Contract Name:
CentrallyIssuedToken
Contract Source Code:
File 1 of 1 : CentrallyIssuedToken
/**
* This smart contract code is Copyright 2017 TokenMarket Ltd. For more information see https://tokenmarket.net
*
* Licensed under the Apache License, version 2.0: https://github.com/TokenMarketNet/ico/blob/master/LICENSE.txt
*/
pragma solidity ^0.4.6;
// import "./UpgradeableToken.sol";
/**
* This smart contract code is Copyright 2017 TokenMarket Ltd. For more information see https://tokenmarket.net
*
* Licensed under the Apache License, version 2.0: https://github.com/TokenMarketNet/ico/blob/master/LICENSE.txt
*/
// pragma solidity ^0.4.15;
// import "zeppelin-solidity/contracts/token/ERC20.sol";
// pragma solidity ^0.4.18;
// import './ERC20Basic.sol';
// pragma solidity ^0.4.18;
/**
* @title ERC20Basic
* @dev Simpler version of ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/179
*/
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public view returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// import './StandardToken.sol';
/**
* This smart contract code is Copyright 2017 TokenMarket Ltd. For more information see https://tokenmarket.net
*
* Licensed under the Apache License, version 2.0: https://github.com/TokenMarketNet/ico/blob/master/LICENSE.txt
*/
// pragma solidity ^0.4.15;
// import 'zeppelin-solidity/contracts/token/ERC20.sol';
// import "zeppelin-solidity/contracts/math/SafeMath.sol";
// pragma solidity ^0.4.18;
/**
* @title SafeMath
* @dev Math operations with safety checks that throw on error
*/
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// assert(b > 0); // Solidity automatically throws when dividing by 0
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
/**
* Standard ERC20 token with Short Hand Attack and approve() race condition mitigation.
*
* Based on code by FirstBlood:
* https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
*/
contract StandardToken is ERC20 {
using SafeMath for uint;
/* Token supply got increased and a new owner received these tokens */
event Minted(address receiver, uint amount);
/* Actual balances of token holders */
mapping(address => uint) balances;
/* approve() allowances */
mapping (address => mapping (address => uint)) allowed;
/* Interface declaration */
function isToken() public constant returns (bool weAre) {
return true;
}
function transfer(address _to, uint _value) returns (bool success) {
balances[msg.sender] = balances[msg.sender].sub( _value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;
}
function transferFrom(address _from, address _to, uint _value) returns (bool success) {
uint _allowance = allowed[_from][msg.sender];
balances[_to] = balances[_to].add(_value);
balances[_from] = balances[_from].sub(_value);
allowed[_from][msg.sender] = _allowance.sub(_value);
Transfer(_from, _to, _value);
return true;
}
function balanceOf(address _owner) constant returns (uint balance) {
return balances[_owner];
}
function approve(address _spender, uint _value) returns (bool success) {
// To change the approve amount you first have to reduce the addresses`
// allowance to zero by calling `approve(_spender, 0)` if it is not
// already 0 to mitigate the race condition described here:
// https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
if ((_value != 0) && (allowed[msg.sender][_spender] != 0))
revert();
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) constant returns (uint remaining) {
return allowed[_owner][_spender];
}
}
// import "./UpgradeAgent.sol";
/**
* This smart contract code is Copyright 2017 TokenMarket Ltd. For more information see https://tokenmarket.net
*
* Licensed under the Apache License, version 2.0: https://github.com/TokenMarketNet/ico/blob/master/LICENSE.txt
*/
// pragma solidity ^0.4.15;
/**
* Upgrade agent interface inspired by Lunyr.
*
* Upgrade agent transfers tokens to a new contract.
* Upgrade agent itself can be the token contract, or just a middle man contract doing the heavy lifting.
*/
contract UpgradeAgent {
uint public originalSupply;
/** Interface marker */
function isUpgradeAgent() public constant returns (bool) {
return true;
}
function upgradeFrom(address _from, uint256 _value) public;
}
/**
* A token upgrade mechanism where users can opt-in amount of tokens to the next smart contract revision.
*
* First envisioned by Golem and Lunyr projects.
*/
contract UpgradeableToken is StandardToken {
using SafeMath for uint256;
/** Contract / person who can set the upgrade path. This can be the same as team multisig wallet, as what it is with its default value. */
address public upgradeMaster;
/** The next contract where the tokens will be migrated. */
UpgradeAgent public upgradeAgent;
/** How many tokens we have upgraded by now. */
uint256 public totalUpgraded;
/**
* Upgrade states.
*
* - NotAllowed: The child contract has not reached a condition where the upgrade can bgun
* - WaitingForAgent: Token allows upgrade, but we don't have a new agent yet
* - ReadyToUpgrade: The agent is set, but not a single token has been upgraded yet
* - Upgrading: Upgrade agent is set and the balance holders can upgrade their tokens
*
*/
enum UpgradeState {Unknown, NotAllowed, WaitingForAgent, ReadyToUpgrade, Upgrading}
/**
* Somebody has upgraded some of his tokens.
*/
event Upgrade(address indexed _from, address indexed _to, uint256 _value);
/**
* New upgrade agent available.
*/
event UpgradeAgentSet(address agent);
/**
* Do not allow construction without upgrade master set.
*/
function UpgradeableToken(address _upgradeMaster) {
upgradeMaster = _upgradeMaster;
}
/**
* Allow the token holder to upgrade some of their tokens to a new contract.
*/
function upgrade(uint256 value) public {
UpgradeState state = getUpgradeState();
if (!(state == UpgradeState.ReadyToUpgrade || state == UpgradeState.Upgrading)) {
// Called in a bad state
revert();
}
// Validate input value.
if (value == 0) revert();
balances[msg.sender] = balances[msg.sender].sub(value);
// Take tokens out from circulation
totalSupply = totalSupply.sub(value);
totalUpgraded = totalUpgraded.add(value);
// Upgrade agent reissues the tokens
upgradeAgent.upgradeFrom(msg.sender, value);
Upgrade(msg.sender, upgradeAgent, value);
}
/**
* Set an upgrade agent that handles
*/
function setUpgradeAgent(address agent) external {
if(!canUpgrade()) {
// The token is not yet in a state that we could think upgrading
revert();
}
if (agent == 0x0) revert();
// Only a master can designate the next agent
if (msg.sender != upgradeMaster) revert();
// Upgrade has already begun for an agent
if (getUpgradeState() == UpgradeState.Upgrading) revert();
upgradeAgent = UpgradeAgent(agent);
// Bad interface
if(!upgradeAgent.isUpgradeAgent()) revert();
// Make sure that token supplies match in source and target
if (upgradeAgent.originalSupply() != totalSupply) revert();
UpgradeAgentSet(upgradeAgent);
}
/**
* Get the state of the token upgrade.
*/
function getUpgradeState() public constant returns(UpgradeState) {
if(!canUpgrade()) return UpgradeState.NotAllowed;
else if(address(upgradeAgent) == 0x00) return UpgradeState.WaitingForAgent;
else if(totalUpgraded == 0) return UpgradeState.ReadyToUpgrade;
else return UpgradeState.Upgrading;
}
/**
* Change the upgrade master.
*
* This allows us to set a new owner for the upgrade mechanism.
*/
function setUpgradeMaster(address master) public {
if (master == 0x0) revert();
if (msg.sender != upgradeMaster) revert();
upgradeMaster = master;
}
/**
* Child contract can enable to provide the condition when the upgrade can begun.
*/
function canUpgrade() public constant returns(bool) {
return true;
}
}
// import "./ReleasableToken.sol";
/**
* This smart contract code is Copyright 2017 TokenMarket Ltd. For more information see https://tokenmarket.net
*
* Licensed under the Apache License, version 2.0: https://github.com/TokenMarketNet/ico/blob/master/LICENSE.txt
*/
// pragma solidity ^0.4.15;
// import "zeppelin-solidity/contracts/ownership/Ownable.sol";
// pragma solidity ^0.4.18;
/**
* @title Ownable
* @dev The Ownable contract has an owner address, and provides basic authorization control
* functions, this simplifies the implementation of "user permissions".
*/
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev The Ownable constructor sets the original `owner` of the contract to the sender
* account.
*/
function Ownable() public {
owner = msg.sender;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param newOwner The address to transfer ownership to.
*/
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
// import "zeppelin-solidity/contracts/token/ERC20.sol";
/**
* Define interface for releasing the token transfer after a successful crowdsale.
*/
contract ReleasableToken is ERC20, Ownable {
/* The finalizer contract that allows unlift the transfer limits on this token */
address public releaseAgent;
/** A crowdsale contract can release us to the wild if ICO success. If false we are are in transfer lock up period.*/
bool public released = false;
/** Map of agents that are allowed to transfer tokens regardless of the lock down period. These are crowdsale contracts and possible the team multisig itself. */
mapping (address => bool) public transferAgents;
/**
* Limit token transfer until the crowdsale is over.
*
*/
modifier canTransfer(address _sender) {
if(!released) {
if(!transferAgents[_sender]) {
revert();
}
}
_;
}
/**
* Set the contract that can call release and make the token transferable.
*
* Design choice. Allow reset the release agent to fix fat finger mistakes.
*/
function setReleaseAgent(address addr) onlyOwner inReleaseState(false) public {
// We don't do interface check here as we might want to a normal wallet address to act as a release agent
releaseAgent = addr;
}
/**
* Owner can allow a particular address (a crowdsale contract) to transfer tokens despite the lock up period.
*/
function setTransferAgent(address addr, bool state) onlyOwner inReleaseState(false) public {
transferAgents[addr] = state;
}
/**
* One way function to release the tokens to the wild.
*
* Can be called only from the release agent that is the final ICO contract. It is only called if the crowdsale has been success (first milestone reached).
*/
function releaseTokenTransfer() public onlyReleaseAgent {
released = true;
}
/** The function can be called only before or after the tokens have been releasesd */
modifier inReleaseState(bool releaseState) {
if(releaseState != released) {
revert();
}
_;
}
/** The function can be called only by a whitelisted release agent. */
modifier onlyReleaseAgent() {
if(msg.sender != releaseAgent) {
revert();
}
_;
}
function transfer(address _to, uint _value) canTransfer(msg.sender) returns (bool success) {
// Call StandardToken.transfer()
return super.transfer(_to, _value);
}
function transferFrom(address _from, address _to, uint _value) canTransfer(_from) returns (bool success) {
// Call StandardToken.transferForm()
return super.transferFrom(_from, _to, _value);
}
}
// import "./PausableToken.sol";
// pragma solidity ^0.4.15;
// import './StandardToken.sol';
// import 'zeppelin-solidity/contracts/lifecycle/Pausable.sol';
// pragma solidity ^0.4.18;
// import "../ownership/Ownable.sol";
/**
* @title Pausable
* @dev Base contract which allows children to implement an emergency stop mechanism.
*/
contract Pausable is Ownable {
event Pause();
event Unpause();
bool public paused = false;
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*/
modifier whenNotPaused() {
require(!paused);
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*/
modifier whenPaused() {
require(paused);
_;
}
/**
* @dev called by the owner to pause, triggers stopped state
*/
function pause() onlyOwner whenNotPaused public {
paused = true;
Pause();
}
/**
* @dev called by the owner to unpause, returns to normal state
*/
function unpause() onlyOwner whenPaused public {
paused = false;
Unpause();
}
}
/**
* Pausable token
*
* Simple ERC20 Token example, with pausable token creation
**/
contract PausableToken is StandardToken, Pausable {
function transfer(address _to, uint _value) whenNotPaused returns (bool) {
return super.transfer(_to, _value);
}
function transferFrom(address _from, address _to, uint _value) whenNotPaused returns (bool) {
return super.transferFrom(_from, _to, _value);
}
}
/**
* Centrally issued Ethereum token.
*
* We mix in burnable and upgradeable traits.
*
* Token supply is created in the token contract creation and allocated to owner.
* The owner can then transfer from its supply to crowdsale participants.
* The owner, or anybody, can burn any excessive tokens they are holding.
*
*/
contract CentrallyIssuedToken is UpgradeableToken, ReleasableToken, PausableToken {
string public name;
string public symbol;
uint public decimals;
function CentrallyIssuedToken(address _owner, string _name, string _symbol, uint _totalSupply, uint _decimals) UpgradeableToken(_owner) {
name = _name;
symbol = _symbol;
totalSupply = _totalSupply;
decimals = _decimals;
// Allocate initial balance to the owner
balances[_owner] = _totalSupply;
}
}