ETH Price: $3,116.15 (-0.71%)

Contract Diff Checker

Contract Name:
DesignatedVotingV2

Contract Source Code:

File 1 of 1 : DesignatedVotingV2

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity 0.8.16;

// File @openzeppelin/contracts/token/ERC20/[email protected]



// OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol)


/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}


// File @openzeppelin/contracts/token/ERC20/extensions/[email protected]


// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)



/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}


// File @openzeppelin/contracts/utils/[email protected]


// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)



/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}


// File @openzeppelin/contracts/token/ERC20/[email protected]


// OpenZeppelin Contracts v4.4.1 (token/ERC20/ERC20.sol)





/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);

        uint256 currentAllowance = _allowances[sender][_msgSender()];
        require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
        unchecked {
            _approve(sender, _msgSender(), currentAllowance - amount);
        }

        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        uint256 currentAllowance = _allowances[_msgSender()][spender];
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(_msgSender(), spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `sender` to `recipient`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        uint256 senderBalance = _balances[sender];
        require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[sender] = senderBalance - amount;
        }
        _balances[recipient] += amount;

        emit Transfer(sender, recipient, amount);

        _afterTokenTransfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= amount;

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}


// File @openzeppelin/contracts/utils/math/[email protected]


// OpenZeppelin Contracts v4.4.1 (utils/math/Math.sol)



/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a / b + (a % b == 0 ? 0 : 1);
    }
}


// File @openzeppelin/contracts/utils/[email protected]


// OpenZeppelin Contracts v4.4.1 (utils/Arrays.sol)



/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * `array` is expected to be sorted in ascending order, and to contain no
     * repeated elements.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        if (array.length == 0) {
            return 0;
        }

        uint256 low = 0;
        uint256 high = array.length;

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds down (it does integer division with truncation).
            if (array[mid] > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && array[low - 1] == element) {
            return low - 1;
        } else {
            return low;
        }
    }
}


// File @openzeppelin/contracts/utils/[email protected]


// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)



/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library Counters {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}


// File @openzeppelin/contracts/token/ERC20/extensions/[email protected]


// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/ERC20Snapshot.sol)





/**
 * @dev This contract extends an ERC20 token with a snapshot mechanism. When a snapshot is created, the balances and
 * total supply at the time are recorded for later access.
 *
 * This can be used to safely create mechanisms based on token balances such as trustless dividends or weighted voting.
 * In naive implementations it's possible to perform a "double spend" attack by reusing the same balance from different
 * accounts. By using snapshots to calculate dividends or voting power, those attacks no longer apply. It can also be
 * used to create an efficient ERC20 forking mechanism.
 *
 * Snapshots are created by the internal {_snapshot} function, which will emit the {Snapshot} event and return a
 * snapshot id. To get the total supply at the time of a snapshot, call the function {totalSupplyAt} with the snapshot
 * id. To get the balance of an account at the time of a snapshot, call the {balanceOfAt} function with the snapshot id
 * and the account address.
 *
 * NOTE: Snapshot policy can be customized by overriding the {_getCurrentSnapshotId} method. For example, having it
 * return `block.number` will trigger the creation of snapshot at the begining of each new block. When overridding this
 * function, be careful about the monotonicity of its result. Non-monotonic snapshot ids will break the contract.
 *
 * Implementing snapshots for every block using this method will incur significant gas costs. For a gas-efficient
 * alternative consider {ERC20Votes}.
 *
 * ==== Gas Costs
 *
 * Snapshots are efficient. Snapshot creation is _O(1)_. Retrieval of balances or total supply from a snapshot is _O(log
 * n)_ in the number of snapshots that have been created, although _n_ for a specific account will generally be much
 * smaller since identical balances in subsequent snapshots are stored as a single entry.
 *
 * There is a constant overhead for normal ERC20 transfers due to the additional snapshot bookkeeping. This overhead is
 * only significant for the first transfer that immediately follows a snapshot for a particular account. Subsequent
 * transfers will have normal cost until the next snapshot, and so on.
 */

abstract contract ERC20Snapshot is ERC20 {
    // Inspired by Jordi Baylina's MiniMeToken to record historical balances:
    // https://github.com/Giveth/minimd/blob/ea04d950eea153a04c51fa510b068b9dded390cb/contracts/MiniMeToken.sol

    using Arrays for uint256[];
    using Counters for Counters.Counter;

    // Snapshotted values have arrays of ids and the value corresponding to that id. These could be an array of a
    // Snapshot struct, but that would impede usage of functions that work on an array.
    struct Snapshots {
        uint256[] ids;
        uint256[] values;
    }

    mapping(address => Snapshots) private _accountBalanceSnapshots;
    Snapshots private _totalSupplySnapshots;

    // Snapshot ids increase monotonically, with the first value being 1. An id of 0 is invalid.
    Counters.Counter private _currentSnapshotId;

    /**
     * @dev Emitted by {_snapshot} when a snapshot identified by `id` is created.
     */
    event Snapshot(uint256 id);

    /**
     * @dev Creates a new snapshot and returns its snapshot id.
     *
     * Emits a {Snapshot} event that contains the same id.
     *
     * {_snapshot} is `internal` and you have to decide how to expose it externally. Its usage may be restricted to a
     * set of accounts, for example using {AccessControl}, or it may be open to the public.
     *
     * [WARNING]
     * ====
     * While an open way of calling {_snapshot} is required for certain trust minimization mechanisms such as forking,
     * you must consider that it can potentially be used by attackers in two ways.
     *
     * First, it can be used to increase the cost of retrieval of values from snapshots, although it will grow
     * logarithmically thus rendering this attack ineffective in the long term. Second, it can be used to target
     * specific accounts and increase the cost of ERC20 transfers for them, in the ways specified in the Gas Costs
     * section above.
     *
     * We haven't measured the actual numbers; if this is something you're interested in please reach out to us.
     * ====
     */
    function _snapshot() internal virtual returns (uint256) {
        _currentSnapshotId.increment();

        uint256 currentId = _getCurrentSnapshotId();
        emit Snapshot(currentId);
        return currentId;
    }

    /**
     * @dev Get the current snapshotId
     */
    function _getCurrentSnapshotId() internal view virtual returns (uint256) {
        return _currentSnapshotId.current();
    }

    /**
     * @dev Retrieves the balance of `account` at the time `snapshotId` was created.
     */
    function balanceOfAt(address account, uint256 snapshotId) public view virtual returns (uint256) {
        (bool snapshotted, uint256 value) = _valueAt(snapshotId, _accountBalanceSnapshots[account]);

        return snapshotted ? value : balanceOf(account);
    }

    /**
     * @dev Retrieves the total supply at the time `snapshotId` was created.
     */
    function totalSupplyAt(uint256 snapshotId) public view virtual returns (uint256) {
        (bool snapshotted, uint256 value) = _valueAt(snapshotId, _totalSupplySnapshots);

        return snapshotted ? value : totalSupply();
    }

    // Update balance and/or total supply snapshots before the values are modified. This is implemented
    // in the _beforeTokenTransfer hook, which is executed for _mint, _burn, and _transfer operations.
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual override {
        super._beforeTokenTransfer(from, to, amount);

        if (from == address(0)) {
            // mint
            _updateAccountSnapshot(to);
            _updateTotalSupplySnapshot();
        } else if (to == address(0)) {
            // burn
            _updateAccountSnapshot(from);
            _updateTotalSupplySnapshot();
        } else {
            // transfer
            _updateAccountSnapshot(from);
            _updateAccountSnapshot(to);
        }
    }

    function _valueAt(uint256 snapshotId, Snapshots storage snapshots) private view returns (bool, uint256) {
        require(snapshotId > 0, "ERC20Snapshot: id is 0");
        require(snapshotId <= _getCurrentSnapshotId(), "ERC20Snapshot: nonexistent id");

        // When a valid snapshot is queried, there are three possibilities:
        //  a) The queried value was not modified after the snapshot was taken. Therefore, a snapshot entry was never
        //  created for this id, and all stored snapshot ids are smaller than the requested one. The value that corresponds
        //  to this id is the current one.
        //  b) The queried value was modified after the snapshot was taken. Therefore, there will be an entry with the
        //  requested id, and its value is the one to return.
        //  c) More snapshots were created after the requested one, and the queried value was later modified. There will be
        //  no entry for the requested id: the value that corresponds to it is that of the smallest snapshot id that is
        //  larger than the requested one.
        //
        // In summary, we need to find an element in an array, returning the index of the smallest value that is larger if
        // it is not found, unless said value doesn't exist (e.g. when all values are smaller). Arrays.findUpperBound does
        // exactly this.

        uint256 index = snapshots.ids.findUpperBound(snapshotId);

        if (index == snapshots.ids.length) {
            return (false, 0);
        } else {
            return (true, snapshots.values[index]);
        }
    }

    function _updateAccountSnapshot(address account) private {
        _updateSnapshot(_accountBalanceSnapshots[account], balanceOf(account));
    }

    function _updateTotalSupplySnapshot() private {
        _updateSnapshot(_totalSupplySnapshots, totalSupply());
    }

    function _updateSnapshot(Snapshots storage snapshots, uint256 currentValue) private {
        uint256 currentId = _getCurrentSnapshotId();
        if (_lastSnapshotId(snapshots.ids) < currentId) {
            snapshots.ids.push(currentId);
            snapshots.values.push(currentValue);
        }
    }

    function _lastSnapshotId(uint256[] storage ids) private view returns (uint256) {
        if (ids.length == 0) {
            return 0;
        } else {
            return ids[ids.length - 1];
        }
    }
}


// File @openzeppelin/contracts/utils/[email protected]


// OpenZeppelin Contracts v4.4.1 (utils/Address.sol)



/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        assembly {
            size := extcodesize(account)
        }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}


// File @openzeppelin/contracts/token/ERC20/utils/[email protected]


// OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)




/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}


// File contracts/common/implementation/MultiRole.sol




library Exclusive {
    struct RoleMembership {
        address member;
    }

    function isMember(RoleMembership storage roleMembership, address memberToCheck) internal view returns (bool) {
        return roleMembership.member == memberToCheck;
    }

    function resetMember(RoleMembership storage roleMembership, address newMember) internal {
        require(newMember != address(0x0), "Cannot set an exclusive role to 0x0");
        roleMembership.member = newMember;
    }

    function getMember(RoleMembership storage roleMembership) internal view returns (address) {
        return roleMembership.member;
    }

    function init(RoleMembership storage roleMembership, address initialMember) internal {
        resetMember(roleMembership, initialMember);
    }
}

library Shared {
    struct RoleMembership {
        mapping(address => bool) members;
    }

    function isMember(RoleMembership storage roleMembership, address memberToCheck) internal view returns (bool) {
        return roleMembership.members[memberToCheck];
    }

    function addMember(RoleMembership storage roleMembership, address memberToAdd) internal {
        require(memberToAdd != address(0x0), "Cannot add 0x0 to a shared role");
        roleMembership.members[memberToAdd] = true;
    }

    function removeMember(RoleMembership storage roleMembership, address memberToRemove) internal {
        roleMembership.members[memberToRemove] = false;
    }

    function init(RoleMembership storage roleMembership, address[] memory initialMembers) internal {
        for (uint256 i = 0; i < initialMembers.length; i++) {
            addMember(roleMembership, initialMembers[i]);
        }
    }
}

/**
 * @title Base class to manage permissions for the derived class.
 */
abstract contract MultiRole {
    using Exclusive for Exclusive.RoleMembership;
    using Shared for Shared.RoleMembership;

    enum RoleType { Invalid, Exclusive, Shared }

    struct Role {
        uint256 managingRole;
        RoleType roleType;
        Exclusive.RoleMembership exclusiveRoleMembership;
        Shared.RoleMembership sharedRoleMembership;
    }

    mapping(uint256 => Role) private roles;

    event ResetExclusiveMember(uint256 indexed roleId, address indexed newMember, address indexed manager);
    event AddedSharedMember(uint256 indexed roleId, address indexed newMember, address indexed manager);
    event RemovedSharedMember(uint256 indexed roleId, address indexed oldMember, address indexed manager);

    /**
     * @notice Reverts unless the caller is a member of the specified roleId.
     */
    modifier onlyRoleHolder(uint256 roleId) {
        require(holdsRole(roleId, msg.sender), "Sender does not hold required role");
        _;
    }

    /**
     * @notice Reverts unless the caller is a member of the manager role for the specified roleId.
     */
    modifier onlyRoleManager(uint256 roleId) {
        require(holdsRole(roles[roleId].managingRole, msg.sender), "Can only be called by a role manager");
        _;
    }

    /**
     * @notice Reverts unless the roleId represents an initialized, exclusive roleId.
     */
    modifier onlyExclusive(uint256 roleId) {
        require(roles[roleId].roleType == RoleType.Exclusive, "Must be called on an initialized Exclusive role");
        _;
    }

    /**
     * @notice Reverts unless the roleId represents an initialized, shared roleId.
     */
    modifier onlyShared(uint256 roleId) {
        require(roles[roleId].roleType == RoleType.Shared, "Must be called on an initialized Shared role");
        _;
    }

    /**
     * @notice Whether `memberToCheck` is a member of roleId.
     * @dev Reverts if roleId does not correspond to an initialized role.
     * @param roleId the Role to check.
     * @param memberToCheck the address to check.
     * @return True if `memberToCheck` is a member of `roleId`.
     */
    function holdsRole(uint256 roleId, address memberToCheck) public view returns (bool) {
        Role storage role = roles[roleId];
        if (role.roleType == RoleType.Exclusive) {
            return role.exclusiveRoleMembership.isMember(memberToCheck);
        } else if (role.roleType == RoleType.Shared) {
            return role.sharedRoleMembership.isMember(memberToCheck);
        }
        revert("Invalid roleId");
    }

    /**
     * @notice Changes the exclusive role holder of `roleId` to `newMember`.
     * @dev Reverts if the caller is not a member of the managing role for `roleId` or if `roleId` is not an
     * initialized, ExclusiveRole.
     * @param roleId the ExclusiveRole membership to modify.
     * @param newMember the new ExclusiveRole member.
     */
    function resetMember(uint256 roleId, address newMember) public onlyExclusive(roleId) onlyRoleManager(roleId) {
        roles[roleId].exclusiveRoleMembership.resetMember(newMember);
        emit ResetExclusiveMember(roleId, newMember, msg.sender);
    }

    /**
     * @notice Gets the current holder of the exclusive role, `roleId`.
     * @dev Reverts if `roleId` does not represent an initialized, exclusive role.
     * @param roleId the ExclusiveRole membership to check.
     * @return the address of the current ExclusiveRole member.
     */
    function getMember(uint256 roleId) public view onlyExclusive(roleId) returns (address) {
        return roles[roleId].exclusiveRoleMembership.getMember();
    }

    /**
     * @notice Adds `newMember` to the shared role, `roleId`.
     * @dev Reverts if `roleId` does not represent an initialized, SharedRole or if the caller is not a member of the
     * managing role for `roleId`.
     * @param roleId the SharedRole membership to modify.
     * @param newMember the new SharedRole member.
     */
    function addMember(uint256 roleId, address newMember) public onlyShared(roleId) onlyRoleManager(roleId) {
        roles[roleId].sharedRoleMembership.addMember(newMember);
        emit AddedSharedMember(roleId, newMember, msg.sender);
    }

    /**
     * @notice Removes `memberToRemove` from the shared role, `roleId`.
     * @dev Reverts if `roleId` does not represent an initialized, SharedRole or if the caller is not a member of the
     * managing role for `roleId`.
     * @param roleId the SharedRole membership to modify.
     * @param memberToRemove the current SharedRole member to remove.
     */
    function removeMember(uint256 roleId, address memberToRemove) public onlyShared(roleId) onlyRoleManager(roleId) {
        roles[roleId].sharedRoleMembership.removeMember(memberToRemove);
        emit RemovedSharedMember(roleId, memberToRemove, msg.sender);
    }

    /**
     * @notice Removes caller from the role, `roleId`.
     * @dev Reverts if the caller is not a member of the role for `roleId` or if `roleId` is not an
     * initialized, SharedRole.
     * @param roleId the SharedRole membership to modify.
     */
    function renounceMembership(uint256 roleId) public onlyShared(roleId) onlyRoleHolder(roleId) {
        roles[roleId].sharedRoleMembership.removeMember(msg.sender);
        emit RemovedSharedMember(roleId, msg.sender, msg.sender);
    }

    /**
     * @notice Reverts if `roleId` is not initialized.
     */
    modifier onlyValidRole(uint256 roleId) {
        require(roles[roleId].roleType != RoleType.Invalid, "Attempted to use an invalid roleId");
        _;
    }

    /**
     * @notice Reverts if `roleId` is initialized.
     */
    modifier onlyInvalidRole(uint256 roleId) {
        require(roles[roleId].roleType == RoleType.Invalid, "Cannot use a pre-existing role");
        _;
    }

    /**
     * @notice Internal method to initialize a shared role, `roleId`, which will be managed by `managingRoleId`.
     * `initialMembers` will be immediately added to the role.
     * @dev Should be called by derived contracts, usually at construction time. Will revert if the role is already
     * initialized.
     */
    function _createSharedRole(
        uint256 roleId,
        uint256 managingRoleId,
        address[] memory initialMembers
    ) internal onlyInvalidRole(roleId) {
        Role storage role = roles[roleId];
        role.roleType = RoleType.Shared;
        role.managingRole = managingRoleId;
        role.sharedRoleMembership.init(initialMembers);
        require(
            roles[managingRoleId].roleType != RoleType.Invalid,
            "Attempted to use an invalid role to manage a shared role"
        );
    }

    /**
     * @notice Internal method to initialize an exclusive role, `roleId`, which will be managed by `managingRoleId`.
     * `initialMember` will be immediately added to the role.
     * @dev Should be called by derived contracts, usually at construction time. Will revert if the role is already
     * initialized.
     */
    function _createExclusiveRole(
        uint256 roleId,
        uint256 managingRoleId,
        address initialMember
    ) internal onlyInvalidRole(roleId) {
        Role storage role = roles[roleId];
        role.roleType = RoleType.Exclusive;
        role.managingRole = managingRoleId;
        role.exclusiveRoleMembership.init(initialMember);
        require(
            roles[managingRoleId].roleType != RoleType.Invalid,
            "Attempted to use an invalid role to manage an exclusive role"
        );
    }
}


// File contracts/common/interfaces/ExpandedIERC20.sol




/**
 * @title ERC20 interface that includes burn and mint methods.
 */
abstract contract ExpandedIERC20 is IERC20 {
    /**
     * @notice Burns a specific amount of the caller's tokens.
     * @dev Only burns the caller's tokens, so it is safe to leave this method permissionless.
     */
    function burn(uint256 value) external virtual;

    /**
     * @dev Burns `value` tokens owned by `recipient`.
     * @param recipient address to burn tokens from.
     * @param value amount of tokens to burn.
     */
    function burnFrom(address recipient, uint256 value) external virtual returns (bool);

    /**
     * @notice Mints tokens and adds them to the balance of the `to` address.
     * @dev This method should be permissioned to only allow designated parties to mint tokens.
     */
    function mint(address to, uint256 value) external virtual returns (bool);

    function addMinter(address account) external virtual;

    function addBurner(address account) external virtual;

    function resetOwner(address account) external virtual;
}


// File contracts/common/implementation/ExpandedERC20.sol






/**
 * @title An ERC20 with permissioned burning and minting. The contract deployer will initially
 * be the owner who is capable of adding new roles.
 */
contract ExpandedERC20 is ExpandedIERC20, ERC20, MultiRole {
    enum Roles {
        // Can set the minter and burner.
        Owner,
        // Addresses that can mint new tokens.
        Minter,
        // Addresses that can burn tokens that address owns.
        Burner
    }

    uint8 _decimals;

    /**
     * @notice Constructs the ExpandedERC20.
     * @param _tokenName The name which describes the new token.
     * @param _tokenSymbol The ticker abbreviation of the name. Ideally < 5 chars.
     * @param _tokenDecimals The number of decimals to define token precision.
     */
    constructor(
        string memory _tokenName,
        string memory _tokenSymbol,
        uint8 _tokenDecimals
    ) ERC20(_tokenName, _tokenSymbol) {
        _decimals = _tokenDecimals;
        _createExclusiveRole(uint256(Roles.Owner), uint256(Roles.Owner), msg.sender);
        _createSharedRole(uint256(Roles.Minter), uint256(Roles.Owner), new address[](0));
        _createSharedRole(uint256(Roles.Burner), uint256(Roles.Owner), new address[](0));
    }

    function decimals() public view virtual override(ERC20) returns (uint8) {
        return _decimals;
    }

    /**
     * @dev Mints `value` tokens to `recipient`, returning true on success.
     * @param recipient address to mint to.
     * @param value amount of tokens to mint.
     * @return True if the mint succeeded, or False.
     */
    function mint(address recipient, uint256 value)
        external
        override
        onlyRoleHolder(uint256(Roles.Minter))
        returns (bool)
    {
        _mint(recipient, value);
        return true;
    }

    /**
     * @dev Burns `value` tokens owned by `msg.sender`.
     * @param value amount of tokens to burn.
     */
    function burn(uint256 value) external override onlyRoleHolder(uint256(Roles.Burner)) {
        _burn(msg.sender, value);
    }

    /**
     * @dev Burns `value` tokens owned by `recipient`.
     * @param recipient address to burn tokens from.
     * @param value amount of tokens to burn.
     * @return True if the burn succeeded, or False.
     */
    function burnFrom(address recipient, uint256 value)
        external
        override
        onlyRoleHolder(uint256(Roles.Burner))
        returns (bool)
    {
        _burn(recipient, value);
        return true;
    }

    /**
     * @notice Add Minter role to account.
     * @dev The caller must have the Owner role.
     * @param account The address to which the Minter role is added.
     */
    function addMinter(address account) external virtual override {
        addMember(uint256(Roles.Minter), account);
    }

    /**
     * @notice Add Burner role to account.
     * @dev The caller must have the Owner role.
     * @param account The address to which the Burner role is added.
     */
    function addBurner(address account) external virtual override {
        addMember(uint256(Roles.Burner), account);
    }

    /**
     * @notice Reset Owner role to account.
     * @dev The caller must have the Owner role.
     * @param account The new holder of the Owner role.
     */
    function resetOwner(address account) external virtual override {
        resetMember(uint256(Roles.Owner), account);
    }
}


// File contracts/common/implementation/Withdrawable.sol

/**
 * Withdrawable contract.
 */






/**
 * @title Base contract that allows a specific role to withdraw any ETH and/or ERC20 tokens that the contract holds.
 */
abstract contract Withdrawable is MultiRole {
    using SafeERC20 for IERC20;

    uint256 private roleId;

    /**
     * @notice Withdraws ETH from the contract.
     */
    function withdraw(uint256 amount) external onlyRoleHolder(roleId) {
        Address.sendValue(payable(msg.sender), amount);
    }

    /**
     * @notice Withdraws ERC20 tokens from the contract.
     * @param erc20Address ERC20 token to withdraw.
     * @param amount amount of tokens to withdraw.
     */
    function withdrawErc20(address erc20Address, uint256 amount) external onlyRoleHolder(roleId) {
        IERC20 erc20 = IERC20(erc20Address);
        erc20.safeTransfer(msg.sender, amount);
    }

    /**
     * @notice Internal method that allows derived contracts to create a role for withdrawal.
     * @dev Either this method or `_setWithdrawRole` must be called by the derived class for this contract to function
     * properly.
     * @param newRoleId ID corresponding to role whose members can withdraw.
     * @param managingRoleId ID corresponding to managing role who can modify the withdrawable role's membership.
     * @param withdrawerAddress new manager of withdrawable role.
     */
    function _createWithdrawRole(
        uint256 newRoleId,
        uint256 managingRoleId,
        address withdrawerAddress
    ) internal {
        roleId = newRoleId;
        _createExclusiveRole(newRoleId, managingRoleId, withdrawerAddress);
    }

    /**
     * @notice Internal method that allows derived contracts to choose the role for withdrawal.
     * @dev The role `setRoleId` must exist. Either this method or `_createWithdrawRole` must be
     * called by the derived class for this contract to function properly.
     * @param setRoleId ID corresponding to role whose members can withdraw.
     */
    function _setWithdrawRole(uint256 setRoleId) internal onlyValidRole(setRoleId) {
        roleId = setRoleId;
    }
}


// File contracts/data-verification-mechanism/implementation/VotingToken.sol





/**
 * @title Ownership of this token allows a voter to respond to price requests.
 * @dev Supports snapshotting and allows the Oracle to mint new tokens as rewards.
 */
contract VotingToken is ExpandedERC20, ERC20Snapshot {
    /**
     * @notice Constructs the VotingToken.
     */
    constructor() ExpandedERC20("UMA Voting Token v1", "UMA", 18) ERC20Snapshot() {}

    function decimals() public view virtual override(ERC20, ExpandedERC20) returns (uint8) {
        return super.decimals();
    }

    /**
     * @notice Creates a new snapshot ID.
     * @return uint256 Thew new snapshot ID.
     */
    function snapshot() external returns (uint256) {
        return _snapshot();
    }

    // _transfer, _mint and _burn are ERC20 internal methods that are overridden by ERC20Snapshot,
    // therefore the compiler will complain that VotingToken must override these methods
    // because the two base classes (ERC20 and ERC20Snapshot) both define the same functions

    function _transfer(
        address from,
        address to,
        uint256 value
    ) internal override(ERC20) {
        super._transfer(from, to, value);
    }

    function _mint(address account, uint256 value) internal virtual override(ERC20) {
        super._mint(account, value);
    }

    function _burn(address account, uint256 value) internal virtual override(ERC20) {
        super._burn(account, value);
    }

    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual override(ERC20, ERC20Snapshot) {
        super._beforeTokenTransfer(from, to, amount);
    }
}


// File contracts/data-verification-mechanism/interfaces/StakerInterface.sol





interface StakerInterface {
    function votingToken() external returns (ExpandedIERC20);

    function stake(uint128 amount) external;

    function requestUnstake(uint128 amount) external;

    function executeUnstake() external;

    function withdrawRewards() external returns (uint128);

    function withdrawAndRestake() external returns (uint128);

    function setEmissionRate(uint128 newEmissionRate) external;

    function setUnstakeCoolDown(uint64 newUnstakeCoolDown) external;

    /**
     * @notice Sets the delegate of a voter. This delegate can vote on behalf of the staker. The staker will still own
     * all staked balances, receive rewards and be slashed based on the actions of the delegate. Intended use is using a
     * low-security available wallet for voting while keeping access to staked amounts secure by a more secure wallet.
     * @param delegate the address of the delegate.
     */
    function setDelegate(address delegate) external virtual;

    /**
     * @notice Sets the delegator of a voter. Acts to accept a delegation. The delegate can only vote for the delegator
     * if the delegator also selected the delegate to do so (two-way relationship needed).
     * @param delegator the address of the delegator.
     */
    function setDelegator(address delegator) external virtual;
}


// File contracts/common/implementation/Stakeable.sol

/**
 * Stakeable contract.
 */





/**
 * @title Base contract that extends the Withdrawable contract enabling a specific role to stake ERC20 tokens against the
 * Voting contract. Voting contract is fed in as a param rather than fetched from the finder to enable upgradability.
 */
abstract contract Stakeable is Withdrawable {
    using SafeERC20 for IERC20;

    uint256 private roleId;

    /**
     * @notice Stake ERC20 tokens from this contract to the votingContract.
     * @param amount amount of tokens to stake.
     * @param votingContract Address of the voting contract to stake into.
     */
    function stake(uint128 amount, address votingContract) external onlyRoleHolder(roleId) {
        StakerInterface voting = StakerInterface(votingContract);
        IERC20 votingToken = IERC20(voting.votingToken());
        votingToken.approve(votingContract, amount);
        voting.stake(amount);
    }

    /**
     * @notice Request unstaking of ERC20 tokens from this contract to the votingContract.
     * @param amount amount of tokens to unstake.
     * @param votingContract Address of the voting contract to unstake from.
     */
    function requestUnstake(uint128 amount, address votingContract) external onlyRoleHolder(roleId) {
        StakerInterface voting = StakerInterface(votingContract);
        voting.requestUnstake(amount);
    }

    /**
     * @notice Execute an unstake request that has passed liveness on the voting contract.
     * @param votingContract Address of the voting contract to execute the unstake from.
     */
    function executeUnstake(address votingContract) external onlyRoleHolder(roleId) {
        StakerInterface voting = StakerInterface(votingContract);
        voting.executeUnstake();
    }

    /**
     * @notice Internal method that allows derived contracts to choose the role for stakeable.
     * @dev The role `setRoleId` must exist. Either this method or `_setStakeRole` must be
     * called by the derived class for this contract to function properly.
     * @param setRoleId ID corresponding to role whose members can stakeable.
     */
    function _setStakeRole(uint256 setRoleId) internal onlyValidRole(setRoleId) {
        roleId = setRoleId;
    }
}


// File contracts/common/implementation/MultiCaller.sol




// This contract is taken from Uniswap's multi call implementation (https://github.com/Uniswap/uniswap-v3-periphery/blob/main/contracts/base/Multicall.sol)
// and was modified to be solidity 0.8 compatible. Additionally, the method was restricted to only work with msg.value
// set to 0 to avoid any nasty attack vectors on function calls that use value sent with deposits.

/// @title MultiCaller
/// @notice Enables calling multiple methods in a single call to the contract
contract MultiCaller {
    function multicall(bytes[] calldata data) external returns (bytes[] memory results) {
        results = new bytes[](data.length);
        for (uint256 i = 0; i < data.length; i++) {
            (bool success, bytes memory result) = address(this).delegatecall(data[i]);

            if (!success) {
                // Next 5 lines from https://ethereum.stackexchange.com/a/83577
                if (result.length < 68) revert();
                assembly {
                    result := add(result, 0x04)
                }
                revert(abi.decode(result, (string)));
            }

            results[i] = result;
        }
    }
}


// File contracts/data-verification-mechanism/implementation/Constants.sol




/**
 * @title Stores common interface names used throughout the DVM by registration in the Finder.
 */
library OracleInterfaces {
    bytes32 public constant Oracle = "Oracle";
    bytes32 public constant IdentifierWhitelist = "IdentifierWhitelist";
    bytes32 public constant Store = "Store";
    bytes32 public constant FinancialContractsAdmin = "FinancialContractsAdmin";
    bytes32 public constant Registry = "Registry";
    bytes32 public constant CollateralWhitelist = "CollateralWhitelist";
    bytes32 public constant OptimisticOracle = "OptimisticOracle";
    bytes32 public constant OptimisticOracleV2 = "OptimisticOracleV2";
    bytes32 public constant Bridge = "Bridge";
    bytes32 public constant GenericHandler = "GenericHandler";
    bytes32 public constant SkinnyOptimisticOracle = "SkinnyOptimisticOracle";
    bytes32 public constant ChildMessenger = "ChildMessenger";
    bytes32 public constant OracleHub = "OracleHub";
    bytes32 public constant OracleSpoke = "OracleSpoke";
    bytes32 public constant OptimisticOracleV3 = "OptimisticOracleV3";
}

/**
 * @title Commonly re-used values for contracts associated with the OptimisticOracle.
 */
library OptimisticOracleConstraints {
    // Any price request submitted to the OptimisticOracle must contain ancillary data no larger than this value.
    // This value must be <= the Voting contract's `ancillaryBytesLimit` constant value otherwise it is possible
    // that a price can be requested to the OptimisticOracle successfully, but cannot be resolved by the DVM which
    // refuses to accept a price request made with ancillary data length over a certain size.
    uint256 public constant ancillaryBytesLimit = 8192;
}


// File contracts/data-verification-mechanism/interfaces/FinderInterface.sol




/**
 * @title Provides addresses of the live contracts implementing certain interfaces.
 * @dev Examples are the Oracle or Store interfaces.
 */
interface FinderInterface {
    /**
     * @notice Updates the address of the contract that implements `interfaceName`.
     * @param interfaceName bytes32 encoding of the interface name that is either changed or registered.
     * @param implementationAddress address of the deployed contract that implements the interface.
     */
    function changeImplementationAddress(bytes32 interfaceName, address implementationAddress) external;

    /**
     * @notice Gets the address of the contract that implements the given `interfaceName`.
     * @param interfaceName queried interface.
     * @return implementationAddress address of the deployed contract that implements the interface.
     */
    function getImplementationAddress(bytes32 interfaceName) external view returns (address);
}


// File contracts/data-verification-mechanism/implementation/DesignatedVotingV2.sol



/**
 * @title Proxy to allow voting from another address.
 * @dev Allows a UMA token holder to designate another address to vote on their behalf.
 * Each voter must deploy their own instance of this contract.
 */
contract DesignatedVotingV2 is Stakeable, MultiCaller {
    /****************************************
     *    INTERNAL VARIABLES AND STORAGE    *
     ****************************************/

    enum Roles {
        Owner, // Can set the Voter role.
        Voter // Can vote through this contract.
    }

    // Reference to UMA Finder contract, allowing Voting upgrades to be without requiring any calls to this contract.
    FinderInterface public immutable finder;

    /**
     * @notice Construct the DesignatedVotingV2 contract.
     * @param finderAddress keeps track of all contracts within the system based on their interfaceName.
     * @param ownerAddress address of the owner of the DesignatedVotingV2 contract.
     * @param voterAddress address to which the owner has delegated their voting power.
     */
    constructor(
        address finderAddress,
        address ownerAddress,
        address voterAddress
    ) {
        _createExclusiveRole(uint256(Roles.Owner), uint256(Roles.Owner), ownerAddress);
        _createExclusiveRole(uint256(Roles.Voter), uint256(Roles.Owner), voterAddress);
        _setWithdrawRole(uint256(Roles.Owner));
        _setStakeRole(uint256(Roles.Owner));

        finder = FinderInterface(finderAddress);
    }

    /**
     * @notice This method essentially syncs the voter role with the current voting delegate.
     * @dev Because this is essentially a state sync method, there is no reason to restrict its permissioning.
     */
    function delegateToVoter() public {
        address voter = getMember(uint256(Roles.Voter));
        _getVotingContract().setDelegate(voter);
    }

    // Returns the Voting contract address, named "Oracle" in the finder.
    function _getVotingContract() private view returns (StakerInterface) {
        return StakerInterface(finder.getImplementationAddress(OracleInterfaces.Oracle));
    }
}

Contract Name:
DesignatedVotingV2

Contract Source Code:

File 1 of 1 : DesignatedVotingV2

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity 0.8.16;

// File @openzeppelin/contracts/token/ERC20/[email protected]



// OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol)


/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}


// File @openzeppelin/contracts/token/ERC20/extensions/[email protected]


// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)



/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}


// File @openzeppelin/contracts/utils/[email protected]


// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)



/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}


// File @openzeppelin/contracts/token/ERC20/[email protected]


// OpenZeppelin Contracts v4.4.1 (token/ERC20/ERC20.sol)





/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);

        uint256 currentAllowance = _allowances[sender][_msgSender()];
        require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
        unchecked {
            _approve(sender, _msgSender(), currentAllowance - amount);
        }

        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        uint256 currentAllowance = _allowances[_msgSender()][spender];
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(_msgSender(), spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `sender` to `recipient`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        uint256 senderBalance = _balances[sender];
        require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[sender] = senderBalance - amount;
        }
        _balances[recipient] += amount;

        emit Transfer(sender, recipient, amount);

        _afterTokenTransfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= amount;

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}


// File @openzeppelin/contracts/utils/math/[email protected]


// OpenZeppelin Contracts v4.4.1 (utils/math/Math.sol)



/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a / b + (a % b == 0 ? 0 : 1);
    }
}


// File @openzeppelin/contracts/utils/[email protected]


// OpenZeppelin Contracts v4.4.1 (utils/Arrays.sol)



/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * `array` is expected to be sorted in ascending order, and to contain no
     * repeated elements.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        if (array.length == 0) {
            return 0;
        }

        uint256 low = 0;
        uint256 high = array.length;

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds down (it does integer division with truncation).
            if (array[mid] > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && array[low - 1] == element) {
            return low - 1;
        } else {
            return low;
        }
    }
}


// File @openzeppelin/contracts/utils/[email protected]


// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)



/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library Counters {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}


// File @openzeppelin/contracts/token/ERC20/extensions/[email protected]


// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/ERC20Snapshot.sol)





/**
 * @dev This contract extends an ERC20 token with a snapshot mechanism. When a snapshot is created, the balances and
 * total supply at the time are recorded for later access.
 *
 * This can be used to safely create mechanisms based on token balances such as trustless dividends or weighted voting.
 * In naive implementations it's possible to perform a "double spend" attack by reusing the same balance from different
 * accounts. By using snapshots to calculate dividends or voting power, those attacks no longer apply. It can also be
 * used to create an efficient ERC20 forking mechanism.
 *
 * Snapshots are created by the internal {_snapshot} function, which will emit the {Snapshot} event and return a
 * snapshot id. To get the total supply at the time of a snapshot, call the function {totalSupplyAt} with the snapshot
 * id. To get the balance of an account at the time of a snapshot, call the {balanceOfAt} function with the snapshot id
 * and the account address.
 *
 * NOTE: Snapshot policy can be customized by overriding the {_getCurrentSnapshotId} method. For example, having it
 * return `block.number` will trigger the creation of snapshot at the begining of each new block. When overridding this
 * function, be careful about the monotonicity of its result. Non-monotonic snapshot ids will break the contract.
 *
 * Implementing snapshots for every block using this method will incur significant gas costs. For a gas-efficient
 * alternative consider {ERC20Votes}.
 *
 * ==== Gas Costs
 *
 * Snapshots are efficient. Snapshot creation is _O(1)_. Retrieval of balances or total supply from a snapshot is _O(log
 * n)_ in the number of snapshots that have been created, although _n_ for a specific account will generally be much
 * smaller since identical balances in subsequent snapshots are stored as a single entry.
 *
 * There is a constant overhead for normal ERC20 transfers due to the additional snapshot bookkeeping. This overhead is
 * only significant for the first transfer that immediately follows a snapshot for a particular account. Subsequent
 * transfers will have normal cost until the next snapshot, and so on.
 */

abstract contract ERC20Snapshot is ERC20 {
    // Inspired by Jordi Baylina's MiniMeToken to record historical balances:
    // https://github.com/Giveth/minimd/blob/ea04d950eea153a04c51fa510b068b9dded390cb/contracts/MiniMeToken.sol

    using Arrays for uint256[];
    using Counters for Counters.Counter;

    // Snapshotted values have arrays of ids and the value corresponding to that id. These could be an array of a
    // Snapshot struct, but that would impede usage of functions that work on an array.
    struct Snapshots {
        uint256[] ids;
        uint256[] values;
    }

    mapping(address => Snapshots) private _accountBalanceSnapshots;
    Snapshots private _totalSupplySnapshots;

    // Snapshot ids increase monotonically, with the first value being 1. An id of 0 is invalid.
    Counters.Counter private _currentSnapshotId;

    /**
     * @dev Emitted by {_snapshot} when a snapshot identified by `id` is created.
     */
    event Snapshot(uint256 id);

    /**
     * @dev Creates a new snapshot and returns its snapshot id.
     *
     * Emits a {Snapshot} event that contains the same id.
     *
     * {_snapshot} is `internal` and you have to decide how to expose it externally. Its usage may be restricted to a
     * set of accounts, for example using {AccessControl}, or it may be open to the public.
     *
     * [WARNING]
     * ====
     * While an open way of calling {_snapshot} is required for certain trust minimization mechanisms such as forking,
     * you must consider that it can potentially be used by attackers in two ways.
     *
     * First, it can be used to increase the cost of retrieval of values from snapshots, although it will grow
     * logarithmically thus rendering this attack ineffective in the long term. Second, it can be used to target
     * specific accounts and increase the cost of ERC20 transfers for them, in the ways specified in the Gas Costs
     * section above.
     *
     * We haven't measured the actual numbers; if this is something you're interested in please reach out to us.
     * ====
     */
    function _snapshot() internal virtual returns (uint256) {
        _currentSnapshotId.increment();

        uint256 currentId = _getCurrentSnapshotId();
        emit Snapshot(currentId);
        return currentId;
    }

    /**
     * @dev Get the current snapshotId
     */
    function _getCurrentSnapshotId() internal view virtual returns (uint256) {
        return _currentSnapshotId.current();
    }

    /**
     * @dev Retrieves the balance of `account` at the time `snapshotId` was created.
     */
    function balanceOfAt(address account, uint256 snapshotId) public view virtual returns (uint256) {
        (bool snapshotted, uint256 value) = _valueAt(snapshotId, _accountBalanceSnapshots[account]);

        return snapshotted ? value : balanceOf(account);
    }

    /**
     * @dev Retrieves the total supply at the time `snapshotId` was created.
     */
    function totalSupplyAt(uint256 snapshotId) public view virtual returns (uint256) {
        (bool snapshotted, uint256 value) = _valueAt(snapshotId, _totalSupplySnapshots);

        return snapshotted ? value : totalSupply();
    }

    // Update balance and/or total supply snapshots before the values are modified. This is implemented
    // in the _beforeTokenTransfer hook, which is executed for _mint, _burn, and _transfer operations.
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual override {
        super._beforeTokenTransfer(from, to, amount);

        if (from == address(0)) {
            // mint
            _updateAccountSnapshot(to);
            _updateTotalSupplySnapshot();
        } else if (to == address(0)) {
            // burn
            _updateAccountSnapshot(from);
            _updateTotalSupplySnapshot();
        } else {
            // transfer
            _updateAccountSnapshot(from);
            _updateAccountSnapshot(to);
        }
    }

    function _valueAt(uint256 snapshotId, Snapshots storage snapshots) private view returns (bool, uint256) {
        require(snapshotId > 0, "ERC20Snapshot: id is 0");
        require(snapshotId <= _getCurrentSnapshotId(), "ERC20Snapshot: nonexistent id");

        // When a valid snapshot is queried, there are three possibilities:
        //  a) The queried value was not modified after the snapshot was taken. Therefore, a snapshot entry was never
        //  created for this id, and all stored snapshot ids are smaller than the requested one. The value that corresponds
        //  to this id is the current one.
        //  b) The queried value was modified after the snapshot was taken. Therefore, there will be an entry with the
        //  requested id, and its value is the one to return.
        //  c) More snapshots were created after the requested one, and the queried value was later modified. There will be
        //  no entry for the requested id: the value that corresponds to it is that of the smallest snapshot id that is
        //  larger than the requested one.
        //
        // In summary, we need to find an element in an array, returning the index of the smallest value that is larger if
        // it is not found, unless said value doesn't exist (e.g. when all values are smaller). Arrays.findUpperBound does
        // exactly this.

        uint256 index = snapshots.ids.findUpperBound(snapshotId);

        if (index == snapshots.ids.length) {
            return (false, 0);
        } else {
            return (true, snapshots.values[index]);
        }
    }

    function _updateAccountSnapshot(address account) private {
        _updateSnapshot(_accountBalanceSnapshots[account], balanceOf(account));
    }

    function _updateTotalSupplySnapshot() private {
        _updateSnapshot(_totalSupplySnapshots, totalSupply());
    }

    function _updateSnapshot(Snapshots storage snapshots, uint256 currentValue) private {
        uint256 currentId = _getCurrentSnapshotId();
        if (_lastSnapshotId(snapshots.ids) < currentId) {
            snapshots.ids.push(currentId);
            snapshots.values.push(currentValue);
        }
    }

    function _lastSnapshotId(uint256[] storage ids) private view returns (uint256) {
        if (ids.length == 0) {
            return 0;
        } else {
            return ids[ids.length - 1];
        }
    }
}


// File @openzeppelin/contracts/utils/[email protected]


// OpenZeppelin Contracts v4.4.1 (utils/Address.sol)



/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        assembly {
            size := extcodesize(account)
        }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}


// File @openzeppelin/contracts/token/ERC20/utils/[email protected]


// OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)




/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}


// File contracts/common/implementation/MultiRole.sol




library Exclusive {
    struct RoleMembership {
        address member;
    }

    function isMember(RoleMembership storage roleMembership, address memberToCheck) internal view returns (bool) {
        return roleMembership.member == memberToCheck;
    }

    function resetMember(RoleMembership storage roleMembership, address newMember) internal {
        require(newMember != address(0x0), "Cannot set an exclusive role to 0x0");
        roleMembership.member = newMember;
    }

    function getMember(RoleMembership storage roleMembership) internal view returns (address) {
        return roleMembership.member;
    }

    function init(RoleMembership storage roleMembership, address initialMember) internal {
        resetMember(roleMembership, initialMember);
    }
}

library Shared {
    struct RoleMembership {
        mapping(address => bool) members;
    }

    function isMember(RoleMembership storage roleMembership, address memberToCheck) internal view returns (bool) {
        return roleMembership.members[memberToCheck];
    }

    function addMember(RoleMembership storage roleMembership, address memberToAdd) internal {
        require(memberToAdd != address(0x0), "Cannot add 0x0 to a shared role");
        roleMembership.members[memberToAdd] = true;
    }

    function removeMember(RoleMembership storage roleMembership, address memberToRemove) internal {
        roleMembership.members[memberToRemove] = false;
    }

    function init(RoleMembership storage roleMembership, address[] memory initialMembers) internal {
        for (uint256 i = 0; i < initialMembers.length; i++) {
            addMember(roleMembership, initialMembers[i]);
        }
    }
}

/**
 * @title Base class to manage permissions for the derived class.
 */
abstract contract MultiRole {
    using Exclusive for Exclusive.RoleMembership;
    using Shared for Shared.RoleMembership;

    enum RoleType { Invalid, Exclusive, Shared }

    struct Role {
        uint256 managingRole;
        RoleType roleType;
        Exclusive.RoleMembership exclusiveRoleMembership;
        Shared.RoleMembership sharedRoleMembership;
    }

    mapping(uint256 => Role) private roles;

    event ResetExclusiveMember(uint256 indexed roleId, address indexed newMember, address indexed manager);
    event AddedSharedMember(uint256 indexed roleId, address indexed newMember, address indexed manager);
    event RemovedSharedMember(uint256 indexed roleId, address indexed oldMember, address indexed manager);

    /**
     * @notice Reverts unless the caller is a member of the specified roleId.
     */
    modifier onlyRoleHolder(uint256 roleId) {
        require(holdsRole(roleId, msg.sender), "Sender does not hold required role");
        _;
    }

    /**
     * @notice Reverts unless the caller is a member of the manager role for the specified roleId.
     */
    modifier onlyRoleManager(uint256 roleId) {
        require(holdsRole(roles[roleId].managingRole, msg.sender), "Can only be called by a role manager");
        _;
    }

    /**
     * @notice Reverts unless the roleId represents an initialized, exclusive roleId.
     */
    modifier onlyExclusive(uint256 roleId) {
        require(roles[roleId].roleType == RoleType.Exclusive, "Must be called on an initialized Exclusive role");
        _;
    }

    /**
     * @notice Reverts unless the roleId represents an initialized, shared roleId.
     */
    modifier onlyShared(uint256 roleId) {
        require(roles[roleId].roleType == RoleType.Shared, "Must be called on an initialized Shared role");
        _;
    }

    /**
     * @notice Whether `memberToCheck` is a member of roleId.
     * @dev Reverts if roleId does not correspond to an initialized role.
     * @param roleId the Role to check.
     * @param memberToCheck the address to check.
     * @return True if `memberToCheck` is a member of `roleId`.
     */
    function holdsRole(uint256 roleId, address memberToCheck) public view returns (bool) {
        Role storage role = roles[roleId];
        if (role.roleType == RoleType.Exclusive) {
            return role.exclusiveRoleMembership.isMember(memberToCheck);
        } else if (role.roleType == RoleType.Shared) {
            return role.sharedRoleMembership.isMember(memberToCheck);
        }
        revert("Invalid roleId");
    }

    /**
     * @notice Changes the exclusive role holder of `roleId` to `newMember`.
     * @dev Reverts if the caller is not a member of the managing role for `roleId` or if `roleId` is not an
     * initialized, ExclusiveRole.
     * @param roleId the ExclusiveRole membership to modify.
     * @param newMember the new ExclusiveRole member.
     */
    function resetMember(uint256 roleId, address newMember) public onlyExclusive(roleId) onlyRoleManager(roleId) {
        roles[roleId].exclusiveRoleMembership.resetMember(newMember);
        emit ResetExclusiveMember(roleId, newMember, msg.sender);
    }

    /**
     * @notice Gets the current holder of the exclusive role, `roleId`.
     * @dev Reverts if `roleId` does not represent an initialized, exclusive role.
     * @param roleId the ExclusiveRole membership to check.
     * @return the address of the current ExclusiveRole member.
     */
    function getMember(uint256 roleId) public view onlyExclusive(roleId) returns (address) {
        return roles[roleId].exclusiveRoleMembership.getMember();
    }

    /**
     * @notice Adds `newMember` to the shared role, `roleId`.
     * @dev Reverts if `roleId` does not represent an initialized, SharedRole or if the caller is not a member of the
     * managing role for `roleId`.
     * @param roleId the SharedRole membership to modify.
     * @param newMember the new SharedRole member.
     */
    function addMember(uint256 roleId, address newMember) public onlyShared(roleId) onlyRoleManager(roleId) {
        roles[roleId].sharedRoleMembership.addMember(newMember);
        emit AddedSharedMember(roleId, newMember, msg.sender);
    }

    /**
     * @notice Removes `memberToRemove` from the shared role, `roleId`.
     * @dev Reverts if `roleId` does not represent an initialized, SharedRole or if the caller is not a member of the
     * managing role for `roleId`.
     * @param roleId the SharedRole membership to modify.
     * @param memberToRemove the current SharedRole member to remove.
     */
    function removeMember(uint256 roleId, address memberToRemove) public onlyShared(roleId) onlyRoleManager(roleId) {
        roles[roleId].sharedRoleMembership.removeMember(memberToRemove);
        emit RemovedSharedMember(roleId, memberToRemove, msg.sender);
    }

    /**
     * @notice Removes caller from the role, `roleId`.
     * @dev Reverts if the caller is not a member of the role for `roleId` or if `roleId` is not an
     * initialized, SharedRole.
     * @param roleId the SharedRole membership to modify.
     */
    function renounceMembership(uint256 roleId) public onlyShared(roleId) onlyRoleHolder(roleId) {
        roles[roleId].sharedRoleMembership.removeMember(msg.sender);
        emit RemovedSharedMember(roleId, msg.sender, msg.sender);
    }

    /**
     * @notice Reverts if `roleId` is not initialized.
     */
    modifier onlyValidRole(uint256 roleId) {
        require(roles[roleId].roleType != RoleType.Invalid, "Attempted to use an invalid roleId");
        _;
    }

    /**
     * @notice Reverts if `roleId` is initialized.
     */
    modifier onlyInvalidRole(uint256 roleId) {
        require(roles[roleId].roleType == RoleType.Invalid, "Cannot use a pre-existing role");
        _;
    }

    /**
     * @notice Internal method to initialize a shared role, `roleId`, which will be managed by `managingRoleId`.
     * `initialMembers` will be immediately added to the role.
     * @dev Should be called by derived contracts, usually at construction time. Will revert if the role is already
     * initialized.
     */
    function _createSharedRole(
        uint256 roleId,
        uint256 managingRoleId,
        address[] memory initialMembers
    ) internal onlyInvalidRole(roleId) {
        Role storage role = roles[roleId];
        role.roleType = RoleType.Shared;
        role.managingRole = managingRoleId;
        role.sharedRoleMembership.init(initialMembers);
        require(
            roles[managingRoleId].roleType != RoleType.Invalid,
            "Attempted to use an invalid role to manage a shared role"
        );
    }

    /**
     * @notice Internal method to initialize an exclusive role, `roleId`, which will be managed by `managingRoleId`.
     * `initialMember` will be immediately added to the role.
     * @dev Should be called by derived contracts, usually at construction time. Will revert if the role is already
     * initialized.
     */
    function _createExclusiveRole(
        uint256 roleId,
        uint256 managingRoleId,
        address initialMember
    ) internal onlyInvalidRole(roleId) {
        Role storage role = roles[roleId];
        role.roleType = RoleType.Exclusive;
        role.managingRole = managingRoleId;
        role.exclusiveRoleMembership.init(initialMember);
        require(
            roles[managingRoleId].roleType != RoleType.Invalid,
            "Attempted to use an invalid role to manage an exclusive role"
        );
    }
}


// File contracts/common/interfaces/ExpandedIERC20.sol




/**
 * @title ERC20 interface that includes burn and mint methods.
 */
abstract contract ExpandedIERC20 is IERC20 {
    /**
     * @notice Burns a specific amount of the caller's tokens.
     * @dev Only burns the caller's tokens, so it is safe to leave this method permissionless.
     */
    function burn(uint256 value) external virtual;

    /**
     * @dev Burns `value` tokens owned by `recipient`.
     * @param recipient address to burn tokens from.
     * @param value amount of tokens to burn.
     */
    function burnFrom(address recipient, uint256 value) external virtual returns (bool);

    /**
     * @notice Mints tokens and adds them to the balance of the `to` address.
     * @dev This method should be permissioned to only allow designated parties to mint tokens.
     */
    function mint(address to, uint256 value) external virtual returns (bool);

    function addMinter(address account) external virtual;

    function addBurner(address account) external virtual;

    function resetOwner(address account) external virtual;
}


// File contracts/common/implementation/ExpandedERC20.sol






/**
 * @title An ERC20 with permissioned burning and minting. The contract deployer will initially
 * be the owner who is capable of adding new roles.
 */
contract ExpandedERC20 is ExpandedIERC20, ERC20, MultiRole {
    enum Roles {
        // Can set the minter and burner.
        Owner,
        // Addresses that can mint new tokens.
        Minter,
        // Addresses that can burn tokens that address owns.
        Burner
    }

    uint8 _decimals;

    /**
     * @notice Constructs the ExpandedERC20.
     * @param _tokenName The name which describes the new token.
     * @param _tokenSymbol The ticker abbreviation of the name. Ideally < 5 chars.
     * @param _tokenDecimals The number of decimals to define token precision.
     */
    constructor(
        string memory _tokenName,
        string memory _tokenSymbol,
        uint8 _tokenDecimals
    ) ERC20(_tokenName, _tokenSymbol) {
        _decimals = _tokenDecimals;
        _createExclusiveRole(uint256(Roles.Owner), uint256(Roles.Owner), msg.sender);
        _createSharedRole(uint256(Roles.Minter), uint256(Roles.Owner), new address[](0));
        _createSharedRole(uint256(Roles.Burner), uint256(Roles.Owner), new address[](0));
    }

    function decimals() public view virtual override(ERC20) returns (uint8) {
        return _decimals;
    }

    /**
     * @dev Mints `value` tokens to `recipient`, returning true on success.
     * @param recipient address to mint to.
     * @param value amount of tokens to mint.
     * @return True if the mint succeeded, or False.
     */
    function mint(address recipient, uint256 value)
        external
        override
        onlyRoleHolder(uint256(Roles.Minter))
        returns (bool)
    {
        _mint(recipient, value);
        return true;
    }

    /**
     * @dev Burns `value` tokens owned by `msg.sender`.
     * @param value amount of tokens to burn.
     */
    function burn(uint256 value) external override onlyRoleHolder(uint256(Roles.Burner)) {
        _burn(msg.sender, value);
    }

    /**
     * @dev Burns `value` tokens owned by `recipient`.
     * @param recipient address to burn tokens from.
     * @param value amount of tokens to burn.
     * @return True if the burn succeeded, or False.
     */
    function burnFrom(address recipient, uint256 value)
        external
        override
        onlyRoleHolder(uint256(Roles.Burner))
        returns (bool)
    {
        _burn(recipient, value);
        return true;
    }

    /**
     * @notice Add Minter role to account.
     * @dev The caller must have the Owner role.
     * @param account The address to which the Minter role is added.
     */
    function addMinter(address account) external virtual override {
        addMember(uint256(Roles.Minter), account);
    }

    /**
     * @notice Add Burner role to account.
     * @dev The caller must have the Owner role.
     * @param account The address to which the Burner role is added.
     */
    function addBurner(address account) external virtual override {
        addMember(uint256(Roles.Burner), account);
    }

    /**
     * @notice Reset Owner role to account.
     * @dev The caller must have the Owner role.
     * @param account The new holder of the Owner role.
     */
    function resetOwner(address account) external virtual override {
        resetMember(uint256(Roles.Owner), account);
    }
}


// File contracts/common/implementation/Withdrawable.sol

/**
 * Withdrawable contract.
 */






/**
 * @title Base contract that allows a specific role to withdraw any ETH and/or ERC20 tokens that the contract holds.
 */
abstract contract Withdrawable is MultiRole {
    using SafeERC20 for IERC20;

    uint256 private roleId;

    /**
     * @notice Withdraws ETH from the contract.
     */
    function withdraw(uint256 amount) external onlyRoleHolder(roleId) {
        Address.sendValue(payable(msg.sender), amount);
    }

    /**
     * @notice Withdraws ERC20 tokens from the contract.
     * @param erc20Address ERC20 token to withdraw.
     * @param amount amount of tokens to withdraw.
     */
    function withdrawErc20(address erc20Address, uint256 amount) external onlyRoleHolder(roleId) {
        IERC20 erc20 = IERC20(erc20Address);
        erc20.safeTransfer(msg.sender, amount);
    }

    /**
     * @notice Internal method that allows derived contracts to create a role for withdrawal.
     * @dev Either this method or `_setWithdrawRole` must be called by the derived class for this contract to function
     * properly.
     * @param newRoleId ID corresponding to role whose members can withdraw.
     * @param managingRoleId ID corresponding to managing role who can modify the withdrawable role's membership.
     * @param withdrawerAddress new manager of withdrawable role.
     */
    function _createWithdrawRole(
        uint256 newRoleId,
        uint256 managingRoleId,
        address withdrawerAddress
    ) internal {
        roleId = newRoleId;
        _createExclusiveRole(newRoleId, managingRoleId, withdrawerAddress);
    }

    /**
     * @notice Internal method that allows derived contracts to choose the role for withdrawal.
     * @dev The role `setRoleId` must exist. Either this method or `_createWithdrawRole` must be
     * called by the derived class for this contract to function properly.
     * @param setRoleId ID corresponding to role whose members can withdraw.
     */
    function _setWithdrawRole(uint256 setRoleId) internal onlyValidRole(setRoleId) {
        roleId = setRoleId;
    }
}


// File contracts/data-verification-mechanism/implementation/VotingToken.sol





/**
 * @title Ownership of this token allows a voter to respond to price requests.
 * @dev Supports snapshotting and allows the Oracle to mint new tokens as rewards.
 */
contract VotingToken is ExpandedERC20, ERC20Snapshot {
    /**
     * @notice Constructs the VotingToken.
     */
    constructor() ExpandedERC20("UMA Voting Token v1", "UMA", 18) ERC20Snapshot() {}

    function decimals() public view virtual override(ERC20, ExpandedERC20) returns (uint8) {
        return super.decimals();
    }

    /**
     * @notice Creates a new snapshot ID.
     * @return uint256 Thew new snapshot ID.
     */
    function snapshot() external returns (uint256) {
        return _snapshot();
    }

    // _transfer, _mint and _burn are ERC20 internal methods that are overridden by ERC20Snapshot,
    // therefore the compiler will complain that VotingToken must override these methods
    // because the two base classes (ERC20 and ERC20Snapshot) both define the same functions

    function _transfer(
        address from,
        address to,
        uint256 value
    ) internal override(ERC20) {
        super._transfer(from, to, value);
    }

    function _mint(address account, uint256 value) internal virtual override(ERC20) {
        super._mint(account, value);
    }

    function _burn(address account, uint256 value) internal virtual override(ERC20) {
        super._burn(account, value);
    }

    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual override(ERC20, ERC20Snapshot) {
        super._beforeTokenTransfer(from, to, amount);
    }
}


// File contracts/data-verification-mechanism/interfaces/StakerInterface.sol





interface StakerInterface {
    function votingToken() external returns (ExpandedIERC20);

    function stake(uint128 amount) external;

    function requestUnstake(uint128 amount) external;

    function executeUnstake() external;

    function withdrawRewards() external returns (uint128);

    function withdrawAndRestake() external returns (uint128);

    function setEmissionRate(uint128 newEmissionRate) external;

    function setUnstakeCoolDown(uint64 newUnstakeCoolDown) external;

    /**
     * @notice Sets the delegate of a voter. This delegate can vote on behalf of the staker. The staker will still own
     * all staked balances, receive rewards and be slashed based on the actions of the delegate. Intended use is using a
     * low-security available wallet for voting while keeping access to staked amounts secure by a more secure wallet.
     * @param delegate the address of the delegate.
     */
    function setDelegate(address delegate) external virtual;

    /**
     * @notice Sets the delegator of a voter. Acts to accept a delegation. The delegate can only vote for the delegator
     * if the delegator also selected the delegate to do so (two-way relationship needed).
     * @param delegator the address of the delegator.
     */
    function setDelegator(address delegator) external virtual;
}


// File contracts/common/implementation/Stakeable.sol

/**
 * Stakeable contract.
 */





/**
 * @title Base contract that extends the Withdrawable contract enabling a specific role to stake ERC20 tokens against the
 * Voting contract. Voting contract is fed in as a param rather than fetched from the finder to enable upgradability.
 */
abstract contract Stakeable is Withdrawable {
    using SafeERC20 for IERC20;

    uint256 private roleId;

    /**
     * @notice Stake ERC20 tokens from this contract to the votingContract.
     * @param amount amount of tokens to stake.
     * @param votingContract Address of the voting contract to stake into.
     */
    function stake(uint128 amount, address votingContract) external onlyRoleHolder(roleId) {
        StakerInterface voting = StakerInterface(votingContract);
        IERC20 votingToken = IERC20(voting.votingToken());
        votingToken.approve(votingContract, amount);
        voting.stake(amount);
    }

    /**
     * @notice Request unstaking of ERC20 tokens from this contract to the votingContract.
     * @param amount amount of tokens to unstake.
     * @param votingContract Address of the voting contract to unstake from.
     */
    function requestUnstake(uint128 amount, address votingContract) external onlyRoleHolder(roleId) {
        StakerInterface voting = StakerInterface(votingContract);
        voting.requestUnstake(amount);
    }

    /**
     * @notice Execute an unstake request that has passed liveness on the voting contract.
     * @param votingContract Address of the voting contract to execute the unstake from.
     */
    function executeUnstake(address votingContract) external onlyRoleHolder(roleId) {
        StakerInterface voting = StakerInterface(votingContract);
        voting.executeUnstake();
    }

    /**
     * @notice Internal method that allows derived contracts to choose the role for stakeable.
     * @dev The role `setRoleId` must exist. Either this method or `_setStakeRole` must be
     * called by the derived class for this contract to function properly.
     * @param setRoleId ID corresponding to role whose members can stakeable.
     */
    function _setStakeRole(uint256 setRoleId) internal onlyValidRole(setRoleId) {
        roleId = setRoleId;
    }
}


// File contracts/common/implementation/MultiCaller.sol




// This contract is taken from Uniswap's multi call implementation (https://github.com/Uniswap/uniswap-v3-periphery/blob/main/contracts/base/Multicall.sol)
// and was modified to be solidity 0.8 compatible. Additionally, the method was restricted to only work with msg.value
// set to 0 to avoid any nasty attack vectors on function calls that use value sent with deposits.

/// @title MultiCaller
/// @notice Enables calling multiple methods in a single call to the contract
contract MultiCaller {
    function multicall(bytes[] calldata data) external returns (bytes[] memory results) {
        results = new bytes[](data.length);
        for (uint256 i = 0; i < data.length; i++) {
            (bool success, bytes memory result) = address(this).delegatecall(data[i]);

            if (!success) {
                // Next 5 lines from https://ethereum.stackexchange.com/a/83577
                if (result.length < 68) revert();
                assembly {
                    result := add(result, 0x04)
                }
                revert(abi.decode(result, (string)));
            }

            results[i] = result;
        }
    }
}


// File contracts/data-verification-mechanism/implementation/Constants.sol




/**
 * @title Stores common interface names used throughout the DVM by registration in the Finder.
 */
library OracleInterfaces {
    bytes32 public constant Oracle = "Oracle";
    bytes32 public constant IdentifierWhitelist = "IdentifierWhitelist";
    bytes32 public constant Store = "Store";
    bytes32 public constant FinancialContractsAdmin = "FinancialContractsAdmin";
    bytes32 public constant Registry = "Registry";
    bytes32 public constant CollateralWhitelist = "CollateralWhitelist";
    bytes32 public constant OptimisticOracle = "OptimisticOracle";
    bytes32 public constant OptimisticOracleV2 = "OptimisticOracleV2";
    bytes32 public constant Bridge = "Bridge";
    bytes32 public constant GenericHandler = "GenericHandler";
    bytes32 public constant SkinnyOptimisticOracle = "SkinnyOptimisticOracle";
    bytes32 public constant ChildMessenger = "ChildMessenger";
    bytes32 public constant OracleHub = "OracleHub";
    bytes32 public constant OracleSpoke = "OracleSpoke";
    bytes32 public constant OptimisticOracleV3 = "OptimisticOracleV3";
}

/**
 * @title Commonly re-used values for contracts associated with the OptimisticOracle.
 */
library OptimisticOracleConstraints {
    // Any price request submitted to the OptimisticOracle must contain ancillary data no larger than this value.
    // This value must be <= the Voting contract's `ancillaryBytesLimit` constant value otherwise it is possible
    // that a price can be requested to the OptimisticOracle successfully, but cannot be resolved by the DVM which
    // refuses to accept a price request made with ancillary data length over a certain size.
    uint256 public constant ancillaryBytesLimit = 8192;
}


// File contracts/data-verification-mechanism/interfaces/FinderInterface.sol




/**
 * @title Provides addresses of the live contracts implementing certain interfaces.
 * @dev Examples are the Oracle or Store interfaces.
 */
interface FinderInterface {
    /**
     * @notice Updates the address of the contract that implements `interfaceName`.
     * @param interfaceName bytes32 encoding of the interface name that is either changed or registered.
     * @param implementationAddress address of the deployed contract that implements the interface.
     */
    function changeImplementationAddress(bytes32 interfaceName, address implementationAddress) external;

    /**
     * @notice Gets the address of the contract that implements the given `interfaceName`.
     * @param interfaceName queried interface.
     * @return implementationAddress address of the deployed contract that implements the interface.
     */
    function getImplementationAddress(bytes32 interfaceName) external view returns (address);
}


// File contracts/data-verification-mechanism/implementation/DesignatedVotingV2.sol



/**
 * @title Proxy to allow voting from another address.
 * @dev Allows a UMA token holder to designate another address to vote on their behalf.
 * Each voter must deploy their own instance of this contract.
 */
contract DesignatedVotingV2 is Stakeable, MultiCaller {
    /****************************************
     *    INTERNAL VARIABLES AND STORAGE    *
     ****************************************/

    enum Roles {
        Owner, // Can set the Voter role.
        Voter // Can vote through this contract.
    }

    // Reference to UMA Finder contract, allowing Voting upgrades to be without requiring any calls to this contract.
    FinderInterface public immutable finder;

    /**
     * @notice Construct the DesignatedVotingV2 contract.
     * @param finderAddress keeps track of all contracts within the system based on their interfaceName.
     * @param ownerAddress address of the owner of the DesignatedVotingV2 contract.
     * @param voterAddress address to which the owner has delegated their voting power.
     */
    constructor(
        address finderAddress,
        address ownerAddress,
        address voterAddress
    ) {
        _createExclusiveRole(uint256(Roles.Owner), uint256(Roles.Owner), ownerAddress);
        _createExclusiveRole(uint256(Roles.Voter), uint256(Roles.Owner), voterAddress);
        _setWithdrawRole(uint256(Roles.Owner));
        _setStakeRole(uint256(Roles.Owner));

        finder = FinderInterface(finderAddress);
    }

    /**
     * @notice This method essentially syncs the voter role with the current voting delegate.
     * @dev Because this is essentially a state sync method, there is no reason to restrict its permissioning.
     */
    function delegateToVoter() public {
        address voter = getMember(uint256(Roles.Voter));
        _getVotingContract().setDelegate(voter);
    }

    // Returns the Voting contract address, named "Oracle" in the finder.
    function _getVotingContract() private view returns (StakerInterface) {
        return StakerInterface(finder.getImplementationAddress(OracleInterfaces.Oracle));
    }
}

Context size (optional):