// Emit event with asset, old collateral factor, and new collateral factor
emit NewCollateralFactor(cToken, oldCollateralFactorMantissa, newCollateralFactorMantissa);
return uint(Error.NO_ERROR);
}
/**
* @notice Sets liquidationIncentive
* @dev Admin function to set liquidationIncentive
* @param newLiquidationIncentiveMantissa New liquidationIncentive scaled by 1e18
* @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
*/
function _setLiquidationIncentive(uint newLiquidationIncentiveMantissa) external returns (uint) {
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_LIQUIDATION_INCENTIVE_OWNER_CHECK);
}
// Check de-scaled min <= newLiquidationIncentive <= max
Exp memory newLiquidationIncentive = Exp({mantissa: newLiquidationIncentiveMantissa});
Exp memory minLiquidationIncentive = Exp({mantissa: liquidationIncentiveMinMantissa});
if (lessThanExp(newLiquidationIncentive, minLiquidationIncentive)) {
return fail(Error.INVALID_LIQUIDATION_INCENTIVE, FailureInfo.SET_LIQUIDATION_INCENTIVE_VALIDATION);
}
Exp memory maxLiquidationIncentive = Exp({mantissa: liquidationIncentiveMaxMantissa});
if (lessThanExp(maxLiquidationIncentive, newLiquidationIncentive)) {
return fail(Error.INVALID_LIQUIDATION_INCENTIVE, FailureInfo.SET_LIQUIDATION_INCENTIVE_VALIDATION);
}
// Save current value for use in log
uint oldLiquidationIncentiveMantissa = liquidationIncentiveMantissa;
// Set liquidation incentive to new incentive
liquidationIncentiveMantissa = newLiquidationIncentiveMantissa;
// Emit event with old incentive, new incentive
emit NewLiquidationIncentive(oldLiquidationIncentiveMantissa, newLiquidationIncentiveMantissa);
return uint(Error.NO_ERROR);
}
/**
* @notice Add the market to the markets mapping and set it as listed
* @dev Admin function to set isListed and add support for the market
* @param cToken The address of the market (token) to list
* @return uint 0=success, otherwise a failure. (See enum Error for details)
*/
function _supportMarket(CToken cToken) internal returns (uint) {
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SUPPORT_MARKET_OWNER_CHECK);
}
// Is market already listed?
if (markets[address(cToken)].isListed) {
return fail(Error.MARKET_ALREADY_LISTED, FailureInfo.SUPPORT_MARKET_EXISTS);
}
// Sanity check to make sure its really a CToken
require(cToken.isCToken(), "marker method returned false");
// Check cToken.comptroller == this
require(address(cToken.comptroller()) == address(this), "Cannot support a market with a different Comptroller.");
// Make sure market is not already listed
address underlying = cToken.isCEther() ? address(0) : CErc20(address(cToken)).underlying();
if (address(cTokensByUnderlying[underlying]) != address(0)) {
return fail(Error.MARKET_ALREADY_LISTED, FailureInfo.SUPPORT_MARKET_EXISTS);
}
// List market and emit event
markets[address(cToken)] = Market({isListed: true, collateralFactorMantissa: 0});
allMarkets.push(cToken);
cTokensByUnderlying[underlying] = cToken;
emit MarketListed(cToken);
return uint(Error.NO_ERROR);
}
/**
* @notice Deploy cToken, add the market to the markets mapping, and set it as listed and set the collateral factor
* @dev Admin function to deploy cToken, set isListed, and add support for the market and set the collateral factor
* @return uint 0=success, otherwise a failure. (See enum Error for details)
*/
function _deployMarket(
bool isCEther,
bytes calldata constructorData,
uint collateralFactorMantissa
) external returns (uint) {
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SUPPORT_MARKET_OWNER_CHECK);
}
// Temporarily enable Fuse admin rights for asset deployment (storing the original value)
bool oldFuseAdminHasRights = fuseAdminHasRights;
fuseAdminHasRights = true;
// Deploy via Fuse admin
CToken cToken = CToken(isCEther ? fuseAdmin.deployCEther(constructorData) : fuseAdmin.deployCErc20(constructorData));
// Reset Fuse admin rights to the original value
fuseAdminHasRights = oldFuseAdminHasRights;
// Support market here in the Comptroller
uint256 err = _supportMarket(cToken);
// Set collateral factor
return err == uint(Error.NO_ERROR) ? _setCollateralFactor(cToken, collateralFactorMantissa) : err;
}
/**
* @notice Removed a market from the markets mapping and sets it as unlisted
* @dev Admin function unset isListed and collateralFactorMantissa and unadd support for the market
* @param cToken The address of the market (token) to unlist
* @return uint 0=success, otherwise a failure. (See enum Error for details)
*/
function _unsupportMarket(CToken cToken) external returns (uint) {
// Check admin rights
if (!hasAdminRights()) return fail(Error.UNAUTHORIZED, FailureInfo.UNSUPPORT_MARKET_OWNER_CHECK);
// Check if market is already unlisted
if (!markets[address(cToken)].isListed) return fail(Error.MARKET_NOT_LISTED, FailureInfo.UNSUPPORT_MARKET_DOES_NOT_EXIST);
// Check if market is in use
if (cToken.totalSupply() > 0) return fail(Error.NONZERO_TOTAL_SUPPLY, FailureInfo.UNSUPPORT_MARKET_IN_USE);
// Unlist market
delete markets[address(cToken)];
/* Delete cToken from allMarkets */
// load into memory for faster iteration
CToken[] memory _allMarkets = allMarkets;
uint len = _allMarkets.length;
uint assetIndex = len;
for (uint i = 0; i < len; i++) {
if (_allMarkets[i] == cToken) {
assetIndex = i;
break;
}
}
// We *must* have found the asset in the list or our redundant data structure is broken
assert(assetIndex < len);
// copy last item in list to location of item to be removed, reduce length by 1
allMarkets[assetIndex] = allMarkets[allMarkets.length - 1];
allMarkets.length--;
cTokensByUnderlying[cToken.isCEther() ? address(0) : CErc20(address(cToken)).underlying()] = CToken(address(0));
emit MarketUnlisted(cToken);
return uint(Error.NO_ERROR);
}
/**
* @notice Toggles the auto-implementation feature
* @param enabled If the feature is to be enabled
* @return uint 0=success, otherwise a failure. (See enum Error for details)
*/
function _toggleAutoImplementations(bool enabled) public returns (uint) {
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.TOGGLE_AUTO_IMPLEMENTATIONS_ENABLED_OWNER_CHECK);
}
// Return no error if already set to the desired value
if (autoImplementation == enabled) return uint(Error.NO_ERROR);
// Store autoImplementation with value enabled
autoImplementation = enabled;
// Emit AutoImplementationsToggled(enabled)
emit AutoImplementationsToggled(enabled);
return uint(Error.NO_ERROR);
}
/**
* @notice Set the given supply caps for the given cToken markets. Supplying that brings total underlying supply to or above supply cap will revert.
* @dev Admin or borrowCapGuardian function to set the supply caps. A supply cap of 0 corresponds to unlimited supplying.
* @param cTokens The addresses of the markets (tokens) to change the supply caps for
* @param newSupplyCaps The new supply cap values in underlying to be set. A value of 0 corresponds to unlimited supplying.
*/
function _setMarketSupplyCaps(CToken[] calldata cTokens, uint[] calldata newSupplyCaps) external {
require(msg.sender == admin || msg.sender == borrowCapGuardian, "only admin or borrow cap guardian can set supply caps");
uint numMarkets = cTokens.length;
uint numSupplyCaps = newSupplyCaps.length;
require(numMarkets != 0 && numMarkets == numSupplyCaps, "invalid input");
for(uint i = 0; i < numMarkets; i++) {
supplyCaps[address(cTokens[i])] = newSupplyCaps[i];
emit NewSupplyCap(cTokens[i], newSupplyCaps[i]);
}
}
/**
* @notice Set the given borrow caps for the given cToken markets. Borrowing that brings total borrows to or above borrow cap will revert.
* @dev Admin or borrowCapGuardian function to set the borrow caps. A borrow cap of 0 corresponds to unlimited borrowing.
* @param cTokens The addresses of the markets (tokens) to change the borrow caps for
* @param newBorrowCaps The new borrow cap values in underlying to be set. A value of 0 corresponds to unlimited borrowing.
*/
function _setMarketBorrowCaps(CToken[] calldata cTokens, uint[] calldata newBorrowCaps) external {
require(msg.sender == admin || msg.sender == borrowCapGuardian, "only admin or borrow cap guardian can set borrow caps");
uint numMarkets = cTokens.length;
uint numBorrowCaps = newBorrowCaps.length;
require(numMarkets != 0 && numMarkets == numBorrowCaps, "invalid input");
for(uint i = 0; i < numMarkets; i++) {
borrowCaps[address(cTokens[i])] = newBorrowCaps[i];
emit NewBorrowCap(cTokens[i], newBorrowCaps[i]);
}
}
/**
* @notice Admin function to change the Borrow Cap Guardian
* @param newBorrowCapGuardian The address of the new Borrow Cap Guardian
*/
function _setBorrowCapGuardian(address newBorrowCapGuardian) external {
require(msg.sender == admin, "only admin can set borrow cap guardian");
// Save current value for inclusion in log
address oldBorrowCapGuardian = borrowCapGuardian;
// Store borrowCapGuardian with value newBorrowCapGuardian
borrowCapGuardian = newBorrowCapGuardian;
// Emit NewBorrowCapGuardian(OldBorrowCapGuardian, NewBorrowCapGuardian)
emit NewBorrowCapGuardian(oldBorrowCapGuardian, newBorrowCapGuardian);
}
/**
* @notice Admin function to change the Pause Guardian
* @param newPauseGuardian The address of the new Pause Guardian
* @return uint 0=success, otherwise a failure. (See enum Error for details)
*/
function _setPauseGuardian(address newPauseGuardian) public returns (uint) {
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_PAUSE_GUARDIAN_OWNER_CHECK);
}
// Save current value for inclusion in log
address oldPauseGuardian = pauseGuardian;
// Store pauseGuardian with value newPauseGuardian
pauseGuardian = newPauseGuardian;
// Emit NewPauseGuardian(OldPauseGuardian, NewPauseGuardian)
emit NewPauseGuardian(oldPauseGuardian, pauseGuardian);
return uint(Error.NO_ERROR);
}
function _setMintPaused(CToken cToken, bool state) public returns (bool) {
require(markets[address(cToken)].isListed, "cannot pause a market that is not listed");
require(msg.sender == pauseGuardian || hasAdminRights(), "only pause guardian and admin can pause");
require(hasAdminRights() || state == true, "only admin can unpause");
mintGuardianPaused[address(cToken)] = state;
emit ActionPaused(cToken, "Mint", state);
return state;
}
function _setBorrowPaused(CToken cToken, bool state) public returns (bool) {
require(markets[address(cToken)].isListed, "cannot pause a market that is not listed");
require(msg.sender == pauseGuardian || hasAdminRights(), "only pause guardian and admin can pause");
require(hasAdminRights() || state == true, "only admin can unpause");
borrowGuardianPaused[address(cToken)] = state;
emit ActionPaused(cToken, "Borrow", state);
return state;
}
function _setTransferPaused(bool state) public returns (bool) {
require(msg.sender == pauseGuardian || hasAdminRights(), "only pause guardian and admin can pause");
require(hasAdminRights() || state == true, "only admin can unpause");
transferGuardianPaused = state;
emit ActionPaused("Transfer", state);
return state;
}
function _setSeizePaused(bool state) public returns (bool) {
require(msg.sender == pauseGuardian || hasAdminRights(), "only pause guardian and admin can pause");
require(hasAdminRights() || state == true, "only admin can unpause");
seizeGuardianPaused = state;
emit ActionPaused("Seize", state);
return state;
}
function _become(Unitroller unitroller) public {
require((msg.sender == address(fuseAdmin) && unitroller.fuseAdminHasRights()) || (msg.sender == unitroller.admin() && unitroller.adminHasRights()), "only unitroller admin can change brains");
uint changeStatus = unitroller._acceptImplementation();
require(changeStatus == 0, "change not authorized");
Comptroller(address(unitroller))._becomeImplementation();
}
function _becomeImplementation() external {
require(msg.sender == comptrollerImplementation, "only implementation may call _becomeImplementation");
if (!_notEnteredInitialized) {
_notEntered = true;
_notEnteredInitialized = true;
}
}
/*** Helper Functions ***/
/**
* @notice Return all of the markets
* @dev The automatic getter may be used to access an individual market.
* @return The list of market addresses
*/
function getAllMarkets() public view returns (CToken[] memory) {
return allMarkets;
}
/**
* @notice Return all of the borrowers
* @dev The automatic getter may be used to access an individual borrower.
* @return The list of borrower account addresses
*/
function getAllBorrowers() public view returns (address[] memory) {
return allBorrowers;
}
/**
* @notice Return all of the whitelist
* @dev The automatic getter may be used to access an individual whitelist status.
* @return The list of borrower account addresses
*/
function getWhitelist() external view returns (address[] memory) {
return whitelistArray;
}
/**
* @notice Returns an array of all RewardsDistributors
*/
function getRewardsDistributors() external view returns (address[] memory) {
return rewardsDistributors;
}
/**
* @notice Returns true if the given cToken market has been deprecated
* @dev All borrows in a deprecated cToken market can be immediately liquidated
* @param cToken The market to check if deprecated
*/
function isDeprecated(CToken cToken) public view returns (bool) {
return
markets[address(cToken)].collateralFactorMantissa == 0 &&
borrowGuardianPaused[address(cToken)] == true &&
add_(add_(cToken.reserveFactorMantissa(), cToken.adminFeeMantissa()), cToken.fuseFeeMantissa()) == 1e18
;
}
/*** Pool-Wide/Cross-Asset Reentrancy Prevention ***/
/**
* @dev Called by cTokens before a non-reentrant function for pool-wide reentrancy prevention.
* Prevents pool-wide/cross-asset reentrancy exploits like AMP on Cream.
*/
function _beforeNonReentrant() external {
require(markets[msg.sender].isListed, "Comptroller:_beforeNonReentrant: caller not listed as market");
require(_notEntered, "re-entered across assets");
_notEntered = false;
}
/**
* @dev Called by cTokens after a non-reentrant function for pool-wide reentrancy prevention.
* Prevents pool-wide/cross-asset reentrancy exploits like AMP on Cream.
*/
function _afterNonReentrant() external {
require(markets[msg.sender].isListed, "Comptroller:_afterNonReentrant: caller not listed as market");
_notEntered = true; // get a gas-refund post-Istanbul
}
}
pragma solidity ^0.5.16;
import "./CToken.sol";
import "./ErrorReporter.sol";
import "./Exponential.sol";
import "./PriceOracle.sol";
import "./ComptrollerInterface.sol";
import "./ComptrollerStorage.sol";
import "./Unitroller.sol";
/**
* @title Compound's Comptroller Contract
* @author Compound
* @dev This was the first version of the Comptroller brains.
* We keep it so our tests can continue to do the real-life behavior of upgrading from this logic forward.
*/
contract ComptrollerG1 is ComptrollerV1Storage, ComptrollerInterface, ComptrollerErrorReporter, Exponential {
struct Market {
/**
* @notice Whether or not this market is listed
*/
bool isListed;
/**
* @notice Multiplier representing the most one can borrow against their collateral in this market.
* For instance, 0.9 to allow borrowing 90% of collateral value.
* Must be between 0 and 1, and stored as a mantissa.
*/
uint collateralFactorMantissa;
/**
* @notice Per-market mapping of "accounts in this asset"
*/
mapping(address => bool) accountMembership;
}
/**
* @notice Official mapping of cTokens -> Market metadata
* @dev Used e.g. to determine if a market is supported
*/
mapping(address => Market) public markets;
/**
* @notice Emitted when an admin supports a market
*/
event MarketListed(CToken cToken);
/**
* @notice Emitted when an account enters a market
*/
event MarketEntered(CToken cToken, address account);
/**
* @notice Emitted when an account exits a market
*/
event MarketExited(CToken cToken, address account);
/**
* @notice Emitted when close factor is changed by admin
*/
event NewCloseFactor(uint oldCloseFactorMantissa, uint newCloseFactorMantissa);
/**
* @notice Emitted when a collateral factor is changed by admin
*/
event NewCollateralFactor(CToken cToken, uint oldCollateralFactorMantissa, uint newCollateralFactorMantissa);
/**
* @notice Emitted when liquidation incentive is changed by admin
*/
event NewLiquidationIncentive(uint oldLiquidationIncentiveMantissa, uint newLiquidationIncentiveMantissa);
/**
* @notice Emitted when maxAssets is changed by admin
*/
event NewMaxAssets(uint oldMaxAssets, uint newMaxAssets);
/**
* @notice Emitted when price oracle is changed
*/
event NewPriceOracle(PriceOracle oldPriceOracle, PriceOracle newPriceOracle);
// closeFactorMantissa must be strictly greater than this value
uint constant closeFactorMinMantissa = 5e16; // 0.05
// closeFactorMantissa must not exceed this value
uint constant closeFactorMaxMantissa = 9e17; // 0.9
// No collateralFactorMantissa may exceed this value
uint constant collateralFactorMaxMantissa = 9e17; // 0.9
// liquidationIncentiveMantissa must be no less than this value
uint constant liquidationIncentiveMinMantissa = mantissaOne;
// liquidationIncentiveMantissa must be no greater than this value
uint constant liquidationIncentiveMaxMantissa = 15e17; // 1.5
constructor() public {
admin = msg.sender;
}
/*** Assets You Are In ***/
/**
* @notice Returns the assets an account has entered
* @param account The address of the account to pull assets for
* @return A dynamic list with the assets the account has entered
*/
function getAssetsIn(address account) external view returns (CToken[] memory) {
CToken[] memory assetsIn = accountAssets[account];
return assetsIn;
}
/**
* @notice Returns whether the given account is entered in the given asset
* @param account The address of the account to check
* @param cToken The cToken to check
* @return True if the account is in the asset, otherwise false.
*/
function checkMembership(address account, CToken cToken) external view returns (bool) {
return markets[address(cToken)].accountMembership[account];
}
/**
* @notice Add assets to be included in account liquidity calculation
* @param cTokens The list of addresses of the cToken markets to be enabled
* @return Success indicator for whether each corresponding market was entered
*/
function enterMarkets(address[] memory cTokens) public returns (uint[] memory) {
uint len = cTokens.length;
uint[] memory results = new uint[](len);
for (uint i = 0; i < len; i++) {
CToken cToken = CToken(cTokens[i]);
Market storage marketToJoin = markets[address(cToken)];
if (!marketToJoin.isListed) {
// if market is not listed, cannot join move along
results[i] = uint(Error.MARKET_NOT_LISTED);
continue;
}
if (marketToJoin.accountMembership[msg.sender] == true) {
// if already joined, move along
results[i] = uint(Error.NO_ERROR);
continue;
}
if (accountAssets[msg.sender].length >= maxAssets) {
// if no space, cannot join, move along
results[i] = uint(Error.TOO_MANY_ASSETS);
continue;
}
// survived the gauntlet, add to list
// NOTE: we store these somewhat redundantly as a significant optimization
// this avoids having to iterate through the list for the most common use cases
// that is, only when we need to perform liquidity checks
// and not whenever we want to check if an account is in a particular market
marketToJoin.accountMembership[msg.sender] = true;
accountAssets[msg.sender].push(cToken);
emit MarketEntered(cToken, msg.sender);
results[i] = uint(Error.NO_ERROR);
}
return results;
}
/**
* @notice Removes asset from sender's account liquidity calculation
* @dev Sender must not have an outstanding borrow balance in the asset,
* or be providing neccessary collateral for an outstanding borrow.
* @param cTokenAddress The address of the asset to be removed
* @return Whether or not the account successfully exited the market
*/
function exitMarket(address cTokenAddress) external returns (uint) {
CToken cToken = CToken(cTokenAddress);
/* Get sender tokensHeld and amountOwed underlying from the cToken */
(uint oErr, uint tokensHeld, uint amountOwed, ) = cToken.getAccountSnapshot(msg.sender);
require(oErr == 0, "exitMarket: getAccountSnapshot failed"); // semi-opaque error code
/* Fail if the sender has a borrow balance */
if (amountOwed != 0) {
return fail(Error.NONZERO_BORROW_BALANCE, FailureInfo.EXIT_MARKET_BALANCE_OWED);
}
/* Fail if the sender is not permitted to redeem all of their tokens */
uint allowed = redeemAllowedInternal(cTokenAddress, msg.sender, tokensHeld);
if (allowed != 0) {
return failOpaque(Error.REJECTION, FailureInfo.EXIT_MARKET_REJECTION, allowed);
}
Market storage marketToExit = markets[address(cToken)];
/* Return true if the sender is not already ‘in’ the market */
if (!marketToExit.accountMembership[msg.sender]) {
return uint(Error.NO_ERROR);
}
/* Set cToken account membership to false */
delete marketToExit.accountMembership[msg.sender];
/* Delete cToken from the account’s list of assets */
// load into memory for faster iteration
CToken[] memory userAssetList = accountAssets[msg.sender];
uint len = userAssetList.length;
uint assetIndex = len;
for (uint i = 0; i < len; i++) {
if (userAssetList[i] == cToken) {
assetIndex = i;
break;
}
}
// We *must* have found the asset in the list or our redundant data structure is broken
assert(assetIndex < len);
// copy last item in list to location of item to be removed, reduce length by 1
CToken[] storage storedList = accountAssets[msg.sender];
storedList[assetIndex] = storedList[storedList.length - 1];
storedList.length--;
emit MarketExited(cToken, msg.sender);
return uint(Error.NO_ERROR);
}
/*** Policy Hooks ***/
/**
* @notice Checks if the account should be allowed to mint tokens in the given market
* @param cToken The market to verify the mint against
* @param minter The account which would get the minted tokens
* @param mintAmount The amount of underlying being supplied to the market in exchange for tokens
* @return 0 if the mint is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
*/
function mintAllowed(address cToken, address minter, uint mintAmount) external returns (uint) {
minter; // currently unused
mintAmount; // currently unused
if (!markets[cToken].isListed) {
return uint(Error.MARKET_NOT_LISTED);
}
// *may include Policy Hook-type checks
return uint(Error.NO_ERROR);
}
/**
* @notice Validates mint and reverts on rejection. May emit logs.
* @param cToken Asset being minted
* @param minter The address minting the tokens
* @param mintAmount The amount of the underlying asset being minted
* @param mintTokens The number of tokens being minted
*/
function mintVerify(address cToken, address minter, uint mintAmount, uint mintTokens) external {
cToken; // currently unused
minter; // currently unused
mintAmount; // currently unused
mintTokens; // currently unused
if (false) {
maxAssets = maxAssets; // not pure
}
}
/**
* @notice Checks if the account should be allowed to redeem tokens in the given market
* @param cToken The market to verify the redeem against
* @param redeemer The account which would redeem the tokens
* @param redeemTokens The number of cTokens to exchange for the underlying asset in the market
* @return 0 if the redeem is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
*/
function redeemAllowed(address cToken, address redeemer, uint redeemTokens) external returns (uint) {
return redeemAllowedInternal(cToken, redeemer, redeemTokens);
}
function redeemAllowedInternal(address cToken, address redeemer, uint redeemTokens) internal view returns (uint) {
if (!markets[cToken].isListed) {
return uint(Error.MARKET_NOT_LISTED);
}
// *may include Policy Hook-type checks
/* If the redeemer is not 'in' the market, then we can bypass the liquidity check */
if (!markets[cToken].accountMembership[redeemer]) {
return uint(Error.NO_ERROR);
}
/* Otherwise, perform a hypothetical liquidity check to guard against shortfall */
(Error err, , uint shortfall) = getHypotheticalAccountLiquidityInternal(redeemer, CToken(cToken), redeemTokens, 0);
if (err != Error.NO_ERROR) {
return uint(err);
}
if (shortfall > 0) {
return uint(Error.INSUFFICIENT_LIQUIDITY);
}
return uint(Error.NO_ERROR);
}
/**
* @notice Validates redeem and reverts on rejection. May emit logs.
* @param cToken Asset being redeemed
* @param redeemer The address redeeming the tokens
* @param redeemAmount The amount of the underlying asset being redeemed
* @param redeemTokens The number of tokens being redeemed
*/
function redeemVerify(address cToken, address redeemer, uint redeemAmount, uint redeemTokens) external {
cToken; // currently unused
redeemer; // currently unused
redeemAmount; // currently unused
redeemTokens; // currently unused
// Require tokens is zero or amount is also zero
if (redeemTokens == 0 && redeemAmount > 0) {
revert("redeemTokens zero");
}
}
/**
* @notice Checks if the account should be allowed to borrow the underlying asset of the given market
* @param cToken The market to verify the borrow against
* @param borrower The account which would borrow the asset
* @param borrowAmount The amount of underlying the account would borrow
* @return 0 if the borrow is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
*/
function borrowAllowed(address cToken, address borrower, uint borrowAmount) external returns (uint) {
if (!markets[cToken].isListed) {
return uint(Error.MARKET_NOT_LISTED);
}
// *may include Policy Hook-type checks
if (!markets[cToken].accountMembership[borrower]) {
return uint(Error.MARKET_NOT_ENTERED);
}
if (oracle.getUnderlyingPrice(CToken(cToken)) == 0) {
return uint(Error.PRICE_ERROR);
}
(Error err, , uint shortfall) = getHypotheticalAccountLiquidityInternal(borrower, CToken(cToken), 0, borrowAmount);
if (err != Error.NO_ERROR) {
return uint(err);
}
if (shortfall > 0) {
return uint(Error.INSUFFICIENT_LIQUIDITY);
}
return uint(Error.NO_ERROR);
}
/**
* @notice Validates borrow and reverts on rejection. May emit logs.
* @param cToken Asset whose underlying is being borrowed
* @param borrower The address borrowing the underlying
* @param borrowAmount The amount of the underlying asset requested to borrow
*/
function borrowVerify(address cToken, address borrower, uint borrowAmount) external {
cToken; // currently unused
borrower; // currently unused
borrowAmount; // currently unused
if (false) {
maxAssets = maxAssets; // not pure
}
}
/**
* @notice Checks if the account should be allowed to repay a borrow in the given market
* @param cToken The market to verify the repay against
* @param payer The account which would repay the asset
* @param borrower The account which would borrowed the asset
* @param repayAmount The amount of the underlying asset the account would repay
* @return 0 if the repay is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
*/
function repayBorrowAllowed(
address cToken,
address payer,
address borrower,
uint repayAmount) external returns (uint) {
payer; // currently unused
borrower; // currently unused
repayAmount; // currently unused
if (!markets[cToken].isListed) {
return uint(Error.MARKET_NOT_LISTED);
}
// *may include Policy Hook-type checks
return uint(Error.NO_ERROR);
}
/**
* @notice Validates repayBorrow and reverts on rejection. May emit logs.
* @param cToken Asset being repaid
* @param payer The address repaying the borrow
* @param borrower The address of the borrower
* @param repayAmount The amount of underlying being repaid
*/
function repayBorrowVerify(
address cToken,
address payer,
address borrower,
uint repayAmount,
uint borrowerIndex) external {
cToken; // currently unused
payer; // currently unused
borrower; // currently unused
repayAmount; // currently unused
borrowerIndex; // currently unused
if (false) {
maxAssets = maxAssets; // not pure
}
}
/**
* @notice Checks if the liquidation should be allowed to occur
* @param cTokenBorrowed Asset which was borrowed by the borrower
* @param cTokenCollateral Asset which was used as collateral and will be seized
* @param liquidator The address repaying the borrow and seizing the collateral
* @param borrower The address of the borrower
* @param repayAmount The amount of underlying being repaid
*/
function liquidateBorrowAllowed(
address cTokenBorrowed,
address cTokenCollateral,
address liquidator,
address borrower,
uint repayAmount) external returns (uint) {
liquidator; // currently unused
borrower; // currently unused
repayAmount; // currently unused
if (!markets[cTokenBorrowed].isListed || !markets[cTokenCollateral].isListed) {
return uint(Error.MARKET_NOT_LISTED);
}
// *may include Policy Hook-type checks
/* The borrower must have shortfall in order to be liquidatable */
(Error err, , uint shortfall) = getAccountLiquidityInternal(borrower);
if (err != Error.NO_ERROR) {
return uint(err);
}
if (shortfall == 0) {
return uint(Error.INSUFFICIENT_SHORTFALL);
}
/* The liquidator may not repay more than what is allowed by the closeFactor */
uint borrowBalance = CToken(cTokenBorrowed).borrowBalanceStored(borrower);
(MathError mathErr, uint maxClose) = mulScalarTruncate(Exp({mantissa: closeFactorMantissa}), borrowBalance);
if (mathErr != MathError.NO_ERROR) {
return uint(Error.MATH_ERROR);
}
if (repayAmount > maxClose) {
return uint(Error.TOO_MUCH_REPAY);
}
return uint(Error.NO_ERROR);
}
/**
* @notice Validates liquidateBorrow and reverts on rejection. May emit logs.
* @param cTokenBorrowed Asset which was borrowed by the borrower
* @param cTokenCollateral Asset which was used as collateral and will be seized
* @param liquidator The address repaying the borrow and seizing the collateral
* @param borrower The address of the borrower
* @param repayAmount The amount of underlying being repaid
*/
function liquidateBorrowVerify(
address cTokenBorrowed,
address cTokenCollateral,
address liquidator,
address borrower,
uint repayAmount,
uint seizeTokens) external {
cTokenBorrowed; // currently unused
cTokenCollateral; // currently unused
liquidator; // currently unused
borrower; // currently unused
repayAmount; // currently unused
seizeTokens; // currently unused
if (false) {
maxAssets = maxAssets; // not pure
}
}
/**
* @notice Checks if the seizing of assets should be allowed to occur
* @param cTokenCollateral Asset which was used as collateral and will be seized
* @param cTokenBorrowed Asset which was borrowed by the borrower
* @param liquidator The address repaying the borrow and seizing the collateral
* @param borrower The address of the borrower
* @param seizeTokens The number of collateral tokens to seize
*/
function seizeAllowed(
address cTokenCollateral,
address cTokenBorrowed,
address liquidator,
address borrower,
uint seizeTokens) external returns (uint) {
liquidator; // currently unused
borrower; // currently unused
seizeTokens; // currently unused
if (!markets[cTokenCollateral].isListed || !markets[cTokenBorrowed].isListed) {
return uint(Error.MARKET_NOT_LISTED);
}
if (CToken(cTokenCollateral).comptroller() != CToken(cTokenBorrowed).comptroller()) {
return uint(Error.COMPTROLLER_MISMATCH);
}
// *may include Policy Hook-type checks
return uint(Error.NO_ERROR);
}
/**
* @notice Validates seize and reverts on rejection. May emit logs.
* @param cTokenCollateral Asset which was used as collateral and will be seized
* @param cTokenBorrowed Asset which was borrowed by the borrower
* @param liquidator The address repaying the borrow and seizing the collateral
* @param borrower The address of the borrower
* @param seizeTokens The number of collateral tokens to seize
*/
function seizeVerify(
address cTokenCollateral,
address cTokenBorrowed,
address liquidator,
address borrower,
uint seizeTokens) external {
cTokenCollateral; // currently unused
cTokenBorrowed; // currently unused
liquidator; // currently unused
borrower; // currently unused
seizeTokens; // currently unused
if (false) {
maxAssets = maxAssets; // not pure
}
}
/**
* @notice Checks if the account should be allowed to transfer tokens in the given market
* @param cToken The market to verify the transfer against
* @param src The account which sources the tokens
* @param dst The account which receives the tokens
* @param transferTokens The number of cTokens to transfer
* @return 0 if the transfer is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol)
*/
function transferAllowed(address cToken, address src, address dst, uint transferTokens) external returns (uint) {
cToken; // currently unused
src; // currently unused
dst; // currently unused
transferTokens; // currently unused
// *may include Policy Hook-type checks
// Currently the only consideration is whether or not
// the src is allowed to redeem this many tokens
return redeemAllowedInternal(cToken, src, transferTokens);
}
/**
* @notice Validates transfer and reverts on rejection. May emit logs.
* @param cToken Asset being transferred
* @param src The account which sources the tokens
* @param dst The account which receives the tokens
* @param transferTokens The number of cTokens to transfer
*/
function transferVerify(address cToken, address src, address dst, uint transferTokens) external {
cToken; // currently unused
src; // currently unused
dst; // currently unused
transferTokens; // currently unused
if (false) {
maxAssets = maxAssets; // not pure
}
}
/*** Liquidity/Liquidation Calculations ***/
/**
* @dev Local vars for avoiding stack-depth limits in calculating account liquidity.
* Note that `cTokenBalance` is the number of cTokens the account owns in the market,
* whereas `borrowBalance` is the amount of underlying that the account has borrowed.
*/
struct AccountLiquidityLocalVars {
uint sumCollateral;
uint sumBorrowPlusEffects;
uint cTokenBalance;
uint borrowBalance;
uint exchangeRateMantissa;
uint oraclePriceMantissa;
Exp collateralFactor;
Exp exchangeRate;
Exp oraclePrice;
Exp tokensToEther;
}
/**
* @notice Determine the current account liquidity wrt collateral requirements
* @return (possible error code (semi-opaque),
account liquidity in excess of collateral requirements,
* account shortfall below collateral requirements)
*/
function getAccountLiquidity(address account) public view returns (uint, uint, uint) {
(Error err, uint liquidity, uint shortfall) = getHypotheticalAccountLiquidityInternal(account, CToken(0), 0, 0);
return (uint(err), liquidity, shortfall);
}
/**
* @notice Determine the current account liquidity wrt collateral requirements
* @return (possible error code,
account liquidity in excess of collateral requirements,
* account shortfall below collateral requirements)
*/
function getAccountLiquidityInternal(address account) internal view returns (Error, uint, uint) {
return getHypotheticalAccountLiquidityInternal(account, CToken(0), 0, 0);
}
/**
* @notice Determine what the account liquidity would be if the given amounts were redeemed/borrowed
* @param cTokenModify The market to hypothetically redeem/borrow in
* @param account The account to determine liquidity for
* @param redeemTokens The number of tokens to hypothetically redeem
* @param borrowAmount The amount of underlying to hypothetically borrow
* @dev Note that we calculate the exchangeRateStored for each collateral cToken using stored data,
* without calculating accumulated interest.
* @return (possible error code,
hypothetical account liquidity in excess of collateral requirements,
* hypothetical account shortfall below collateral requirements)
*/
function getHypotheticalAccountLiquidityInternal(
address account,
CToken cTokenModify,
uint redeemTokens,
uint borrowAmount) internal view returns (Error, uint, uint) {
AccountLiquidityLocalVars memory vars; // Holds all our calculation results
uint oErr;
MathError mErr;
// For each asset the account is in
CToken[] memory assets = accountAssets[account];
for (uint i = 0; i < assets.length; i++) {
CToken asset = assets[i];
// Read the balances and exchange rate from the cToken
(oErr, vars.cTokenBalance, vars.borrowBalance, vars.exchangeRateMantissa) = asset.getAccountSnapshot(account);
if (oErr != 0) { // semi-opaque error code, we assume NO_ERROR == 0 is invariant between upgrades
return (Error.SNAPSHOT_ERROR, 0, 0);
}
vars.collateralFactor = Exp({mantissa: markets[address(asset)].collateralFactorMantissa});
vars.exchangeRate = Exp({mantissa: vars.exchangeRateMantissa});
// Get the normalized price of the asset
vars.oraclePriceMantissa = oracle.getUnderlyingPrice(asset);
if (vars.oraclePriceMantissa == 0) {
return (Error.PRICE_ERROR, 0, 0);
}
vars.oraclePrice = Exp({mantissa: vars.oraclePriceMantissa});
// Pre-compute a conversion factor from tokens -> ether (normalized price value)
(mErr, vars.tokensToEther) = mulExp3(vars.collateralFactor, vars.exchangeRate, vars.oraclePrice);
if (mErr != MathError.NO_ERROR) {
return (Error.MATH_ERROR, 0, 0);
}
// sumCollateral += tokensToEther * cTokenBalance
(mErr, vars.sumCollateral) = mulScalarTruncateAddUInt(vars.tokensToEther, vars.cTokenBalance, vars.sumCollateral);
if (mErr != MathError.NO_ERROR) {
return (Error.MATH_ERROR, 0, 0);
}
// sumBorrowPlusEffects += oraclePrice * borrowBalance
(mErr, vars.sumBorrowPlusEffects) = mulScalarTruncateAddUInt(vars.oraclePrice, vars.borrowBalance, vars.sumBorrowPlusEffects);
if (mErr != MathError.NO_ERROR) {
return (Error.MATH_ERROR, 0, 0);
}
// Calculate effects of interacting with cTokenModify
if (asset == cTokenModify) {
// redeem effect
// sumBorrowPlusEffects += tokensToEther * redeemTokens
(mErr, vars.sumBorrowPlusEffects) = mulScalarTruncateAddUInt(vars.tokensToEther, redeemTokens, vars.sumBorrowPlusEffects);
if (mErr != MathError.NO_ERROR) {
return (Error.MATH_ERROR, 0, 0);
}
// borrow effect
// sumBorrowPlusEffects += oraclePrice * borrowAmount
(mErr, vars.sumBorrowPlusEffects) = mulScalarTruncateAddUInt(vars.oraclePrice, borrowAmount, vars.sumBorrowPlusEffects);
if (mErr != MathError.NO_ERROR) {
return (Error.MATH_ERROR, 0, 0);
}
}
}
// These are safe, as the underflow condition is checked first
if (vars.sumCollateral > vars.sumBorrowPlusEffects) {
return (Error.NO_ERROR, vars.sumCollateral - vars.sumBorrowPlusEffects, 0);
} else {
return (Error.NO_ERROR, 0, vars.sumBorrowPlusEffects - vars.sumCollateral);
}
}
/**
* @notice Calculate number of tokens of collateral asset to seize given an underlying amount
* @dev Used in liquidation (called in cToken.liquidateBorrowFresh)
* @param cTokenBorrowed The address of the borrowed cToken
* @param cTokenCollateral The address of the collateral cToken
* @param repayAmount The amount of cTokenBorrowed underlying to convert into cTokenCollateral tokens
* @return (errorCode, number of cTokenCollateral tokens to be seized in a liquidation)
*/
function liquidateCalculateSeizeTokens(address cTokenBorrowed, address cTokenCollateral, uint repayAmount) external view returns (uint, uint) {
/* Read oracle prices for borrowed and collateral markets */
uint priceBorrowedMantissa = oracle.getUnderlyingPrice(CToken(cTokenBorrowed));
uint priceCollateralMantissa = oracle.getUnderlyingPrice(CToken(cTokenCollateral));
if (priceBorrowedMantissa == 0 || priceCollateralMantissa == 0) {
return (uint(Error.PRICE_ERROR), 0);
}
/*
* Get the exchange rate and calculate the number of collateral tokens to seize:
* seizeAmount = repayAmount * liquidationIncentive * priceBorrowed / priceCollateral
* seizeTokens = seizeAmount / exchangeRate
* = repayAmount * (liquidationIncentive * priceBorrowed) / (priceCollateral * exchangeRate)
*/
uint exchangeRateMantissa = CToken(cTokenCollateral).exchangeRateStored(); // Note: reverts on error
uint seizeTokens;
Exp memory numerator;
Exp memory denominator;
Exp memory ratio;
MathError mathErr;
(mathErr, numerator) = mulExp(liquidationIncentiveMantissa, priceBorrowedMantissa);
if (mathErr != MathError.NO_ERROR) {
return (uint(Error.MATH_ERROR), 0);
}
(mathErr, denominator) = mulExp(priceCollateralMantissa, exchangeRateMantissa);
if (mathErr != MathError.NO_ERROR) {
return (uint(Error.MATH_ERROR), 0);
}
(mathErr, ratio) = divExp(numerator, denominator);
if (mathErr != MathError.NO_ERROR) {
return (uint(Error.MATH_ERROR), 0);
}
(mathErr, seizeTokens) = mulScalarTruncate(ratio, repayAmount);
if (mathErr != MathError.NO_ERROR) {
return (uint(Error.MATH_ERROR), 0);
}
return (uint(Error.NO_ERROR), seizeTokens);
}
/*** Admin Functions ***/
/**
* @notice Sets a new price oracle for the comptroller
* @dev Admin function to set a new price oracle
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setPriceOracle(PriceOracle newOracle) public returns (uint) {
// Check caller is admin OR currently initialzing as new unitroller implementation
if (!adminOrInitializing()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_PRICE_ORACLE_OWNER_CHECK);
}
// Track the old oracle for the comptroller
PriceOracle oldOracle = oracle;
// Ensure invoke newOracle.isPriceOracle() returns true
// require(newOracle.isPriceOracle(), "oracle method isPriceOracle returned false");
// Set comptroller's oracle to newOracle
oracle = newOracle;
// Emit NewPriceOracle(oldOracle, newOracle)
emit NewPriceOracle(oldOracle, newOracle);
return uint(Error.NO_ERROR);
}
/**
* @notice Sets the closeFactor used when liquidating borrows
* @dev Admin function to set closeFactor
* @param newCloseFactorMantissa New close factor, scaled by 1e18
* @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
*/
function _setCloseFactor(uint newCloseFactorMantissa) external returns (uint256) {
// Check caller is admin OR currently initialzing as new unitroller implementation
if (!adminOrInitializing()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_CLOSE_FACTOR_OWNER_CHECK);
}
Exp memory newCloseFactorExp = Exp({mantissa: newCloseFactorMantissa});
Exp memory lowLimit = Exp({mantissa: closeFactorMinMantissa});
if (lessThanOrEqualExp(newCloseFactorExp, lowLimit)) {
return fail(Error.INVALID_CLOSE_FACTOR, FailureInfo.SET_CLOSE_FACTOR_VALIDATION);
}
Exp memory highLimit = Exp({mantissa: closeFactorMaxMantissa});
if (lessThanExp(highLimit, newCloseFactorExp)) {
return fail(Error.INVALID_CLOSE_FACTOR, FailureInfo.SET_CLOSE_FACTOR_VALIDATION);
}
uint oldCloseFactorMantissa = closeFactorMantissa;
closeFactorMantissa = newCloseFactorMantissa;
emit NewCloseFactor(oldCloseFactorMantissa, closeFactorMantissa);
return uint(Error.NO_ERROR);
}
/**
* @notice Sets the collateralFactor for a market
* @dev Admin function to set per-market collateralFactor
* @param cToken The market to set the factor on
* @param newCollateralFactorMantissa The new collateral factor, scaled by 1e18
* @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
*/
function _setCollateralFactor(CToken cToken, uint newCollateralFactorMantissa) external returns (uint256) {
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_COLLATERAL_FACTOR_OWNER_CHECK);
}
// Verify market is listed
Market storage market = markets[address(cToken)];
if (!market.isListed) {
return fail(Error.MARKET_NOT_LISTED, FailureInfo.SET_COLLATERAL_FACTOR_NO_EXISTS);
}
Exp memory newCollateralFactorExp = Exp({mantissa: newCollateralFactorMantissa});
// Check collateral factor <= 0.9
Exp memory highLimit = Exp({mantissa: collateralFactorMaxMantissa});
if (lessThanExp(highLimit, newCollateralFactorExp)) {
return fail(Error.INVALID_COLLATERAL_FACTOR, FailureInfo.SET_COLLATERAL_FACTOR_VALIDATION);
}
// If collateral factor != 0, fail if price == 0
if (newCollateralFactorMantissa != 0 && oracle.getUnderlyingPrice(cToken) == 0) {
return fail(Error.PRICE_ERROR, FailureInfo.SET_COLLATERAL_FACTOR_WITHOUT_PRICE);
}
// Set market's collateral factor to new collateral factor, remember old value
uint oldCollateralFactorMantissa = market.collateralFactorMantissa;
market.collateralFactorMantissa = newCollateralFactorMantissa;
// Emit event with asset, old collateral factor, and new collateral factor
emit NewCollateralFactor(cToken, oldCollateralFactorMantissa, newCollateralFactorMantissa);
return uint(Error.NO_ERROR);
}
/**
* @notice Sets maxAssets which controls how many markets can be entered
* @dev Admin function to set maxAssets
* @param newMaxAssets New max assets
* @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
*/
function _setMaxAssets(uint newMaxAssets) external returns (uint) {
// Check caller is admin OR currently initialzing as new unitroller implementation
if (!adminOrInitializing()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_MAX_ASSETS_OWNER_CHECK);
}
uint oldMaxAssets = maxAssets;
maxAssets = newMaxAssets;
emit NewMaxAssets(oldMaxAssets, newMaxAssets);
return uint(Error.NO_ERROR);
}
/**
* @notice Sets liquidationIncentive
* @dev Admin function to set liquidationIncentive
* @param newLiquidationIncentiveMantissa New liquidationIncentive scaled by 1e18
* @return uint 0=success, otherwise a failure. (See ErrorReporter for details)
*/
function _setLiquidationIncentive(uint newLiquidationIncentiveMantissa) external returns (uint) {
// Check caller is admin OR currently initialzing as new unitroller implementation
if (!adminOrInitializing()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_LIQUIDATION_INCENTIVE_OWNER_CHECK);
}
// Check de-scaled 1 <= newLiquidationDiscount <= 1.5
Exp memory newLiquidationIncentive = Exp({mantissa: newLiquidationIncentiveMantissa});
Exp memory minLiquidationIncentive = Exp({mantissa: liquidationIncentiveMinMantissa});
if (lessThanExp(newLiquidationIncentive, minLiquidationIncentive)) {
return fail(Error.INVALID_LIQUIDATION_INCENTIVE, FailureInfo.SET_LIQUIDATION_INCENTIVE_VALIDATION);
}
Exp memory maxLiquidationIncentive = Exp({mantissa: liquidationIncentiveMaxMantissa});
if (lessThanExp(maxLiquidationIncentive, newLiquidationIncentive)) {
return fail(Error.INVALID_LIQUIDATION_INCENTIVE, FailureInfo.SET_LIQUIDATION_INCENTIVE_VALIDATION);
}
// Save current value for use in log
uint oldLiquidationIncentiveMantissa = liquidationIncentiveMantissa;
// Set liquidation incentive to new incentive
liquidationIncentiveMantissa = newLiquidationIncentiveMantissa;
// Emit event with old incentive, new incentive
emit NewLiquidationIncentive(oldLiquidationIncentiveMantissa, newLiquidationIncentiveMantissa);
return uint(Error.NO_ERROR);
}
/**
* @notice Add the market to the markets mapping and set it as listed
* @dev Admin function to set isListed and add support for the market
* @param cToken The address of the market (token) to list
* @return uint 0=success, otherwise a failure. (See enum Error for details)
*/
function _supportMarket(CToken cToken) external returns (uint) {
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SUPPORT_MARKET_OWNER_CHECK);
}
if (markets[address(cToken)].isListed) {
return fail(Error.MARKET_ALREADY_LISTED, FailureInfo.SUPPORT_MARKET_EXISTS);
}
cToken.isCToken(); // Sanity check to make sure its really a CToken
markets[address(cToken)] = Market({isListed: true, collateralFactorMantissa: 0});
emit MarketListed(cToken);
return uint(Error.NO_ERROR);
}
function _become(Unitroller unitroller, PriceOracle _oracle, uint _closeFactorMantissa, uint _maxAssets, bool reinitializing) public {
require(msg.sender == unitroller.admin(), "only unitroller admin can change brains");
uint changeStatus = unitroller._acceptImplementation();
require(changeStatus == 0, "change not authorized");
if (!reinitializing) {
ComptrollerG1 freshBrainedComptroller = ComptrollerG1(address(unitroller));
// Ensure invoke _setPriceOracle() = 0
uint err = freshBrainedComptroller._setPriceOracle(_oracle);
require (err == uint(Error.NO_ERROR), "set price oracle error");
// Ensure invoke _setCloseFactor() = 0
err = freshBrainedComptroller._setCloseFactor(_closeFactorMantissa);
require (err == uint(Error.NO_ERROR), "set close factor error");
// Ensure invoke _setMaxAssets() = 0
err = freshBrainedComptroller._setMaxAssets(_maxAssets);
require (err == uint(Error.NO_ERROR), "set max asssets error");
// Ensure invoke _setLiquidationIncentive(liquidationIncentiveMinMantissa) = 0
err = freshBrainedComptroller._setLiquidationIncentive(liquidationIncentiveMinMantissa);
require (err == uint(Error.NO_ERROR), "set liquidation incentive error");
}
}
/**
* @dev Check that caller is admin or this contract is initializing itself as
* the new implementation.
* There should be no way to satisfy msg.sender == comptrollerImplementaiton
* without tx.origin also being admin, but both are included for extra safety
*/
function adminOrInitializing() internal view returns (bool) {
bool initializing = (
msg.sender == comptrollerImplementation
&&
//solium-disable-next-line security/no-tx-origin
tx.origin == admin
);
bool isAdmin = hasAdminRights();
return isAdmin || initializing;
}
}
pragma solidity ^0.5.16;
contract ComptrollerInterface {
/// @notice Indicator that this is a Comptroller contract (for inspection)
bool public constant isComptroller = true;
/*** Assets You Are In ***/
function enterMarkets(address[] calldata cTokens) external returns (uint[] memory);
function exitMarket(address cToken) external returns (uint);
/*** Policy Hooks ***/
function mintAllowed(address cToken, address minter, uint mintAmount) external returns (uint);
function mintWithinLimits(address cToken, uint exchangeRateMantissa, uint accountTokens, uint mintAmount) external returns (uint);
function mintVerify(address cToken, address minter, uint mintAmount, uint mintTokens) external;
function redeemAllowed(address cToken, address redeemer, uint redeemTokens) external returns (uint);
function redeemVerify(address cToken, address redeemer, uint redeemAmount, uint redeemTokens) external;
function borrowAllowed(address cToken, address borrower, uint borrowAmount) external returns (uint);
function borrowWithinLimits(address cToken, uint accountBorrowsNew) external returns (uint);
function borrowVerify(address cToken, address borrower, uint borrowAmount) external;
function repayBorrowAllowed(
address cToken,
address payer,
address borrower,
uint repayAmount) external returns (uint);
function repayBorrowVerify(
address cToken,
address payer,
address borrower,
uint repayAmount,
uint borrowerIndex) external;
function liquidateBorrowAllowed(
address cTokenBorrowed,
address cTokenCollateral,
address liquidator,
address borrower,
uint repayAmount) external returns (uint);
function liquidateBorrowVerify(
address cTokenBorrowed,
address cTokenCollateral,
address liquidator,
address borrower,
uint repayAmount,
uint seizeTokens) external;
function seizeAllowed(
address cTokenCollateral,
address cTokenBorrowed,
address liquidator,
address borrower,
uint seizeTokens) external returns (uint);
function seizeVerify(
address cTokenCollateral,
address cTokenBorrowed,
address liquidator,
address borrower,
uint seizeTokens) external;
function transferAllowed(address cToken, address src, address dst, uint transferTokens) external returns (uint);
function transferVerify(address cToken, address src, address dst, uint transferTokens) external;
/*** Liquidity/Liquidation Calculations ***/
function liquidateCalculateSeizeTokens(
address cTokenBorrowed,
address cTokenCollateral,
uint repayAmount) external view returns (uint, uint);
/*** Pool-Wide/Cross-Asset Reentrancy Prevention ***/
function _beforeNonReentrant() external;
function _afterNonReentrant() external;
}
pragma solidity ^0.5.16;
import "./IFuseFeeDistributor.sol";
import "./CToken.sol";
import "./PriceOracle.sol";
contract UnitrollerAdminStorage {
/**
* @notice Administrator for Fuse
*/
IFuseFeeDistributor internal constant fuseAdmin = IFuseFeeDistributor(0xa731585ab05fC9f83555cf9Bff8F58ee94e18F85);
/**
* @notice Administrator for this contract
*/
address public admin;
/**
* @notice Pending administrator for this contract
*/
address public pendingAdmin;
/**
* @notice Whether or not the Fuse admin has admin rights
*/
bool public fuseAdminHasRights = true;
/**
* @notice Whether or not the admin has admin rights
*/
bool public adminHasRights = true;
/**
* @notice Returns a boolean indicating if the sender has admin rights
*/
function hasAdminRights() internal view returns (bool) {
return (msg.sender == admin && adminHasRights) || (msg.sender == address(fuseAdmin) && fuseAdminHasRights);
}
/**
* @notice Active brains of Unitroller
*/
address public comptrollerImplementation;
/**
* @notice Pending brains of Unitroller
*/
address public pendingComptrollerImplementation;
}
contract ComptrollerV1Storage is UnitrollerAdminStorage {
/**
* @notice Oracle which gives the price of any given asset
*/
PriceOracle public oracle;
/**
* @notice Multiplier used to calculate the maximum repayAmount when liquidating a borrow
*/
uint public closeFactorMantissa;
/**
* @notice Multiplier representing the discount on collateral that a liquidator receives
*/
uint public liquidationIncentiveMantissa;
/**
* @notice UNUSED AFTER UPGRADE: Max number of assets a single account can participate in (borrow or use as collateral)
*/
uint internal maxAssets;
/**
* @notice Per-account mapping of "assets you are in", capped by maxAssets
*/
mapping(address => CToken[]) public accountAssets;
}
contract ComptrollerV2Storage is ComptrollerV1Storage {
struct Market {
/**
* @notice Whether or not this market is listed
*/
bool isListed;
/**
* @notice Multiplier representing the most one can borrow against their collateral in this market.
* For instance, 0.9 to allow borrowing 90% of collateral value.
* Must be between 0 and 1, and stored as a mantissa.
*/
uint collateralFactorMantissa;
/**
* @notice Per-market mapping of "accounts in this asset"
*/
mapping(address => bool) accountMembership;
}
/**
* @notice Official mapping of cTokens -> Market metadata
* @dev Used e.g. to determine if a market is supported
*/
mapping(address => Market) public markets;
/// @notice A list of all markets
CToken[] public allMarkets;
/**
* @dev Maps borrowers to booleans indicating if they have entered any markets
*/
mapping(address => bool) internal borrowers;
/// @notice A list of all borrowers who have entered markets
address[] public allBorrowers;
/// @notice Indexes of borrower account addresses in the `allBorrowers` array
mapping(address => uint256) internal borrowerIndexes;
/**
* @dev Maps suppliers to booleans indicating if they have ever supplied to any markets
*/
mapping(address => bool) public suppliers;
/// @notice All cTokens addresses mapped by their underlying token addresses
mapping(address => CToken) public cTokensByUnderlying;
/// @notice Whether or not the supplier whitelist is enforced
bool public enforceWhitelist;
/// @notice Maps addresses to booleans indicating if they are allowed to supply assets (i.e., mint cTokens)
mapping(address => bool) public whitelist;
/// @notice An array of all whitelisted accounts
address[] public whitelistArray;
/// @notice Indexes of account addresses in the `whitelistArray` array
mapping(address => uint256) internal whitelistIndexes;
/**
* @notice The Pause Guardian can pause certain actions as a safety mechanism.
* Actions which allow users to remove their own assets cannot be paused.
* Liquidation / seizing / transfer can only be paused globally, not by market.
*/
address public pauseGuardian;
bool public _mintGuardianPaused;
bool public _borrowGuardianPaused;
bool public transferGuardianPaused;
bool public seizeGuardianPaused;
mapping(address => bool) public mintGuardianPaused;
mapping(address => bool) public borrowGuardianPaused;
}
contract ComptrollerV3Storage is ComptrollerV2Storage {
/**
* @dev Whether or not the implementation should be auto-upgraded.
*/
bool public autoImplementation;
/// @notice The borrowCapGuardian can set borrowCaps to any number for any market. Lowering the borrow cap could disable borrowing on the given market.
address public borrowCapGuardian;
/// @notice Borrow caps enforced by borrowAllowed for each cToken address. Defaults to zero which corresponds to unlimited borrowing.
mapping(address => uint) public borrowCaps;
/// @notice Supply caps enforced by mintAllowed for each cToken address. Defaults to zero which corresponds to unlimited supplying.
mapping(address => uint) public supplyCaps;
/// @notice RewardsDistributor contracts to notify of flywheel changes.
address[] public rewardsDistributors;
/// @dev Guard variable for pool-wide/cross-asset re-entrancy checks
bool internal _notEntered;
/// @dev Whether or not _notEntered has been initialized
bool internal _notEnteredInitialized;
}
pragma solidity ^0.5.16;
import "./ComptrollerInterface.sol";
import "./CTokenInterfaces.sol";
import "./ErrorReporter.sol";
import "./Exponential.sol";
import "./EIP20Interface.sol";
import "./EIP20NonStandardInterface.sol";
import "./InterestRateModel.sol";
/**
* @title Compound's CToken Contract
* @notice Abstract base for CTokens
* @author Compound
*/
contract CToken is CTokenInterface, Exponential, TokenErrorReporter {
/**
* @notice Returns a boolean indicating if the sender has admin rights
*/
function hasAdminRights() internal view returns (bool) {
ComptrollerV3Storage comptrollerStorage = ComptrollerV3Storage(address(comptroller));
return (msg.sender == comptrollerStorage.admin() && comptrollerStorage.adminHasRights()) || (msg.sender == address(fuseAdmin) && comptrollerStorage.fuseAdminHasRights());
}
/**
* @notice Initialize the money market
* @param comptroller_ The address of the Comptroller
* @param interestRateModel_ The address of the interest rate model
* @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18
* @param name_ EIP-20 name of this token
* @param symbol_ EIP-20 symbol of this token
* @param decimals_ EIP-20 decimal precision of this token
*/
function initialize(ComptrollerInterface comptroller_,
InterestRateModel interestRateModel_,
uint initialExchangeRateMantissa_,
string memory name_,
string memory symbol_,
uint8 decimals_,
uint256 reserveFactorMantissa_,
uint256 adminFeeMantissa_) public {
require(msg.sender == address(fuseAdmin), "only Fuse admin may initialize the market");
require(accrualBlockNumber == 0 && borrowIndex == 0, "market may only be initialized once");
// Set initial exchange rate
initialExchangeRateMantissa = initialExchangeRateMantissa_;
require(initialExchangeRateMantissa > 0, "initial exchange rate must be greater than zero.");
// Set the comptroller
uint err = _setComptroller(comptroller_);
require(err == uint(Error.NO_ERROR), "setting comptroller failed");
// Initialize block number and borrow index (block number mocks depend on comptroller being set)
accrualBlockNumber = getBlockNumber();
borrowIndex = mantissaOne;
// Set the interest rate model (depends on block number / borrow index)
err = _setInterestRateModelFresh(interestRateModel_);
require(err == uint(Error.NO_ERROR), "setting interest rate model failed");
name = name_;
symbol = symbol_;
decimals = decimals_;
// Set reserve factor
err = _setReserveFactorFresh(reserveFactorMantissa_);
require(err == uint(Error.NO_ERROR), "setting reserve factor failed");
// Set admin fee
err = _setAdminFeeFresh(adminFeeMantissa_);
require(err == uint(Error.NO_ERROR), "setting admin fee failed");
// The counter starts true to prevent changing it from zero to non-zero (i.e. smaller cost/refund)
_notEntered = true;
}
/**
* @dev Returns latest pending Fuse fee (to be set with `_setFuseFeeFresh`)
*/
function getPendingFuseFeeFromAdmin() internal view returns (uint) {
return fuseAdmin.interestFeeRate();
}
/**
* @notice Transfer `tokens` tokens from `src` to `dst` by `spender`
* @dev Called by both `transfer` and `transferFrom` internally
* @param spender The address of the account performing the transfer
* @param src The address of the source account
* @param dst The address of the destination account
* @param tokens The number of tokens to transfer
* @return Whether or not the transfer succeeded
*/
function transferTokens(address spender, address src, address dst, uint tokens) internal returns (uint) {
/* Fail if transfer not allowed */
uint allowed = comptroller.transferAllowed(address(this), src, dst, tokens);
if (allowed != 0) {
return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.TRANSFER_COMPTROLLER_REJECTION, allowed);
}
/* Do not allow self-transfers */
if (src == dst) {
return fail(Error.BAD_INPUT, FailureInfo.TRANSFER_NOT_ALLOWED);
}
/* Get the allowance, infinite for the account owner */
uint startingAllowance = 0;
if (spender == src) {
startingAllowance = uint(-1);
} else {
startingAllowance = transferAllowances[src][spender];
}
/* Do the calculations, checking for {under,over}flow */
MathError mathErr;
uint allowanceNew;
uint srcTokensNew;
uint dstTokensNew;
(mathErr, allowanceNew) = subUInt(startingAllowance, tokens);
if (mathErr != MathError.NO_ERROR) {
return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ALLOWED);
}
(mathErr, srcTokensNew) = subUInt(accountTokens[src], tokens);
if (mathErr != MathError.NO_ERROR) {
return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ENOUGH);
}
(mathErr, dstTokensNew) = addUInt(accountTokens[dst], tokens);
if (mathErr != MathError.NO_ERROR) {
return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_TOO_MUCH);
}
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
accountTokens[src] = srcTokensNew;
accountTokens[dst] = dstTokensNew;
/* Eat some of the allowance (if necessary) */
if (startingAllowance != uint(-1)) {
transferAllowances[src][spender] = allowanceNew;
}
/* We emit a Transfer event */
emit Transfer(src, dst, tokens);
/* We call the defense hook */
// unused function
// comptroller.transferVerify(address(this), src, dst, tokens);
return uint(Error.NO_ERROR);
}
/**
* @notice Transfer `amount` tokens from `msg.sender` to `dst`
* @param dst The address of the destination account
* @param amount The number of tokens to transfer
* @return Whether or not the transfer succeeded
*/
function transfer(address dst, uint256 amount) external nonReentrant(false) returns (bool) {
return transferTokens(msg.sender, msg.sender, dst, amount) == uint(Error.NO_ERROR);
}
/**
* @notice Transfer `amount` tokens from `src` to `dst`
* @param src The address of the source account
* @param dst The address of the destination account
* @param amount The number of tokens to transfer
* @return Whether or not the transfer succeeded
*/
function transferFrom(address src, address dst, uint256 amount) external nonReentrant(false) returns (bool) {
return transferTokens(msg.sender, src, dst, amount) == uint(Error.NO_ERROR);
}
/**
* @notice Approve `spender` to transfer up to `amount` from `src`
* @dev This will overwrite the approval amount for `spender`
* and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
* @param spender The address of the account which may transfer tokens
* @param amount The number of tokens that are approved (-1 means infinite)
* @return Whether or not the approval succeeded
*/
function approve(address spender, uint256 amount) external returns (bool) {
address src = msg.sender;
transferAllowances[src][spender] = amount;
emit Approval(src, spender, amount);
return true;
}
/**
* @notice Get the current allowance from `owner` for `spender`
* @param owner The address of the account which owns the tokens to be spent
* @param spender The address of the account which may transfer tokens
* @return The number of tokens allowed to be spent (-1 means infinite)
*/
function allowance(address owner, address spender) external view returns (uint256) {
return transferAllowances[owner][spender];
}
/**
* @notice Get the token balance of the `owner`
* @param owner The address of the account to query
* @return The number of tokens owned by `owner`
*/
function balanceOf(address owner) external view returns (uint256) {
return accountTokens[owner];
}
/**
* @notice Get the underlying balance of the `owner`
* @dev This also accrues interest in a transaction
* @param owner The address of the account to query
* @return The amount of underlying owned by `owner`
*/
function balanceOfUnderlying(address owner) external returns (uint) {
Exp memory exchangeRate = Exp({mantissa: exchangeRateCurrent()});
(MathError mErr, uint balance) = mulScalarTruncate(exchangeRate, accountTokens[owner]);
require(mErr == MathError.NO_ERROR, "balance could not be calculated");
return balance;
}
/**
* @notice Get a snapshot of the account's balances, and the cached exchange rate
* @dev This is used by comptroller to more efficiently perform liquidity checks.
* @param account Address of the account to snapshot
* @return (possible error, token balance, borrow balance, exchange rate mantissa)
*/
function getAccountSnapshot(address account) external view returns (uint, uint, uint, uint) {
uint cTokenBalance = accountTokens[account];
uint borrowBalance;
uint exchangeRateMantissa;
MathError mErr;
(mErr, borrowBalance) = borrowBalanceStoredInternal(account);
if (mErr != MathError.NO_ERROR) {
return (uint(Error.MATH_ERROR), 0, 0, 0);
}
(mErr, exchangeRateMantissa) = exchangeRateStoredInternal();
if (mErr != MathError.NO_ERROR) {
return (uint(Error.MATH_ERROR), 0, 0, 0);
}
return (uint(Error.NO_ERROR), cTokenBalance, borrowBalance, exchangeRateMantissa);
}
/**
* @dev Function to simply retrieve block number
* This exists mainly for inheriting test contracts to stub this result.
*/
function getBlockNumber() internal view returns (uint) {
return block.number;
}
/**
* @notice Returns the current per-block borrow interest rate for this cToken
* @return The borrow interest rate per block, scaled by 1e18
*/
function borrowRatePerBlock() external view returns (uint) {
return interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, add_(totalReserves, add_(totalAdminFees, totalFuseFees)));
}
/**
* @notice Returns the current per-block supply interest rate for this cToken
* @return The supply interest rate per block, scaled by 1e18
*/
function supplyRatePerBlock() external view returns (uint) {
return interestRateModel.getSupplyRate(getCashPrior(), totalBorrows, add_(totalReserves, add_(totalAdminFees, totalFuseFees)), reserveFactorMantissa + fuseFeeMantissa + adminFeeMantissa);
}
/**
* @notice Returns the current total borrows plus accrued interest
* @return The total borrows with interest
*/
function totalBorrowsCurrent() external nonReentrant(false) returns (uint) {
require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed");
return totalBorrows;
}
/**
* @notice Accrue interest to updated borrowIndex and then calculate account's borrow balance using the updated borrowIndex
* @param account The address whose balance should be calculated after updating borrowIndex
* @return The calculated balance
*/
function borrowBalanceCurrent(address account) external nonReentrant(false) returns (uint) {
require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed");
return borrowBalanceStored(account);
}
/**
* @notice Return the borrow balance of account based on stored data
* @param account The address whose balance should be calculated
* @return The calculated balance
*/
function borrowBalanceStored(address account) public view returns (uint) {
(MathError err, uint result) = borrowBalanceStoredInternal(account);
require(err == MathError.NO_ERROR, "borrowBalanceStored: borrowBalanceStoredInternal failed");
return result;
}
/**
* @notice Return the borrow balance of account based on stored data
* @param account The address whose balance should be calculated
* @return (error code, the calculated balance or 0 if error code is non-zero)
*/
function borrowBalanceStoredInternal(address account) internal view returns (MathError, uint) {
/* Note: we do not assert that the market is up to date */
MathError mathErr;
uint principalTimesIndex;
uint result;
/* Get borrowBalance and borrowIndex */
BorrowSnapshot storage borrowSnapshot = accountBorrows[account];
/* If borrowBalance = 0 then borrowIndex is likely also 0.
* Rather than failing the calculation with a division by 0, we immediately return 0 in this case.
*/
if (borrowSnapshot.principal == 0) {
return (MathError.NO_ERROR, 0);
}
/* Calculate new borrow balance using the interest index:
* recentBorrowBalance = borrower.borrowBalance * market.borrowIndex / borrower.borrowIndex
*/
(mathErr, principalTimesIndex) = mulUInt(borrowSnapshot.principal, borrowIndex);
if (mathErr != MathError.NO_ERROR) {
return (mathErr, 0);
}
(mathErr, result) = divUInt(principalTimesIndex, borrowSnapshot.interestIndex);
if (mathErr != MathError.NO_ERROR) {
return (mathErr, 0);
}
return (MathError.NO_ERROR, result);
}
/**
* @notice Accrue interest then return the up-to-date exchange rate
* @return Calculated exchange rate scaled by 1e18
*/
function exchangeRateCurrent() public nonReentrant(false) returns (uint) {
require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed");
return exchangeRateStored();
}
/**
* @notice Calculates the exchange rate from the underlying to the CToken
* @dev This function does not accrue interest before calculating the exchange rate
* @return Calculated exchange rate scaled by 1e18
*/
function exchangeRateStored() public view returns (uint) {
(MathError err, uint result) = exchangeRateStoredInternal();
require(err == MathError.NO_ERROR, "exchangeRateStored: exchangeRateStoredInternal failed");
return result;
}
/**
* @notice Calculates the exchange rate from the underlying to the CToken
* @dev This function does not accrue interest before calculating the exchange rate
* @return (error code, calculated exchange rate scaled by 1e18)
*/
function exchangeRateStoredInternal() internal view returns (MathError, uint) {
uint _totalSupply = totalSupply;
if (_totalSupply == 0) {
/*
* If there are no tokens minted:
* exchangeRate = initialExchangeRate
*/
return (MathError.NO_ERROR, initialExchangeRateMantissa);
} else {
/*
* Otherwise:
* exchangeRate = (totalCash + totalBorrows - (totalReserves + totalFuseFees + totalAdminFees)) / totalSupply
*/
uint totalCash = getCashPrior();
uint cashPlusBorrowsMinusReserves;
Exp memory exchangeRate;
MathError mathErr;
(mathErr, cashPlusBorrowsMinusReserves) = addThenSubUInt(totalCash, totalBorrows, add_(totalReserves, add_(totalAdminFees, totalFuseFees)));
if (mathErr != MathError.NO_ERROR) {
return (mathErr, 0);
}
(mathErr, exchangeRate) = getExp(cashPlusBorrowsMinusReserves, _totalSupply);
if (mathErr != MathError.NO_ERROR) {
return (mathErr, 0);
}
return (MathError.NO_ERROR, exchangeRate.mantissa);
}
}
/**
* @notice Get cash balance of this cToken in the underlying asset
* @return The quantity of underlying asset owned by this contract
*/
function getCash() external view returns (uint) {
return getCashPrior();
}
/**
* @notice Applies accrued interest to total borrows and reserves
* @dev This calculates interest accrued from the last checkpointed block
* up to the current block and writes new checkpoint to storage.
*/
function accrueInterest() public returns (uint) {
/* Remember the initial block number */
uint currentBlockNumber = getBlockNumber();
/* Short-circuit accumulating 0 interest */
if (accrualBlockNumber == currentBlockNumber) {
return uint(Error.NO_ERROR);
}
/* Read the previous values out of storage */
uint cashPrior = getCashPrior();
/* Calculate the current borrow interest rate */
uint borrowRateMantissa = interestRateModel.getBorrowRate(cashPrior, totalBorrows, add_(totalReserves, add_(totalAdminFees, totalFuseFees)));
require(borrowRateMantissa <= borrowRateMaxMantissa, "borrow rate is absurdly high");
/* Calculate the number of blocks elapsed since the last accrual */
(MathError mathErr, uint blockDelta) = subUInt(currentBlockNumber, accrualBlockNumber);
require(mathErr == MathError.NO_ERROR, "could not calculate block delta");
return finishInterestAccrual(currentBlockNumber, cashPrior, borrowRateMantissa, blockDelta);
}
/**
* @dev Split off from `accrueInterest` to avoid "stack too deep" error".
*/
function finishInterestAccrual(uint currentBlockNumber, uint cashPrior, uint borrowRateMantissa, uint blockDelta) private returns (uint) {
/*
* Calculate the interest accumulated into borrows and reserves and the new index:
* simpleInterestFactor = borrowRate * blockDelta
* interestAccumulated = simpleInterestFactor * totalBorrows
* totalBorrowsNew = interestAccumulated + totalBorrows
* totalReservesNew = interestAccumulated * reserveFactor + totalReserves
* totalFuseFeesNew = interestAccumulated * fuseFee + totalFuseFees
* totalAdminFeesNew = interestAccumulated * adminFee + totalAdminFees
* borrowIndexNew = simpleInterestFactor * borrowIndex + borrowIndex
*/
Exp memory simpleInterestFactor = mul_(Exp({mantissa: borrowRateMantissa}), blockDelta);
uint interestAccumulated = mul_ScalarTruncate(simpleInterestFactor, totalBorrows);
uint totalBorrowsNew = add_(interestAccumulated, totalBorrows);
uint totalReservesNew = mul_ScalarTruncateAddUInt(Exp({mantissa: reserveFactorMantissa}), interestAccumulated, totalReserves);
uint totalFuseFeesNew = mul_ScalarTruncateAddUInt(Exp({mantissa: fuseFeeMantissa}), interestAccumulated, totalFuseFees);
uint totalAdminFeesNew = mul_ScalarTruncateAddUInt(Exp({mantissa: adminFeeMantissa}), interestAccumulated, totalAdminFees);
uint borrowIndexNew = mul_ScalarTruncateAddUInt(simpleInterestFactor, borrowIndex, borrowIndex);
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/* We write the previously calculated values into storage */
accrualBlockNumber = currentBlockNumber;
borrowIndex = borrowIndexNew;
totalBorrows = totalBorrowsNew;
totalReserves = totalReservesNew;
totalFuseFees = totalFuseFeesNew;
totalAdminFees = totalAdminFeesNew;
/* We emit an AccrueInterest event */
emit AccrueInterest(cashPrior, interestAccumulated, borrowIndexNew, totalBorrowsNew);
// Attempt to add interest checkpoint
address(interestRateModel).call(abi.encodeWithSignature("checkpointInterest(uint256)", borrowRateMantissa));
return uint(Error.NO_ERROR);
}
/**
* @notice Sender supplies assets into the market and receives cTokens in exchange
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param mintAmount The amount of the underlying asset to supply
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount.
*/
function mintInternal(uint mintAmount) internal nonReentrant(false) returns (uint, uint) {
uint error = accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
return (fail(Error(error), FailureInfo.MINT_ACCRUE_INTEREST_FAILED), 0);
}
// mintFresh emits the actual Mint event if successful and logs on errors, so we don't need to
return mintFresh(msg.sender, mintAmount);
}
struct MintLocalVars {
Error err;
MathError mathErr;
uint exchangeRateMantissa;
uint mintTokens;
uint totalSupplyNew;
uint accountTokensNew;
uint actualMintAmount;
}
/**
* @notice User supplies assets into the market and receives cTokens in exchange
* @dev Assumes interest has already been accrued up to the current block
* @param minter The address of the account which is supplying the assets
* @param mintAmount The amount of the underlying asset to supply
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount.
*/
function mintFresh(address minter, uint mintAmount) internal returns (uint, uint) {
/* Fail if mint not allowed */
uint allowed = comptroller.mintAllowed(address(this), minter, mintAmount);
if (allowed != 0) {
return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.MINT_COMPTROLLER_REJECTION, allowed), 0);
}
/* Verify market's block number equals current block number */
if (accrualBlockNumber != getBlockNumber()) {
return (fail(Error.MARKET_NOT_FRESH, FailureInfo.MINT_FRESHNESS_CHECK), 0);
}
MintLocalVars memory vars;
(vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal();
if (vars.mathErr != MathError.NO_ERROR) {
return (failOpaque(Error.MATH_ERROR, FailureInfo.MINT_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr)), 0);
}
// Check max supply
// unused function
/* allowed = comptroller.mintWithinLimits(address(this), vars.exchangeRateMantissa, accountTokens[minter], mintAmount);
if (allowed != 0) {
return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.MINT_COMPTROLLER_REJECTION, allowed), 0);
} */
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/*
* We call `doTransferIn` for the minter and the mintAmount.
* Note: The cToken must handle variations between ERC-20 and ETH underlying.
* `doTransferIn` reverts if anything goes wrong, since we can't be sure if
* side-effects occurred. The function returns the amount actually transferred,
* in case of a fee. On success, the cToken holds an additional `actualMintAmount`
* of cash.
*/
vars.actualMintAmount = doTransferIn(minter, mintAmount);
/*
* We get the current exchange rate and calculate the number of cTokens to be minted:
* mintTokens = actualMintAmount / exchangeRate
*/
(vars.mathErr, vars.mintTokens) = divScalarByExpTruncate(vars.actualMintAmount, Exp({mantissa: vars.exchangeRateMantissa}));
require(vars.mathErr == MathError.NO_ERROR, "MINT_EXCHANGE_CALCULATION_FAILED");
/*
* We calculate the new total supply of cTokens and minter token balance, checking for overflow:
* totalSupplyNew = totalSupply + mintTokens
* accountTokensNew = accountTokens[minter] + mintTokens
*/
vars.totalSupplyNew = add_(totalSupply, vars.mintTokens);
vars.accountTokensNew = add_(accountTokens[minter], vars.mintTokens);
/* We write previously calculated values into storage */
totalSupply = vars.totalSupplyNew;
accountTokens[minter] = vars.accountTokensNew;
/* We emit a Mint event, and a Transfer event */
emit Mint(minter, vars.actualMintAmount, vars.mintTokens);
emit Transfer(address(this), minter, vars.mintTokens);
/* We call the defense hook */
comptroller.mintVerify(address(this), minter, vars.actualMintAmount, vars.mintTokens);
return (uint(Error.NO_ERROR), vars.actualMintAmount);
}
/**
* @notice Sender redeems cTokens in exchange for the underlying asset
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param redeemTokens The number of cTokens to redeem into underlying
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function redeemInternal(uint redeemTokens) internal nonReentrant(false) returns (uint) {
uint error = accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed
return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED);
}
// redeemFresh emits redeem-specific logs on errors, so we don't need to
return redeemFresh(msg.sender, redeemTokens, 0);
}
/**
* @notice Sender redeems cTokens in exchange for a specified amount of underlying asset
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param redeemAmount The amount of underlying to receive from redeeming cTokens
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function redeemUnderlyingInternal(uint redeemAmount) internal nonReentrant(false) returns (uint) {
uint error = accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed
return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED);
}
// redeemFresh emits redeem-specific logs on errors, so we don't need to
return redeemFresh(msg.sender, 0, redeemAmount);
}
struct RedeemLocalVars {
Error err;
MathError mathErr;
uint exchangeRateMantissa;
uint redeemTokens;
uint redeemAmount;
uint totalSupplyNew;
uint accountTokensNew;
}
/**
* @notice User redeems cTokens in exchange for the underlying asset
* @dev Assumes interest has already been accrued up to the current block
* @param redeemer The address of the account which is redeeming the tokens
* @param redeemTokensIn The number of cTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be non-zero)
* @param redeemAmountIn The number of underlying tokens to receive from redeeming cTokens (only one of redeemTokensIn or redeemAmountIn may be non-zero)
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function redeemFresh(address payable redeemer, uint redeemTokensIn, uint redeemAmountIn) internal returns (uint) {
require(redeemTokensIn == 0 || redeemAmountIn == 0, "one of redeemTokensIn or redeemAmountIn must be zero");
RedeemLocalVars memory vars;
/* exchangeRate = invoke Exchange Rate Stored() */
(vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal();
if (vars.mathErr != MathError.NO_ERROR) {
return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr));
}
/* If redeemTokensIn > 0: */
if (redeemTokensIn > 0) {
/*
* We calculate the exchange rate and the amount of underlying to be redeemed:
* redeemTokens = redeemTokensIn
* redeemAmount = redeemTokensIn x exchangeRateCurrent
*/
vars.redeemTokens = redeemTokensIn;
(vars.mathErr, vars.redeemAmount) = mulScalarTruncate(Exp({mantissa: vars.exchangeRateMantissa}), redeemTokensIn);
if (vars.mathErr != MathError.NO_ERROR) {
return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED, uint(vars.mathErr));
}
} else {
/*
* We get the current exchange rate and calculate the amount to be redeemed:
* redeemTokens = redeemAmountIn / exchangeRate
* redeemAmount = redeemAmountIn
*/
(vars.mathErr, vars.redeemTokens) = divScalarByExpTruncate(redeemAmountIn, Exp({mantissa: vars.exchangeRateMantissa}));
if (vars.mathErr != MathError.NO_ERROR) {
return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED, uint(vars.mathErr));
}
vars.redeemAmount = redeemAmountIn;
}
/* Fail if redeem not allowed */
uint allowed = comptroller.redeemAllowed(address(this), redeemer, vars.redeemTokens);
if (allowed != 0) {
return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REDEEM_COMPTROLLER_REJECTION, allowed);
}
/* Verify market's block number equals current block number */
if (accrualBlockNumber != getBlockNumber()) {
return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDEEM_FRESHNESS_CHECK);
}
/*
* We calculate the new total supply and redeemer balance, checking for underflow:
* totalSupplyNew = totalSupply - redeemTokens
* accountTokensNew = accountTokens[redeemer] - redeemTokens
*/
(vars.mathErr, vars.totalSupplyNew) = subUInt(totalSupply, vars.redeemTokens);
if (vars.mathErr != MathError.NO_ERROR) {
return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, uint(vars.mathErr));
}
(vars.mathErr, vars.accountTokensNew) = subUInt(accountTokens[redeemer], vars.redeemTokens);
if (vars.mathErr != MathError.NO_ERROR) {
return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
}
/* Fail gracefully if protocol has insufficient cash */
if (getCashPrior() < vars.redeemAmount) {
return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDEEM_TRANSFER_OUT_NOT_POSSIBLE);
}
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/*
* We invoke doTransferOut for the redeemer and the redeemAmount.
* Note: The cToken must handle variations between ERC-20 and ETH underlying.
* On success, the cToken has redeemAmount less of cash.
* doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
*/
doTransferOut(redeemer, vars.redeemAmount);
/* We write previously calculated values into storage */
totalSupply = vars.totalSupplyNew;
accountTokens[redeemer] = vars.accountTokensNew;
/* We emit a Transfer event, and a Redeem event */
emit Transfer(redeemer, address(this), vars.redeemTokens);
emit Redeem(redeemer, vars.redeemAmount, vars.redeemTokens);
/* We call the defense hook */
comptroller.redeemVerify(address(this), redeemer, vars.redeemAmount, vars.redeemTokens);
return uint(Error.NO_ERROR);
}
/**
* @notice Sender borrows assets from the protocol to their own address
* @param borrowAmount The amount of the underlying asset to borrow
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function borrowInternal(uint borrowAmount) internal nonReentrant(false) returns (uint) {
uint error = accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
return fail(Error(error), FailureInfo.BORROW_ACCRUE_INTEREST_FAILED);
}
// borrowFresh emits borrow-specific logs on errors, so we don't need to
return borrowFresh(msg.sender, borrowAmount);
}
struct BorrowLocalVars {
MathError mathErr;
uint accountBorrows;
uint accountBorrowsNew;
uint totalBorrowsNew;
}
/**
* @notice Users borrow assets from the protocol to their own address
* @param borrowAmount The amount of the underlying asset to borrow
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function borrowFresh(address payable borrower, uint borrowAmount) internal returns (uint) {
/* Fail if borrow not allowed */
uint allowed = comptroller.borrowAllowed(address(this), borrower, borrowAmount);
if (allowed != 0) {
return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.BORROW_COMPTROLLER_REJECTION, allowed);
}
/* Verify market's block number equals current block number */
if (accrualBlockNumber != getBlockNumber()) {
return fail(Error.MARKET_NOT_FRESH, FailureInfo.BORROW_FRESHNESS_CHECK);
}
/* Fail gracefully if protocol has insufficient underlying cash */
uint cashPrior = getCashPrior();
if (cashPrior < borrowAmount) {
return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.BORROW_CASH_NOT_AVAILABLE);
}
BorrowLocalVars memory vars;
/*
* We calculate the new borrower and total borrow balances, failing on overflow:
* accountBorrowsNew = accountBorrows + borrowAmount
* totalBorrowsNew = totalBorrows + borrowAmount
*/
(vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower);
if (vars.mathErr != MathError.NO_ERROR) {
return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
}
(vars.mathErr, vars.accountBorrowsNew) = addUInt(vars.accountBorrows, borrowAmount);
if (vars.mathErr != MathError.NO_ERROR) {
return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
}
// Check min borrow for this user for this asset
allowed = comptroller.borrowWithinLimits(address(this), vars.accountBorrowsNew);
if (allowed != 0) {
return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.BORROW_COMPTROLLER_REJECTION, allowed);
}
(vars.mathErr, vars.totalBorrowsNew) = addUInt(totalBorrows, borrowAmount);
if (vars.mathErr != MathError.NO_ERROR) {
return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));
}
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/*
* We invoke doTransferOut for the borrower and the borrowAmount.
* Note: The cToken must handle variations between ERC-20 and ETH underlying.
* On success, the cToken borrowAmount less of cash.
* doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
*/
doTransferOut(borrower, borrowAmount);
/* We write the previously calculated values into storage */
accountBorrows[borrower].principal = vars.accountBorrowsNew;
accountBorrows[borrower].interestIndex = borrowIndex;
totalBorrows = vars.totalBorrowsNew;
/* We emit a Borrow event */
emit Borrow(borrower, borrowAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);
/* We call the defense hook */
// unused function
// comptroller.borrowVerify(address(this), borrower, borrowAmount);
return uint(Error.NO_ERROR);
}
/**
* @notice Sender repays their own borrow
* @param repayAmount The amount to repay
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
*/
function repayBorrowInternal(uint repayAmount) internal nonReentrant(false) returns (uint, uint) {
uint error = accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
return (fail(Error(error), FailureInfo.REPAY_BORROW_ACCRUE_INTEREST_FAILED), 0);
}
// repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to
return repayBorrowFresh(msg.sender, msg.sender, repayAmount);
}
/**
* @notice Sender repays a borrow belonging to borrower
* @param borrower the account with the debt being payed off
* @param repayAmount The amount to repay
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
*/
function repayBorrowBehalfInternal(address borrower, uint repayAmount) internal nonReentrant(false) returns (uint, uint) {
uint error = accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
return (fail(Error(error), FailureInfo.REPAY_BEHALF_ACCRUE_INTEREST_FAILED), 0);
}
// repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to
return repayBorrowFresh(msg.sender, borrower, repayAmount);
}
struct RepayBorrowLocalVars {
Error err;
MathError mathErr;
uint repayAmount;
uint borrowerIndex;
uint accountBorrows;
uint accountBorrowsNew;
uint totalBorrowsNew;
uint actualRepayAmount;
}
/**
* @notice Borrows are repaid by another user (possibly the borrower).
* @param payer the account paying off the borrow
* @param borrower the account with the debt being payed off
* @param repayAmount the amount of undelrying tokens being returned
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
*/
function repayBorrowFresh(address payer, address borrower, uint repayAmount) internal returns (uint, uint) {
/* Fail if repayBorrow not allowed */
uint allowed = comptroller.repayBorrowAllowed(address(this), payer, borrower, repayAmount);
if (allowed != 0) {
return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REPAY_BORROW_COMPTROLLER_REJECTION, allowed), 0);
}
/* Verify market's block number equals current block number */
if (accrualBlockNumber != getBlockNumber()) {
return (fail(Error.MARKET_NOT_FRESH, FailureInfo.REPAY_BORROW_FRESHNESS_CHECK), 0);
}
RepayBorrowLocalVars memory vars;
/* We remember the original borrowerIndex for verification purposes */
vars.borrowerIndex = accountBorrows[borrower].interestIndex;
/* We fetch the amount the borrower owes, with accumulated interest */
(vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower);
if (vars.mathErr != MathError.NO_ERROR) {
return (failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)), 0);
}
/* If repayAmount == -1, repayAmount = accountBorrows */
if (repayAmount == uint(-1)) {
vars.repayAmount = vars.accountBorrows;
} else {
vars.repayAmount = repayAmount;
}
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/*
* We call doTransferIn for the payer and the repayAmount
* Note: The cToken must handle variations between ERC-20 and ETH underlying.
* On success, the cToken holds an additional repayAmount of cash.
* doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred.
* it returns the amount actually transferred, in case of a fee.
*/
vars.actualRepayAmount = doTransferIn(payer, vars.repayAmount);
/*
* We calculate the new borrower and total borrow balances, failing on underflow:
* accountBorrowsNew = accountBorrows - actualRepayAmount
* totalBorrowsNew = totalBorrows - actualRepayAmount
*/
(vars.mathErr, vars.accountBorrowsNew) = subUInt(vars.accountBorrows, vars.actualRepayAmount);
require(vars.mathErr == MathError.NO_ERROR, "REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED");
(vars.mathErr, vars.totalBorrowsNew) = subUInt(totalBorrows, vars.actualRepayAmount);
require(vars.mathErr == MathError.NO_ERROR, "REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED");
/* We write the previously calculated values into storage */
accountBorrows[borrower].principal = vars.accountBorrowsNew;
accountBorrows[borrower].interestIndex = borrowIndex;
totalBorrows = vars.totalBorrowsNew;
/* We emit a RepayBorrow event */
emit RepayBorrow(payer, borrower, vars.actualRepayAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);
/* We call the defense hook */
// unused function
// comptroller.repayBorrowVerify(address(this), payer, borrower, vars.actualRepayAmount, vars.borrowerIndex);
return (uint(Error.NO_ERROR), vars.actualRepayAmount);
}
/**
* @notice The sender liquidates the borrowers collateral.
* The collateral seized is transferred to the liquidator.
* @param borrower The borrower of this cToken to be liquidated
* @param cTokenCollateral The market in which to seize collateral from the borrower
* @param repayAmount The amount of the underlying borrowed asset to repay
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
*/
function liquidateBorrowInternal(address borrower, uint repayAmount, CTokenInterface cTokenCollateral) internal nonReentrant(false) returns (uint, uint) {
uint error = accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed
return (fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED), 0);
}
error = cTokenCollateral.accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed
return (fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED), 0);
}
// liquidateBorrowFresh emits borrow-specific logs on errors, so we don't need to
return liquidateBorrowFresh(msg.sender, borrower, repayAmount, cTokenCollateral);
}
/**
* @notice The liquidator liquidates the borrowers collateral.
* The collateral seized is transferred to the liquidator.
* @param borrower The borrower of this cToken to be liquidated
* @param liquidator The address repaying the borrow and seizing collateral
* @param cTokenCollateral The market in which to seize collateral from the borrower
* @param repayAmount The amount of the underlying borrowed asset to repay
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
*/
function liquidateBorrowFresh(address liquidator, address borrower, uint repayAmount, CTokenInterface cTokenCollateral) internal returns (uint, uint) {
/* Fail if liquidate not allowed */
uint allowed = comptroller.liquidateBorrowAllowed(address(this), address(cTokenCollateral), liquidator, borrower, repayAmount);
if (allowed != 0) {
return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_COMPTROLLER_REJECTION, allowed), 0);
}
/* Verify market's block number equals current block number */
if (accrualBlockNumber != getBlockNumber()) {
return (fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_FRESHNESS_CHECK), 0);
}
/* Verify cTokenCollateral market's block number equals current block number */
if (cTokenCollateral.accrualBlockNumber() != getBlockNumber()) {
return (fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_COLLATERAL_FRESHNESS_CHECK), 0);
}
/* Fail if borrower = liquidator */
if (borrower == liquidator) {
return (fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_LIQUIDATOR_IS_BORROWER), 0);
}
/* Fail if repayAmount = 0 */
if (repayAmount == 0) {
return (fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_ZERO), 0);
}
/* Fail if repayAmount = -1 */
if (repayAmount == uint(-1)) {
return (fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX), 0);
}
/* Fail if repayBorrow fails */
(uint repayBorrowError, uint actualRepayAmount) = repayBorrowFresh(liquidator, borrower, repayAmount);
if (repayBorrowError != uint(Error.NO_ERROR)) {
return (fail(Error(repayBorrowError), FailureInfo.LIQUIDATE_REPAY_BORROW_FRESH_FAILED), 0);
}
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/* We calculate the number of collateral tokens that will be seized */
(uint amountSeizeError, uint seizeTokens) = comptroller.liquidateCalculateSeizeTokens(address(this), address(cTokenCollateral), actualRepayAmount);
require(amountSeizeError == uint(Error.NO_ERROR), "LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED");
/* Revert if borrower collateral token balance < seizeTokens */
require(cTokenCollateral.balanceOf(borrower) >= seizeTokens, "LIQUIDATE_SEIZE_TOO_MUCH");
// If this is also the collateral, run seizeInternal to avoid re-entrancy, otherwise make an external call
uint seizeError;
if (address(cTokenCollateral) == address(this)) {
seizeError = seizeInternal(address(this), liquidator, borrower, seizeTokens);
} else {
seizeError = cTokenCollateral.seize(liquidator, borrower, seizeTokens);
}
/* Revert if seize tokens fails (since we cannot be sure of side effects) */
require(seizeError == uint(Error.NO_ERROR), "token seizure failed");
/* We emit a LiquidateBorrow event */
emit LiquidateBorrow(liquidator, borrower, actualRepayAmount, address(cTokenCollateral), seizeTokens);
/* We call the defense hook */
// unused function
// comptroller.liquidateBorrowVerify(address(this), address(cTokenCollateral), liquidator, borrower, actualRepayAmount, seizeTokens);
return (uint(Error.NO_ERROR), actualRepayAmount);
}
/**
* @notice Transfers collateral tokens (this market) to the liquidator.
* @dev Will fail unless called by another cToken during the process of liquidation.
* Its absolutely critical to use msg.sender as the borrowed cToken and not a parameter.
* @param liquidator The account receiving seized collateral
* @param borrower The account having collateral seized
* @param seizeTokens The number of cTokens to seize
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function seize(address liquidator, address borrower, uint seizeTokens) external nonReentrant(true) returns (uint) {
return seizeInternal(msg.sender, liquidator, borrower, seizeTokens);
}
struct SeizeInternalLocalVars {
MathError mathErr;
uint borrowerTokensNew;
uint liquidatorTokensNew;
uint liquidatorSeizeTokens;
uint protocolSeizeTokens;
uint protocolSeizeAmount;
uint exchangeRateMantissa;
uint totalReservesNew;
uint totalSupplyNew;
}
/**
* @notice Transfers collateral tokens (this market) to the liquidator.
* @dev Called only during an in-kind liquidation, or by liquidateBorrow during the liquidation of another CToken.
* Its absolutely critical to use msg.sender as the seizer cToken and not a parameter.
* @param seizerToken The contract seizing the collateral (i.e. borrowed cToken)
* @param liquidator The account receiving seized collateral
* @param borrower The account having collateral seized
* @param seizeTokens The number of cTokens to seize
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function seizeInternal(address seizerToken, address liquidator, address borrower, uint seizeTokens) internal returns (uint) {
/* Fail if seize not allowed */
uint allowed = comptroller.seizeAllowed(address(this), seizerToken, liquidator, borrower, seizeTokens);
if (allowed != 0) {
return failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.LIQUIDATE_SEIZE_COMPTROLLER_REJECTION, allowed);
}
/* Fail if borrower = liquidator */
if (borrower == liquidator) {
return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER);
}
SeizeInternalLocalVars memory vars;
/*
* We calculate the new borrower and liquidator token balances, failing on underflow/overflow:
* borrowerTokensNew = accountTokens[borrower] - seizeTokens
* liquidatorTokensNew = accountTokens[liquidator] + seizeTokens
*/
(vars.mathErr, vars.borrowerTokensNew) = subUInt(accountTokens[borrower], seizeTokens);
if (vars.mathErr != MathError.NO_ERROR) {
return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED, uint(vars.mathErr));
}
vars.protocolSeizeTokens = mul_(seizeTokens, Exp({mantissa: protocolSeizeShareMantissa}));
vars.liquidatorSeizeTokens = sub_(seizeTokens, vars.protocolSeizeTokens);
(vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal();
require(vars.mathErr == MathError.NO_ERROR, "exchange rate math error");
vars.protocolSeizeAmount = mul_ScalarTruncate(Exp({mantissa: vars.exchangeRateMantissa}), vars.protocolSeizeTokens);
vars.totalReservesNew = add_(totalReserves, vars.protocolSeizeAmount);
vars.totalSupplyNew = sub_(totalSupply, vars.protocolSeizeTokens);
(vars.mathErr, vars.liquidatorTokensNew) = addUInt(accountTokens[liquidator], vars.liquidatorSeizeTokens);
if (vars.mathErr != MathError.NO_ERROR) {
return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED, uint(vars.mathErr));
}
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/* We write the previously calculated values into storage */
totalReserves = vars.totalReservesNew;
totalSupply = vars.totalSupplyNew;
accountTokens[borrower] = vars.borrowerTokensNew;
accountTokens[liquidator] = vars.liquidatorTokensNew;
/* Emit a Transfer event */
emit Transfer(borrower, liquidator, vars.liquidatorSeizeTokens);
emit Transfer(borrower, address(this), vars.protocolSeizeTokens);
emit ReservesAdded(address(this), vars.protocolSeizeAmount, vars.totalReservesNew);
/* We call the defense hook */
// unused function
// comptroller.seizeVerify(address(this), seizerToken, liquidator, borrower, seizeTokens);
return uint(Error.NO_ERROR);
}
/*** Admin Functions ***/
/**
* @notice Sets a new comptroller for the market
* @dev Internal function to set a new comptroller
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setComptroller(ComptrollerInterface newComptroller) internal returns (uint) {
ComptrollerInterface oldComptroller = comptroller;
// Ensure invoke comptroller.isComptroller() returns true
require(newComptroller.isComptroller(), "marker method returned false");
// Set market's comptroller to newComptroller
comptroller = newComptroller;
// Emit NewComptroller(oldComptroller, newComptroller)
emit NewComptroller(oldComptroller, newComptroller);
return uint(Error.NO_ERROR);
}
/**
* @notice accrues interest and sets a new admin fee for the protocol using _setAdminFeeFresh
* @dev Admin function to accrue interest and set a new admin fee
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setAdminFee(uint newAdminFeeMantissa) external nonReentrant(false) returns (uint) {
uint error = accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted admin fee change failed.
return fail(Error(error), FailureInfo.SET_ADMIN_FEE_ACCRUE_INTEREST_FAILED);
}
// _setAdminFeeFresh emits reserve-factor-specific logs on errors, so we don't need to.
return _setAdminFeeFresh(newAdminFeeMantissa);
}
/**
* @notice Sets a new admin fee for the protocol (*requires fresh interest accrual)
* @dev Admin function to set a new admin fee
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setAdminFeeFresh(uint newAdminFeeMantissa) internal returns (uint) {
// Verify market's block number equals current block number
if (accrualBlockNumber != getBlockNumber()) {
return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_ADMIN_FEE_FRESH_CHECK);
}
// Sanitize newAdminFeeMantissa
if (newAdminFeeMantissa == uint(-1)) newAdminFeeMantissa = adminFeeMantissa;
// Get latest Fuse fee
uint newFuseFeeMantissa = getPendingFuseFeeFromAdmin();
// Check reserveFactorMantissa + newAdminFeeMantissa + newFuseFeeMantissa ≤ reserveFactorPlusFeesMaxMantissa
if (add_(add_(reserveFactorMantissa, newAdminFeeMantissa), newFuseFeeMantissa) > reserveFactorPlusFeesMaxMantissa) {
return fail(Error.BAD_INPUT, FailureInfo.SET_ADMIN_FEE_BOUNDS_CHECK);
}
// If setting admin fee
if (adminFeeMantissa != newAdminFeeMantissa) {
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_ADMIN_FEE_ADMIN_CHECK);
}
// Set admin fee
uint oldAdminFeeMantissa = adminFeeMantissa;
adminFeeMantissa = newAdminFeeMantissa;
// Emit event
emit NewAdminFee(oldAdminFeeMantissa, newAdminFeeMantissa);
}
// If setting Fuse fee
if (fuseFeeMantissa != newFuseFeeMantissa) {
// Set Fuse fee
uint oldFuseFeeMantissa = fuseFeeMantissa;
fuseFeeMantissa = newFuseFeeMantissa;
// Emit event
emit NewFuseFee(oldFuseFeeMantissa, newFuseFeeMantissa);
}
return uint(Error.NO_ERROR);
}
/**
* @notice accrues interest and sets a new reserve factor for the protocol using _setReserveFactorFresh
* @dev Admin function to accrue interest and set a new reserve factor
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setReserveFactor(uint newReserveFactorMantissa) external nonReentrant(false) returns (uint) {
uint error = accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reserve factor change failed.
return fail(Error(error), FailureInfo.SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED);
}
// _setReserveFactorFresh emits reserve-factor-specific logs on errors, so we don't need to.
return _setReserveFactorFresh(newReserveFactorMantissa);
}
/**
* @notice Sets a new reserve factor for the protocol (*requires fresh interest accrual)
* @dev Admin function to set a new reserve factor
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setReserveFactorFresh(uint newReserveFactorMantissa) internal returns (uint) {
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_RESERVE_FACTOR_ADMIN_CHECK);
}
// Verify market's block number equals current block number
if (accrualBlockNumber != getBlockNumber()) {
return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_RESERVE_FACTOR_FRESH_CHECK);
}
// Check newReserveFactor ≤ maxReserveFactor
if (add_(add_(newReserveFactorMantissa, adminFeeMantissa), fuseFeeMantissa) > reserveFactorPlusFeesMaxMantissa) {
return fail(Error.BAD_INPUT, FailureInfo.SET_RESERVE_FACTOR_BOUNDS_CHECK);
}
uint oldReserveFactorMantissa = reserveFactorMantissa;
reserveFactorMantissa = newReserveFactorMantissa;
emit NewReserveFactor(oldReserveFactorMantissa, newReserveFactorMantissa);
return uint(Error.NO_ERROR);
}
/**
* @notice Accrues interest and reduces reserves by transferring to admin
* @param reduceAmount Amount of reduction to reserves
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _reduceReserves(uint reduceAmount) external nonReentrant(false) returns (uint) {
uint error = accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reduce reserves failed.
return fail(Error(error), FailureInfo.REDUCE_RESERVES_ACCRUE_INTEREST_FAILED);
}
// _reduceReservesFresh emits reserve-reduction-specific logs on errors, so we don't need to.
return _reduceReservesFresh(reduceAmount);
}
/**
* @notice Reduces reserves by transferring to admin
* @dev Requires fresh interest accrual
* @param reduceAmount Amount of reduction to reserves
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _reduceReservesFresh(uint reduceAmount) internal returns (uint) {
// totalReserves - reduceAmount
uint totalReservesNew;
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.REDUCE_RESERVES_ADMIN_CHECK);
}
// We fail gracefully unless market's block number equals current block number
if (accrualBlockNumber != getBlockNumber()) {
return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDUCE_RESERVES_FRESH_CHECK);
}
// Fail gracefully if protocol has insufficient underlying cash
if (getCashPrior() < reduceAmount) {
return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDUCE_RESERVES_CASH_NOT_AVAILABLE);
}
// Check reduceAmount ≤ reserves[n] (totalReserves)
if (reduceAmount > totalReserves) {
return fail(Error.BAD_INPUT, FailureInfo.REDUCE_RESERVES_VALIDATION);
}
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
// We checked reduceAmount <= totalReserves above, so this should never revert.
totalReservesNew = sub_(totalReserves, reduceAmount);
// Store reserves[n+1] = reserves[n] - reduceAmount
totalReserves = totalReservesNew;
// doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
doTransferOut(msg.sender, reduceAmount);
emit ReservesReduced(msg.sender, reduceAmount, totalReservesNew);
return uint(Error.NO_ERROR);
}
/**
* @notice Accrues interest and reduces Fuse fees by transferring to Fuse
* @param withdrawAmount Amount of fees to withdraw
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _withdrawFuseFees(uint withdrawAmount) external nonReentrant(false) returns (uint) {
uint error = accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted Fuse fee withdrawal failed.
return fail(Error(error), FailureInfo.WITHDRAW_FUSE_FEES_ACCRUE_INTEREST_FAILED);
}
// _withdrawFuseFeesFresh emits reserve-reduction-specific logs on errors, so we don't need to.
return _withdrawFuseFeesFresh(withdrawAmount);
}
/**
* @notice Reduces Fuse fees by transferring to Fuse
* @dev Requires fresh interest accrual
* @param withdrawAmount Amount of fees to withdraw
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _withdrawFuseFeesFresh(uint withdrawAmount) internal returns (uint) {
// totalFuseFees - reduceAmount
uint totalFuseFeesNew;
// We fail gracefully unless market's block number equals current block number
if (accrualBlockNumber != getBlockNumber()) {
return fail(Error.MARKET_NOT_FRESH, FailureInfo.WITHDRAW_FUSE_FEES_FRESH_CHECK);
}
// Fail gracefully if protocol has insufficient underlying cash
if (getCashPrior() < withdrawAmount) {
return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.WITHDRAW_FUSE_FEES_CASH_NOT_AVAILABLE);
}
// Check withdrawAmount ≤ fuseFees[n] (totalFuseFees)
if (withdrawAmount > totalFuseFees) {
return fail(Error.BAD_INPUT, FailureInfo.WITHDRAW_FUSE_FEES_VALIDATION);
}
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
// We checked withdrawAmount <= totalFuseFees above, so this should never revert.
totalFuseFeesNew = sub_(totalFuseFees, withdrawAmount);
// Store fuseFees[n+1] = fuseFees[n] - withdrawAmount
totalFuseFees = totalFuseFeesNew;
// doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
doTransferOut(address(fuseAdmin), withdrawAmount);
return uint(Error.NO_ERROR);
}
/**
* @notice Accrues interest and reduces admin fees by transferring to admin
* @param withdrawAmount Amount of fees to withdraw
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _withdrawAdminFees(uint withdrawAmount) external nonReentrant(false) returns (uint) {
uint error = accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted admin fee withdrawal failed.
return fail(Error(error), FailureInfo.WITHDRAW_ADMIN_FEES_ACCRUE_INTEREST_FAILED);
}
// _withdrawAdminFeesFresh emits reserve-reduction-specific logs on errors, so we don't need to.
return _withdrawAdminFeesFresh(withdrawAmount);
}
/**
* @notice Reduces admin fees by transferring to admin
* @dev Requires fresh interest accrual
* @param withdrawAmount Amount of fees to withdraw
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _withdrawAdminFeesFresh(uint withdrawAmount) internal returns (uint) {
// totalAdminFees - reduceAmount
uint totalAdminFeesNew;
// We fail gracefully unless market's block number equals current block number
if (accrualBlockNumber != getBlockNumber()) {
return fail(Error.MARKET_NOT_FRESH, FailureInfo.WITHDRAW_ADMIN_FEES_FRESH_CHECK);
}
// Fail gracefully if protocol has insufficient underlying cash
if (getCashPrior() < withdrawAmount) {
return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.WITHDRAW_ADMIN_FEES_CASH_NOT_AVAILABLE);
}
// Check withdrawAmount ≤ adminFees[n] (totalAdminFees)
if (withdrawAmount > totalAdminFees) {
return fail(Error.BAD_INPUT, FailureInfo.WITHDRAW_ADMIN_FEES_VALIDATION);
}
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
// We checked withdrawAmount <= totalAdminFees above, so this should never revert.
totalAdminFeesNew = sub_(totalAdminFees, withdrawAmount);
// Store adminFees[n+1] = adminFees[n] - withdrawAmount
totalAdminFees = totalAdminFeesNew;
// doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
doTransferOut(address(uint160(UnitrollerAdminStorage(address(comptroller)).admin())), withdrawAmount);
return uint(Error.NO_ERROR);
}
/**
* @notice accrues interest and updates the interest rate model using _setInterestRateModelFresh
* @dev Admin function to accrue interest and update the interest rate model
* @param newInterestRateModel the new interest rate model to use
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint) {
uint error = accrueInterest();
if (error != uint(Error.NO_ERROR)) {
// accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted change of interest rate model failed
return fail(Error(error), FailureInfo.SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED);
}
// _setInterestRateModelFresh emits interest-rate-model-update-specific logs on errors, so we don't need to.
return _setInterestRateModelFresh(newInterestRateModel);
}
/**
* @notice updates the interest rate model (*requires fresh interest accrual)
* @dev Admin function to update the interest rate model
* @param newInterestRateModel the new interest rate model to use
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setInterestRateModelFresh(InterestRateModel newInterestRateModel) internal returns (uint) {
// Used to store old model for use in the event that is emitted on success
InterestRateModel oldInterestRateModel;
// Check caller is admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_INTEREST_RATE_MODEL_OWNER_CHECK);
}
// We fail gracefully unless market's block number equals current block number
if (accrualBlockNumber != getBlockNumber()) {
return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_INTEREST_RATE_MODEL_FRESH_CHECK);
}
// Track the market's current interest rate model
oldInterestRateModel = interestRateModel;
// Ensure invoke newInterestRateModel.isInterestRateModel() returns true
require(newInterestRateModel.isInterestRateModel(), "marker method returned false");
// Set the interest rate model to newInterestRateModel
interestRateModel = newInterestRateModel;
// Emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel)
emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel);
// Attempt to reset interest checkpoints on old IRM
if (address(oldInterestRateModel) != address(0)) address(oldInterestRateModel).call(abi.encodeWithSignature("resetInterestCheckpoints()"));
// Attempt to add first interest checkpoint on new IRM
address(newInterestRateModel).call(abi.encodeWithSignature("checkpointInterest()"));
return uint(Error.NO_ERROR);
}
/**
* @notice updates the cToken ERC20 name and symbol
* @dev Admin function to update the cToken ERC20 name and symbol
* @param _name the new ERC20 token name to use
* @param _symbol the new ERC20 token symbol to use
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setNameAndSymbol(string calldata _name, string calldata _symbol) external {
// Check caller is admin
require(hasAdminRights(), "caller not admin");
// Set ERC20 name and symbol
name = _name;
symbol = _symbol;
}
/*** Safe Token ***/
/**
* @notice Gets balance of this contract in terms of the underlying
* @dev This excludes the value of the current message, if any
* @return The quantity of underlying owned by this contract
*/
function getCashPrior() internal view returns (uint);
/**
* @dev Performs a transfer in, reverting upon failure. Returns the amount actually transferred to the protocol, in case of a fee.
* This may revert due to insufficient balance or insufficient allowance.
*/
function doTransferIn(address from, uint amount) internal returns (uint);
/**
* @dev Performs a transfer out, ideally returning an explanatory error code upon failure tather than reverting.
* If caller has not called checked protocol's balance, may revert due to insufficient cash held in the contract.
* If caller has checked protocol's balance, and verified it is >= amount, this should not revert in normal conditions.
*/
function doTransferOut(address payable to, uint amount) internal;
/*** Reentrancy Guard ***/
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
*/
modifier nonReentrant(bool localOnly) {
_beforeNonReentrant(localOnly);
_;
_afterNonReentrant(localOnly);
}
/**
* @dev Split off from `nonReentrant` to keep contract below the 24 KB size limit.
* Saves space because function modifier code is "inlined" into every function with the modifier).
* In this specific case, the optimization saves around 1500 bytes of that valuable 24 KB limit.
*/
function _beforeNonReentrant(bool localOnly) private {
require(_notEntered, "re-entered");
if (!localOnly) comptroller._beforeNonReentrant();
_notEntered = false;
}
/**
* @dev Split off from `nonReentrant` to keep contract below the 24 KB size limit.
* Saves space because function modifier code is "inlined" into every function with the modifier).
* In this specific case, the optimization saves around 150 bytes of that valuable 24 KB limit.
*/
function _afterNonReentrant(bool localOnly) private {
_notEntered = true; // get a gas-refund post-Istanbul
if (!localOnly) comptroller._afterNonReentrant();
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
* @param data The call data (encoded using abi.encode or one of its variants).
* @param errorMessage The revert string to return on failure.
*/
function _functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.call(data);
if (!success) {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
return returndata;
}
}
pragma solidity ^0.5.16;
import "./IFuseFeeDistributor.sol";
import "./ComptrollerStorage.sol";
import "./ComptrollerInterface.sol";
import "./InterestRateModel.sol";
contract CTokenAdminStorage {
/**
* @notice Administrator for Fuse
*/
IFuseFeeDistributor internal constant fuseAdmin = IFuseFeeDistributor(0xa731585ab05fC9f83555cf9Bff8F58ee94e18F85);
/**
* @dev LEGACY USE ONLY: Administrator for this contract
*/
address payable internal __admin;
/**
* @dev LEGACY USE ONLY: Whether or not the Fuse admin has admin rights
*/
bool internal __fuseAdminHasRights;
/**
* @dev LEGACY USE ONLY: Whether or not the admin has admin rights
*/
bool internal __adminHasRights;
}
contract CTokenStorage is CTokenAdminStorage {
/**
* @dev Guard variable for re-entrancy checks
*/
bool internal _notEntered;
/**
* @notice EIP-20 token name for this token
*/
string public name;
/**
* @notice EIP-20 token symbol for this token
*/
string public symbol;
/**
* @notice EIP-20 token decimals for this token
*/
uint8 public decimals;
/**
* @notice Maximum borrow rate that can ever be applied (.0005% / block)
*/
uint internal constant borrowRateMaxMantissa = 0.0005e16;
/**
* @notice Maximum fraction of interest that can be set aside for reserves + fees
*/
uint internal constant reserveFactorPlusFeesMaxMantissa = 1e18;
/**
* @notice LEGACY USE ONLY: Pending administrator for this contract
*/
address payable private __pendingAdmin;
/**
* @notice Contract which oversees inter-cToken operations
*/
ComptrollerInterface public comptroller;
/**
* @notice Model which tells what the current interest rate should be
*/
InterestRateModel public interestRateModel;
/**
* @notice Initial exchange rate used when minting the first CTokens (used when totalSupply = 0)
*/
uint internal initialExchangeRateMantissa;
/**
* @notice Fraction of interest currently set aside for admin fees
*/
uint public adminFeeMantissa;
/**
* @notice Fraction of interest currently set aside for Fuse fees
*/
uint public fuseFeeMantissa;
/**
* @notice Fraction of interest currently set aside for reserves
*/
uint public reserveFactorMantissa;
/**
* @notice Block number that interest was last accrued at
*/
uint public accrualBlockNumber;
/**
* @notice Accumulator of the total earned interest rate since the opening of the market
*/
uint public borrowIndex;
/**
* @notice Total amount of outstanding borrows of the underlying in this market
*/
uint public totalBorrows;
/**
* @notice Total amount of reserves of the underlying held in this market
*/
uint public totalReserves;
/**
* @notice Total amount of admin fees of the underlying held in this market
*/
uint public totalAdminFees;
/**
* @notice Total amount of Fuse fees of the underlying held in this market
*/
uint public totalFuseFees;
/**
* @notice Total number of tokens in circulation
*/
uint public totalSupply;
/**
* @notice Official record of token balances for each account
*/
mapping (address => uint) internal accountTokens;
/**
* @notice Approved token transfer amounts on behalf of others
*/
mapping (address => mapping (address => uint)) internal transferAllowances;
/**
* @notice Container for borrow balance information
* @member principal Total balance (with accrued interest), after applying the most recent balance-changing action
* @member interestIndex Global borrowIndex as of the most recent balance-changing action
*/
struct BorrowSnapshot {
uint principal;
uint interestIndex;
}
/**
* @notice Mapping of account addresses to outstanding borrow balances
*/
mapping(address => BorrowSnapshot) internal accountBorrows;
/**
* @notice Share of seized collateral that is added to reserves
*/
uint public constant protocolSeizeShareMantissa = 2.8e16; //2.8%
}
contract CTokenInterface is CTokenStorage {
/**
* @notice Indicator that this is a CToken contract (for inspection)
*/
bool public constant isCToken = true;
/**
* @notice Indicator that this is or is not a CEther contract (for inspection)
*/
bool public constant isCEther = false;
/*** Market Events ***/
/**
* @notice Event emitted when interest is accrued
*/
event AccrueInterest(uint cashPrior, uint interestAccumulated, uint borrowIndex, uint totalBorrows);
/**
* @notice Event emitted when tokens are minted
*/
event Mint(address minter, uint mintAmount, uint mintTokens);
/**
* @notice Event emitted when tokens are redeemed
*/
event Redeem(address redeemer, uint redeemAmount, uint redeemTokens);
/**
* @notice Event emitted when underlying is borrowed
*/
event Borrow(address borrower, uint borrowAmount, uint accountBorrows, uint totalBorrows);
/**
* @notice Event emitted when a borrow is repaid
*/
event RepayBorrow(address payer, address borrower, uint repayAmount, uint accountBorrows, uint totalBorrows);
/**
* @notice Event emitted when a borrow is liquidated
*/
event LiquidateBorrow(address liquidator, address borrower, uint repayAmount, address cTokenCollateral, uint seizeTokens);
/*** Admin Events ***/
/**
* @notice Event emitted when comptroller is changed
*/
event NewComptroller(ComptrollerInterface oldComptroller, ComptrollerInterface newComptroller);
/**
* @notice Event emitted when interestRateModel is changed
*/
event NewMarketInterestRateModel(InterestRateModel oldInterestRateModel, InterestRateModel newInterestRateModel);
/**
* @notice Event emitted when the reserve factor is changed
*/
event NewReserveFactor(uint oldReserveFactorMantissa, uint newReserveFactorMantissa);
/**
* @notice Event emitted when the reserves are added
*/
event ReservesAdded(address benefactor, uint addAmount, uint newTotalReserves);
/**
* @notice Event emitted when the reserves are reduced
*/
event ReservesReduced(address admin, uint reduceAmount, uint newTotalReserves);
/**
* @notice Event emitted when the admin fee is changed
*/
event NewAdminFee(uint oldAdminFeeMantissa, uint newAdminFeeMantissa);
/**
* @notice Event emitted when the Fuse fee is changed
*/
event NewFuseFee(uint oldFuseFeeMantissa, uint newFuseFeeMantissa);
/**
* @notice EIP20 Transfer event
*/
event Transfer(address indexed from, address indexed to, uint amount);
/**
* @notice EIP20 Approval event
*/
event Approval(address indexed owner, address indexed spender, uint amount);
/**
* @notice Failure event
*/
event Failure(uint error, uint info, uint detail);
/*** User Interface ***/
function transfer(address dst, uint amount) external returns (bool);
function transferFrom(address src, address dst, uint amount) external returns (bool);
function approve(address spender, uint amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function balanceOfUnderlying(address owner) external returns (uint);
function getAccountSnapshot(address account) external view returns (uint, uint, uint, uint);
function borrowRatePerBlock() external view returns (uint);
function supplyRatePerBlock() external view returns (uint);
function totalBorrowsCurrent() external returns (uint);
function borrowBalanceCurrent(address account) external returns (uint);
function borrowBalanceStored(address account) public view returns (uint);
function exchangeRateCurrent() public returns (uint);
function exchangeRateStored() public view returns (uint);
function getCash() external view returns (uint);
function accrueInterest() public returns (uint);
function seize(address liquidator, address borrower, uint seizeTokens) external returns (uint);
/*** Admin Functions ***/
function _setReserveFactor(uint newReserveFactorMantissa) external returns (uint);
function _reduceReserves(uint reduceAmount) external returns (uint);
function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint);
}
contract CErc20Storage {
/**
* @notice Underlying asset for this CToken
*/
address public underlying;
}
contract CErc20Interface is CErc20Storage {
/*** User Interface ***/
function mint(uint mintAmount) external returns (uint);
function redeem(uint redeemTokens) external returns (uint);
function redeemUnderlying(uint redeemAmount) external returns (uint);
function borrow(uint borrowAmount) external returns (uint);
function repayBorrow(uint repayAmount) external returns (uint);
function repayBorrowBehalf(address borrower, uint repayAmount) external returns (uint);
function liquidateBorrow(address borrower, uint repayAmount, CTokenInterface cTokenCollateral) external returns (uint);
}
contract CEtherInterface is CErc20Storage {
/**
* @notice Indicator that this is a CEther contract (for inspection)
*/
bool public constant isCEther = true;
}
contract CDelegationStorage {
/**
* @notice Implementation address for this contract
*/
address public implementation;
}
contract CDelegateInterface is CDelegationStorage {
/**
* @notice Emitted when implementation is changed
*/
event NewImplementation(address oldImplementation, address newImplementation);
/**
* @notice Called by the admin to update the implementation of the delegator
* @param implementation_ The address of the new implementation for delegation
* @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation
* @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation
*/
function _setImplementationSafe(address implementation_, bool allowResign, bytes calldata becomeImplementationData) external;
/**
* @notice Called by the delegator on a delegate to initialize it for duty
* @dev Should revert if any issues arise which make it unfit for delegation
* @param data The encoded bytes data for any initialization
*/
function _becomeImplementation(bytes calldata data) external;
/**
* @notice Function called before all delegator functions
* @dev Checks comptroller.autoImplementation and upgrades the implementation if necessary
*/
function _prepare() external payable;
}
pragma solidity ^0.5.16;
import "./JumpRateModel.sol";
import "./SafeMath.sol";
/**
* @title Compound's DAIInterestRateModel Contract (version 2)
* @author Compound (modified by Dharma Labs)
* @notice The parameterized model described in section 2.4 of the original Compound Protocol whitepaper.
* Version 2 modifies the original interest rate model by increasing the "gap" or slope of the model prior
* to the "kink" from 0.05% to 2% with the goal of "smoothing out" interest rate changes as the utilization
* rate increases.
*/
contract DAIInterestRateModelV2 is JumpRateModel {
using SafeMath for uint;
/**
* @notice The additional margin per block separating the base borrow rate from the roof (2% / block).
* Note that this value has been increased from the original value of 0.05% per block.
*/
uint public constant gapPerBlock = 2e16 / blocksPerYear;
/**
* @notice The assumed (1 - reserve factor) used to calculate the minimum borrow rate (reserve factor = 0.05)
*/
uint public constant assumedOneMinusReserveFactorMantissa = 0.95e18;
PotLike pot;
JugLike jug;
/**
* @notice Construct an interest rate model
* @param jumpMultiplierPerYear The multiplierPerBlock after hitting a specified utilization point
* @param kink_ The utilization point at which the jump multiplier is applied
* @param pot_ The address of the Dai pot (where DSR is earned)
* @param jug_ The address of the Dai jug (where SF is kept)
*/
constructor(uint jumpMultiplierPerYear, uint kink_, address pot_, address jug_) JumpRateModel(0, 0, jumpMultiplierPerYear, kink_) public {
pot = PotLike(pot_);
jug = JugLike(jug_);
poke();
}
/**
* @notice Calculates the current supply interest rate per block including the Dai savings rate
* @param cash The total amount of cash the market has
* @param borrows The total amount of borrows the market has outstanding
* @param reserves The total amnount of reserves the market has
* @param reserveFactorMantissa The current reserve factor the market has
* @return The supply rate per block (as a percentage, and scaled by 1e18)
*/
function getSupplyRate(uint cash, uint borrows, uint reserves, uint reserveFactorMantissa) public view returns (uint) {
uint protocolRate = super.getSupplyRate(cash, borrows, reserves, reserveFactorMantissa);
uint underlying = cash.add(borrows).sub(reserves);
if (underlying == 0) {
return protocolRate;
} else {
uint cashRate = cash.mul(dsrPerBlock()).div(underlying);
return cashRate.add(protocolRate);
}
}
/**
* @notice Calculates the Dai savings rate per block
* @return The Dai savings rate per block (as a percentage, and scaled by 1e18)
*/
function dsrPerBlock() public view returns (uint) {
return pot
.dsr().sub(1e27) // scaled 1e27 aka RAY, and includes an extra "ONE" before subraction
.div(1e9) // descale to 1e18
.mul(15); // 15 seconds per block
}
/**
* @notice Resets the baseRate and multiplier per block based on the stability fee and Dai savings rate
*/
function poke() public {
(uint duty, ) = jug.ilks("ETH-A");
uint stabilityFeePerBlock = duty.add(jug.base()).sub(1e27).mul(1e18).div(1e27).mul(15);
// We ensure the minimum borrow rate >= DSR / (1 - reserve factor)
baseRatePerBlock = dsrPerBlock().mul(1e18).div(assumedOneMinusReserveFactorMantissa);
// The roof borrow rate is max(base rate, stability fee) + gap, from which we derive the slope
if (baseRatePerBlock < stabilityFeePerBlock) {
multiplierPerBlock = stabilityFeePerBlock.sub(baseRatePerBlock).add(gapPerBlock).mul(1e18).div(kink);
} else {
multiplierPerBlock = gapPerBlock.mul(1e18).div(kink);
}
emit NewInterestParams(baseRatePerBlock, multiplierPerBlock, jumpMultiplierPerBlock, kink);
}
}
/*** Maker Interfaces ***/
contract PotLike {
function chi() external view returns (uint);
function dsr() external view returns (uint);
function rho() external view returns (uint);
function pie(address) external view returns (uint);
function drip() external returns (uint);
function join(uint) external;
function exit(uint) external;
}
contract JugLike {
// --- Data ---
struct Ilk {
uint256 duty;
uint256 rho;
}
mapping (bytes32 => Ilk) public ilks;
uint256 public base;
}
pragma solidity ^0.5.16;
/**
* @title ERC 20 Token Standard Interface
* https://eips.ethereum.org/EIPS/eip-20
*/
interface EIP20Interface {
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
/**
* @notice Get the total number of tokens in circulation
* @return The supply of tokens
*/
function totalSupply() external view returns (uint256);
/**
* @notice Gets the balance of the specified address
* @param owner The address from which the balance will be retrieved
* @return The balance
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @notice Transfer `amount` tokens from `msg.sender` to `dst`
* @param dst The address of the destination account
* @param amount The number of tokens to transfer
* @return Whether or not the transfer succeeded
*/
function transfer(address dst, uint256 amount) external returns (bool success);
/**
* @notice Transfer `amount` tokens from `src` to `dst`
* @param src The address of the source account
* @param dst The address of the destination account
* @param amount The number of tokens to transfer
* @return Whether or not the transfer succeeded
*/
function transferFrom(address src, address dst, uint256 amount) external returns (bool success);
/**
* @notice Approve `spender` to transfer up to `amount` from `src`
* @dev This will overwrite the approval amount for `spender`
* and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
* @param spender The address of the account which may transfer tokens
* @param amount The number of tokens that are approved (-1 means infinite)
* @return Whether or not the approval succeeded
*/
function approve(address spender, uint256 amount) external returns (bool success);
/**
* @notice Get the current allowance from `owner` for `spender`
* @param owner The address of the account which owns the tokens to be spent
* @param spender The address of the account which may transfer tokens
* @return The number of tokens allowed to be spent (-1 means infinite)
*/
function allowance(address owner, address spender) external view returns (uint256 remaining);
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
}
pragma solidity ^0.5.16;
/**
* @title EIP20NonStandardInterface
* @dev Version of ERC20 with no return values for `transfer` and `transferFrom`
* See https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
*/
interface EIP20NonStandardInterface {
/**
* @notice Get the total number of tokens in circulation
* @return The supply of tokens
*/
function totalSupply() external view returns (uint256);
/**
* @notice Gets the balance of the specified address
* @param owner The address from which the balance will be retrieved
* @return The balance
*/
function balanceOf(address owner) external view returns (uint256 balance);
///
/// !!!!!!!!!!!!!!
/// !!! NOTICE !!! `transfer` does not return a value, in violation of the ERC-20 specification
/// !!!!!!!!!!!!!!
///
/**
* @notice Transfer `amount` tokens from `msg.sender` to `dst`
* @param dst The address of the destination account
* @param amount The number of tokens to transfer
*/
function transfer(address dst, uint256 amount) external;
///
/// !!!!!!!!!!!!!!
/// !!! NOTICE !!! `transferFrom` does not return a value, in violation of the ERC-20 specification
/// !!!!!!!!!!!!!!
///
/**
* @notice Transfer `amount` tokens from `src` to `dst`
* @param src The address of the source account
* @param dst The address of the destination account
* @param amount The number of tokens to transfer
*/
function transferFrom(address src, address dst, uint256 amount) external;
/**
* @notice Approve `spender` to transfer up to `amount` from `src`
* @dev This will overwrite the approval amount for `spender`
* and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
* @param spender The address of the account which may transfer tokens
* @param amount The number of tokens that are approved
* @return Whether or not the approval succeeded
*/
function approve(address spender, uint256 amount) external returns (bool success);
/**
* @notice Get the current allowance from `owner` for `spender`
* @param owner The address of the account which owns the tokens to be spent
* @param spender The address of the account which may transfer tokens
* @return The number of tokens allowed to be spent
*/
function allowance(address owner, address spender) external view returns (uint256 remaining);
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
}
pragma solidity ^0.5.16;
contract ComptrollerErrorReporter {
enum Error {
NO_ERROR,
UNAUTHORIZED,
COMPTROLLER_MISMATCH,
INSUFFICIENT_SHORTFALL,
INSUFFICIENT_LIQUIDITY,
INVALID_CLOSE_FACTOR,
INVALID_COLLATERAL_FACTOR,
INVALID_LIQUIDATION_INCENTIVE,
MARKET_NOT_ENTERED, // no longer possible
MARKET_NOT_LISTED,
MARKET_ALREADY_LISTED,
MATH_ERROR,
NONZERO_BORROW_BALANCE,
PRICE_ERROR,
REJECTION,
SNAPSHOT_ERROR,
TOO_MANY_ASSETS,
TOO_MUCH_REPAY,
SUPPLIER_NOT_WHITELISTED,
BORROW_BELOW_MIN,
SUPPLY_ABOVE_MAX,
NONZERO_TOTAL_SUPPLY
}
enum FailureInfo {
ACCEPT_ADMIN_PENDING_ADMIN_CHECK,
ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK,
ADD_REWARDS_DISTRIBUTOR_OWNER_CHECK,
EXIT_MARKET_BALANCE_OWED,
EXIT_MARKET_REJECTION,
TOGGLE_ADMIN_RIGHTS_OWNER_CHECK,
TOGGLE_AUTO_IMPLEMENTATIONS_ENABLED_OWNER_CHECK,
SET_CLOSE_FACTOR_OWNER_CHECK,
SET_CLOSE_FACTOR_VALIDATION,
SET_COLLATERAL_FACTOR_OWNER_CHECK,
SET_COLLATERAL_FACTOR_NO_EXISTS,
SET_COLLATERAL_FACTOR_VALIDATION,
SET_COLLATERAL_FACTOR_WITHOUT_PRICE,
SET_LIQUIDATION_INCENTIVE_OWNER_CHECK,
SET_LIQUIDATION_INCENTIVE_VALIDATION,
SET_MAX_ASSETS_OWNER_CHECK,
SET_PENDING_ADMIN_OWNER_CHECK,
SET_PENDING_IMPLEMENTATION_CONTRACT_CHECK,
SET_PENDING_IMPLEMENTATION_OWNER_CHECK,
SET_PRICE_ORACLE_OWNER_CHECK,
SET_WHITELIST_ENFORCEMENT_OWNER_CHECK,
SET_WHITELIST_STATUS_OWNER_CHECK,
SUPPORT_MARKET_EXISTS,
SUPPORT_MARKET_OWNER_CHECK,
SET_PAUSE_GUARDIAN_OWNER_CHECK,
UNSUPPORT_MARKET_OWNER_CHECK,
UNSUPPORT_MARKET_DOES_NOT_EXIST,
UNSUPPORT_MARKET_IN_USE
}
/**
* @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary
* contract-specific code that enables us to report opaque error codes from upgradeable contracts.
**/
event Failure(uint error, uint info, uint detail);
/**
* @dev use this when reporting a known error from the money market or a non-upgradeable collaborator
*/
function fail(Error err, FailureInfo info) internal returns (uint) {
emit Failure(uint(err), uint(info), 0);
return uint(err);
}
/**
* @dev use this when reporting an opaque error from an upgradeable collaborator contract
*/
function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) {
emit Failure(uint(err), uint(info), opaqueError);
return uint(err);
}
}
contract TokenErrorReporter {
enum Error {
NO_ERROR,
UNAUTHORIZED,
BAD_INPUT,
COMPTROLLER_REJECTION,
COMPTROLLER_CALCULATION_ERROR,
INTEREST_RATE_MODEL_ERROR,
INVALID_ACCOUNT_PAIR,
INVALID_CLOSE_AMOUNT_REQUESTED,
INVALID_COLLATERAL_FACTOR,
MATH_ERROR,
MARKET_NOT_FRESH,
MARKET_NOT_LISTED,
TOKEN_INSUFFICIENT_ALLOWANCE,
TOKEN_INSUFFICIENT_BALANCE,
TOKEN_INSUFFICIENT_CASH,
TOKEN_TRANSFER_IN_FAILED,
TOKEN_TRANSFER_OUT_FAILED,
UTILIZATION_ABOVE_MAX
}
/*
* Note: FailureInfo (but not Error) is kept in alphabetical order
* This is because FailureInfo grows significantly faster, and
* the order of Error has some meaning, while the order of FailureInfo
* is entirely arbitrary.
*/
enum FailureInfo {
ACCEPT_ADMIN_PENDING_ADMIN_CHECK,
ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED,
ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED,
ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED,
ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED,
ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED,
ACCRUE_INTEREST_NEW_TOTAL_FUSE_FEES_CALCULATION_FAILED,
ACCRUE_INTEREST_NEW_TOTAL_ADMIN_FEES_CALCULATION_FAILED,
ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED,
BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED,
BORROW_ACCRUE_INTEREST_FAILED,
BORROW_CASH_NOT_AVAILABLE,
BORROW_FRESHNESS_CHECK,
BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED,
BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED,
BORROW_MARKET_NOT_LISTED,
BORROW_COMPTROLLER_REJECTION,
LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED,
LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED,
LIQUIDATE_COLLATERAL_FRESHNESS_CHECK,
LIQUIDATE_COMPTROLLER_REJECTION,
LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED,
LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX,
LIQUIDATE_CLOSE_AMOUNT_IS_ZERO,
LIQUIDATE_FRESHNESS_CHECK,
LIQUIDATE_LIQUIDATOR_IS_BORROWER,
LIQUIDATE_REPAY_BORROW_FRESH_FAILED,
LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED,
LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED,
LIQUIDATE_SEIZE_COMPTROLLER_REJECTION,
LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER,
LIQUIDATE_SEIZE_TOO_MUCH,
MINT_ACCRUE_INTEREST_FAILED,
MINT_COMPTROLLER_REJECTION,
MINT_EXCHANGE_CALCULATION_FAILED,
MINT_EXCHANGE_RATE_READ_FAILED,
MINT_FRESHNESS_CHECK,
MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED,
MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED,
MINT_TRANSFER_IN_FAILED,
MINT_TRANSFER_IN_NOT_POSSIBLE,
NEW_UTILIZATION_RATE_ABOVE_MAX,
REDEEM_ACCRUE_INTEREST_FAILED,
REDEEM_COMPTROLLER_REJECTION,
REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED,
REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED,
REDEEM_EXCHANGE_RATE_READ_FAILED,
REDEEM_FRESHNESS_CHECK,
REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED,
REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED,
REDEEM_TRANSFER_OUT_NOT_POSSIBLE,
WITHDRAW_FUSE_FEES_ACCRUE_INTEREST_FAILED,
WITHDRAW_FUSE_FEES_CASH_NOT_AVAILABLE,
WITHDRAW_FUSE_FEES_FRESH_CHECK,
WITHDRAW_FUSE_FEES_VALIDATION,
WITHDRAW_ADMIN_FEES_ACCRUE_INTEREST_FAILED,
WITHDRAW_ADMIN_FEES_CASH_NOT_AVAILABLE,
WITHDRAW_ADMIN_FEES_FRESH_CHECK,
WITHDRAW_ADMIN_FEES_VALIDATION,
REDUCE_RESERVES_ACCRUE_INTEREST_FAILED,
REDUCE_RESERVES_ADMIN_CHECK,
REDUCE_RESERVES_CASH_NOT_AVAILABLE,
REDUCE_RESERVES_FRESH_CHECK,
REDUCE_RESERVES_VALIDATION,
REPAY_BEHALF_ACCRUE_INTEREST_FAILED,
REPAY_BORROW_ACCRUE_INTEREST_FAILED,
REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED,
REPAY_BORROW_COMPTROLLER_REJECTION,
REPAY_BORROW_FRESHNESS_CHECK,
REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED,
REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED,
REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE,
SET_COLLATERAL_FACTOR_OWNER_CHECK,
SET_COLLATERAL_FACTOR_VALIDATION,
SET_COMPTROLLER_OWNER_CHECK,
SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED,
SET_INTEREST_RATE_MODEL_FRESH_CHECK,
SET_INTEREST_RATE_MODEL_OWNER_CHECK,
SET_MAX_ASSETS_OWNER_CHECK,
SET_ORACLE_MARKET_NOT_LISTED,
TOGGLE_ADMIN_RIGHTS_OWNER_CHECK,
SET_PENDING_ADMIN_OWNER_CHECK,
SET_ADMIN_FEE_ACCRUE_INTEREST_FAILED,
SET_ADMIN_FEE_ADMIN_CHECK,
SET_ADMIN_FEE_FRESH_CHECK,
SET_ADMIN_FEE_BOUNDS_CHECK,
SET_FUSE_FEE_ACCRUE_INTEREST_FAILED,
SET_FUSE_FEE_FRESH_CHECK,
SET_FUSE_FEE_BOUNDS_CHECK,
SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED,
SET_RESERVE_FACTOR_ADMIN_CHECK,
SET_RESERVE_FACTOR_FRESH_CHECK,
SET_RESERVE_FACTOR_BOUNDS_CHECK,
TRANSFER_COMPTROLLER_REJECTION,
TRANSFER_NOT_ALLOWED,
TRANSFER_NOT_ENOUGH,
TRANSFER_TOO_MUCH,
ADD_RESERVES_ACCRUE_INTEREST_FAILED,
ADD_RESERVES_FRESH_CHECK,
ADD_RESERVES_TRANSFER_IN_NOT_POSSIBLE
}
/**
* @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary
* contract-specific code that enables us to report opaque error codes from upgradeable contracts.
**/
event Failure(uint error, uint info, uint detail);
/**
* @dev use this when reporting a known error from the money market or a non-upgradeable collaborator
*/
function fail(Error err, FailureInfo info) internal returns (uint) {
emit Failure(uint(err), uint(info), 0);
return uint(err);
}
/**
* @dev use this when reporting an opaque error from an upgradeable collaborator contract
*/
function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) {
emit Failure(uint(err), uint(info), opaqueError);
return err == Error.COMPTROLLER_REJECTION ? 1000 + opaqueError : uint(err);
}
}
pragma solidity ^0.5.16;
import "./CarefulMath.sol";
import "./ExponentialNoError.sol";
/**
* @title Exponential module for storing fixed-precision decimals
* @author Compound
* @dev Legacy contract for compatibility reasons with existing contracts that still use MathError
* @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places.
* Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is:
* `Exp({mantissa: 5100000000000000000})`.
*/
contract Exponential is CarefulMath, ExponentialNoError {
/**
* @dev Creates an exponential from numerator and denominator values.
* Note: Returns an error if (`num` * 10e18) > MAX_INT,
* or if `denom` is zero.
*/
function getExp(uint num, uint denom) pure internal returns (MathError, Exp memory) {
(MathError err0, uint scaledNumerator) = mulUInt(num, expScale);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
(MathError err1, uint rational) = divUInt(scaledNumerator, denom);
if (err1 != MathError.NO_ERROR) {
return (err1, Exp({mantissa: 0}));
}
return (MathError.NO_ERROR, Exp({mantissa: rational}));
}
/**
* @dev Adds two exponentials, returning a new exponential.
*/
function addExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
(MathError error, uint result) = addUInt(a.mantissa, b.mantissa);
return (error, Exp({mantissa: result}));
}
/**
* @dev Subtracts two exponentials, returning a new exponential.
*/
function subExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
(MathError error, uint result) = subUInt(a.mantissa, b.mantissa);
return (error, Exp({mantissa: result}));
}
/**
* @dev Multiply an Exp by a scalar, returning a new Exp.
*/
function mulScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) {
(MathError err0, uint scaledMantissa) = mulUInt(a.mantissa, scalar);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa}));
}
/**
* @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.
*/
function mulScalarTruncate(Exp memory a, uint scalar) pure internal returns (MathError, uint) {
(MathError err, Exp memory product) = mulScalar(a, scalar);
if (err != MathError.NO_ERROR) {
return (err, 0);
}
return (MathError.NO_ERROR, truncate(product));
}
/**
* @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.
*/
function mulScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (MathError, uint) {
(MathError err, Exp memory product) = mulScalar(a, scalar);
if (err != MathError.NO_ERROR) {
return (err, 0);
}
return addUInt(truncate(product), addend);
}
/**
* @dev Divide an Exp by a scalar, returning a new Exp.
*/
function divScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) {
(MathError err0, uint descaledMantissa) = divUInt(a.mantissa, scalar);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa}));
}
/**
* @dev Divide a scalar by an Exp, returning a new Exp.
*/
function divScalarByExp(uint scalar, Exp memory divisor) pure internal returns (MathError, Exp memory) {
/*
We are doing this as:
getExp(mulUInt(expScale, scalar), divisor.mantissa)
How it works:
Exp = a / b;
Scalar = s;
`s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale`
*/
(MathError err0, uint numerator) = mulUInt(expScale, scalar);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
return getExp(numerator, divisor.mantissa);
}
/**
* @dev Divide a scalar by an Exp, then truncate to return an unsigned integer.
*/
function divScalarByExpTruncate(uint scalar, Exp memory divisor) pure internal returns (MathError, uint) {
(MathError err, Exp memory fraction) = divScalarByExp(scalar, divisor);
if (err != MathError.NO_ERROR) {
return (err, 0);
}
return (MathError.NO_ERROR, truncate(fraction));
}
/**
* @dev Multiplies two exponentials, returning a new exponential.
*/
function mulExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
(MathError err0, uint doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
// We add half the scale before dividing so that we get rounding instead of truncation.
// See "Listing 6" and text above it at https://accu.org/index.php/journals/1717
// Without this change, a result like 6.6...e-19 will be truncated to 0 instead of being rounded to 1e-18.
(MathError err1, uint doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct);
if (err1 != MathError.NO_ERROR) {
return (err1, Exp({mantissa: 0}));
}
(MathError err2, uint product) = divUInt(doubleScaledProductWithHalfScale, expScale);
// The only error `div` can return is MathError.DIVISION_BY_ZERO but we control `expScale` and it is not zero.
assert(err2 == MathError.NO_ERROR);
return (MathError.NO_ERROR, Exp({mantissa: product}));
}
/**
* @dev Multiplies two exponentials given their mantissas, returning a new exponential.
*/
function mulExp(uint a, uint b) pure internal returns (MathError, Exp memory) {
return mulExp(Exp({mantissa: a}), Exp({mantissa: b}));
}
/**
* @dev Multiplies three exponentials, returning a new exponential.
*/
function mulExp3(Exp memory a, Exp memory b, Exp memory c) pure internal returns (MathError, Exp memory) {
(MathError err, Exp memory ab) = mulExp(a, b);
if (err != MathError.NO_ERROR) {
return (err, ab);
}
return mulExp(ab, c);
}
/**
* @dev Divides two exponentials, returning a new exponential.
* (a/scale) / (b/scale) = (a/scale) * (scale/b) = a/b,
* which we can scale as an Exp by calling getExp(a.mantissa, b.mantissa)
*/
function divExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) {
return getExp(a.mantissa, b.mantissa);
}
}
pragma solidity ^0.5.16;
/**
* @title Exponential module for storing fixed-precision decimals
* @author Compound
* @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places.
* Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is:
* `Exp({mantissa: 5100000000000000000})`.
*/
contract ExponentialNoError {
uint constant expScale = 1e18;
uint constant doubleScale = 1e36;
uint constant halfExpScale = expScale/2;
uint constant mantissaOne = expScale;
struct Exp {
uint mantissa;
}
struct Double {
uint mantissa;
}
/**
* @dev Truncates the given exp to a whole number value.
* For example, truncate(Exp{mantissa: 15 * expScale}) = 15
*/
function truncate(Exp memory exp) pure internal returns (uint) {
// Note: We are not using careful math here as we're performing a division that cannot fail
return exp.mantissa / expScale;
}
/**
* @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.
*/
function mul_ScalarTruncate(Exp memory a, uint scalar) pure internal returns (uint) {
Exp memory product = mul_(a, scalar);
return truncate(product);
}
/**
* @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.
*/
function mul_ScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (uint) {
Exp memory product = mul_(a, scalar);
return add_(truncate(product), addend);
}
/**
* @dev Checks if first Exp is less than second Exp.
*/
function lessThanExp(Exp memory left, Exp memory right) pure internal returns (bool) {
return left.mantissa < right.mantissa;
}
/**
* @dev Checks if left Exp <= right Exp.
*/
function lessThanOrEqualExp(Exp memory left, Exp memory right) pure internal returns (bool) {
return left.mantissa <= right.mantissa;
}
/**
* @dev Checks if left Exp > right Exp.
*/
function greaterThanExp(Exp memory left, Exp memory right) pure internal returns (bool) {
return left.mantissa > right.mantissa;
}
/**
* @dev returns true if Exp is exactly zero
*/
function isZeroExp(Exp memory value) pure internal returns (bool) {
return value.mantissa == 0;
}
function safe224(uint n, string memory errorMessage) pure internal returns (uint224) {
require(n < 2**224, errorMessage);
return uint224(n);
}
function safe32(uint n, string memory errorMessage) pure internal returns (uint32) {
require(n < 2**32, errorMessage);
return uint32(n);
}
function add_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
return Exp({mantissa: add_(a.mantissa, b.mantissa)});
}
function add_(Double memory a, Double memory b) pure internal returns (Double memory) {
return Double({mantissa: add_(a.mantissa, b.mantissa)});
}
function add_(uint a, uint b) pure internal returns (uint) {
return add_(a, b, "addition overflow");
}
function add_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
uint c = a + b;
require(c >= a, errorMessage);
return c;
}
function sub_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
return Exp({mantissa: sub_(a.mantissa, b.mantissa)});
}
function sub_(Double memory a, Double memory b) pure internal returns (Double memory) {
return Double({mantissa: sub_(a.mantissa, b.mantissa)});
}
function sub_(uint a, uint b) pure internal returns (uint) {
return sub_(a, b, "subtraction underflow");
}
function sub_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
require(b <= a, errorMessage);
return a - b;
}
function mul_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
return Exp({mantissa: mul_(a.mantissa, b.mantissa) / expScale});
}
function mul_(Exp memory a, uint b) pure internal returns (Exp memory) {
return Exp({mantissa: mul_(a.mantissa, b)});
}
function mul_(uint a, Exp memory b) pure internal returns (uint) {
return mul_(a, b.mantissa) / expScale;
}
function mul_(Double memory a, Double memory b) pure internal returns (Double memory) {
return Double({mantissa: mul_(a.mantissa, b.mantissa) / doubleScale});
}
function mul_(Double memory a, uint b) pure internal returns (Double memory) {
return Double({mantissa: mul_(a.mantissa, b)});
}
function mul_(uint a, Double memory b) pure internal returns (uint) {
return mul_(a, b.mantissa) / doubleScale;
}
function mul_(uint a, uint b) pure internal returns (uint) {
return mul_(a, b, "multiplication overflow");
}
function mul_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
if (a == 0 || b == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, errorMessage);
return c;
}
function div_(Exp memory a, Exp memory b) pure internal returns (Exp memory) {
return Exp({mantissa: div_(mul_(a.mantissa, expScale), b.mantissa)});
}
function div_(Exp memory a, uint b) pure internal returns (Exp memory) {
return Exp({mantissa: div_(a.mantissa, b)});
}
function div_(uint a, Exp memory b) pure internal returns (uint) {
return div_(mul_(a, expScale), b.mantissa);
}
function div_(Double memory a, Double memory b) pure internal returns (Double memory) {
return Double({mantissa: div_(mul_(a.mantissa, doubleScale), b.mantissa)});
}
function div_(Double memory a, uint b) pure internal returns (Double memory) {
return Double({mantissa: div_(a.mantissa, b)});
}
function div_(uint a, Double memory b) pure internal returns (uint) {
return div_(mul_(a, doubleScale), b.mantissa);
}
function div_(uint a, uint b) pure internal returns (uint) {
return div_(a, b, "divide by zero");
}
function div_(uint a, uint b, string memory errorMessage) pure internal returns (uint) {
require(b > 0, errorMessage);
return a / b;
}
function fraction(uint a, uint b) pure internal returns (Double memory) {
return Double({mantissa: div_(mul_(a, doubleScale), b)});
}
}
pragma solidity ^0.5.16;
interface IFuseFeeDistributor {
function minBorrowEth() external view returns (uint256);
function maxSupplyEth() external view returns (uint256);
function maxUtilizationRate() external view returns (uint256);
function interestFeeRate() external view returns (uint256);
function comptrollerImplementationWhitelist(address oldImplementation, address newImplementation) external view returns (bool);
function cErc20DelegateWhitelist(address oldImplementation, address newImplementation, bool allowResign) external view returns (bool);
function cEtherDelegateWhitelist(address oldImplementation, address newImplementation, bool allowResign) external view returns (bool);
function latestComptrollerImplementation(address oldImplementation) external view returns (address);
function latestCErc20Delegate(address oldImplementation) external view returns (address cErc20Delegate, bool allowResign, bytes memory becomeImplementationData);
function latestCEtherDelegate(address oldImplementation) external view returns (address cEtherDelegate, bool allowResign, bytes memory becomeImplementationData);
function deployCEther(bytes calldata constructorData) external returns (address);
function deployCErc20(bytes calldata constructorData) external returns (address);
function () external payable;
}
pragma solidity ^0.5.16;
/**
* @title Compound's InterestRateModel Interface
* @author Compound
*/
contract InterestRateModel {
/// @notice Indicator that this is an InterestRateModel contract (for inspection)
bool public constant isInterestRateModel = true;
/**
* @notice Calculates the current borrow interest rate per block
* @param cash The total amount of cash the market has
* @param borrows The total amount of borrows the market has outstanding
* @param reserves The total amount of reserves the market has
* @return The borrow rate per block (as a percentage, and scaled by 1e18)
*/
function getBorrowRate(uint cash, uint borrows, uint reserves) external view returns (uint);
/**
* @notice Calculates the current supply interest rate per block
* @param cash The total amount of cash the market has
* @param borrows The total amount of borrows the market has outstanding
* @param reserves The total amount of reserves the market has
* @param reserveFactorMantissa The current reserve factor the market has
* @return The supply rate per block (as a percentage, and scaled by 1e18)
*/
function getSupplyRate(uint cash, uint borrows, uint reserves, uint reserveFactorMantissa) external view returns (uint);
}
pragma solidity ^0.5.16;
import "./InterestRateModel.sol";
import "./SafeMath.sol";
/**
* @title Compound's JumpRateModel Contract
* @author Compound
*/
contract JumpRateModel is InterestRateModel {
using SafeMath for uint;
event NewInterestParams(uint baseRatePerBlock, uint multiplierPerBlock, uint jumpMultiplierPerBlock, uint kink);
/**
* @notice The approximate number of blocks per year that is assumed by the interest rate model
*/
uint public constant blocksPerYear = 2102400;
/**
* @notice The multiplier of utilization rate that gives the slope of the interest rate
*/
uint public multiplierPerBlock;
/**
* @notice The base interest rate which is the y-intercept when utilization rate is 0
*/
uint public baseRatePerBlock;
/**
* @notice The multiplierPerBlock after hitting a specified utilization point
*/
uint public jumpMultiplierPerBlock;
/**
* @notice The utilization point at which the jump multiplier is applied
*/
uint public kink;
/**
* @notice Construct an interest rate model
* @param baseRatePerYear The approximate target base APR, as a mantissa (scaled by 1e18)
* @param multiplierPerYear The rate of increase in interest rate wrt utilization (scaled by 1e18)
* @param jumpMultiplierPerYear The multiplierPerBlock after hitting a specified utilization point
* @param kink_ The utilization point at which the jump multiplier is applied
*/
constructor(uint baseRatePerYear, uint multiplierPerYear, uint jumpMultiplierPerYear, uint kink_) public {
baseRatePerBlock = baseRatePerYear.div(blocksPerYear);
multiplierPerBlock = multiplierPerYear.div(blocksPerYear);
jumpMultiplierPerBlock = jumpMultiplierPerYear.div(blocksPerYear);
kink = kink_;
emit NewInterestParams(baseRatePerBlock, multiplierPerBlock, jumpMultiplierPerBlock, kink);
}
/**
* @notice Calculates the utilization rate of the market: `borrows / (cash + borrows - reserves)`
* @param cash The amount of cash in the market
* @param borrows The amount of borrows in the market
* @param reserves The amount of reserves in the market (currently unused)
* @return The utilization rate as a mantissa between [0, 1e18]
*/
function utilizationRate(uint cash, uint borrows, uint reserves) public pure returns (uint) {
// Utilization rate is 0 when there are no borrows
if (borrows == 0) {
return 0;
}
return borrows.mul(1e18).div(cash.add(borrows).sub(reserves));
}
/**
* @notice Calculates the current borrow rate per block, with the error code expected by the market
* @param cash The amount of cash in the market
* @param borrows The amount of borrows in the market
* @param reserves The amount of reserves in the market
* @return The borrow rate percentage per block as a mantissa (scaled by 1e18)
*/
function getBorrowRate(uint cash, uint borrows, uint reserves) public view returns (uint) {
uint util = utilizationRate(cash, borrows, reserves);
if (util <= kink) {
return util.mul(multiplierPerBlock).div(1e18).add(baseRatePerBlock);
} else {
uint normalRate = kink.mul(multiplierPerBlock).div(1e18).add(baseRatePerBlock);
uint excessUtil = util.sub(kink);
return excessUtil.mul(jumpMultiplierPerBlock).div(1e18).add(normalRate);
}
}
/**
* @notice Calculates the current supply rate per block
* @param cash The amount of cash in the market
* @param borrows The amount of borrows in the market
* @param reserves The amount of reserves in the market
* @param reserveFactorMantissa The current reserve factor for the market
* @return The supply rate percentage per block as a mantissa (scaled by 1e18)
*/
function getSupplyRate(uint cash, uint borrows, uint reserves, uint reserveFactorMantissa) public view returns (uint) {
uint oneMinusReserveFactor = uint(1e18).sub(reserveFactorMantissa);
uint borrowRate = getBorrowRate(cash, borrows, reserves);
uint rateToPool = borrowRate.mul(oneMinusReserveFactor).div(1e18);
return utilizationRate(cash, borrows, reserves).mul(rateToPool).div(1e18);
}
}
pragma solidity ^0.5.16;
import "./CEther.sol";
/**
* @title Compound's Maximillion Contract
* @author Compound
*/
contract Maximillion {
/**
* @notice The default cEther market to repay in
*/
CEther public cEther;
/**
* @notice Construct a Maximillion to repay max in a CEther market
*/
constructor(CEther cEther_) public {
cEther = cEther_;
}
/**
* @notice msg.sender sends Ether to repay an account's borrow in the cEther market
* @dev The provided Ether is applied towards the borrow balance, any excess is refunded
* @param borrower The address of the borrower account to repay on behalf of
*/
function repayBehalf(address borrower) public payable {
repayBehalfExplicit(borrower, cEther);
}
/**
* @notice msg.sender sends Ether to repay an account's borrow in a cEther market
* @dev The provided Ether is applied towards the borrow balance, any excess is refunded
* @param borrower The address of the borrower account to repay on behalf of
* @param cEther_ The address of the cEther contract to repay in
*/
function repayBehalfExplicit(address borrower, CEther cEther_) public payable {
uint received = msg.value;
uint borrows = cEther_.borrowBalanceCurrent(borrower);
if (received > borrows) {
cEther_.repayBorrowBehalf.value(borrows)(borrower);
msg.sender.transfer(received - borrows);
} else {
cEther_.repayBorrowBehalf.value(received)(borrower);
}
}
}
pragma solidity ^0.5.16;
import "./CToken.sol";
contract PriceOracle {
/// @notice Indicator that this is a PriceOracle contract (for inspection)
bool public constant isPriceOracle = true;
/**
* @notice Get the underlying price of a cToken asset
* @param cToken The cToken to get the underlying price of
* @return The underlying asset price mantissa (scaled by 1e18).
* Zero means the price is unavailable.
*/
function getUnderlyingPrice(CToken cToken) external view returns (uint);
}
pragma solidity ^0.5.16;
/**
* @title Reservoir Contract
* @notice Distributes a token to a different contract at a fixed rate.
* @dev This contract must be poked via the `drip()` function every so often.
* @author Compound
*/
contract Reservoir {
/// @notice The block number when the Reservoir started (immutable)
uint public dripStart;
/// @notice Tokens per block that to drip to target (immutable)
uint public dripRate;
/// @notice Reference to token to drip (immutable)
EIP20Interface public token;
/// @notice Target to receive dripped tokens (immutable)
address public target;
/// @notice Amount that has already been dripped
uint public dripped;
/**
* @notice Constructs a Reservoir
* @param dripRate_ Numer of tokens per block to drip
* @param token_ The token to drip
* @param target_ The recipient of dripped tokens
*/
constructor(uint dripRate_, EIP20Interface token_, address target_) public {
dripStart = block.number;
dripRate = dripRate_;
token = token_;
target = target_;
dripped = 0;
}
/**
* @notice Drips the maximum amount of tokens to match the drip rate since inception
* @dev Note: this will only drip up to the amount of tokens available.
* @return The amount of tokens dripped in this call
*/
function drip() public returns (uint) {
// First, read storage into memory
EIP20Interface token_ = token;
uint reservoirBalance_ = token_.balanceOf(address(this)); // TODO: Verify this is a static call
uint dripRate_ = dripRate;
uint dripStart_ = dripStart;
uint dripped_ = dripped;
address target_ = target;
uint blockNumber_ = block.number;
// Next, calculate intermediate values
uint dripTotal_ = mul(dripRate_, blockNumber_ - dripStart_, "dripTotal overflow");
uint deltaDrip_ = sub(dripTotal_, dripped_, "deltaDrip underflow");
uint toDrip_ = min(reservoirBalance_, deltaDrip_);
uint drippedNext_ = add(dripped_, toDrip_, "tautological");
// Finally, write new `dripped` value and transfer tokens to target
dripped = drippedNext_;
token_.transfer(target_, toDrip_);
return toDrip_;
}
/* Internal helper functions for safe math */
function add(uint a, uint b, string memory errorMessage) internal pure returns (uint) {
uint c = a + b;
require(c >= a, errorMessage);
return c;
}
function sub(uint a, uint b, string memory errorMessage) internal pure returns (uint) {
require(b <= a, errorMessage);
uint c = a - b;
return c;
}
function mul(uint a, uint b, string memory errorMessage) internal pure returns (uint) {
if (a == 0) {
return 0;
}
uint c = a * b;
require(c / a == b, errorMessage);
return c;
}
function min(uint a, uint b) internal pure returns (uint) {
if (a <= b) {
return a;
} else {
return b;
}
}
}
import "./EIP20Interface.sol";
pragma solidity ^0.5.16;
import "./CToken.sol";
import "./ExponentialNoError.sol";
import "./Comptroller.sol";
import "./RewardsDistributorStorage.sol";
/**
* @title RewardsDistributorDelegate (COMP distribution logic extracted from `Comptroller`)
* @author Compound
*/
contract RewardsDistributorDelegate is RewardsDistributorDelegateStorageV1, ExponentialNoError {
/// @dev Notice that this contract is a RewardsDistributor
bool public constant isRewardsDistributor = true;
/// @notice Emitted when pendingAdmin is changed
event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);
/// @notice Emitted when pendingAdmin is accepted, which means admin is updated
event NewAdmin(address oldAdmin, address newAdmin);
/// @notice Emitted when a new COMP speed is calculated for a market
event CompSupplySpeedUpdated(CToken indexed cToken, uint newSpeed);
/// @notice Emitted when a new COMP speed is calculated for a market
event CompBorrowSpeedUpdated(CToken indexed cToken, uint newSpeed);
/// @notice Emitted when a new COMP speed is set for a contributor
event ContributorCompSpeedUpdated(address indexed contributor, uint newSpeed);
/// @notice Emitted when COMP is distributed to a supplier
event DistributedSupplierComp(CToken indexed cToken, address indexed supplier, uint compDelta, uint compSupplyIndex);
/// @notice Emitted when COMP is distributed to a borrower
event DistributedBorrowerComp(CToken indexed cToken, address indexed borrower, uint compDelta, uint compBorrowIndex);
/// @notice Emitted when COMP is granted by admin
event CompGranted(address recipient, uint amount);
/// @notice The initial COMP index for a market
uint224 public constant compInitialIndex = 1e36;
/// @dev Intitializer to set admin to caller and set reward token
function initialize(address _rewardToken) external {
require(msg.sender == admin, "Only admin can initialize.");
require(rewardToken == address(0), "Already initialized.");
require(_rewardToken != address(0), "Cannot initialize reward token to the zero address.");
rewardToken = _rewardToken;
}
/*** Set Admin ***/
/**
* @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
* @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
* @param newPendingAdmin New pending admin.
*/
function _setPendingAdmin(address newPendingAdmin) external {
// Check caller = admin
require(msg.sender == admin, "RewardsDistributor:_setPendingAdmin: admin only");
// Save current value, if any, for inclusion in log
address oldPendingAdmin = pendingAdmin;
// Store pendingAdmin with value newPendingAdmin
pendingAdmin = newPendingAdmin;
// Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)
emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);
}
/**
* @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin
* @dev Admin function for pending admin to accept role and update admin
*/
function _acceptAdmin() external {
// Check caller is pendingAdmin and pendingAdmin ≠ address(0)
require(msg.sender == pendingAdmin && msg.sender != address(0), "RewardsDistributor:_acceptAdmin: pending admin only");
// Save current values for inclusion in log
address oldAdmin = admin;
address oldPendingAdmin = pendingAdmin;
// Store admin with value pendingAdmin
admin = pendingAdmin;
// Clear the pending value
pendingAdmin = address(0);
emit NewAdmin(oldAdmin, admin);
emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);
}
/*** Comp Distribution ***/
/**
* @notice Check the cToken before adding
* @param cToken The market to add
*/
function checkCToken(CToken cToken) internal view {
// Make sure cToken is listed
Comptroller comptroller = Comptroller(address(cToken.comptroller()));
(bool isListed, ) = comptroller.markets(address(cToken));
require(isListed == true, "comp market is not listed");
// Make sure distributor is added
bool distributorAdded = false;
address[] memory distributors = comptroller.getRewardsDistributors();
for (uint256 i = 0; i < distributors.length; i++) if (distributors[i] == address(this)) distributorAdded = true;
require(distributorAdded == true, "distributor not added");
}
/**
* @notice Set COMP speed for a single market
* @param cToken The market whose COMP speed to update
* @param compSpeed New COMP speed for market
*/
function setCompSupplySpeedInternal(CToken cToken, uint compSpeed) internal {
uint currentCompSpeed = compSupplySpeeds[address(cToken)];
if (currentCompSpeed != 0) {
// note that COMP speed could be set to 0 to halt liquidity rewards for a market
updateCompSupplyIndex(address(cToken));
} else if (compSpeed != 0) {
// Make sure cToken is listed and distributor is added
checkCToken(cToken);
// Add the COMP market
if (compSupplyState[address(cToken)].index == 0) {
compSupplyState[address(cToken)] = CompMarketState({
index: compInitialIndex,
block: safe32(getBlockNumber(), "block number exceeds 32 bits")
});
// Add to allMarkets array if not already there
if (compBorrowState[address(cToken)].index == 0) {
allMarkets.push(cToken);
}
} else {
// Update block number to ensure extra interest is not accrued during the prior period
compSupplyState[address(cToken)].block = safe32(getBlockNumber(), "block number exceeds 32 bits");
}
}
if (currentCompSpeed != compSpeed) {
compSupplySpeeds[address(cToken)] = compSpeed;
emit CompSupplySpeedUpdated(cToken, compSpeed);
}
}
/**
* @notice Set COMP speed for a single market
* @param cToken The market whose COMP speed to update
* @param compSpeed New COMP speed for market
*/
function setCompBorrowSpeedInternal(CToken cToken, uint compSpeed) internal {
uint currentCompSpeed = compBorrowSpeeds[address(cToken)];
if (currentCompSpeed != 0) {
// note that COMP speed could be set to 0 to halt liquidity rewards for a market
Exp memory borrowIndex = Exp({mantissa: cToken.borrowIndex()});
updateCompBorrowIndex(address(cToken), borrowIndex);
} else if (compSpeed != 0) {
// Make sure cToken is listed and distributor is added
checkCToken(cToken);
// Add the COMP market
if (compBorrowState[address(cToken)].index == 0) {
compBorrowState[address(cToken)] = CompMarketState({
index: compInitialIndex,
block: safe32(getBlockNumber(), "block number exceeds 32 bits")
});
// Add to allMarkets array if not already there
if (compSupplyState[address(cToken)].index == 0) {
allMarkets.push(cToken);
}
} else {
// Update block number to ensure extra interest is not accrued during the prior period
compBorrowState[address(cToken)].block = safe32(getBlockNumber(), "block number exceeds 32 bits");
}
}
if (currentCompSpeed != compSpeed) {
compBorrowSpeeds[address(cToken)] = compSpeed;
emit CompBorrowSpeedUpdated(cToken, compSpeed);
}
}
/**
* @notice Accrue COMP to the market by updating the supply index
* @param cToken The market whose supply index to update
*/
function updateCompSupplyIndex(address cToken) internal {
CompMarketState storage supplyState = compSupplyState[cToken];
uint supplySpeed = compSupplySpeeds[cToken];
uint blockNumber = getBlockNumber();
uint deltaBlocks = sub_(blockNumber, uint(supplyState.block));
if (deltaBlocks > 0 && supplySpeed > 0) {
uint supplyTokens = CToken(cToken).totalSupply();
uint compAccrued_ = mul_(deltaBlocks, supplySpeed);
Double memory ratio = supplyTokens > 0 ? fraction(compAccrued_, supplyTokens) : Double({mantissa: 0});
Double memory index = add_(Double({mantissa: supplyState.index}), ratio);
compSupplyState[cToken] = CompMarketState({
index: safe224(index.mantissa, "new index exceeds 224 bits"),
block: safe32(blockNumber, "block number exceeds 32 bits")
});
} else if (deltaBlocks > 0 && supplyState.index > 0) {
supplyState.block = safe32(blockNumber, "block number exceeds 32 bits");
}
}
/**
* @notice Accrue COMP to the market by updating the borrow index
* @param cToken The market whose borrow index to update
*/
function updateCompBorrowIndex(address cToken, Exp memory marketBorrowIndex) internal {
CompMarketState storage borrowState = compBorrowState[cToken];
uint borrowSpeed = compBorrowSpeeds[cToken];
uint blockNumber = getBlockNumber();
uint deltaBlocks = sub_(blockNumber, uint(borrowState.block));
if (deltaBlocks > 0 && borrowSpeed > 0) {
uint borrowAmount = div_(CToken(cToken).totalBorrows(), marketBorrowIndex);
uint compAccrued_ = mul_(deltaBlocks, borrowSpeed);
Double memory ratio = borrowAmount > 0 ? fraction(compAccrued_, borrowAmount) : Double({mantissa: 0});
Double memory index = add_(Double({mantissa: borrowState.index}), ratio);
compBorrowState[cToken] = CompMarketState({
index: safe224(index.mantissa, "new index exceeds 224 bits"),
block: safe32(blockNumber, "block number exceeds 32 bits")
});
} else if (deltaBlocks > 0 && borrowState.index > 0) {
borrowState.block = safe32(blockNumber, "block number exceeds 32 bits");
}
}
/**
* @notice Calculate COMP accrued by a supplier and possibly transfer it to them
* @param cToken The market in which the supplier is interacting
* @param supplier The address of the supplier to distribute COMP to
*/
function distributeSupplierComp(address cToken, address supplier) internal {
CompMarketState storage supplyState = compSupplyState[cToken];
Double memory supplyIndex = Double({mantissa: supplyState.index});
Double memory supplierIndex = Double({mantissa: compSupplierIndex[cToken][supplier]});
compSupplierIndex[cToken][supplier] = supplyIndex.mantissa;
if (supplierIndex.mantissa == 0 && supplyIndex.mantissa > 0) {
supplierIndex.mantissa = compInitialIndex;
}
Double memory deltaIndex = sub_(supplyIndex, supplierIndex);
uint supplierTokens = CToken(cToken).balanceOf(supplier);
uint supplierDelta = mul_(supplierTokens, deltaIndex);
uint supplierAccrued = add_(compAccrued[supplier], supplierDelta);
compAccrued[supplier] = supplierAccrued;
emit DistributedSupplierComp(CToken(cToken), supplier, supplierDelta, supplyIndex.mantissa);
}
/**
* @notice Calculate COMP accrued by a borrower and possibly transfer it to them
* @dev Borrowers will not begin to accrue until after the first interaction with the protocol.
* @param cToken The market in which the borrower is interacting
* @param borrower The address of the borrower to distribute COMP to
*/
function distributeBorrowerComp(address cToken, address borrower, Exp memory marketBorrowIndex) internal {
CompMarketState storage borrowState = compBorrowState[cToken];
Double memory borrowIndex = Double({mantissa: borrowState.index});
Double memory borrowerIndex = Double({mantissa: compBorrowerIndex[cToken][borrower]});
compBorrowerIndex[cToken][borrower] = borrowIndex.mantissa;
if (borrowerIndex.mantissa > 0) {
Double memory deltaIndex = sub_(borrowIndex, borrowerIndex);
uint borrowerAmount = div_(CToken(cToken).borrowBalanceStored(borrower), marketBorrowIndex);
uint borrowerDelta = mul_(borrowerAmount, deltaIndex);
uint borrowerAccrued = add_(compAccrued[borrower], borrowerDelta);
compAccrued[borrower] = borrowerAccrued;
emit DistributedBorrowerComp(CToken(cToken), borrower, borrowerDelta, borrowIndex.mantissa);
}
}
/**
* @notice Keeps the flywheel moving pre-mint and pre-redeem
* @dev Called by the Comptroller
* @param cToken The relevant market
* @param supplier The minter/redeemer
*/
function flywheelPreSupplierAction(address cToken, address supplier) external {
if (compSupplyState[cToken].index > 0) {
updateCompSupplyIndex(cToken);
distributeSupplierComp(cToken, supplier);
}
}
/**
* @notice Keeps the flywheel moving pre-borrow and pre-repay
* @dev Called by the Comptroller
* @param cToken The relevant market
* @param borrower The borrower
*/
function flywheelPreBorrowerAction(address cToken, address borrower) external {
if (compBorrowState[cToken].index > 0) {
Exp memory borrowIndex = Exp({mantissa: CToken(cToken).borrowIndex()});
updateCompBorrowIndex(cToken, borrowIndex);
distributeBorrowerComp(cToken, borrower, borrowIndex);
}
}
/**
* @notice Keeps the flywheel moving pre-transfer and pre-seize
* @dev Called by the Comptroller
* @param cToken The relevant market
* @param src The account which sources the tokens
* @param dst The account which receives the tokens
*/
function flywheelPreTransferAction(address cToken, address src, address dst) external {
if (compSupplyState[cToken].index > 0) {
updateCompSupplyIndex(cToken);
distributeSupplierComp(cToken, src);
distributeSupplierComp(cToken, dst);
}
}
/**
* @notice Calculate additional accrued COMP for a contributor since last accrual
* @param contributor The address to calculate contributor rewards for
*/
function updateContributorRewards(address contributor) public {
uint compSpeed = compContributorSpeeds[contributor];
uint blockNumber = getBlockNumber();
uint deltaBlocks = sub_(blockNumber, lastContributorBlock[contributor]);
if (deltaBlocks > 0 && compSpeed > 0) {
uint newAccrued = mul_(deltaBlocks, compSpeed);
uint contributorAccrued = add_(compAccrued[contributor], newAccrued);
compAccrued[contributor] = contributorAccrued;
lastContributorBlock[contributor] = blockNumber;
}
}
/**
* @notice Claim all the comp accrued by holder in all markets
* @param holder The address to claim COMP for
*/
function claimRewards(address holder) public {
return claimRewards(holder, allMarkets);
}
/**
* @notice Claim all the comp accrued by holder in the specified markets
* @param holder The address to claim COMP for
* @param cTokens The list of markets to claim COMP in
*/
function claimRewards(address holder, CToken[] memory cTokens) public {
address[] memory holders = new address[](1);
holders[0] = holder;
claimRewards(holders, cTokens, true, true);
}
/**
* @notice Claim all comp accrued by the holders
* @param holders The addresses to claim COMP for
* @param cTokens The list of markets to claim COMP in
* @param borrowers Whether or not to claim COMP earned by borrowing
* @param suppliers Whether or not to claim COMP earned by supplying
*/
function claimRewards(address[] memory holders, CToken[] memory cTokens, bool borrowers, bool suppliers) public {
for (uint i = 0; i < cTokens.length; i++) {
CToken cToken = cTokens[i];
if (borrowers == true && compBorrowState[address(cToken)].index > 0) {
Exp memory borrowIndex = Exp({mantissa: cToken.borrowIndex()});
updateCompBorrowIndex(address(cToken), borrowIndex);
for (uint j = 0; j < holders.length; j++) {
distributeBorrowerComp(address(cToken), holders[j], borrowIndex);
}
}
if (suppliers == true && compSupplyState[address(cToken)].index > 0) {
updateCompSupplyIndex(address(cToken));
for (uint j = 0; j < holders.length; j++) {
distributeSupplierComp(address(cToken), holders[j]);
}
}
}
for (uint j = 0; j < holders.length; j++) {
compAccrued[holders[j]] = grantCompInternal(holders[j], compAccrued[holders[j]]);
}
}
/**
* @notice Transfer COMP to the user
* @dev Note: If there is not enough COMP, we do not perform the transfer all.
* @param user The address of the user to transfer COMP to
* @param amount The amount of COMP to (possibly) transfer
* @return The amount of COMP which was NOT transferred to the user
*/
function grantCompInternal(address user, uint amount) internal returns (uint) {
EIP20NonStandardInterface comp = EIP20NonStandardInterface(rewardToken);
uint compRemaining = comp.balanceOf(address(this));
if (amount > 0 && amount <= compRemaining) {
comp.transfer(user, amount);
return 0;
}
return amount;
}
/*** Comp Distribution Admin ***/
/**
* @notice Transfer COMP to the recipient
* @dev Note: If there is not enough COMP, we do not perform the transfer all.
* @param recipient The address of the recipient to transfer COMP to
* @param amount The amount of COMP to (possibly) transfer
*/
function _grantComp(address recipient, uint amount) public {
require(msg.sender == admin, "only admin can grant comp");
uint amountLeft = grantCompInternal(recipient, amount);
require(amountLeft == 0, "insufficient comp for grant");
emit CompGranted(recipient, amount);
}
/**
* @notice Set COMP speed for a single market
* @param cToken The market whose COMP speed to update
* @param compSpeed New COMP speed for market
*/
function _setCompSupplySpeed(CToken cToken, uint compSpeed) public {
require(msg.sender == admin, "only admin can set comp speed");
setCompSupplySpeedInternal(cToken, compSpeed);
}
/**
* @notice Set COMP speed for a single market
* @param cToken The market whose COMP speed to update
* @param compSpeed New COMP speed for market
*/
function _setCompBorrowSpeed(CToken cToken, uint compSpeed) public {
require(msg.sender == admin, "only admin can set comp speed");
setCompBorrowSpeedInternal(cToken, compSpeed);
}
/**
* @notice Set COMP borrow and supply speeds for the specified markets.
* @param cTokens The markets whose COMP speed to update.
* @param supplySpeeds New supply-side COMP speed for the corresponding market.
* @param borrowSpeeds New borrow-side COMP speed for the corresponding market.
*/
function _setCompSpeeds(CToken[] memory cTokens, uint[] memory supplySpeeds, uint[] memory borrowSpeeds) public {
require(msg.sender == admin, "only admin can set comp speed");
uint numTokens = cTokens.length;
require(numTokens == supplySpeeds.length && numTokens == borrowSpeeds.length, "RewardsDistributor::_setCompSpeeds invalid input");
for (uint i = 0; i < numTokens; ++i) {
setCompSupplySpeedInternal(cTokens[i], supplySpeeds[i]);
setCompBorrowSpeedInternal(cTokens[i], borrowSpeeds[i]);
}
}
/**
* @notice Set COMP speed for a single contributor
* @param contributor The contributor whose COMP speed to update
* @param compSpeed New COMP speed for contributor
*/
function _setContributorCompSpeed(address contributor, uint compSpeed) public {
require(msg.sender == admin, "only admin can set comp speed");
// note that COMP speed could be set to 0 to halt liquidity rewards for a contributor
updateContributorRewards(contributor);
if (compSpeed == 0) {
// release storage
delete lastContributorBlock[contributor];
} else {
lastContributorBlock[contributor] = getBlockNumber();
}
compContributorSpeeds[contributor] = compSpeed;
emit ContributorCompSpeedUpdated(contributor, compSpeed);
}
/*** Helper Functions */
function getBlockNumber() public view returns (uint) {
return block.number;
}
/**
* @notice Returns an array of all markets.
*/
function getAllMarkets() external view returns (CToken[] memory) {
return allMarkets;
}
}
pragma solidity ^0.5.16;
import "./RewardsDistributorStorage.sol";
contract RewardsDistributorDelegator is RewardsDistributorDelegatorStorage {
/// @notice Emitted when implementation is changed
event NewImplementation(address oldImplementation, address newImplementation);
constructor(
address admin_,
address rewardToken_,
address implementation_) public {
// Admin set to msg.sender for initialization
admin = msg.sender;
delegateTo(implementation_, abi.encodeWithSignature("initialize(address)", rewardToken_));
_setImplementation(implementation_);
admin = admin_;
}
/**
* @notice Called by the admin to update the implementation of the delegator
* @param implementation_ The address of the new implementation for delegation
*/
function _setImplementation(address implementation_) public {
require(msg.sender == admin, "RewardsDistributorDelegator::_setImplementation: admin only");
require(implementation_ != address(0), "RewardsDistributorDelegator::_setImplementation: invalid implementation address");
address oldImplementation = implementation;
implementation = implementation_;
emit NewImplementation(oldImplementation, implementation);
}
/**
* @notice Internal method to delegate execution to another contract
* @dev It returns to the external caller whatever the implementation returns or forwards reverts
* @param callee The contract to delegatecall
* @param data The raw data to delegatecall
*/
function delegateTo(address callee, bytes memory data) internal {
(bool success, bytes memory returnData) = callee.delegatecall(data);
assembly {
if eq(success, 0) {
revert(add(returnData, 0x20), returndatasize)
}
}
}
/**
* @dev Delegates execution to an implementation contract.
* It returns to the external caller whatever the implementation returns
* or forwards reverts.
*/
function () external payable {
// delegate all other functions to current implementation
(bool success, ) = implementation.delegatecall(msg.data);
assembly {
let free_mem_ptr := mload(0x40)
returndatacopy(free_mem_ptr, 0, returndatasize)
switch success
case 0 { revert(free_mem_ptr, returndatasize) }
default { return(free_mem_ptr, returndatasize) }
}
}
}
pragma solidity ^0.5.16;
import "./CToken.sol";
contract RewardsDistributorDelegatorStorage {
/// @notice Administrator for this contract
address public admin;
/// @notice Pending administrator for this contract
address public pendingAdmin;
/// @notice Active brains of RewardsDistributor
address public implementation;
}
/**
* @title Storage for RewardsDistributorDelegate
* @notice For future upgrades, do not change RewardsDistributorDelegateStorageV1. Create a new
* contract which implements RewardsDistributorDelegateStorageV1 and following the naming convention
* RewardsDistributorDelegateStorageVX.
*/
contract RewardsDistributorDelegateStorageV1 is RewardsDistributorDelegatorStorage {
/// @dev The token to reward (i.e., COMP)
address public rewardToken;
struct CompMarketState {
/// @notice The market's last updated compBorrowIndex or compSupplyIndex
uint224 index;
/// @notice The block number the index was last updated at
uint32 block;
}
/// @notice A list of all markets
CToken[] public allMarkets;
/// @notice The portion of compRate that each market currently receives
mapping(address => uint) public compSupplySpeeds;
/// @notice The portion of compRate that each market currently receives
mapping(address => uint) public compBorrowSpeeds;
/// @notice The COMP market supply state for each market
mapping(address => CompMarketState) public compSupplyState;
/// @notice The COMP market borrow state for each market
mapping(address => CompMarketState) public compBorrowState;
/// @notice The COMP borrow index for each market for each supplier as of the last time they accrued COMP
mapping(address => mapping(address => uint)) public compSupplierIndex;
/// @notice The COMP borrow index for each market for each borrower as of the last time they accrued COMP
mapping(address => mapping(address => uint)) public compBorrowerIndex;
/// @notice The COMP accrued but not yet transferred to each user
mapping(address => uint) public compAccrued;
/// @notice The portion of COMP that each contributor receives per block
mapping(address => uint) public compContributorSpeeds;
/// @notice Last block at which a contributor's COMP rewards have been allocated
mapping(address => uint) public lastContributorBlock;
}
pragma solidity ^0.5.16;
// From https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/Math.sol
// Subject to the MIT license.
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the addition of two unsigned integers, reverting with custom message on overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, errorMessage);
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on underflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot underflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction underflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on underflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot underflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, errorMessage);
return c;
}
/**
* @dev Returns the integer division of two unsigned integers.
* Reverts on division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers.
* Reverts with custom message on division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
pragma solidity ^0.5.16;
import "./PriceOracle.sol";
import "./CErc20.sol";
contract SimplePriceOracle is PriceOracle {
mapping(address => uint) prices;
event PricePosted(address asset, uint previousPriceMantissa, uint requestedPriceMantissa, uint newPriceMantissa);
function getUnderlyingPrice(CToken cToken) public view returns (uint) {
if (compareStrings(cToken.symbol(), "cETH")) {
return 1e18;
} else {
return prices[address(CErc20(address(cToken)).underlying())];
}
}
function setUnderlyingPrice(CToken cToken, uint underlyingPriceMantissa) public {
address asset = address(CErc20(address(cToken)).underlying());
emit PricePosted(asset, prices[asset], underlyingPriceMantissa, underlyingPriceMantissa);
prices[asset] = underlyingPriceMantissa;
}
function setDirectPrice(address asset, uint price) public {
emit PricePosted(asset, prices[asset], price, price);
prices[asset] = price;
}
// v1 price oracle interface for use as backing of proxy
function assetPrices(address asset) external view returns (uint) {
return prices[asset];
}
function compareStrings(string memory a, string memory b) internal pure returns (bool) {
return (keccak256(abi.encodePacked((a))) == keccak256(abi.encodePacked((b))));
}
}
pragma solidity ^0.5.16;
import "./SafeMath.sol";
contract Timelock {
using SafeMath for uint;
event NewAdmin(address indexed newAdmin);
event NewPendingAdmin(address indexed newPendingAdmin);
event NewDelay(uint indexed newDelay);
event CancelTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature, bytes data, uint eta);
event ExecuteTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature, bytes data, uint eta);
event QueueTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature, bytes data, uint eta);
uint public constant GRACE_PERIOD = 14 days;
uint public constant MINIMUM_DELAY = 2 days;
uint public constant MAXIMUM_DELAY = 30 days;
address public admin;
address public pendingAdmin;
uint public delay;
mapping (bytes32 => bool) public queuedTransactions;
constructor(address admin_, uint delay_) public {
require(delay_ >= MINIMUM_DELAY, "Timelock::constructor: Delay must exceed minimum delay.");
require(delay_ <= MAXIMUM_DELAY, "Timelock::setDelay: Delay must not exceed maximum delay.");
admin = admin_;
delay = delay_;
}
function() external payable { }
function setDelay(uint delay_) public {
require(msg.sender == address(this), "Timelock::setDelay: Call must come from Timelock.");
require(delay_ >= MINIMUM_DELAY, "Timelock::setDelay: Delay must exceed minimum delay.");
require(delay_ <= MAXIMUM_DELAY, "Timelock::setDelay: Delay must not exceed maximum delay.");
delay = delay_;
emit NewDelay(delay);
}
function acceptAdmin() public {
require(msg.sender == pendingAdmin, "Timelock::acceptAdmin: Call must come from pendingAdmin.");
admin = msg.sender;
pendingAdmin = address(0);
emit NewAdmin(admin);
}
function setPendingAdmin(address pendingAdmin_) public {
require(msg.sender == address(this), "Timelock::setPendingAdmin: Call must come from Timelock.");
pendingAdmin = pendingAdmin_;
emit NewPendingAdmin(pendingAdmin);
}
function queueTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public returns (bytes32) {
require(msg.sender == admin, "Timelock::queueTransaction: Call must come from admin.");
require(eta >= getBlockTimestamp().add(delay), "Timelock::queueTransaction: Estimated execution block must satisfy delay.");
bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));
queuedTransactions[txHash] = true;
emit QueueTransaction(txHash, target, value, signature, data, eta);
return txHash;
}
function cancelTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public {
require(msg.sender == admin, "Timelock::cancelTransaction: Call must come from admin.");
bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));
queuedTransactions[txHash] = false;
emit CancelTransaction(txHash, target, value, signature, data, eta);
}
function executeTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public payable returns (bytes memory) {
require(msg.sender == admin, "Timelock::executeTransaction: Call must come from admin.");
bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));
require(queuedTransactions[txHash], "Timelock::executeTransaction: Transaction hasn't been queued.");
require(getBlockTimestamp() >= eta, "Timelock::executeTransaction: Transaction hasn't surpassed time lock.");
require(getBlockTimestamp() <= eta.add(GRACE_PERIOD), "Timelock::executeTransaction: Transaction is stale.");
queuedTransactions[txHash] = false;
bytes memory callData;
if (bytes(signature).length == 0) {
callData = data;
} else {
callData = abi.encodePacked(bytes4(keccak256(bytes(signature))), data);
}
// solium-disable-next-line security/no-call-value
(bool success, bytes memory returnData) = target.call.value(value)(callData);
require(success, "Timelock::executeTransaction: Transaction execution reverted.");
emit ExecuteTransaction(txHash, target, value, signature, data, eta);
return returnData;
}
function getBlockTimestamp() internal view returns (uint) {
// solium-disable-next-line security/no-block-members
return block.timestamp;
}
}
pragma solidity ^0.5.16;
import "./ErrorReporter.sol";
import "./ComptrollerStorage.sol";
/**
* @title Unitroller
* @dev Storage for the comptroller is at this address, while execution is delegated to the `comptrollerImplementation`.
* CTokens should reference this contract as their comptroller.
*/
contract Unitroller is UnitrollerAdminStorage, ComptrollerErrorReporter {
/**
* @notice Emitted when pendingComptrollerImplementation is changed
*/
event NewPendingImplementation(address oldPendingImplementation, address newPendingImplementation);
/**
* @notice Emitted when pendingComptrollerImplementation is accepted, which means comptroller implementation is updated
*/
event NewImplementation(address oldImplementation, address newImplementation);
/**
* @notice Event emitted when the Fuse admin rights are changed
*/
event FuseAdminRightsToggled(bool hasRights);
/**
* @notice Event emitted when the admin rights are changed
*/
event AdminRightsToggled(bool hasRights);
/**
* @notice Emitted when pendingAdmin is changed
*/
event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);
/**
* @notice Emitted when pendingAdmin is accepted, which means admin is updated
*/
event NewAdmin(address oldAdmin, address newAdmin);
constructor() public {
// Set admin to caller
admin = msg.sender;
}
/*** Admin Functions ***/
function _setPendingImplementation(address newPendingImplementation) public returns (uint) {
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_IMPLEMENTATION_OWNER_CHECK);
}
if (!fuseAdmin.comptrollerImplementationWhitelist(comptrollerImplementation, newPendingImplementation)) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_IMPLEMENTATION_CONTRACT_CHECK);
}
address oldPendingImplementation = pendingComptrollerImplementation;
pendingComptrollerImplementation = newPendingImplementation;
emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation);
return uint(Error.NO_ERROR);
}
/**
* @notice Accepts new implementation of comptroller. msg.sender must be pendingImplementation
* @dev Admin function for new implementation to accept it's role as implementation
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _acceptImplementation() public returns (uint) {
// Check caller is pendingImplementation and pendingImplementation ≠ address(0)
if (msg.sender != pendingComptrollerImplementation || pendingComptrollerImplementation == address(0)) {
return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK);
}
// Save current values for inclusion in log
address oldImplementation = comptrollerImplementation;
address oldPendingImplementation = pendingComptrollerImplementation;
comptrollerImplementation = pendingComptrollerImplementation;
pendingComptrollerImplementation = address(0);
emit NewImplementation(oldImplementation, comptrollerImplementation);
emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation);
return uint(Error.NO_ERROR);
}
/**
* @notice Toggles Fuse admin rights.
* @param hasRights Boolean indicating if the Fuse admin is to have rights.
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _toggleFuseAdminRights(bool hasRights) external returns (uint) {
// Check caller = admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.TOGGLE_ADMIN_RIGHTS_OWNER_CHECK);
}
// Check that rights have not already been set to the desired value
if (fuseAdminHasRights == hasRights) return uint(Error.NO_ERROR);
// Set fuseAdminHasRights
fuseAdminHasRights = hasRights;
// Emit FuseAdminRightsToggled()
emit FuseAdminRightsToggled(fuseAdminHasRights);
return uint(Error.NO_ERROR);
}
/**
* @notice Toggles admin rights.
* @param hasRights Boolean indicating if the admin is to have rights.
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _toggleAdminRights(bool hasRights) external returns (uint) {
// Check caller = admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.TOGGLE_ADMIN_RIGHTS_OWNER_CHECK);
}
// Check that rights have not already been set to the desired value
if (adminHasRights == hasRights) return uint(Error.NO_ERROR);
// Set adminHasRights
adminHasRights = hasRights;
// Emit AdminRightsToggled()
emit AdminRightsToggled(hasRights);
return uint(Error.NO_ERROR);
}
/**
* @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
* @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
* @param newPendingAdmin New pending admin.
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setPendingAdmin(address newPendingAdmin) public returns (uint) {
// Check caller = admin
if (!hasAdminRights()) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK);
}
// Save current value, if any, for inclusion in log
address oldPendingAdmin = pendingAdmin;
// Store pendingAdmin with value newPendingAdmin
pendingAdmin = newPendingAdmin;
// Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)
emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);
return uint(Error.NO_ERROR);
}
/**
* @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin
* @dev Admin function for pending admin to accept role and update admin
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _acceptAdmin() public returns (uint) {
// Check caller is pendingAdmin and pendingAdmin ≠ address(0)
if (msg.sender != pendingAdmin || msg.sender == address(0)) {
return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK);
}
// Save current values for inclusion in log
address oldAdmin = admin;
address oldPendingAdmin = pendingAdmin;
// Store admin with value pendingAdmin
admin = pendingAdmin;
// Clear the pending value
pendingAdmin = address(0);
emit NewAdmin(oldAdmin, admin);
emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);
return uint(Error.NO_ERROR);
}
/**
* @dev Delegates execution to an implementation contract.
* It returns to the external caller whatever the implementation returns
* or forwards reverts.
*/
function () payable external {
// Check for automatic implementation
if (msg.sender != address(this)) {
(bool callSuccess, bytes memory data) = address(this).staticcall(abi.encodeWithSignature("autoImplementation()"));
bool autoImplementation;
if (callSuccess) (autoImplementation) = abi.decode(data, (bool));
if (autoImplementation) {
address latestComptrollerImplementation = fuseAdmin.latestComptrollerImplementation(comptrollerImplementation);
if (comptrollerImplementation != latestComptrollerImplementation) {
address oldImplementation = comptrollerImplementation; // Save current value for inclusion in log
comptrollerImplementation = latestComptrollerImplementation;
emit NewImplementation(oldImplementation, comptrollerImplementation);
}
}
}
// delegate all other functions to current implementation
(bool success, ) = comptrollerImplementation.delegatecall(msg.data);
assembly {
let free_mem_ptr := mload(0x40)
returndatacopy(free_mem_ptr, 0, returndatasize)
switch success
case 0 { revert(free_mem_ptr, returndatasize) }
default { return(free_mem_ptr, returndatasize) }
}
}
}
pragma solidity ^0.5.16;
import "./InterestRateModel.sol";
import "./SafeMath.sol";
/**
* @title Compound's WhitePaperInterestRateModel Contract
* @author Compound
* @notice The parameterized model described in section 2.4 of the original Compound Protocol whitepaper
*/
contract WhitePaperInterestRateModel is InterestRateModel {
using SafeMath for uint;
event NewInterestParams(uint baseRatePerBlock, uint multiplierPerBlock);
/**
* @notice The approximate number of blocks per year that is assumed by the interest rate model
*/
uint public constant blocksPerYear = 2102400;
/**
* @notice The multiplier of utilization rate that gives the slope of the interest rate
*/
uint public multiplierPerBlock;
/**
* @notice The base interest rate which is the y-intercept when utilization rate is 0
*/
uint public baseRatePerBlock;
/**
* @notice Construct an interest rate model
* @param baseRatePerYear The approximate target base APR, as a mantissa (scaled by 1e18)
* @param multiplierPerYear The rate of increase in interest rate wrt utilization (scaled by 1e18)
*/
constructor(uint baseRatePerYear, uint multiplierPerYear) public {
baseRatePerBlock = baseRatePerYear.div(blocksPerYear);
multiplierPerBlock = multiplierPerYear.div(blocksPerYear);
emit NewInterestParams(baseRatePerBlock, multiplierPerBlock);
}
/**
* @notice Calculates the utilization rate of the market: `borrows / (cash + borrows - reserves)`
* @param cash The amount of cash in the market
* @param borrows The amount of borrows in the market
* @param reserves The amount of reserves in the market (currently unused)
* @return The utilization rate as a mantissa between [0, 1e18]
*/
function utilizationRate(uint cash, uint borrows, uint reserves) public pure returns (uint) {
// Utilization rate is 0 when there are no borrows
if (borrows == 0) {
return 0;
}
return borrows.mul(1e18).div(cash.add(borrows).sub(reserves));
}
/**
* @notice Calculates the current borrow rate per block, with the error code expected by the market
* @param cash The amount of cash in the market
* @param borrows The amount of borrows in the market
* @param reserves The amount of reserves in the market
* @return The borrow rate percentage per block as a mantissa (scaled by 1e18)
*/
function getBorrowRate(uint cash, uint borrows, uint reserves) public view returns (uint) {
uint ur = utilizationRate(cash, borrows, reserves);
return ur.mul(multiplierPerBlock).div(1e18).add(baseRatePerBlock);
}
/**
* @notice Calculates the current supply rate per block
* @param cash The amount of cash in the market
* @param borrows The amount of borrows in the market
* @param reserves The amount of reserves in the market
* @param reserveFactorMantissa The current reserve factor for the market
* @return The supply rate percentage per block as a mantissa (scaled by 1e18)
*/
function getSupplyRate(uint cash, uint borrows, uint reserves, uint reserveFactorMantissa) public view returns (uint) {
uint oneMinusReserveFactor = uint(1e18).sub(reserveFactorMantissa);
uint borrowRate = getBorrowRate(cash, borrows, reserves);
uint rateToPool = borrowRate.mul(oneMinusReserveFactor).div(1e18);
return utilizationRate(cash, borrows, reserves).mul(rateToPool).div(1e18);
}
}