ETH Price: $2,970.18 (-0.80%)
Gas: 7 Gwei

Contract Diff Checker

Contract Name:
Yakyuken

Contract Source Code:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { ERC721 } from "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import { ERC721URIStorage } from "@openzeppelin/contracts/token/ERC721/extensions/ERC721URIStorage.sol";
import { Base64 } from "@openzeppelin/contracts/utils/Base64.sol";
import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";

import { ERC721B } from "./ERC721B.sol";
import { ZLib } from "./zip/ZLib.sol";

contract Yakyuken is ERC721B, ERC721URIStorage, Ownable {
    using Strings for uint256;

    bytes32 private constant METADATA_POINTER = bytes32(keccak256("metadata"));

    uint16 private constant MEMORY_OFFSET = 100;

    address private immutable _zlib;

    uint128[] private _imageMetadata;
    uint128[] private _iconMetadata;
    bytes7[] private _imageTraits;
    bytes7 private _sampleImageTraits;

    bool[4] private _initialized;
    address private _saleContract;

    struct Image {
        string path;
        string viewBox;
        string fontSize;
        string iconSize;
        string name;
    }

    ///@dev must be in alphabetical order
    struct Icon {
        string color;
        string name;
        string path;
    }

    struct MetadataBytes {
        uint8 glowTimes;
        uint8 backgroundColors;
        uint8 yakHoverColors;
        uint8 finalShadowColors;
        uint8 baseFillColors;
        uint8 yakFillColors;
        uint8 yak;
        uint8 initialShadowColors;
        uint8 initialShadowBrightness;
        uint8 finalShadowBrightness;
        uint8 icon;
        uint8 texts;
    }

    ///@dev  must be in alphabetical order
    struct Metadata {
        string[] backgroundColors;
        string[] baseFillColors;
        string[] finalShadowBrightness;
        string[] finalShadowColors;
        string[] glowTimes;
        string[] initialShadowBrightness;
        string[] initialShadowColors;
        string[] texts;
        string[] yakFillColors;
        string[] yakHoverColors;
    }

    error OutOfBondsTraitValueError();
    error AlreadyInitializedError();
    error NotSaleContractError();

    modifier initialize(uint256 id_) {
        _initialize(id_);
        _;
    }

    modifier onlySale() {
        if (msg.sender != _saleContract) revert NotSaleContractError();
        _;
    }

    constructor(address zlib_) ERC721("Yakyuken", "YNFT") Ownable(msg.sender) {
        _zlib = zlib_;

        for (uint256 i = 0; i < 25; i++) {
            _mint(msg.sender, i);
        }
    }

    ///@dev  must be the first initialize to be called
    function initializeMetadata(bytes calldata metadata_, bytes7 sampleImageTraits_)
        external
        onlyOwner
        initialize(0)
    {
        _write(METADATA_POINTER, metadata_);
        _sampleImageTraits = sampleImageTraits_;
    }

    ///@dev  must be called after initializeMetadata().
    function initializeImages(bytes[] calldata images_, uint128[] calldata decompressedSizes_)
        external
        onlyOwner
        initialize(1)
    {
        uint256 imageCount_ = images_.length;
        for (uint256 i_; i_ < imageCount_; i_++) {
            _write(bytes32(keccak256(abi.encode(i_))), images_[i_]);
            _imageMetadata.push(decompressedSizes_[i_]);
        }
    }

    ///@dev  must be called after initializeImages().
    function initializeImagesHardcoded(
        bytes[] calldata images_,
        uint128[] calldata decompressedSizes_,
        uint256 totalImages_
    ) external onlyOwner initialize(2) {
        uint256 imageCount_ = totalImages_ - images_.length;
        for (uint256 i_; i_ < images_.length; i_++) {
            _write(bytes32(keccak256(abi.encode(i_ + imageCount_))), images_[i_]);
            _imageMetadata.push(decompressedSizes_[i_]);
        }
    }

    ///@dev  must be called after initializeImagesHardcoded()
    function initializeIcons(bytes[] calldata icons_, uint128[] calldata decompressedSizesIcons_)
        external
        onlyOwner
        initialize(3)
    {
        uint256 iconCount_ = icons_.length;
        for (uint256 j_; j_ < iconCount_; j_++) {
            _write(bytes32(keccak256(abi.encode(j_ + MEMORY_OFFSET))), icons_[j_]);
            _iconMetadata.push(decompressedSizesIcons_[j_]);
        }
    }

    function reveal(bytes7[] memory imageTraits_) external onlyOwner {
        _imageTraits = imageTraits_;
    }

    function tokenURI(uint256 tokenId_) public view override returns (string memory) {
        MetadataBytes memory data_;
        data_ = processMetadataAsBytes(_imageTraits.length > 0 ? _imageTraits[tokenId_] : _sampleImageTraits);

        Metadata memory metadata_ = abi.decode(_read(METADATA_POINTER), (Metadata));

        Image memory image_ = abi.decode(
            ZLib(_zlib).inflate(_read(bytes32(keccak256(abi.encode(data_.yak)))), _imageMetadata[data_.yak]), (Image)
        );

        Icon memory icon_ = abi.decode(
            ZLib(_zlib).inflate(
                _read(bytes32(keccak256(abi.encode(data_.icon + MEMORY_OFFSET)))), _iconMetadata[data_.icon]
            ),
            (Icon)
        );

        bytes memory dataURI = abi.encodePacked(
            "{",
            '"name": "Yakyuken #',
            tokenId_.toString(),
            '", "description": "',
            "Yakyuken NFT on-chain collection.",
            '", "image_data": "',
            string(
                abi.encodePacked(
                    "data:image/svg+xml;base64,", Base64.encode(_generateSVGfromBytes(data_, metadata_, image_, icon_))
                )
            ),
            '",',
            _getAttributes(data_, metadata_, [image_.name, icon_.name]),
            "}"
        );

        return string(abi.encodePacked("data:application/json;base64,", Base64.encode(dataURI)));
    }

    function generateSVGfromBytes(uint256 tokenId_) external view returns (string memory svg_) {
        MetadataBytes memory data_;
        data_ = processMetadataAsBytes(_imageTraits.length > 0 ? _imageTraits[tokenId_] : _sampleImageTraits);
  

        Metadata memory metadata_ = abi.decode(_read(METADATA_POINTER), (Metadata));

        Image memory image_ = abi.decode(
            ZLib(_zlib).inflate(_read(bytes32(keccak256(abi.encode(data_.yak)))), _imageMetadata[data_.yak]), (Image)
        );

        Icon memory icon_ = abi.decode(
            ZLib(_zlib).inflate(
                _read(bytes32(keccak256(abi.encode(data_.icon + MEMORY_OFFSET)))), _iconMetadata[data_.icon]
            ),
            (Icon)
        );
        svg_ = string(_generateSVGfromBytes(data_, metadata_, image_, icon_));
    }

    function processMetadataAsBytes(bytes7 metadataInfo_) public view returns (MetadataBytes memory data_) {
        Metadata memory metadata_ = abi.decode(_read(METADATA_POINTER), (Metadata));
        data_.glowTimes = _getTraitFromMask(metadataInfo_, 0, 0, metadata_.glowTimes.length);
        data_.backgroundColors = _getTraitFromMask(metadataInfo_, 1, 0, metadata_.backgroundColors.length);
        data_.yakHoverColors = _getTraitFromMask(metadataInfo_, 2, 4, metadata_.yakHoverColors.length);
        data_.finalShadowColors = _getTraitFromMask(metadataInfo_, 2, 10, metadata_.finalShadowColors.length);
        data_.baseFillColors = _getTraitFromMask(metadataInfo_, 3, 4, metadata_.baseFillColors.length);
        data_.yakFillColors = _getTraitFromMask(metadataInfo_, 3, 10, metadata_.yakFillColors.length);
        data_.yak = _getTraitFromMask(metadataInfo_, 4, 4, _imageMetadata.length);
        data_.initialShadowColors = _getTraitFromMask(metadataInfo_, 4, 10, metadata_.initialShadowColors.length);
        data_.initialShadowBrightness = _getTraitFromMask(metadataInfo_, 5, 4, metadata_.initialShadowBrightness.length);
        data_.finalShadowBrightness = _getTraitFromMask(metadataInfo_, 5, 10, metadata_.finalShadowBrightness.length);
        data_.icon = _getTraitFromMask(metadataInfo_, 6, 4, _iconMetadata.length);
        data_.texts = _getTraitFromMask(metadataInfo_, 6, 10, metadata_.texts.length);
    }

    function mint(address to_, uint256 tokenId_) external onlySale {
        _mint(to_, tokenId_);
    }

    function setSaleContract(address sale_) external onlyOwner {
        _saleContract = sale_;
    }

    function _initialize(uint256 id_) internal {
        if (_initialized[id_]) revert AlreadyInitializedError();
        _initialized[id_] = true;
    }

    function _getTraitFromMask(bytes7 mask_, uint8 pos_, uint8 shift_, uint256 max_) internal pure returns(uint8 trait_) {
        if (shift_ == 0) trait_ = uint8(mask_[pos_]);
        else if (shift_ == 4) trait_ = uint8(mask_[pos_] >> 4);
        else trait_ = uint8(mask_[pos_] & 0x0F);
        if (trait_ >= max_) revert OutOfBondsTraitValueError();
    }

    function _generateSVGfromBytes(
        MetadataBytes memory data_,
        Metadata memory metadata_,
        Image memory image_,
        Icon memory icon_
    ) internal pure returns (bytes memory) {
        return abi.encodePacked(
            _getHeader(image_.viewBox, metadata_.backgroundColors[data_.backgroundColors]),
            _getStyleHeader(
                metadata_.initialShadowColors[data_.initialShadowColors],
                metadata_.finalShadowColors[data_.finalShadowColors],
                metadata_.initialShadowBrightness[data_.initialShadowBrightness],
                metadata_.finalShadowBrightness[data_.finalShadowBrightness],
                metadata_.baseFillColors[data_.baseFillColors],
                metadata_.glowTimes[data_.glowTimes],
                metadata_.yakFillColors[data_.yakFillColors],
                metadata_.yakHoverColors[data_.yakHoverColors],
                metadata_.yakFillColors[data_.yakFillColors]
            ),
            image_.path,
            _getIcon(icon_.path, image_.iconSize),
            "</svg>"
        );
    }

    function _getHeader(string memory viewBox_, string memory backgroundColor_) internal pure returns (bytes memory) {
        return abi.encodePacked(
            '<svg xmlns="http://www.w3.org/2000/svg" preserveAspectRatio="xMidYMid meet" viewBox="',
            viewBox_,
            '" style="background-color:',
            backgroundColor_,
            '">'
        );
    }

    function _getStyleHeader(
        string memory initialShadowColors_,
        string memory finalShadowColors_,
        string memory initialShadowBrightness_,
        string memory finalShadowBrightness_,
        string memory baseFillColors_,
        string memory glowTimes_,
        string memory yakFillColors_,
        string memory hoverColors_,
        string memory iconColor_
    ) internal pure returns (bytes memory) {
        return abi.encodePacked(
            "<style>",
            "@keyframes glow {0% {filter: drop-shadow(16px 16px 20px ",
            initialShadowColors_,
            ") brightness(",
            initialShadowBrightness_,
            "%);}to {filter: drop-shadow(16px 16px 20px ",
            finalShadowColors_,
            ") brightness(",
            finalShadowBrightness_,
            "%);}}path {fill: ",
            baseFillColors_,
            ";animation: glow ",
            glowTimes_,
            "s ease-in-out infinite alternate;}.yak {fill: ",
            yakFillColors_,
            ";}.yak:hover {fill: ",
            hoverColors_,
            ";}.icon {fill: ",
            iconColor_,
            ";}</style>"
        );
    }

    function _getIcon(string memory path_, string memory iconSize_) internal pure returns (bytes memory) {
        string memory iconLocation_ = " x=\"5%\" y=\"5%\" ";
        return abi.encodePacked("<svg ", iconSize_, iconLocation_, "> ", path_, "</svg>");
    }

    function _getAttributes(MetadataBytes memory data_, Metadata memory metadata_, string[2] memory names_)
        internal
        pure
        returns (string memory)
    {
        return (
            string(
                abi.encodePacked(
                    ' "attributes" : [{ "trait_type": "Character", "value":"',
                    names_[0],
                    '" },  { "trait_type": "Icon", "value": "',
                    names_[1],
                    '"},  { "trait_type": "Background Color", "value": "',
                    metadata_.backgroundColors[data_.backgroundColors],
                    '" }, { "trait_type": "Initial Shadow Color", "value":"',
                    metadata_.initialShadowColors[data_.initialShadowColors],
                    '" }, { "trait_type": "Initial Shadow Brightness", "value":"',
                    metadata_.initialShadowBrightness[data_.initialShadowBrightness],
                    '" }, { "trait_type": "Final Shadow Color ", "value":"',
                    metadata_.finalShadowColors[data_.finalShadowColors],
                    '" }, { "trait_type": "Final Shadow Brightness", "value":"',
                    metadata_.finalShadowBrightness[data_.finalShadowBrightness],
                    '" }, { "trait_type": "Base Fill Colors", "value":"',
                    metadata_.baseFillColors[data_.baseFillColors],
                    '" }, { "trait_type": "Glow Times", "value":"',
                    metadata_.glowTimes[data_.glowTimes],
                    '" }, { "trait_type": "Yak Fill Colors", "value":"',
                    metadata_.yakFillColors[data_.yakFillColors],
                    '" }, { "trait_type": "Hover Colors", "value":"',
                    metadata_.yakHoverColors[data_.yakHoverColors],
                    '" }, { "trait_type": "Rock, Paper, Scissors", "value":"',
                    metadata_.texts[data_.texts],
                    '"} ]'
                )
            )
        );
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/ERC721.sol)

pragma solidity ^0.8.20;

import {IERC721} from "./IERC721.sol";
import {IERC721Receiver} from "./IERC721Receiver.sol";
import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {Strings} from "../../utils/Strings.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
 * the Metadata extension, but not including the Enumerable extension, which is available separately as
 * {ERC721Enumerable}.
 */
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
    using Strings for uint256;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    mapping(uint256 tokenId => address) private _owners;

    mapping(address owner => uint256) private _balances;

    mapping(uint256 tokenId => address) private _tokenApprovals;

    mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;

    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721-balanceOf}.
     */
    function balanceOf(address owner) public view virtual returns (uint256) {
        if (owner == address(0)) {
            revert ERC721InvalidOwner(address(0));
        }
        return _balances[owner];
    }

    /**
     * @dev See {IERC721-ownerOf}.
     */
    function ownerOf(uint256 tokenId) public view virtual returns (address) {
        return _requireOwned(tokenId);
    }

    /**
     * @dev See {IERC721Metadata-name}.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev See {IERC721Metadata-symbol}.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
        _requireOwned(tokenId);

        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }

    /**
     * @dev See {IERC721-approve}.
     */
    function approve(address to, uint256 tokenId) public virtual {
        _approve(to, tokenId, _msgSender());
    }

    /**
     * @dev See {IERC721-getApproved}.
     */
    function getApproved(uint256 tokenId) public view virtual returns (address) {
        _requireOwned(tokenId);

        return _getApproved(tokenId);
    }

    /**
     * @dev See {IERC721-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC721-isApprovedForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev See {IERC721-transferFrom}.
     */
    function transferFrom(address from, address to, uint256 tokenId) public virtual {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
        // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
        address previousOwner = _update(to, tokenId, _msgSender());
        if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) public {
        safeTransferFrom(from, to, tokenId, "");
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
        transferFrom(from, to, tokenId);
        _checkOnERC721Received(from, to, tokenId, data);
    }

    /**
     * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
     *
     * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
     * core ERC721 logic MUST be matched with the use of {_increaseBalance} to keep balances
     * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
     * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
     */
    function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
        return _owners[tokenId];
    }

    /**
     * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
     */
    function _getApproved(uint256 tokenId) internal view virtual returns (address) {
        return _tokenApprovals[tokenId];
    }

    /**
     * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
     * particular (ignoring whether it is owned by `owner`).
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
        return
            spender != address(0) &&
            (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
    }

    /**
     * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
     * Reverts if `spender` does not have approval from the provided `owner` for the given token or for all its assets
     * the `spender` for the specific `tokenId`.
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
        if (!_isAuthorized(owner, spender, tokenId)) {
            if (owner == address(0)) {
                revert ERC721NonexistentToken(tokenId);
            } else {
                revert ERC721InsufficientApproval(spender, tokenId);
            }
        }
    }

    /**
     * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
     *
     * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
     * a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
     *
     * WARNING: Increasing an account's balance using this function tends to be paired with an override of the
     * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
     * remain consistent with one another.
     */
    function _increaseBalance(address account, uint128 value) internal virtual {
        unchecked {
            _balances[account] += value;
        }
    }

    /**
     * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
     * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that
     * `auth` is either the owner of the token, or approved to operate on the token (by the owner).
     *
     * Emits a {Transfer} event.
     *
     * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
     */
    function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
        address from = _ownerOf(tokenId);

        // Perform (optional) operator check
        if (auth != address(0)) {
            _checkAuthorized(from, auth, tokenId);
        }

        // Execute the update
        if (from != address(0)) {
            // Clear approval. No need to re-authorize or emit the Approval event
            _approve(address(0), tokenId, address(0), false);

            unchecked {
                _balances[from] -= 1;
            }
        }

        if (to != address(0)) {
            unchecked {
                _balances[to] += 1;
            }
        }

        _owners[tokenId] = to;

        emit Transfer(from, to, tokenId);

        return from;
    }

    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner != address(0)) {
            revert ERC721InvalidSender(address(0));
        }
    }

    /**
     * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal {
        _safeMint(to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
        _mint(to, tokenId);
        _checkOnERC721Received(address(0), to, tokenId, data);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     * This is an internal function that does not check if the sender is authorized to operate on the token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal {
        address previousOwner = _update(address(0), tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
    }

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(address from, address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        } else if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
     * are aware of the ERC721 standard to prevent tokens from being forever locked.
     *
     * `data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is like {safeTransferFrom} in the sense that it invokes
     * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `tokenId` token must exist and be owned by `from`.
     * - `to` cannot be the zero address.
     * - `from` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(address from, address to, uint256 tokenId) internal {
        _safeTransfer(from, to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
        _transfer(from, to, tokenId);
        _checkOnERC721Received(from, to, tokenId, data);
    }

    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
     * either the owner of the token, or approved to operate on all tokens held by this owner.
     *
     * Emits an {Approval} event.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address to, uint256 tokenId, address auth) internal {
        _approve(to, tokenId, auth, true);
    }

    /**
     * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
     * emitted in the context of transfers.
     */
    function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
        // Avoid reading the owner unless necessary
        if (emitEvent || auth != address(0)) {
            address owner = _requireOwned(tokenId);

            // We do not use _isAuthorized because single-token approvals should not be able to call approve
            if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
                revert ERC721InvalidApprover(auth);
            }

            if (emitEvent) {
                emit Approval(owner, to, tokenId);
            }
        }

        _tokenApprovals[tokenId] = to;
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Requirements:
     * - operator can't be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        if (operator == address(0)) {
            revert ERC721InvalidOperator(operator);
        }
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
     * Returns the owner.
     *
     * Overrides to ownership logic should be done to {_ownerOf}.
     */
    function _requireOwned(uint256 tokenId) internal view returns (address) {
        address owner = _ownerOf(tokenId);
        if (owner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
        return owner;
    }

    /**
     * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target address. This will revert if the
     * recipient doesn't accept the token transfer. The call is not executed if the target address is not a contract.
     *
     * @param from address representing the previous owner of the given token ID
     * @param to target address that will receive the tokens
     * @param tokenId uint256 ID of the token to be transferred
     * @param data bytes optional data to send along with the call
     */
    function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory data) private {
        if (to.code.length > 0) {
            try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                if (retval != IERC721Receiver.onERC721Received.selector) {
                    revert ERC721InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert ERC721InvalidReceiver(to);
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/extensions/ERC721URIStorage.sol)

pragma solidity ^0.8.20;

import {ERC721} from "../ERC721.sol";
import {Strings} from "../../../utils/Strings.sol";
import {IERC4906} from "../../../interfaces/IERC4906.sol";
import {IERC165} from "../../../interfaces/IERC165.sol";

/**
 * @dev ERC721 token with storage based token URI management.
 */
abstract contract ERC721URIStorage is IERC4906, ERC721 {
    using Strings for uint256;

    // Interface ID as defined in ERC-4906. This does not correspond to a traditional interface ID as ERC-4906 only
    // defines events and does not include any external function.
    bytes4 private constant ERC4906_INTERFACE_ID = bytes4(0x49064906);

    // Optional mapping for token URIs
    mapping(uint256 tokenId => string) private _tokenURIs;

    /**
     * @dev See {IERC165-supportsInterface}
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721, IERC165) returns (bool) {
        return interfaceId == ERC4906_INTERFACE_ID || super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        _requireOwned(tokenId);

        string memory _tokenURI = _tokenURIs[tokenId];
        string memory base = _baseURI();

        // If there is no base URI, return the token URI.
        if (bytes(base).length == 0) {
            return _tokenURI;
        }
        // If both are set, concatenate the baseURI and tokenURI (via string.concat).
        if (bytes(_tokenURI).length > 0) {
            return string.concat(base, _tokenURI);
        }

        return super.tokenURI(tokenId);
    }

    /**
     * @dev Sets `_tokenURI` as the tokenURI of `tokenId`.
     *
     * Emits {MetadataUpdate}.
     */
    function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal virtual {
        _tokenURIs[tokenId] = _tokenURI;
        emit MetadataUpdate(tokenId);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Base64.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to operate with Base64 strings.
 */
library Base64 {
    /**
     * @dev Base64 Encoding/Decoding Table
     */
    string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";

    /**
     * @dev Converts a `bytes` to its Bytes64 `string` representation.
     */
    function encode(bytes memory data) internal pure returns (string memory) {
        /**
         * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
         * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
         */
        if (data.length == 0) return "";

        // Loads the table into memory
        string memory table = _TABLE;

        // Encoding takes 3 bytes chunks of binary data from `bytes` data parameter
        // and split into 4 numbers of 6 bits.
        // The final Base64 length should be `bytes` data length multiplied by 4/3 rounded up
        // - `data.length + 2`  -> Round up
        // - `/ 3`              -> Number of 3-bytes chunks
        // - `4 *`              -> 4 characters for each chunk
        string memory result = new string(4 * ((data.length + 2) / 3));

        /// @solidity memory-safe-assembly
        assembly {
            // Prepare the lookup table (skip the first "length" byte)
            let tablePtr := add(table, 1)

            // Prepare result pointer, jump over length
            let resultPtr := add(result, 32)

            // Run over the input, 3 bytes at a time
            for {
                let dataPtr := data
                let endPtr := add(data, mload(data))
            } lt(dataPtr, endPtr) {

            } {
                // Advance 3 bytes
                dataPtr := add(dataPtr, 3)
                let input := mload(dataPtr)

                // To write each character, shift the 3 bytes (18 bits) chunk
                // 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
                // and apply logical AND with 0x3F which is the number of
                // the previous character in the ASCII table prior to the Base64 Table
                // The result is then added to the table to get the character to write,
                // and finally write it in the result pointer but with a left shift
                // of 256 (1 byte) - 8 (1 ASCII char) = 248 bits

                mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance
            }

            // When data `bytes` is not exactly 3 bytes long
            // it is padded with `=` characters at the end
            switch mod(mload(data), 3)
            case 1 {
                mstore8(sub(resultPtr, 1), 0x3d)
                mstore8(sub(resultPtr, 2), 0x3d)
            }
            case 2 {
                mstore8(sub(resultPtr, 1), 0x3d)
            }
        }

        return result;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { SSTORE2 } from "@solmate/src/utils/SSTORE2.sol";

contract ERC721B {
    uint256 constant MAX_STORAGE = 24_576 - 1; // 1 extra by for stop opcode

    mapping(bytes32 => address[]) _data;

    error WriteConflicError(bytes32 id_);

    function _write(bytes32 id_, bytes calldata data_) internal {
        if (_data[id_].length != 0) revert WriteConflicError(id_);

        uint256 dataSize_ = data_.length;
        uint256 dataPages_ = dataSize_ / MAX_STORAGE + 1; // TODO why + 1?

        for (uint256 i_; i_ < dataPages_; i_++) {
            _data[id_].push(
                SSTORE2.write(
                    data_[i_ * MAX_STORAGE:dataSize_ > (i_ + 1) * MAX_STORAGE ? (i_ + 1) * MAX_STORAGE : dataSize_]
                )
            );
        }
    }

    function _read(bytes32 id_) internal view returns (bytes memory data_) {
        uint256 dataPages_ = _data[id_].length;

        for (uint256 i_; i_ < dataPages_; i_++) {
            data_ = bytes.concat(data_, SSTORE2.read(_data[id_][i_]));
        }
    }
}

// SPDX-License-Identifier: Apache-2.0
// TODO pragma solidity ^0.8.20;
pragma solidity ^0.8.0;

/// @notice Solidity implementation of zlib deflate.
/// @dev Optimistic form of:
///      https://github.com/adlerjohn/inflate-sol/blob/2a88141f5226da9d0252be4a456a2e0b23ba3d0e/contracts/InflateLib.sol
/// @author Zipped Contracts (https://github.com/merklejerk/zipped-contracts)
/// @author @adlerjohn (https://github.com/adlerjohn/inflate-sol) (original)
contract ZLib {
    // Maximum bits in a code
    uint256 constant MAXBITS = 15;
    // Maximum number of literal/length codes
    uint256 constant MAXLCODES = 286;
    // Maximum number of distance codes
    uint256 constant MAXDCODES = 30;
    // Maximum codes lengths to read
    uint256 constant MAXCODES = (MAXLCODES + MAXDCODES);
    // Number of fixed literal/length codes
    uint256 constant FIXLCODES = 288;

    // Error codes
    error InvalidBlockTypeError(); // invalid block type (type == 3)
    error InvalidLengthOrDistanceCodeError(); // invalid literal/length or distance code in fixed or dynamic block

    // Input and output state
    struct State {
        //////////////////
        // Output state //
        //////////////////
        // Output buffer
        bytes output;
        // Bytes written to out so far
        uint256 outcnt;
        /////////////////
        // Input state //
        /////////////////
        // Bytes read so far
        uint256 incnt;
        ////////////////
        // Temp state //
        ////////////////
        // Bit buffer
        uint256 bitbuf;
        // Number of bits in bit buffer
        uint256 bitcnt;
        // Descriptor code lengths used by _build_dynamic()
        uint256[] tmpDynamicLengths;
        // Length and distance codes used by _build_dynamic()
        Huffman tmpLencode;
        Huffman tmpDistcode;
        //////////////////////////
        // Static Huffman codes //
        //////////////////////////
        Huffman fixedLencode;
        Huffman fixedDistcode;
        //////////////////////////
        // Constants (set in puff())
        //////////////////////////
        // Size base for length codes 257..285
        uint16[29] CODES_LENS;
        // Extra bits for length codes 257..285
        uint8[29] CODES_LEXT;
        // Offset base for distance codes 0..29
        uint16[30] CODES_DISTS;
        // Extra bits for distance codes 0..29
        uint8[30] CODES_DEXTS;
        // Permutation of code length codes
        uint8[19] BUILD_DYNAMIC_LENGTHS_ORDER;
    }

    // Huffman code decoding tables
    struct Huffman {
        uint256[] counts;
        uint256[] symbols;
    }

    function _readInputByte(uint256 i) private pure returns (uint8 b) {
        assembly {
            let o := add(0x04, calldataload(0x04))
            b := shr(248, calldataload(add(o, add(0x20, i))))
        }
    }

    function _bits(State memory s, uint256 need) private pure returns (uint256 ret) {
        unchecked {
            // Bit accumulator (can use up to 20 bits)
            uint256 val;

            // Load at least need bits into val
            val = s.bitbuf;
            while (s.bitcnt < need) {
                // Load eight bits
                val |= uint256(_readInputByte(s.incnt++)) << s.bitcnt;
                s.bitcnt += 8;
            }

            // Drop need bits and update buffer, always zero to seven bits left
            s.bitbuf = val >> need;
            s.bitcnt -= need;

            // Return need bits, zeroing the bits above that
            ret = (val & ((1 << need) - 1));
        }
    }

    function _stored(State memory s) private pure {
        unchecked {
            // Length of stored block
            uint256 len;

            // Discard leftover bits from current byte (assumes s.bitcnt < 8)
            s.bitbuf = 0;
            s.bitcnt = 0;

            // Get length and check against its one's complement
            len = uint256(_readInputByte(s.incnt++));
            len |= uint256(_readInputByte(s.incnt++)) << 8;
            s.incnt += 2;
            while (len != 0) {
                len -= 1;
                s.output[s.outcnt++] = bytes1(_readInputByte(s.incnt++));
            }
        }
    }

    function _decode(State memory s, Huffman memory h) private pure returns (uint256) {
        unchecked {
            // Current number of bits in code
            uint256 len;
            // Len bits being decoded
            uint256 code = 0;
            // First code of length len
            uint256 first = 0;
            // Number of codes of length len
            uint256 count;
            // Index of first code of length len in symbol table
            uint256 index = 0;

            for (len = 1; len <= MAXBITS; len++) {
                // Get next bit
                uint256 tempCode;
                tempCode = _bits(s, 1);
                code |= tempCode;
                count = h.counts[len];

                // If length len, return symbol
                if (code < first + count) {
                    return h.symbols[index + (code - first)];
                }
                // Else update for next length
                index += count;
                first += count;
                first <<= 1;
                code <<= 1;
            }

            // Ran out of codes
            revert InvalidLengthOrDistanceCodeError();
        }
    }

    function _construct(Huffman memory h, uint256[] memory lengths, uint256 n, uint256 start) private pure {
        unchecked {
            // Current symbol when stepping through lengths[]
            uint256 symbol;
            // Current length when stepping through h.counts[]
            uint256 len;
            // Number of possible codes left of current length
            uint256 left;
            // Offsets in symbol table for each length
            uint256[MAXBITS + 1] memory offs;

            // Count number of codes of each length
            for (len = 0; len <= MAXBITS; len++) {
                h.counts[len] = 0;
            }
            for (symbol = 0; symbol < n; symbol++) {
                // Assumes lengths are within bounds
                h.counts[lengths[start + symbol]]++;
            }
            // No codes!
            if (h.counts[0] == n) {
                // Complete, but decode() will fail
                return;
            }

            // Check for an over-subscribed or incomplete set of lengths

            // One possible code of zero length
            left = 1;

            offs[1] = 0;
            for (len = 1; len <= MAXBITS; len++) {
                // One more bit, double codes left
                left <<= 1;
                // Deduct count from possible codes

                left -= h.counts[len];

                // Generate offsets into symbol table for each length for sorting
                if (len < MAXBITS) {
                    offs[len + 1] = offs[len] + h.counts[len];
                }
            }

            // Put symbols in table sorted by length, by symbol order within each length
            for (symbol = 0; symbol < n; symbol++) {
                if (lengths[start + symbol] != 0) {
                    h.symbols[offs[lengths[start + symbol]]++] = symbol;
                }
            }
        }
    }

    function _codes(State memory s, Huffman memory lencode, Huffman memory distcode) private pure {
        unchecked {
            // Decoded symbol
            uint256 symbol;
            // Length for copy
            uint256 len;
            // Distance for copy
            uint256 dist;
            // Size base for length codes 257..285
            uint16[29] memory lens = s.CODES_LENS;
            // Extra bits for length codes 257..285
            uint8[29] memory lext = s.CODES_LEXT;
            // Offset base for distance codes 0..29
            uint16[30] memory dists = s.CODES_DISTS;
            // Extra bits for distance codes 0..29
            uint8[30] memory dext = s.CODES_DEXTS;

            // Decode literals and length/distance pairs
            while (symbol != 256) {
                symbol = _decode(s, lencode);

                if (symbol < 256) {
                    // Literal: symbol is the byte
                    // Write out the literal
                    s.output[s.outcnt] = bytes1(uint8(symbol));
                    s.outcnt++;
                } else if (symbol > 256) {
                    uint256 tempBits;
                    // Length
                    // Get and compute length
                    symbol -= 257;

                    tempBits = _bits(s, lext[symbol]);
                    len = lens[symbol] + tempBits;

                    // Get and check distance
                    symbol = _decode(s, distcode);
                    tempBits = _bits(s, dext[symbol]);
                    dist = dists[symbol] + tempBits;

                    // Copy length bytes from distance bytes back
                    bytes memory output = s.output;
                    uint256 outcnt = s.outcnt;
                    s.outcnt += len;
                    assembly ("memory-safe") {
                        let dst := add(output, add(0x20, outcnt))
                        switch gt(len, dist)
                        case 1 {
                            for { } iszero(iszero(len)) { } {
                                mstore(dst, mload(sub(dst, dist)))
                                len := sub(len, 0x01)
                                dst := add(dst, 0x01)
                            }
                        }
                        default {
                            for { } iszero(iszero(len)) { } {
                                mstore(dst, mload(sub(dst, dist)))
                                switch gt(len, 0x20)
                                case 1 {
                                    len := sub(len, 0x20)
                                    dst := add(dst, 0x20)
                                }
                                default { len := 0 }
                            }
                        }
                    }
                } else {
                    s.outcnt += len;
                }
            }
        }
    }

    function _build_fixed(State memory s) private pure {
        unchecked {
            // Build fixed Huffman tables
            // TODO this is all a compile-time constant
            uint256 symbol;
            uint256[] memory lengths = new uint256[](FIXLCODES);

            // Literal/length table
            for (symbol = 0; symbol < 144; symbol++) {
                lengths[symbol] = 8;
            }
            for (; symbol < 256; symbol++) {
                lengths[symbol] = 9;
            }
            for (; symbol < 280; symbol++) {
                lengths[symbol] = 7;
            }
            for (; symbol < FIXLCODES; symbol++) {
                lengths[symbol] = 8;
            }

            _construct(s.fixedLencode, lengths, FIXLCODES, 0);

            // Distance table
            for (symbol = 0; symbol < MAXDCODES; symbol++) {
                lengths[symbol] = 5;
            }

            _construct(s.fixedDistcode, lengths, MAXDCODES, 0);
        }
    }

    function _fixed(State memory s) private pure {
        // Decode data until end-of-block code
        _codes(s, s.fixedLencode, s.fixedDistcode);
    }

    function _build_dynamic_lengths(State memory s) private pure returns (uint256[] memory) {
        unchecked {
            uint256 ncode;
            // Index of lengths[]
            uint256 index;

            ncode = _bits(s, 4);
            ncode += 4;

            // Read code length code lengths (really), missing lengths are zero
            for (index = 0; index < ncode; index++) {
                s.tmpDynamicLengths[s.BUILD_DYNAMIC_LENGTHS_ORDER[index]] = _bits(s, 3);
            }
            for (; index < 19; index++) {
                s.tmpDynamicLengths[s.BUILD_DYNAMIC_LENGTHS_ORDER[index]] = 0;
            }

            return s.tmpDynamicLengths;
        }
    }

    function _build_dynamic(State memory s) private pure returns (Huffman memory, Huffman memory) {
        unchecked {
            // Number of lengths in descriptor
            uint256 nlen;
            uint256 ndist;
            // Length and distance codes
            Huffman memory lencode = s.tmpLencode;
            Huffman memory distcode = s.tmpDistcode;
            uint256 tempBits;

            // Get number of lengths in each table, check lengths
            nlen = _bits(s, 5);
            nlen += 257;
            ndist = _bits(s, 5);
            ndist += 1;

            // Descriptor code lengths
            uint256[] memory lengths = _build_dynamic_lengths(s);

            // Build huffman table for code lengths codes (use lencode temporarily)
            _construct(lencode, lengths, 19, 0);

            // Index of lengths[]
            uint256 index = 0;
            // Read length/literal and distance code length tables
            while (index < nlen + ndist) {
                // Decoded value
                uint256 symbol;
                // Last length to repeat
                uint256 len;

                symbol = _decode(s, lencode);

                if (symbol < 16) {
                    // Length in 0..15
                    lengths[index++] = symbol;
                } else {
                    // Repeat instruction
                    // Assume repeating zeros
                    len = 0;
                    if (symbol == 16) {
                        // Repeat last length 3..6 times
                        // Last length
                        len = lengths[index - 1];
                        tempBits = _bits(s, 2);
                        symbol = 3 + tempBits;
                    } else if (symbol == 17) {
                        // Repeat zero 3..10 times
                        tempBits = _bits(s, 3);
                        symbol = 3 + tempBits;
                    } else {
                        // == 18, repeat zero 11..138 times
                        tempBits = _bits(s, 7);
                        symbol = 11 + tempBits;
                    }

                    assembly ("memory-safe") {
                        let p := add(lengths, add(0x20, mul(index, 0x20)))
                        index := add(index, symbol)
                        for { } iszero(iszero(symbol)) { } {
                            mstore(p, len)
                            symbol := sub(symbol, 1)
                            p := add(p, 0x20)
                        }
                    }
                }
            }

            // Build huffman table for literal/length codes
            _construct(lencode, lengths, nlen, 0);

            // Build huffman table for distance codes
            _construct(distcode, lengths, ndist, nlen);

            return (lencode, distcode);
        }
    }

    function _dynamic(State memory s) private pure {
        // Length and distance codes
        Huffman memory lencode;
        Huffman memory distcode;

        (lencode, distcode) = _build_dynamic(s);

        // Decode data until end-of-block code
        _codes(s, lencode, distcode);
    }

    function inflate(bytes calldata, /* input */ uint256 outputSize) external pure returns (bytes memory) {
        // Input/output state
        State memory s = State({
            output: new bytes(outputSize),
            outcnt: 0,
            incnt: 0,
            bitbuf: 0,
            bitcnt: 0,
            tmpDynamicLengths: new uint256[](MAXCODES),
            tmpLencode: Huffman(new uint256[](MAXBITS + 1), new uint256[](MAXCODES)),
            tmpDistcode: Huffman(new uint256[](MAXBITS + 1), new uint256[](MAXCODES)),
            fixedLencode: Huffman(new uint256[](MAXBITS + 1), new uint256[](FIXLCODES)),
            fixedDistcode: Huffman(new uint256[](MAXBITS + 1), new uint256[](MAXDCODES)),
            CODES_LENS: [
                3,
                4,
                5,
                6,
                7,
                8,
                9,
                10,
                11,
                13,
                15,
                17,
                19,
                23,
                27,
                31,
                35,
                43,
                51,
                59,
                67,
                83,
                99,
                115,
                131,
                163,
                195,
                227,
                258
            ],
            CODES_LEXT: [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0],
            CODES_DISTS: [
                1,
                2,
                3,
                4,
                5,
                7,
                9,
                13,
                17,
                25,
                33,
                49,
                65,
                97,
                129,
                193,
                257,
                385,
                513,
                769,
                1025,
                1537,
                2049,
                3073,
                4097,
                6145,
                8193,
                12_289,
                16_385,
                24_577
            ],
            CODES_DEXTS: [0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13],
            BUILD_DYNAMIC_LENGTHS_ORDER: [16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]
        });
        // Temp: last bit
        uint256 last;
        // Temp: block type bit
        uint256 t;

        // Build fixed Huffman tables
        _build_fixed(s);

        // Process blocks until last block or error
        while (last == 0) {
            // One if last block
            last = _bits(s, 1);

            // Block type 0..3
            t = _bits(s, 2);

            if (t == 0) {
                _stored(s);
            } else if (t == 1) {
                _fixed(s);
            } else if (t == 2) {
                _dynamic(s);
            } else {
                revert InvalidBlockTypeError();
            }
        }

        return s.output;
    }

    function inflateFrom(address dataAddr, uint256 dataOffset, uint256 dataSize, uint256 outputSize)
        external
        view
        returns (bytes memory)
    {
        bytes memory data = new bytes(dataSize);
        assembly ("memory-safe") {
            extcodecopy(dataAddr, add(data, 0x20), dataOffset, dataSize)
        }
        return this.inflate(data, outputSize);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.20;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC4906.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";
import {IERC721} from "./IERC721.sol";

/// @title EIP-721 Metadata Update Extension
interface IERC4906 is IERC165, IERC721 {
    /// @dev This event emits when the metadata of a token is changed.
    /// So that the third-party platforms such as NFT market could
    /// timely update the images and related attributes of the NFT.
    event MetadataUpdate(uint256 _tokenId);

    /// @dev This event emits when the metadata of a range of tokens is changed.
    /// So that the third-party platforms such as NFT market could
    /// timely update the images and related attributes of the NFTs.
    event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Read and write to persistent storage at a fraction of the cost.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SSTORE2.sol)
/// @author Modified from 0xSequence (https://github.com/0xSequence/sstore2/blob/master/contracts/SSTORE2.sol)
library SSTORE2 {
    uint256 internal constant DATA_OFFSET = 1; // We skip the first byte as it's a STOP opcode to ensure the contract can't be called.

    /*//////////////////////////////////////////////////////////////
                               WRITE LOGIC
    //////////////////////////////////////////////////////////////*/

    function write(bytes memory data) internal returns (address pointer) {
        // Prefix the bytecode with a STOP opcode to ensure it cannot be called.
        bytes memory runtimeCode = abi.encodePacked(hex"00", data);

        bytes memory creationCode = abi.encodePacked(
            //---------------------------------------------------------------------------------------------------------------//
            // Opcode  | Opcode + Arguments  | Description  | Stack View                                                     //
            //---------------------------------------------------------------------------------------------------------------//
            // 0x60    |  0x600B             | PUSH1 11     | codeOffset                                                     //
            // 0x59    |  0x59               | MSIZE        | 0 codeOffset                                                   //
            // 0x81    |  0x81               | DUP2         | codeOffset 0 codeOffset                                        //
            // 0x38    |  0x38               | CODESIZE     | codeSize codeOffset 0 codeOffset                               //
            // 0x03    |  0x03               | SUB          | (codeSize - codeOffset) 0 codeOffset                           //
            // 0x80    |  0x80               | DUP          | (codeSize - codeOffset) (codeSize - codeOffset) 0 codeOffset   //
            // 0x92    |  0x92               | SWAP3        | codeOffset (codeSize - codeOffset) 0 (codeSize - codeOffset)   //
            // 0x59    |  0x59               | MSIZE        | 0 codeOffset (codeSize - codeOffset) 0 (codeSize - codeOffset) //
            // 0x39    |  0x39               | CODECOPY     | 0 (codeSize - codeOffset)                                      //
            // 0xf3    |  0xf3               | RETURN       |                                                                //
            //---------------------------------------------------------------------------------------------------------------//
            hex"60_0B_59_81_38_03_80_92_59_39_F3", // Returns all code in the contract except for the first 11 (0B in hex) bytes.
            runtimeCode // The bytecode we want the contract to have after deployment. Capped at 1 byte less than the code size limit.
        );

        /// @solidity memory-safe-assembly
        assembly {
            // Deploy a new contract with the generated creation code.
            // We start 32 bytes into the code to avoid copying the byte length.
            pointer := create(0, add(creationCode, 32), mload(creationCode))
        }

        require(pointer != address(0), "DEPLOYMENT_FAILED");
    }

    /*//////////////////////////////////////////////////////////////
                               READ LOGIC
    //////////////////////////////////////////////////////////////*/

    function read(address pointer) internal view returns (bytes memory) {
        return readBytecode(pointer, DATA_OFFSET, pointer.code.length - DATA_OFFSET);
    }

    function read(address pointer, uint256 start) internal view returns (bytes memory) {
        start += DATA_OFFSET;

        return readBytecode(pointer, start, pointer.code.length - start);
    }

    function read(
        address pointer,
        uint256 start,
        uint256 end
    ) internal view returns (bytes memory) {
        start += DATA_OFFSET;
        end += DATA_OFFSET;

        require(pointer.code.length >= end, "OUT_OF_BOUNDS");

        return readBytecode(pointer, start, end - start);
    }

    /*//////////////////////////////////////////////////////////////
                          INTERNAL HELPER LOGIC
    //////////////////////////////////////////////////////////////*/

    function readBytecode(
        address pointer,
        uint256 start,
        uint256 size
    ) private view returns (bytes memory data) {
        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            data := mload(0x40)

            // Update the free memory pointer to prevent overriding our data.
            // We use and(x, not(31)) as a cheaper equivalent to sub(x, mod(x, 32)).
            // Adding 31 to size and running the result through the logic above ensures
            // the memory pointer remains word-aligned, following the Solidity convention.
            mstore(0x40, add(data, and(add(add(size, 32), 31), not(31))))

            // Store the size of the data in the first 32 byte chunk of free memory.
            mstore(data, size)

            // Copy the code into memory right after the 32 bytes we used to store the size.
            extcodecopy(pointer, add(data, 32), start, size)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../token/ERC721/IERC721.sol";

Please enter a contract address above to load the contract details and source code.

Context size (optional):