Contract Source Code:
//SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.16;
import "@openzeppelin/contracts/interfaces/IERC20.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@uniswap/v2-core/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol";
import "@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
library Roles {
struct Role {
mapping(address => bool) bearer;
}
/**
* @dev Give an account access to this role.
*/
function add(Role storage role, address account) internal {
require(!has(role, account), "Roles: account already has role");
role.bearer[account] = true;
}
/**
* @dev Remove an account's access to this role.
*/
function remove(Role storage role, address account) internal {
require(has(role, account), "Roles: account does not have role");
role.bearer[account] = false;
}
/**
* @dev Check if an account has this role.
* @return bool
*/
function has(Role storage role, address account)
internal
view
returns (bool)
{
require(account != address(0), "Roles: account is the zero address");
return role.bearer[account];
}
}
abstract contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(
string memory name_,
string memory symbol_,
uint8 decimals_
) {
_name = name_;
_symbol = symbol_;
_decimals = decimals_;
}
function name() public view returns (string memory) {
return _name;
}
function symbol() public view returns (string memory) {
return _symbol;
}
function decimals() public view returns (uint8) {
return _decimals;
}
}
contract DVM is ERC20Detailed, Ownable {
struct Fee {
uint16 liquidity;
uint16 treasury;
}
using SafeMath for uint256;
event LogRebase(uint256 indexed epoch, uint256 totalSupply);
event NewNextRebase(uint256 nextRebase);
event NewRewardYield(uint256 _rewardYield, uint256 _rewardYieldDenominator);
event NewAutoRebase(bool _autoRebase);
event NewMaxWalletEnable(bool _isMaxWalletEnabled);
event NewRebaseFrequency(uint256 _rebaseFrequency);
event DustSwiped(address _receiver, uint256 balance);
event ManualRebase();
event NewLPSet(address _address);
event InitialDistributionFinished();
event AddressExemptedFromTransferLock(address _addr);
event AddressExemptedFromFee(address _addr);
event NewSwapBackSet(bool _enabled, uint256 _num, uint256 _denom);
event NewTargetLiquiditySet(uint256 target, uint256 accuracy);
event NewFeeReceiversSet(
address _autoLiquidityReceiver,
address _treasuryReceiver
);
event NewBuyFeesSet(
uint256 _liquidityFee,
uint256 _treasuryFee,
uint256 _feeDenominator
);
event NewSellFeesSet(
uint256 _liquidityFee,
uint256 _treasuryFee,
uint256 _feeDenominator
);
IUniswapV2Pair public pairContract;
bool public initialDistributionFinished;
mapping(address => bool) internal allowTransfer;
mapping(address => bool) public _isFeeExempt;
mapping(address => bool) public _isLimitExempt;
modifier initialDistributionLock() {
require(
initialDistributionFinished ||
msg.sender == owner() ||
allowTransfer[msg.sender],
"Initial distribution lock"
);
_;
}
modifier validRecipient(address to) {
require(to != address(0x0), "Zero address");
_;
}
uint256 private constant DECIMALS = 18;
uint256 private constant MAX_UINT256 = type(uint256).max;
uint256 private constant INITIAL_FRAGMENTS_SUPPLY = 10000 * 10**DECIMALS;
Fee public buyFee;
Fee public sellFee;
uint256 private totalBuyFee;
uint256 private totalSellFee;
uint256 public feeDenominator = 1000;
uint256 public rewardYield = 1;
uint256 public rewardYieldDenominator = 100000000000;
uint256 public rebaseFrequency = 1 days;
uint256 public nextRebase = block.timestamp + rebaseFrequency;
bool public autoRebase = true;
address internal constant DEAD = 0x000000000000000000000000000000000000dEaD;
address internal constant ZERO = 0x0000000000000000000000000000000000000000;
address public autoLiquidityReceiver;
address public treasuryReceiver;
uint256 private targetLiquidity = 50;
uint256 private targetLiquidityDenominator = 100;
IUniswapV2Router02 public immutable router;
bool public swapEnabled = true;
bool internal inSwap;
modifier swapping() {
inSwap = true;
_;
inSwap = false;
}
uint256 private constant TOTAL_GONS =
MAX_UINT256 - (MAX_UINT256 % INITIAL_FRAGMENTS_SUPPLY);
uint256 private constant MAX_SUPPLY = 20000 * 10**DECIMALS;
uint256 private gonSwapThreshold = TOTAL_GONS / 5000;
uint256 private maxWalletDivisor = 100;
bool public isMaxWalletEnabled = true;
uint256 private _totalSupply;
uint256 private _gonsPerFragment;
mapping(address => uint256) private _gonBalances;
mapping(address => mapping(address => uint256)) private _allowedFragments;
constructor(
address _router,
address _autoLiquidityReceiver,
address _treasuryReceiver
) ERC20Detailed("DVM", "DVM", uint8(DECIMALS)) {
router = IUniswapV2Router02(_router);
address _pair = IUniswapV2Factory(router.factory()).createPair(
router.WETH(),
address(this)
);
buyFee = Fee(15, 15);
totalBuyFee = 30;
sellFee = Fee(15, 15);
totalSellFee = 30;
autoLiquidityReceiver = _autoLiquidityReceiver;
treasuryReceiver = _treasuryReceiver;
_allowedFragments[address(this)][address(_router)] = type(uint256).max;
pairContract = IUniswapV2Pair(_pair);
_totalSupply = INITIAL_FRAGMENTS_SUPPLY;
_gonBalances[treasuryReceiver] = TOTAL_GONS;
_gonsPerFragment = TOTAL_GONS.div(_totalSupply);
initialDistributionFinished = false;
_isFeeExempt[treasuryReceiver] = true;
_isFeeExempt[address(this)] = true;
emit Transfer(address(0x0), treasuryReceiver, _totalSupply);
}
function setNextRebase(uint256 _nextRebase) external onlyOwner {
nextRebase = _nextRebase;
emit NewNextRebase(_nextRebase);
}
function setRewardYield(
uint256 _rewardYield,
uint256 _rewardYieldDenominator
) external onlyOwner {
rewardYield = _rewardYield;
rewardYieldDenominator = _rewardYieldDenominator;
emit NewRewardYield(_rewardYield, _rewardYieldDenominator);
}
function setLimitExempt(address user, bool status) external onlyOwner {
_isLimitExempt[user] = status;
}
function setAutoRebase(bool _autoRebase) external onlyOwner {
autoRebase = _autoRebase;
emit NewAutoRebase(_autoRebase);
}
function setRebaseFrequency(uint256 _rebaseFrequency) external onlyOwner {
rebaseFrequency = _rebaseFrequency;
emit NewRebaseFrequency(_rebaseFrequency);
}
function shouldRebase() public view returns (bool) {
return nextRebase <= block.timestamp;
}
function swipe(address _receiver) external onlyOwner {
uint256 balance = address(this).balance;
payable(_receiver).transfer(balance);
emit DustSwiped(_receiver, balance);
}
function coreRebase(uint256 epoch, int256 supplyDelta)
private
returns (uint256)
{
if (supplyDelta == 0) {
emit LogRebase(epoch, _totalSupply);
return _totalSupply;
}
if (supplyDelta < 0) {
_totalSupply = _totalSupply.sub(uint256(-supplyDelta));
} else {
_totalSupply = _totalSupply.add(uint256(supplyDelta));
}
if (_totalSupply > MAX_SUPPLY) {
_totalSupply = MAX_SUPPLY;
}
_gonsPerFragment = TOTAL_GONS.div(_totalSupply);
pairContract.sync();
emit LogRebase(epoch, _totalSupply);
return _totalSupply;
}
function _rebase() private {
if (!inSwap) {
uint256 epoch = block.timestamp;
uint256 circulatingSupply = getCirculatingSupply();
int256 supplyDelta = int256(
circulatingSupply.mul(rewardYield).div(rewardYieldDenominator)
);
coreRebase(epoch, supplyDelta);
nextRebase = epoch + rebaseFrequency;
}
}
function rebase() external onlyOwner {
require(!inSwap && shouldRebase(), "Try again");
_rebase();
emit ManualRebase();
}
function totalSupply() external view override returns (uint256) {
return _totalSupply;
}
function transfer(address to, uint256 value)
external
override
validRecipient(to)
initialDistributionLock
returns (bool)
{
_transferFrom(msg.sender, to, value);
return true;
}
function setLP(address _address) external onlyOwner {
pairContract = IUniswapV2Pair(_address);
_isFeeExempt[_address];
emit NewLPSet(_address);
}
function setMaxWallet(uint256 divisor) external onlyOwner {
maxWalletDivisor = divisor;
}
function allowance(address owner_, address spender)
public
view
override
returns (uint256)
{
return _allowedFragments[owner_][spender];
}
function balanceOf(address who) public view override returns (uint256) {
return _gonBalances[who].div(_gonsPerFragment);
}
function scaledBalanceOf(address who) external view returns (uint256) {
return _gonBalances[who];
}
function _basicTransfer(
address from,
address to,
uint256 amount
) internal returns (bool) {
uint256 gonAmount = amount.mul(_gonsPerFragment);
_gonBalances[from] = _gonBalances[from].sub(gonAmount);
_gonBalances[to] = _gonBalances[to].add(gonAmount);
return true;
}
function _transferFrom(
address sender,
address recipient,
uint256 amount
) internal returns (bool) {
if (inSwap) {
return _basicTransfer(sender, recipient, amount);
}
uint256 gonAmount = amount.mul(_gonsPerFragment);
if (shouldSwapBack()) {
swapBack();
}
if (
recipient != address(pairContract) &&
!_isLimitExempt[recipient] &&
isMaxWalletEnabled
) {
uint256 max = getMaxWallet();
require(
balanceOf(recipient) + amount <= max,
"Balance exceeds max wallet limit"
);
}
_gonBalances[sender] = _gonBalances[sender].sub(gonAmount);
uint256 gonAmountReceived = shouldTakeFee(sender, recipient)
? takeFee(sender, recipient, gonAmount)
: gonAmount;
_gonBalances[recipient] = _gonBalances[recipient].add(
gonAmountReceived
);
emit Transfer(
sender,
recipient,
gonAmountReceived.div(_gonsPerFragment)
);
if (shouldRebase() && autoRebase) {
_rebase();
}
return true;
}
function transferFrom(
address from,
address to,
uint256 value
) external override validRecipient(to) returns (bool) {
if (_allowedFragments[from][msg.sender] != ~uint256(0)) {
_allowedFragments[from][msg.sender] = _allowedFragments[from][
msg.sender
].sub(value, "Insufficient Allowance");
}
_transferFrom(from, to, value);
return true;
}
function swapBack() internal swapping {
uint256 dynamicLiquidityFee = isOverLiquified(
targetLiquidity,
targetLiquidityDenominator
)
? 0
: buyFee.liquidity + sellFee.liquidity;
uint256 contractTokenBalance = _gonBalances[address(this)].div(
_gonsPerFragment
);
uint256 amountToLiquify = contractTokenBalance
.mul(dynamicLiquidityFee)
.div(totalBuyFee + totalSellFee)
.div(2);
uint256 amountToSwap = contractTokenBalance.sub(amountToLiquify);
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = router.WETH();
uint256 balanceBefore = address(this).balance;
router.swapExactTokensForETHSupportingFeeOnTransferTokens(
amountToSwap,
0,
path,
address(this),
block.timestamp + 100
);
uint256 amountETH = address(this).balance.sub(balanceBefore);
uint256 totalETHFee = (totalBuyFee + totalSellFee).sub(
dynamicLiquidityFee.div(2)
);
uint256 amountETHLiquidity = amountETH
.mul(dynamicLiquidityFee)
.div(totalETHFee)
.div(2);
uint256 amountETHTreasury = amountETH
.mul(buyFee.treasury + sellFee.treasury)
.div(totalETHFee);
if (amountETHTreasury > 0) {
(bool success, ) = treasuryReceiver.call{value: amountETHTreasury}(
""
);
require(success, "ETH transfer failed");
}
if (amountToLiquify > 0) {
router.addLiquidityETH{value: amountETHLiquidity}(
address(this),
amountToLiquify,
0,
0,
autoLiquidityReceiver,
block.timestamp + 100
);
}
}
function takeFee(
address sender,
address recipient,
uint256 gonAmount
) internal returns (uint256) {
uint256 _totalFee;
if (sender == address(pairContract)) {
_totalFee = totalBuyFee;
} else if (recipient == address(pairContract)) {
_totalFee = totalSellFee;
}
if (_totalFee > 0) {
uint256 feeAmount = gonAmount.mul(_totalFee).div(feeDenominator);
_gonBalances[address(this)] = _gonBalances[address(this)].add(
feeAmount
);
emit Transfer(
sender,
address(this),
feeAmount.div(_gonsPerFragment)
);
return gonAmount.sub(feeAmount);
}
return gonAmount;
}
function decreaseAllowance(address spender, uint256 subtractedValue)
external
initialDistributionLock
returns (bool)
{
uint256 oldValue = _allowedFragments[msg.sender][spender];
if (subtractedValue >= oldValue) {
_allowedFragments[msg.sender][spender] = 0;
} else {
_allowedFragments[msg.sender][spender] = oldValue.sub(
subtractedValue
);
}
emit Approval(
msg.sender,
spender,
_allowedFragments[msg.sender][spender]
);
return true;
}
function increaseAllowance(address spender, uint256 addedValue)
external
initialDistributionLock
returns (bool)
{
_allowedFragments[msg.sender][spender] = _allowedFragments[msg.sender][
spender
].add(addedValue);
emit Approval(
msg.sender,
spender,
_allowedFragments[msg.sender][spender]
);
return true;
}
function approve(address spender, uint256 value)
external
override
validRecipient(spender)
initialDistributionLock
returns (bool)
{
_allowedFragments[msg.sender][spender] = value;
emit Approval(msg.sender, spender, value);
return true;
}
function checkFeeExempt(address _addr) external view returns (bool) {
return _isFeeExempt[_addr];
}
function setInitialDistributionFinished() external onlyOwner {
initialDistributionFinished = true;
emit InitialDistributionFinished();
}
function enableTransfer(address _addr) external onlyOwner {
allowTransfer[_addr] = true;
emit AddressExemptedFromTransferLock(_addr);
}
function setFeeExempt(address _addr) external onlyOwner {
_isFeeExempt[_addr] = true;
emit AddressExemptedFromFee(_addr);
}
function shouldTakeFee(address from, address to)
internal
view
returns (bool)
{
return ((address(pairContract) == from ||
address(pairContract) == to) &&
(!_isFeeExempt[from] && !_isFeeExempt[to]));
}
function setSwapBackSettings(
bool _enabled,
uint256 _num,
uint256 _denom
) external onlyOwner {
swapEnabled = _enabled;
gonSwapThreshold = TOTAL_GONS.div(_denom).mul(_num);
emit NewSwapBackSet(_enabled, _num, _denom);
}
function shouldSwapBack() internal view returns (bool) {
return
msg.sender != address(pairContract) &&
!inSwap &&
swapEnabled &&
_gonBalances[address(this)] >= gonSwapThreshold;
}
function setMaxWalletEnable(bool _isMaxWalletEnabled) external onlyOwner {
isMaxWalletEnabled = _isMaxWalletEnabled;
emit NewMaxWalletEnable(_isMaxWalletEnabled);
}
function getCirculatingSupply() public view returns (uint256) {
return
(TOTAL_GONS.sub(_gonBalances[DEAD]).sub(_gonBalances[ZERO])).div(
_gonsPerFragment
);
}
function setTargetLiquidity(uint256 target, uint256 accuracy)
external
onlyOwner
{
targetLiquidity = target;
targetLiquidityDenominator = accuracy;
emit NewTargetLiquiditySet(target, accuracy);
}
function isNotInSwap() external view returns (bool) {
return !inSwap;
}
function checkSwapThreshold() external view returns (uint256) {
return gonSwapThreshold.div(_gonsPerFragment);
}
function getMaxWallet() public view returns (uint256 amount) {
amount = getCirculatingSupply() / maxWalletDivisor;
}
function manualSync() external {
pairContract.sync();
}
function setFeeReceivers(
address _autoLiquidityReceiver,
address _treasuryReceiver
) external onlyOwner {
autoLiquidityReceiver = _autoLiquidityReceiver;
treasuryReceiver = _treasuryReceiver;
emit NewFeeReceiversSet(_autoLiquidityReceiver, _treasuryReceiver);
}
function setBuyFees(
uint16 _liquidityFee,
uint16 _treasuryFee,
uint256 _feeDenominator
) external onlyOwner {
buyFee = Fee(_liquidityFee, _treasuryFee);
feeDenominator = _feeDenominator;
totalBuyFee = _liquidityFee + _treasuryFee;
emit NewBuyFeesSet(_liquidityFee, _treasuryFee, _feeDenominator);
}
function setSellFees(
uint16 _liquidityFee,
uint16 _treasuryFee,
uint256 _feeDenominator
) external onlyOwner {
sellFee = Fee(_liquidityFee, _treasuryFee);
feeDenominator = _feeDenominator;
totalSellFee = _liquidityFee + _treasuryFee;
emit NewSellFeesSet(_liquidityFee, _treasuryFee, _feeDenominator);
}
function getLiquidityBacking(uint256 accuracy)
public
view
returns (uint256)
{
uint256 liquidityBalance = _gonBalances[address(pairContract)].div(
_gonsPerFragment
);
return
accuracy.mul(liquidityBalance.mul(2)).div(getCirculatingSupply());
}
function isOverLiquified(uint256 target, uint256 accuracy)
public
view
returns (bool)
{
return getLiquidityBacking(accuracy) > target;
}
receive() external payable {
this;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)
pragma solidity ^0.8.0;
import "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (utils/math/SafeMath.sol)
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
pragma solidity >=0.6.2;
import './IUniswapV2Router01.sol';
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
pragma solidity >=0.5.0;
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}
pragma solidity >=0.5.0;
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
pragma solidity >=0.6.2;
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);
function removeLiquidityETHWithPermit(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}