Contract Name:
DelegatedShare
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@1inch/solidity-utils/contracts/libraries/AddressSet.sol";
import "./interfaces/IERC20Pods.sol";
import "./interfaces/IPod.sol";
import "./libs/ReentrancyGuard.sol";
abstract contract ERC20Pods is ERC20, IERC20Pods, ReentrancyGuardExt {
using AddressSet for AddressSet.Data;
using AddressArray for AddressArray.Data;
using ReentrancyGuardLib for ReentrancyGuardLib.Data;
error PodAlreadyAdded();
error PodNotFound();
error InvalidPodAddress();
error PodsLimitReachedForAccount();
error InsufficientGas();
error ZeroPodsLimit();
uint256 public immutable podsLimit;
uint256 public immutable podCallGasLimit;
ReentrancyGuardLib.Data private _guard;
mapping(address => AddressSet.Data) private _pods;
constructor(uint256 podsLimit_, uint256 podCallGasLimit_) {
if (podsLimit_ == 0) revert ZeroPodsLimit();
podsLimit = podsLimit_;
podCallGasLimit = podCallGasLimit_;
_guard.init();
}
function hasPod(address account, address pod) public view virtual returns(bool) {
return _pods[account].contains(pod);
}
function podsCount(address account) public view virtual returns(uint256) {
return _pods[account].length();
}
function podAt(address account, uint256 index) public view virtual returns(address) {
return _pods[account].at(index);
}
function pods(address account) public view virtual returns(address[] memory) {
return _pods[account].items.get();
}
function balanceOf(address account) public nonReentrantView(_guard) view override(IERC20, ERC20) virtual returns(uint256) {
return super.balanceOf(account);
}
function podBalanceOf(address pod, address account) public nonReentrantView(_guard) view virtual returns(uint256) {
if (hasPod(account, pod)) {
return super.balanceOf(account);
}
return 0;
}
function addPod(address pod) public virtual {
_addPod(msg.sender, pod);
}
function removePod(address pod) public virtual {
_removePod(msg.sender, pod);
}
function removeAllPods() public virtual {
_removeAllPods(msg.sender);
}
function _addPod(address account, address pod) internal virtual {
if (pod == address(0)) revert InvalidPodAddress();
if (!_pods[account].add(pod)) revert PodAlreadyAdded();
if (_pods[account].length() > podsLimit) revert PodsLimitReachedForAccount();
emit PodAdded(account, pod);
uint256 balance = balanceOf(account);
if (balance > 0) {
_updateBalances(pod, address(0), account, balance);
}
}
function _removePod(address account, address pod) internal virtual {
if (!_pods[account].remove(pod)) revert PodNotFound();
emit PodRemoved(account, pod);
uint256 balance = balanceOf(account);
if (balance > 0) {
_updateBalances(pod, account, address(0), balance);
}
}
function _removeAllPods(address account) internal virtual {
address[] memory items = _pods[account].items.get();
uint256 balance = balanceOf(account);
unchecked {
for (uint256 i = items.length; i > 0; i--) {
_pods[account].remove(items[i - 1]);
emit PodRemoved(account, items[i - 1]);
if (balance > 0) {
_updateBalances(items[i - 1], account, address(0), balance);
}
}
}
}
/// @notice Assembly implementation of the gas limited call to avoid return gas bomb,
// moreover call to a destructed pod would also revert even inside try-catch block in Solidity 0.8.17
/// @dev try IPod(pod).updateBalances{gas: _POD_CALL_GAS_LIMIT}(from, to, amount) {} catch {}
function _updateBalances(address pod, address from, address to, uint256 amount) private {
bytes4 selector = IPod.updateBalances.selector;
bytes4 exception = InsufficientGas.selector;
uint256 gasLimit = podCallGasLimit;
assembly { // solhint-disable-line no-inline-assembly
let ptr := mload(0x40)
mstore(ptr, selector)
mstore(add(ptr, 0x04), from)
mstore(add(ptr, 0x24), to)
mstore(add(ptr, 0x44), amount)
if lt(div(mul(gas(), 63), 64), gasLimit) {
mstore(0, exception)
revert(0, 4)
}
pop(call(gasLimit, pod, 0, ptr, 0x64, 0, 0))
}
}
// ERC20 Overrides
function _afterTokenTransfer(address from, address to, uint256 amount) internal nonReentrant(_guard) override virtual {
super._afterTokenTransfer(from, to, amount);
unchecked {
if (amount > 0 && from != to) {
address[] memory a = _pods[from].items.get();
address[] memory b = _pods[to].items.get();
uint256 aLength = a.length;
uint256 bLength = b.length;
for (uint256 i = 0; i < aLength; i++) {
address pod = a[i];
uint256 j;
for (j = 0; j < bLength; j++) {
if (pod == b[j]) {
// Both parties are participating of the same Pod
_updateBalances(pod, from, to, amount);
b[j] = address(0);
break;
}
}
if (j == bLength) {
// Sender is participating in a Pod, but receiver is not
_updateBalances(pod, from, address(0), amount);
}
}
for (uint256 j = 0; j < bLength; j++) {
address pod = b[j];
if (pod != address(0)) {
// Receiver is participating in a Pod, but sender is not
_updateBalances(pod, address(0), to, amount);
}
}
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IERC20Pods is IERC20 {
event PodAdded(address account, address pod);
event PodRemoved(address account, address pod);
function hasPod(address account, address pod) external view returns(bool);
function podsCount(address account) external view returns(uint256);
function podAt(address account, uint256 index) external view returns(address);
function pods(address account) external view returns(address[] memory);
function podBalanceOf(address pod, address account) external view returns(uint256);
function addPod(address pod) external;
function removePod(address pod) external;
function removeAllPods() external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IPod {
function updateBalances(address from, address to, uint256 amount) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library ReentrancyGuardLib {
error ReentrantCall();
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
struct Data {
uint256 _status;
}
function init(Data storage self) internal {
self._status = _NOT_ENTERED;
}
function enter(Data storage self) internal {
if (self._status == _ENTERED) revert ReentrantCall();
self._status = _ENTERED;
}
function exit(Data storage self) internal {
self._status = _NOT_ENTERED;
}
function check(Data storage self) internal view returns (bool) {
return self._status == _ENTERED;
}
}
contract ReentrancyGuardExt {
using ReentrancyGuardLib for ReentrancyGuardLib.Data;
modifier nonReentrant(ReentrancyGuardLib.Data storage self) {
self.enter();
_;
self.exit();
}
modifier nonReentrantView(ReentrancyGuardLib.Data storage self) {
if (self.check()) revert ReentrancyGuardLib.ReentrantCall();
_;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../ERC20Pods.sol";
contract ERC20PodsMock is ERC20Pods {
constructor(string memory name, string memory symbol, uint256 podsLimit, uint256 podCallGasLimit)
ERC20(name, symbol)
ERC20Pods(podsLimit, podCallGasLimit)
{} // solhint-disable-line no-empty-blocks
function mint(address account, uint256 amount) external {
_mint(account, amount);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./interfaces/IPod.sol";
import "./interfaces/IERC20Pods.sol";
abstract contract Pod is IPod {
error AccessDenied();
IERC20Pods public immutable token;
modifier onlyToken {
if (msg.sender != address(token)) revert AccessDenied();
_;
}
constructor(IERC20Pods token_) {
token = token_;
}
function updateBalances(address from, address to, uint256 amount) external onlyToken {
_updateBalances(from, to, amount);
}
function _updateBalances(address from, address to, uint256 amount) internal virtual;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/utils/math/Math.sol";
library FarmAccounting {
error ZeroDuration();
error DurationTooLarge();
error AmountTooLarge();
struct Info {
uint40 finished;
uint32 duration;
uint184 reward;
}
uint256 internal constant _MAX_REWARD_AMOUNT = 1e32; // 108 bits
uint256 internal constant _SCALE = 1e18; // 60 bits
/// @dev Requires extra 18 decimals for precision, result fits in 168 bits
function farmedSinceCheckpointScaled(Info memory info, uint256 checkpoint) internal view returns(uint256 amount) {
unchecked {
if (info.duration > 0) {
uint256 elapsed = Math.min(block.timestamp, info.finished) - Math.min(checkpoint, info.finished);
// size of (type(uint32).max * _MAX_REWARD_AMOUNT * _SCALE) is less than 200 bits, so there is no overflow
return elapsed * info.reward * _SCALE / info.duration;
}
}
}
function startFarming(Info storage info, uint256 amount, uint256 period) internal returns(uint256) {
if (period == 0) revert ZeroDuration();
if (period > type(uint32).max) revert DurationTooLarge();
if (amount > _MAX_REWARD_AMOUNT) revert AmountTooLarge();
// If something left from prev farming add it to the new farming
Info memory prev = info;
if (block.timestamp < prev.finished) {
amount += prev.reward - farmedSinceCheckpointScaled(prev, prev.finished - prev.duration) / _SCALE;
}
(info.finished, info.duration, info.reward) = (uint40(block.timestamp + period), uint32(period), uint184(amount));
return amount;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./FarmAccounting.sol";
library UserAccounting {
struct Info {
uint40 checkpoint;
uint216 farmedPerTokenStored;
mapping(address => int256) corrections;
}
function farmedPerToken(
Info storage info,
bytes32 context,
function(bytes32) internal view returns(uint256) lazyGetSupply,
function(bytes32, uint256) internal view returns(uint256) lazyGetFarmed
) internal view returns(uint256) {
(uint256 checkpoint, uint256 fpt) = (info.checkpoint, info.farmedPerTokenStored);
if (block.timestamp != checkpoint) {
uint256 supply = lazyGetSupply(context);
if (supply > 0) {
// fpt increases by 168 bit / supply
unchecked { fpt += lazyGetFarmed(context, checkpoint) / supply; }
}
}
return fpt;
}
function farmed(Info storage info, address account, uint256 balance, uint256 fpt) internal view returns(uint256) {
// balance * fpt is less than 168 bit
return uint256(int256(balance * fpt) - info.corrections[account]) / FarmAccounting._SCALE;
}
function eraseFarmed(Info storage info, address account, uint256 balance, uint256 fpt) internal {
// balance * fpt is less than 168 bit
info.corrections[account] = int256(balance * fpt);
}
function updateFarmedPerToken(Info storage info, uint256 fpt) internal {
(info.checkpoint, info.farmedPerTokenStored) = (uint40(block.timestamp), uint216(fpt));
}
function updateBalances(Info storage info, address from, address to, uint256 amount, uint256 fpt) internal {
bool fromZero = (from == address(0));
bool toZero = (to == address(0));
if (amount > 0 && from != to) {
if (fromZero || toZero) {
updateFarmedPerToken(info, fpt);
}
// fpt is less than 168 bit, so amount should be less 98 bit
int256 diff = int256(amount * fpt);
if (!fromZero) {
info.corrections[from] -= diff;
}
if (!toZero) {
info.corrections[to] += diff;
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./accounting/FarmAccounting.sol";
import "./accounting/UserAccounting.sol";
library FarmingLib {
using FarmAccounting for FarmAccounting.Info;
using UserAccounting for UserAccounting.Info;
using FarmingLib for FarmingLib.Info;
struct Data {
FarmAccounting.Info farmInfo;
UserAccounting.Info userInfo;
}
struct Info {
function() internal view returns(uint256) getTotalSupply;
bytes32 dataSlot;
}
function makeInfo(function() internal view returns(uint256) getTotalSupply, Data storage data) internal pure returns(Info memory info) {
info.getTotalSupply = getTotalSupply;
bytes32 dataSlot;
assembly { // solhint-disable-line no-inline-assembly
dataSlot := data.slot
}
info.dataSlot = dataSlot;
}
function getData(Info memory self) internal pure returns(Data storage data) {
bytes32 dataSlot = self.dataSlot;
assembly { // solhint-disable-line no-inline-assembly
data.slot := dataSlot
}
}
function startFarming(Info memory self, uint256 amount, uint256 period) internal returns(uint256 reward) {
Data storage data = self.getData();
data.userInfo.updateFarmedPerToken(_farmedPerToken(self));
reward = data.farmInfo.startFarming(amount, period);
}
function farmed(Info memory self, address account, uint256 balance) internal view returns(uint256) {
return self.getData().userInfo.farmed(account, balance, _farmedPerToken(self));
}
function claim(Info memory self, address account, uint256 balance) internal returns(uint256 amount) {
Data storage data = self.getData();
uint256 fpt = _farmedPerToken(self);
amount = data.userInfo.farmed(account, balance, fpt);
if (amount > 0) {
data.userInfo.eraseFarmed(account, balance, fpt);
}
}
function updateBalances(Info memory self, address from, address to, uint256 amount) internal {
self.getData().userInfo.updateBalances(from, to, amount, _farmedPerToken(self));
}
function _farmedPerToken(Info memory self) private view returns (uint256) {
return self.getData().userInfo.farmedPerToken(_infoToContext(self), _lazyGetSupply, _lazyGetFarmed);
}
// UserAccounting bindings
function _lazyGetSupply(bytes32 context) private view returns(uint256) {
Info memory self = _contextToInfo(context);
return self.getTotalSupply();
}
function _lazyGetFarmed(bytes32 context, uint256 checkpoint) private view returns(uint256) {
Info memory self = _contextToInfo(context);
return self.getData().farmInfo.farmedSinceCheckpointScaled(checkpoint);
}
function _contextToInfo(bytes32 context) private pure returns(Info memory self) {
assembly { // solhint-disable-line no-inline-assembly
self := context
}
}
function _infoToContext(Info memory self) private pure returns(bytes32 context) {
assembly { // solhint-disable-line no-inline-assembly
context := self
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@1inch/erc20-pods/contracts/interfaces/IPod.sol";
import "../accounting/FarmAccounting.sol";
interface IMultiFarmingPod is IPod {
event FarmCreated(address token, address reward);
event DistributorChanged(address oldDistributor, address newDistributor);
event RewardAdded(address token, uint256 reward, uint256 duration);
// View functions
function totalSupply() external view returns(uint256);
function distributor() external view returns(address);
function farmInfo(IERC20 rewardsToken) external view returns(FarmAccounting.Info memory);
function farmed(IERC20 rewardsToken, address account) external view returns(uint256);
// User functions
function claim(IERC20 rewardsToken) external;
function claim() external;
// Owner functions
function setDistributor(address distributor_) external;
// Distributor functions
function startFarming(IERC20 rewardsToken, uint256 amount, uint256 period) external;
function rescueFunds(IERC20 token, uint256 amount) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "@1inch/erc20-pods/contracts/Pod.sol";
import "@1inch/solidity-utils/contracts/libraries/SafeERC20.sol";
import "@1inch/solidity-utils/contracts/libraries/AddressSet.sol";
import "@1inch/erc20-pods/contracts/interfaces/IERC20Pods.sol";
import "./interfaces/IMultiFarmingPod.sol";
import "./FarmingLib.sol";
contract MultiFarmingPod is Pod, IMultiFarmingPod, Ownable {
using SafeERC20 for IERC20;
using FarmingLib for FarmingLib.Info;
using Address for address payable;
using AddressSet for AddressSet.Data;
using AddressArray for AddressArray.Data;
error ZeroFarmableTokenAddress();
error ZeroRewardsTokenAddress();
error SameDistributor();
error RewardsTokenAlreadyAdded();
error RewardsTokensLimitTooHigh(uint256);
error RewardsTokensLimitReached();
error RewardsTokenNotFound();
uint256 public immutable rewardsTokensLimit;
address private _distributor;
uint256 private _totalSupply;
mapping(IERC20 => FarmingLib.Data) private _farms;
AddressSet.Data private _rewardsTokens;
modifier onlyDistributor {
if (msg.sender != _distributor) revert AccessDenied();
_;
}
constructor(IERC20Pods farmableToken_, uint256 rewardsTokensLimit_) Pod(farmableToken_) {
if (rewardsTokensLimit_ > 5) revert RewardsTokensLimitTooHigh(rewardsTokensLimit_);
if (address(farmableToken_) == address(0)) revert ZeroFarmableTokenAddress();
rewardsTokensLimit = rewardsTokensLimit_;
}
function rewardsTokens() external view returns(address[] memory) {
return _rewardsTokens.items.get();
}
function farmInfo(IERC20 rewardsToken) public view returns(FarmAccounting.Info memory) {
return _farms[rewardsToken].farmInfo;
}
function totalSupply() public view returns(uint256) {
return _totalSupply;
}
function distributor() public view returns(address) {
return _distributor;
}
function setDistributor(address distributor_) public virtual onlyOwner {
address oldDistributor = _distributor;
if (distributor_ == oldDistributor) revert SameDistributor();
emit DistributorChanged(oldDistributor, distributor_);
_distributor = distributor_;
}
function addRewardsToken(address rewardsToken) public virtual onlyOwner {
if (_rewardsTokens.length() == rewardsTokensLimit) revert RewardsTokensLimitReached();
if (!_rewardsTokens.add(rewardsToken)) revert RewardsTokenAlreadyAdded();
emit FarmCreated(address(token), rewardsToken);
}
function startFarming(IERC20 rewardsToken, uint256 amount, uint256 period) public virtual onlyDistributor {
if (!_rewardsTokens.contains(address(rewardsToken))) revert RewardsTokenNotFound();
uint256 reward = _makeInfo(rewardsToken).startFarming(amount, period);
emit RewardAdded(address(rewardsToken), reward, period);
rewardsToken.safeTransferFrom(msg.sender, address(this), amount);
}
function farmed(IERC20 rewardsToken, address account) public view virtual returns(uint256) {
uint256 balance = IERC20Pods(token).podBalanceOf(address(this), account);
return _makeInfo(rewardsToken).farmed(account, balance);
}
function claim(IERC20 rewardsToken) public virtual {
uint256 podBalance = IERC20Pods(token).podBalanceOf(address(this), msg.sender);
_claim(rewardsToken, msg.sender, podBalance);
}
function claim() public virtual {
uint256 podBalance = IERC20Pods(token).podBalanceOf(address(this), msg.sender);
address[] memory tokens = _rewardsTokens.items.get();
unchecked {
for (uint256 i = 0; i < tokens.length; i++) {
_claim(IERC20(tokens[i]), msg.sender, podBalance);
}
}
}
function _claim(IERC20 rewardsToken, address account, uint256 podBalance) private {
uint256 amount = _makeInfo(rewardsToken).claim(account, podBalance);
if (amount > 0) {
_transferReward(rewardsToken, account, amount);
}
}
function _transferReward(IERC20 reward, address to, uint256 amount) internal virtual {
reward.safeTransfer(to, amount);
}
function _updateBalances(address from, address to, uint256 amount) internal virtual override {
address[] memory tokens = _rewardsTokens.items.get();
unchecked {
for (uint256 i = 0; i < tokens.length; i++) {
_makeInfo(IERC20(tokens[i])).updateBalances(from, to, amount);
}
}
if (from == address(0)) {
_totalSupply += amount;
}
if (to == address(0)) {
_totalSupply -= amount;
}
}
function rescueFunds(IERC20 token, uint256 amount) public virtual onlyDistributor {
if(token == IERC20(address(0))) {
payable(_distributor).sendValue(amount);
} else {
token.safeTransfer(_distributor, amount);
}
}
function _makeInfo(IERC20 rewardsToken) private view returns(FarmingLib.Info memory) {
return FarmingLib.makeInfo(totalSupply, _farms[rewardsToken]);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
pragma abicoder v1;
interface IDaiLikePermit {
function permit(
address holder,
address spender,
uint256 nonce,
uint256 expiry,
bool allowed,
uint8 v,
bytes32 r,
bytes32 s
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
pragma abicoder v1;
/// @title Library that implements address array on mapping, stores array length at 0 index.
library AddressArray {
error IndexOutOfBounds();
error PopFromEmptyArray();
error OutputArrayTooSmall();
/// @dev Data struct containing raw mapping.
struct Data {
mapping(uint256 => uint256) _raw;
}
/// @dev Length of array.
function length(Data storage self) internal view returns (uint256) {
return self._raw[0] >> 160;
}
/// @dev Returns data item from `self` storage at `i`.
function at(Data storage self, uint256 i) internal view returns (address) {
return address(uint160(self._raw[i]));
}
/// @dev Returns list of addresses from storage `self`.
function get(Data storage self) internal view returns (address[] memory arr) {
uint256 lengthAndFirst = self._raw[0];
arr = new address[](lengthAndFirst >> 160);
_get(self, arr, lengthAndFirst);
}
/// @dev Puts list of addresses from `self` storage into `output` array.
function get(Data storage self, address[] memory output) internal view returns (address[] memory) {
return _get(self, output, self._raw[0]);
}
function _get(
Data storage self,
address[] memory output,
uint256 lengthAndFirst
) private view returns (address[] memory) {
uint256 len = lengthAndFirst >> 160;
if (len > output.length) revert OutputArrayTooSmall();
if (len > 0) {
output[0] = address(uint160(lengthAndFirst));
unchecked {
for (uint256 i = 1; i < len; i++) {
output[i] = address(uint160(self._raw[i]));
}
}
}
return output;
}
/// @dev Array push back `account` operation on storage `self`.
function push(Data storage self, address account) internal returns (uint256) {
unchecked {
uint256 lengthAndFirst = self._raw[0];
uint256 len = lengthAndFirst >> 160;
if (len == 0) {
self._raw[0] = (1 << 160) + uint160(account);
} else {
self._raw[0] = lengthAndFirst + (1 << 160);
self._raw[len] = uint160(account);
}
return len + 1;
}
}
/// @dev Array pop back operation for storage `self`.
function pop(Data storage self) internal {
unchecked {
uint256 lengthAndFirst = self._raw[0];
uint256 len = lengthAndFirst >> 160;
if (len == 0) revert PopFromEmptyArray();
self._raw[len - 1] = 0;
if (len > 1) {
self._raw[0] = lengthAndFirst - (1 << 160);
}
}
}
/// @dev Set element for storage `self` at `index` to `account`.
function set(
Data storage self,
uint256 index,
address account
) internal {
uint256 len = length(self);
if (index >= len) revert IndexOutOfBounds();
if (index == 0) {
self._raw[0] = (len << 160) | uint160(account);
} else {
self._raw[index] = uint160(account);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
pragma abicoder v1;
import "./AddressArray.sol";
/** @title Library that is using AddressArray library for AddressArray.Data
* and allows Set operations on address storage data:
* 1. add
* 2. remove
* 3. contains
*/
library AddressSet {
using AddressArray for AddressArray.Data;
/** @dev Data struct from AddressArray.Data items
* and lookup mapping address => index in data array.
*/
struct Data {
AddressArray.Data items;
mapping(address => uint256) lookup;
}
/// @dev Length of data storage.
function length(Data storage s) internal view returns (uint256) {
return s.items.length();
}
/// @dev Returns data item from `s` storage at `index`.
function at(Data storage s, uint256 index) internal view returns (address) {
return s.items.at(index);
}
/// @dev Returns true if storage `s` has `item`.
function contains(Data storage s, address item) internal view returns (bool) {
return s.lookup[item] != 0;
}
/// @dev Adds `item` into storage `s` and returns true if successful.
function add(Data storage s, address item) internal returns (bool) {
if (s.lookup[item] > 0) {
return false;
}
s.lookup[item] = s.items.push(item);
return true;
}
/// @dev Removes `item` from storage `s` and returns true if successful.
function remove(Data storage s, address item) internal returns (bool) {
uint256 index = s.lookup[item];
if (index == 0) {
return false;
}
if (index < s.items.length()) {
unchecked {
address lastItem = s.items.at(s.items.length() - 1);
s.items.set(index - 1, lastItem);
s.lookup[lastItem] = index;
}
}
s.items.pop();
delete s.lookup[item];
return true;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
pragma abicoder v1;
/// @title Revert reason forwarder.
library RevertReasonForwarder {
/// @dev Forwards latest externall call revert.
function reRevert() internal pure {
// bubble up revert reason from latest external call
/// @solidity memory-safe-assembly
assembly { // solhint-disable-line no-inline-assembly
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
pragma abicoder v1;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
import "../interfaces/IDaiLikePermit.sol";
import "../libraries/RevertReasonForwarder.sol";
/// @title Implements efficient safe methods for ERC20 interface.
library SafeERC20 {
error SafeTransferFailed();
error SafeTransferFromFailed();
error ForceApproveFailed();
error SafeIncreaseAllowanceFailed();
error SafeDecreaseAllowanceFailed();
error SafePermitBadLength();
/// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 amount
) internal {
bytes4 selector = token.transferFrom.selector;
bool success;
/// @solidity memory-safe-assembly
assembly { // solhint-disable-line no-inline-assembly
let data := mload(0x40)
mstore(data, selector)
mstore(add(data, 0x04), from)
mstore(add(data, 0x24), to)
mstore(add(data, 0x44), amount)
success := call(gas(), token, 0, data, 100, 0x0, 0x20)
if success {
switch returndatasize()
case 0 {
success := gt(extcodesize(token), 0)
}
default {
success := and(gt(returndatasize(), 31), eq(mload(0), 1))
}
}
}
if (!success) revert SafeTransferFromFailed();
}
/// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
if (!_makeCall(token, token.transfer.selector, to, value)) {
revert SafeTransferFailed();
}
}
/// @dev If `approve(from, to, amount)` fails, try to `approve(from, to, 0)` before retry.
function forceApprove(
IERC20 token,
address spender,
uint256 value
) internal {
if (!_makeCall(token, token.approve.selector, spender, value)) {
if (
!_makeCall(token, token.approve.selector, spender, 0) ||
!_makeCall(token, token.approve.selector, spender, value)
) {
revert ForceApproveFailed();
}
}
}
/// @dev Allowance increase with safe math check.
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 allowance = token.allowance(address(this), spender);
if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
forceApprove(token, spender, allowance + value);
}
/// @dev Allowance decrease with safe math check.
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 allowance = token.allowance(address(this), spender);
if (value > allowance) revert SafeDecreaseAllowanceFailed();
forceApprove(token, spender, allowance - value);
}
/// @dev Calls either ERC20 or Dai `permit` for `token`, if unsuccessful forwards revert from external call.
function safePermit(IERC20 token, bytes calldata permit) internal {
if (!tryPermit(token, permit)) RevertReasonForwarder.reRevert();
}
function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool) {
if (permit.length == 32 * 7) {
return _makeCalldataCall(token, IERC20Permit.permit.selector, permit);
}
if (permit.length == 32 * 8) {
return _makeCalldataCall(token, IDaiLikePermit.permit.selector, permit);
}
revert SafePermitBadLength();
}
function _makeCall(
IERC20 token,
bytes4 selector,
address to,
uint256 amount
) private returns (bool success) {
/// @solidity memory-safe-assembly
assembly { // solhint-disable-line no-inline-assembly
let data := mload(0x40)
mstore(data, selector)
mstore(add(data, 0x04), to)
mstore(add(data, 0x24), amount)
success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
if success {
switch returndatasize()
case 0 {
success := gt(extcodesize(token), 0)
}
default {
success := and(gt(returndatasize(), 31), eq(mload(0), 1))
}
}
}
}
function _makeCalldataCall(
IERC20 token,
bytes4 selector,
bytes calldata args
) private returns (bool success) {
/// @solidity memory-safe-assembly
assembly { // solhint-disable-line no-inline-assembly
let len := add(4, args.length)
let data := mload(0x40)
mstore(data, selector)
calldatacopy(add(data, 0x04), args.offset, args.length)
success := call(gas(), token, 0, data, len, 0x0, 0x20)
if success {
switch returndatasize()
case 0 {
success := gt(extcodesize(token), 0)
}
default {
success := and(gt(returndatasize(), 31), eq(mload(0), 1))
}
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(
address from,
address to,
uint256 amount
) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@1inch/erc20-pods/contracts/ERC20Pods.sol";
import "./interfaces/IDelegatedShare.sol";
contract DelegatedShare is IDelegatedShare, ERC20Pods {
error ApproveDisabled();
error TransferDisabled();
error NotOwner();
address immutable private _owner;
modifier onlyOwner {
if (msg.sender != _owner) revert NotOwner();
_;
}
constructor(
string memory name,
string memory symbol,
uint256 maxUserPods,
uint256 podCallGasLimit
) ERC20(name, symbol) ERC20Pods(maxUserPods, podCallGasLimit) {
_owner = msg.sender;
}
function addDefaultFarmIfNeeded(address account, address farm) external onlyOwner {
if (!hasPod(account, farm)) {
_addPod(account, farm);
}
}
function mint(address account, uint256 amount) external onlyOwner {
_mint(account, amount);
}
function burn(address account, uint256 amount) external onlyOwner {
_burn(account, amount);
}
function approve(address /* spender */, uint256 /* amount */) public pure override(ERC20, IERC20) returns (bool) {
revert ApproveDisabled();
}
function transfer(address /* to */, uint256 /* amount */) public pure override(IERC20, ERC20) returns (bool) {
revert TransferDisabled();
}
function transferFrom(address /* from */, address /* to */, uint256 /* amount */) public pure override(IERC20, ERC20) returns (bool) {
revert TransferDisabled();
}
function increaseAllowance(address /* spender */, uint256 /* addedValue */) public pure override returns (bool) {
revert ApproveDisabled();
}
function decreaseAllowance(address /* spender */, uint256 /* subtractedValue */) public pure override returns (bool) {
revert ApproveDisabled();
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@1inch/erc20-pods/contracts/interfaces/IERC20Pods.sol";
import "@1inch/erc20-pods/contracts/Pod.sol";
import "./interfaces/IDelegationPod.sol";
contract DelegationPod is IDelegationPod, Pod, ERC20 {
error ApproveDisabled();
error TransferDisabled();
mapping(address => address) public delegated;
constructor(string memory name_, string memory symbol_, IERC20Pods token_)
ERC20(name_, symbol_) Pod(token_)
{} // solhint-disable-line no-empty-blocks
function delegate(address delegatee) public virtual {
address prevDelegatee = delegated[msg.sender];
if (prevDelegatee != delegatee) {
delegated[msg.sender] = delegatee;
emit Delegated(msg.sender, delegatee);
uint256 balance = IERC20Pods(token).podBalanceOf(address(this), msg.sender);
if (balance > 0) {
_updateBalances(msg.sender, msg.sender, prevDelegatee, delegatee, balance);
}
}
}
function _updateBalances(address from, address to, uint256 amount) internal override {
_updateBalances(
from,
to,
from == address(0) ? address(0) : delegated[from],
to == address(0) ? address(0) : delegated[to],
amount
);
}
function _updateBalances(address /* from */, address /* to */, address fromDelegatee, address toDelegatee, uint256 amount) internal virtual {
if (fromDelegatee != toDelegatee && amount > 0) {
if (fromDelegatee == address(0)) {
_mint(toDelegatee, amount);
} else if (toDelegatee == address(0)) {
_burn(fromDelegatee, amount);
} else {
_transfer(fromDelegatee, toDelegatee, amount);
}
}
}
// ERC20 overrides
function transfer(address /* to */, uint256 /* amount */) public pure override(IERC20, ERC20) returns (bool) {
revert TransferDisabled();
}
function transferFrom(address /* from */, address /* to */, uint256 /* amount */) public pure override(IERC20, ERC20) returns (bool) {
revert TransferDisabled();
}
function approve(address /* spender */, uint256 /* amount */) public pure override(ERC20, IERC20) returns (bool) {
revert ApproveDisabled();
}
function increaseAllowance(address /* spender */, uint256 /* addedValue */) public pure override returns (bool) {
revert ApproveDisabled();
}
function decreaseAllowance(address /* spender */, uint256 /* subtractedValue */) public pure override returns (bool) {
revert ApproveDisabled();
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./TokenizedDelegationPod.sol";
import "./interfaces/IFarmingDelegationPod.sol";
import "@1inch/farming/contracts/MultiFarmingPod.sol";
contract FarmingDelegationPod is IFarmingDelegationPod, TokenizedDelegationPod {
error DefaultFarmTokenMismatch();
uint256 private constant _MAX_FARM_REWARDS = 3;
mapping(address => address) public defaultFarms;
constructor(string memory name_, string memory symbol_, IERC20Pods token_, uint256 maxSharePods_, uint256 sharePodGasLimit_)
TokenizedDelegationPod(name_, symbol_, token_, maxSharePods_, sharePodGasLimit_)
{} // solhint-disable-line no-empty-blocks
function register(string memory name, string memory symbol) public override(ITokenizedDelegationPod, TokenizedDelegationPod) returns(IDelegatedShare shareToken) {
shareToken = super.register(name, symbol);
MultiFarmingPod farm = new MultiFarmingPod(shareToken, _MAX_FARM_REWARDS);
farm.transferOwnership(msg.sender);
defaultFarms[msg.sender] = address(farm);
}
function delegate(address delegatee) public override(IDelegationPod, TokenizedDelegationPod) {
super.delegate(delegatee);
address defaultFarm = defaultFarms[delegatee];
if (defaultFarm != address(0)) {
registration[delegatee].addDefaultFarmIfNeeded(msg.sender, defaultFarm);
}
}
function setDefaultFarm(address farm) external onlyRegistered {
if (farm != address(0) && Pod(farm).token() != registration[msg.sender]) revert DefaultFarmTokenMismatch();
defaultFarms[msg.sender] = farm;
emit DefaultFarmSet(farm);
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity >0.0.0;
import '@1inch/erc20-pods/contracts/mocks/ERC20PodsMock.sol';
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@1inch/erc20-pods/contracts/interfaces/IERC20Pods.sol";
interface IDelegatedShare is IERC20Pods {
function addDefaultFarmIfNeeded(address account, address farm) external; // onlyOwner
function mint(address account, uint256 amount) external; // onlyOwner
function burn(address account, uint256 amount) external; // onlyOwner
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@1inch/erc20-pods/contracts/interfaces/IPod.sol";
interface IDelegationPod is IPod, IERC20 {
event Delegated(address account, address delegatee);
function delegated(address delegator) external view returns(address delegatee);
function delegate(address delegatee) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./ITokenizedDelegationPod.sol";
interface IFarmingDelegationPod is ITokenizedDelegationPod {
event DefaultFarmSet(address defaultFarm);
function setDefaultFarm(address farm) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./IDelegationPod.sol";
import "./IDelegatedShare.sol";
interface ITokenizedDelegationPod is IDelegationPod {
event RegisterDelegatee(address delegatee);
function register(string memory name, string memory symbol) external returns(IDelegatedShare shareToken);
function registration(address account) external returns(IDelegatedShare shareToken);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./DelegationPod.sol";
import "./DelegatedShare.sol";
import "./interfaces/ITokenizedDelegationPod.sol";
import "./interfaces/IDelegatedShare.sol";
contract TokenizedDelegationPod is ITokenizedDelegationPod, DelegationPod {
error NotRegisteredDelegatee();
error AlreadyRegistered();
uint256 public immutable maxSharePods;
uint256 public immutable sharePodGasLimit;
mapping(address => IDelegatedShare) public registration;
modifier onlyRegistered {
if (address(registration[msg.sender]) == address(0)) revert NotRegisteredDelegatee();
_;
}
modifier onlyNotRegistered {
if (address(registration[msg.sender]) != address(0)) revert AlreadyRegistered();
_;
}
constructor(string memory name_, string memory symbol_, IERC20Pods token_, uint256 maxSharePods_, uint256 sharePodGasLimit_) DelegationPod(name_, symbol_, token_) {
maxSharePods = maxSharePods_;
sharePodGasLimit = sharePodGasLimit_;
}
function delegate(address delegatee) public virtual override(IDelegationPod, DelegationPod) {
if (delegatee != address(0) && address(registration[delegatee]) == address(0)) revert NotRegisteredDelegatee();
super.delegate(delegatee);
}
function register(string memory name, string memory symbol) public virtual onlyNotRegistered returns(IDelegatedShare shareToken) {
shareToken = new DelegatedShare(name, symbol, maxSharePods, sharePodGasLimit);
registration[msg.sender] = shareToken;
emit RegisterDelegatee(msg.sender);
}
function _updateBalances(address from, address to, address fromDelegatee, address toDelegatee, uint256 amount) internal virtual override {
super._updateBalances(from, to, fromDelegatee, toDelegatee, amount);
if (fromDelegatee != address(0)) {
registration[fromDelegatee].burn(from, amount);
}
if (toDelegatee != address(0)) {
registration[toDelegatee].mint(to, amount);
}
}
}