Contract Source Code:
File 1 of 1 : POW
/**
Website: https://pepewifgun.vip
X: https://x.com/pepewifguncoin
Telegram: https://t.me/pepewifguncoin
*/
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender)
external
view
returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool);
}
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
/**
* @dev Standard ERC20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(
address sender,
uint256 balance,
uint256 needed
);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(
address spender,
uint256 allowance,
uint256 needed
);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(
address sender,
uint256 balance,
uint256 needed,
uint256 tokenId
);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender)
public
view
virtual
returns (uint256)
{
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value)
public
virtual
returns (bool)
{
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(
address from,
address to,
uint256 value
) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(
address from,
address to,
uint256 value
) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(
address from,
address to,
uint256 value
) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(
address owner,
address spender,
uint256 value
) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
* ```
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(
address owner,
address spender,
uint256 value,
bool emitEvent
) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 value
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(
spender,
currentAllowance,
value
);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
interface IUniswapV2Factory {
function createPair(address tokenA, address tokenB)
external
returns (address pair);
}
interface IUniswapV2Router {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidityETH(
address token,
uint256 amountTokenDesired,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
)
external
payable
returns (
uint256 amountToken,
uint256 amountETH,
uint256 liquidity
);
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external;
}
contract POW is Ownable, ERC20 {
uint256 public constant MAX_FEE = 30;
IUniswapV2Router public immutable uniswapV2Router;
address public immutable uniswapV2Pair;
address public rightToBearArms;
address public secondAmendmentRights;
bool public isLimitsEnabled;
bool public isCooldownEnabled;
bool public isTaxEnabled;
bool private isSwapBack;
uint256 public maxBuy;
uint256 public maxSell;
uint256 public maxWallet;
uint256 public swapTokensAtAmount;
uint256 public buyFee;
uint256 public sellFee;
mapping(address => bool) public isExcludedFromFees;
mapping(address => bool) public isExcludedFromLimits;
mapping(address => bool) public automatedMarketMakerPairs;
mapping(address => uint256) private _holderLastTransferTimestamp;
event SetRightToBearArms(
address indexed newWallet,
address indexed oldWallet
);
event SetSecondAmendmentRights(
address indexed newWallet,
address indexed oldWallet
);
event SetMaxBuy(uint256 amount);
event SetMaxSell(uint256 amount);
event SetMaxWallet(uint256 amount);
event ExcludeFromFees(address account, bool isExcluded);
event ExcludeFromLimits(address account, bool isExcluded);
event SetAutomatedMarketMakerPair(address pair, bool value);
constructor() Ownable(msg.sender) ERC20("pepewifgun", "POW") {
address sender = msg.sender;
_mint(sender, 420_690_000_000_000 ether);
uint256 totalSupply = totalSupply();
rightToBearArms = 0x404515FD3B6B1930f184379c4a6443290c02E346;
secondAmendmentRights = 0x404515FD3B6B1930f184379c4a6443290c02E346;
maxBuy = (totalSupply * 135) / 10000;
maxSell = (totalSupply * 135) / 10000;
maxWallet = (totalSupply * 135) / 10000;
swapTokensAtAmount = (totalSupply * 5) / 10000;
isLimitsEnabled = true;
isCooldownEnabled = true;
isTaxEnabled = true;
buyFee = 30;
sellFee = 30;
uniswapV2Router = IUniswapV2Router(
0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
);
uniswapV2Pair = IUniswapV2Factory(uniswapV2Router.factory()).createPair(
address(this),
uniswapV2Router.WETH()
);
_setAMMPair(uniswapV2Pair, true);
_approve(address(this), address(uniswapV2Router), type(uint256).max);
_excludeFromFees(address(this), true);
_excludeFromFees(address(0xdead), true);
_excludeFromFees(sender, true);
_excludeFromFees(rightToBearArms, true);
_excludeFromFees(secondAmendmentRights, true);
_excludeFromLimits(address(this), true);
_excludeFromLimits(address(0xdead), true);
_excludeFromLimits(sender, true);
_excludeFromLimits(rightToBearArms, true);
_excludeFromLimits(secondAmendmentRights, true);
}
receive() external payable {}
fallback() external payable {}
function _transferOwnership(address newOwner) internal override {
address oldOwner = owner();
if (oldOwner != address(0)) {
_excludeFromFees(oldOwner, false);
_excludeFromLimits(oldOwner, false);
}
_excludeFromFees(newOwner, true);
_excludeFromLimits(newOwner, true);
super._transferOwnership(newOwner);
}
function setRightToBearArms(address _rightToBearArms) public onlyOwner {
require(_rightToBearArms != address(0), "POW: Address 0");
address oldWallet = rightToBearArms;
rightToBearArms = _rightToBearArms;
emit SetRightToBearArms(rightToBearArms, oldWallet);
}
function setSecondAmendmentRights(address _secondAmendmentRights)
public
onlyOwner
{
require(_secondAmendmentRights != address(0), "POW: Address 0");
address oldWallet = secondAmendmentRights;
secondAmendmentRights = _secondAmendmentRights;
emit SetSecondAmendmentRights(secondAmendmentRights, oldWallet);
}
function setLimitsEnabled(bool value) external onlyOwner {
isLimitsEnabled = value;
}
function setCooldownEnabled(bool value) external onlyOwner {
isCooldownEnabled = value;
}
function setTaxEnabled(bool value) external onlyOwner {
isTaxEnabled = value;
}
function setMaxBuy(uint256 amount) external onlyOwner {
require(
amount >= ((totalSupply() * 2) / 1000),
"POW: Cannot set max buy amount lower than 0.2%"
);
maxBuy = amount;
emit SetMaxBuy(maxBuy);
}
function setMaxSell(uint256 amount) external onlyOwner {
require(
amount >= ((totalSupply() * 2) / 1000),
"POW: Cannot set max sell amount lower than 0.2%"
);
maxSell = amount;
emit SetMaxSell(maxSell);
}
function setMaxWallet(uint256 amount) external onlyOwner {
require(
amount >= ((totalSupply() * 3) / 1000),
"POW: Cannot set max wallet amount lower than 0.3%"
);
maxWallet = amount;
emit SetMaxWallet(maxWallet);
}
function setSwapTokensAtAmount(uint256 amount) external onlyOwner {
uint256 _totalSupply = totalSupply();
require(
amount >= (_totalSupply * 1) / 1000000,
"POW: Swap amount cannot be lower than 0.0001% total supply."
);
require(
amount <= (_totalSupply * 5) / 1000,
"POW: Swap amount cannot be higher than 0.5% total supply."
);
swapTokensAtAmount = amount;
}
function setBuyFees(uint256 _buyFee) external onlyOwner {
require(
_buyFee <= MAX_FEE,
"POW: Must keep fees below or equal max fee"
);
buyFee = _buyFee;
}
function setSellFees(uint256 _sellFee) external onlyOwner {
require(
_sellFee <= MAX_FEE,
"POW: Must keep fees below or equal max fee"
);
sellFee = _sellFee;
}
function _excludeFromFees(address account, bool value) internal {
isExcludedFromFees[account] = value;
emit ExcludeFromFees(account, value);
}
function excludeFromFees(address account, bool value) external onlyOwner {
_excludeFromFees(account, value);
}
function bulkExcludeFromFees(address[] calldata accounts, bool value)
external
onlyOwner
{
for (uint256 i = 0; i < accounts.length; i++) {
_excludeFromFees(accounts[i], value);
}
}
function _excludeFromLimits(address account, bool value) internal {
isExcludedFromLimits[account] = value;
emit ExcludeFromLimits(account, value);
}
function excludeFromLimits(address account, bool value) external onlyOwner {
_excludeFromLimits(account, value);
}
function bulkExcludeFromLimits(address[] calldata accounts, bool value)
external
onlyOwner
{
for (uint256 i = 0; i < accounts.length; i++) {
_excludeFromLimits(accounts[i], value);
}
}
function _setAMMPair(address pair, bool value) internal {
automatedMarketMakerPairs[pair] = value;
emit SetAutomatedMarketMakerPair(pair, value);
}
function setAMMPair(address pair, bool value) external onlyOwner {
_setAMMPair(pair, value);
}
function _update(
address from,
address to,
uint256 amount
) internal override {
bool limits = isLimitsEnabled &&
!isSwapBack &&
!(isExcludedFromLimits[from] || isExcludedFromLimits[to]);
if (limits) {
if (
from != owner() &&
to != owner() &&
to != address(0) &&
to != address(0xdead)
) {
if (isCooldownEnabled) {
if (to != address(uniswapV2Router) && to != uniswapV2Pair) {
require(
_holderLastTransferTimestamp[tx.origin] <
block.number - 3 &&
_holderLastTransferTimestamp[to] <
block.number - 3,
"POW: Transfer delay enabled. Try again later."
);
_holderLastTransferTimestamp[tx.origin] = block.number;
_holderLastTransferTimestamp[to] = block.number;
}
}
if (
automatedMarketMakerPairs[from] && !isExcludedFromLimits[to]
) {
require(
amount <= maxBuy,
"POW: Buy transfer amount exceeds the max buy."
);
require(
amount + balanceOf(to) <= maxWallet,
"POW: Cannot Exceed max wallet"
);
} else if (
automatedMarketMakerPairs[to] && !isExcludedFromLimits[from]
) {
require(
amount <= maxSell,
"POW: Sell transfer amount exceeds the max sell."
);
} else if (!isExcludedFromLimits[to]) {
require(
amount + balanceOf(to) <= maxWallet,
"POW: Cannot Exceed max wallet"
);
}
}
}
bool takeFee = isTaxEnabled &&
!isSwapBack &&
!(isExcludedFromFees[from] || isExcludedFromFees[to]);
if (takeFee) {
uint256 fees = 0;
// on sell
if (automatedMarketMakerPairs[to]) {
fees = (amount * sellFee) / 100;
}
// on buy
else if (automatedMarketMakerPairs[from]) {
fees = (amount * buyFee) / 100;
}
if (fees > 0) {
amount -= fees;
super._update(from, address(this), fees);
}
}
if (
takeFee &&
!automatedMarketMakerPairs[from] &&
balanceOf(address(this)) >= swapTokensAtAmount
) {
isSwapBack = true;
_swapBack();
isSwapBack = false;
}
super._update(from, to, amount);
}
function _swapBack() internal {
bool success;
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = uniswapV2Router.WETH();
uint256 maxSwapAmount = swapTokensAtAmount * 20;
uint256 swapAmount = balanceOf(address(this));
if (swapAmount > maxSwapAmount) {
swapAmount = maxSwapAmount;
}
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(
swapAmount,
0,
path,
address(this),
block.timestamp
);
uint256 ethBalance = address(this).balance;
uint256 ethForMarketing = ethBalance / 2;
uint256 ethForDevelopment = ethBalance - ethForMarketing;
(success, ) = address(rightToBearArms).call{value: ethForMarketing}("");
(success, ) = address(secondAmendmentRights).call{
value: ethForDevelopment
}("");
}
function withdrawStuckTokens(address tkn) external onlyOwner {
address sender = msg.sender;
uint256 amount;
if (tkn == address(0)) {
bool success;
amount = address(this).balance;
require(amount > 0, "POW: No native tokens");
(success, ) = address(sender).call{value: amount}("");
require(success, "POW: Failed to withdraw native tokens");
} else {
amount = IERC20(tkn).balanceOf(address(this));
require(amount > 0, "POW: No tokens");
IERC20(tkn).transfer(msg.sender, amount);
}
}
}