ETH Price: $2,483.39 (-0.46%)

Contract Diff Checker

Contract Name:
ERC721WCHome

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC165.sol)

pragma solidity ^0.8.0;

import "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC721.sol)

pragma solidity ^0.8.0;

import "../token/ERC721/IERC721.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC721Metadata.sol)

pragma solidity ^0.8.0;

import "../token/ERC721/extensions/IERC721Metadata.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The proofs can be generated using the JavaScript library
 * https://github.com/miguelmota/merkletreejs[merkletreejs].
 * Note: the hashing algorithm should be keccak256 and pair sorting should be enabled.
 *
 * See `test/utils/cryptography/MerkleProof.test.js` for some examples.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     *
     * _Available since v4.7._
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     *
     * _Available since v4.7._
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * _Available since v4.7._
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Modern, minimalist, and gas efficient ERC-721 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol)
abstract contract ERC721 {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Transfer(address indexed from, address indexed to, uint256 indexed id);

    event Approval(address indexed owner, address indexed spender, uint256 indexed id);

    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /*//////////////////////////////////////////////////////////////
                         METADATA STORAGE/LOGIC
    //////////////////////////////////////////////////////////////*/

    string public name;

    string public symbol;

    function tokenURI(uint256 id) public view virtual returns (string memory);

    /*//////////////////////////////////////////////////////////////
                      ERC721 BALANCE/OWNER STORAGE
    //////////////////////////////////////////////////////////////*/

    mapping(uint256 => address) internal _ownerOf;

    mapping(address => uint256) internal _balanceOf;

    function ownerOf(uint256 id) public view virtual returns (address owner) {
        require((owner = _ownerOf[id]) != address(0), "NOT_MINTED");
    }

    function balanceOf(address owner) public view virtual returns (uint256) {
        require(owner != address(0), "ZERO_ADDRESS");

        return _balanceOf[owner];
    }

    /*//////////////////////////////////////////////////////////////
                         ERC721 APPROVAL STORAGE
    //////////////////////////////////////////////////////////////*/

    mapping(uint256 => address) public getApproved;

    mapping(address => mapping(address => bool)) public isApprovedForAll;

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(string memory _name, string memory _symbol) {
        name = _name;
        symbol = _symbol;
    }

    /*//////////////////////////////////////////////////////////////
                              ERC721 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 id) public virtual {
        address owner = _ownerOf[id];

        require(msg.sender == owner || isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED");

        getApproved[id] = spender;

        emit Approval(owner, spender, id);
    }

    function setApprovalForAll(address operator, bool approved) public virtual {
        isApprovedForAll[msg.sender][operator] = approved;

        emit ApprovalForAll(msg.sender, operator, approved);
    }

    function transferFrom(
        address from,
        address to,
        uint256 id
    ) public virtual {
        require(from == _ownerOf[id], "WRONG_FROM");

        require(to != address(0), "INVALID_RECIPIENT");

        require(
            msg.sender == from || isApprovedForAll[from][msg.sender] || msg.sender == getApproved[id],
            "NOT_AUTHORIZED"
        );

        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        unchecked {
            _balanceOf[from]--;

            _balanceOf[to]++;
        }

        _ownerOf[id] = to;

        delete getApproved[id];

        emit Transfer(from, to, id);
    }

    function safeTransferFrom(
        address from,
        address to,
        uint256 id
    ) public virtual {
        transferFrom(from, to, id);

        require(
            to.code.length == 0 ||
                ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "") ==
                ERC721TokenReceiver.onERC721Received.selector,
            "UNSAFE_RECIPIENT"
        );
    }

    function safeTransferFrom(
        address from,
        address to,
        uint256 id,
        bytes calldata data
    ) public virtual {
        transferFrom(from, to, id);

        require(
            to.code.length == 0 ||
                ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data) ==
                ERC721TokenReceiver.onERC721Received.selector,
            "UNSAFE_RECIPIENT"
        );
    }

    /*//////////////////////////////////////////////////////////////
                              ERC165 LOGIC
    //////////////////////////////////////////////////////////////*/

    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return
            interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165
            interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721
            interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 id) internal virtual {
        require(to != address(0), "INVALID_RECIPIENT");

        require(_ownerOf[id] == address(0), "ALREADY_MINTED");

        // Counter overflow is incredibly unrealistic.
        unchecked {
            _balanceOf[to]++;
        }

        _ownerOf[id] = to;

        emit Transfer(address(0), to, id);
    }

    function _burn(uint256 id) internal virtual {
        address owner = _ownerOf[id];

        require(owner != address(0), "NOT_MINTED");

        // Ownership check above ensures no underflow.
        unchecked {
            _balanceOf[owner]--;
        }

        delete _ownerOf[id];

        delete getApproved[id];

        emit Transfer(owner, address(0), id);
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL SAFE MINT LOGIC
    //////////////////////////////////////////////////////////////*/

    function _safeMint(address to, uint256 id) internal virtual {
        _mint(to, id);

        require(
            to.code.length == 0 ||
                ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "") ==
                ERC721TokenReceiver.onERC721Received.selector,
            "UNSAFE_RECIPIENT"
        );
    }

    function _safeMint(
        address to,
        uint256 id,
        bytes memory data
    ) internal virtual {
        _mint(to, id);

        require(
            to.code.length == 0 ||
                ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data) ==
                ERC721TokenReceiver.onERC721Received.selector,
            "UNSAFE_RECIPIENT"
        );
    }
}

/// @notice A generic interface for a contract which properly accepts ERC721 tokens.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol)
abstract contract ERC721TokenReceiver {
    function onERC721Received(
        address,
        address,
        uint256,
        bytes calldata
    ) external virtual returns (bytes4) {
        return ERC721TokenReceiver.onERC721Received.selector;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import {IERC165} from "openzeppelin-contracts/interfaces/IERC165.sol";
import {IERC721} from "openzeppelin-contracts/interfaces/IERC721.sol";
import {IERC721Metadata} from "openzeppelin-contracts/interfaces/IERC721Metadata.sol";
import {ERC721} from "solmate/tokens/ERC721.sol";
import {Strings} from "openzeppelin-contracts/utils/Strings.sol";
import {MerkleProof} from "openzeppelin-contracts/utils/cryptography/MerkleProof.sol";

contract ERC721WCHome is ERC721 {
    address payable public owner;

    string public BASE_URI;

    uint256 public immutable mintCost; // in wei
    uint256 public immutable maxWhitelistSupply;  // total number of NFTs in whitelist
    uint256 public immutable maxPublicSupply;  // total number of NFTs in public sale
    uint256 public immutable numInitialTeams;  // 32 for WC
    uint256 public immutable maxMintPerAddress;  // max amount each wallet can mint

    uint256 public numWhitelistMinted;  // number of items already publicly minted
    uint256 public numPublicMinted;  // number of items already publicly minted
    uint256 public numMinted;  // total number of items already minted
    mapping (address => uint256) public addressNumMinted;  // amount already minted in each wallet

    bool public mintEnded;  // cannot mint after teams are assigned

    bytes32 public immutable merkleRoot;  // mintlist
    mapping(address => bool) public claimed;

    event BaseURIUpdated();
    event OwnerChanged(address indexed newOwner);
    event MintEnded();

    error NotOwner();
    error NotHolder();
    error AlreadyClaimed();
    error InvalidProof();
    error IncorrectPayment(uint256 expected, uint256 amount);
    error InsufficientBalance(uint256 amount);
    error TransferFailed();
    error MintingEnded();
    error MaxSupplyReached();
    error MaxMintAmountReached();

    constructor(
        uint256 _mintCost,
        uint256 _numInitialTeams,
        uint256 _maxPublicSupply,
        uint256 _maxWhitelistSupply,
        uint256 _maxMintPerAddress,
        string memory _baseUri,
        bytes32 _merkleRoot
    ) ERC721(name, symbol) {
        owner = payable(msg.sender);

        BASE_URI = _baseUri;

        name = string("Hologram WC 2022 Home Jersey");
        symbol = string("HWCH");

        mintCost = _mintCost;
        maxPublicSupply = _maxPublicSupply;
        maxWhitelistSupply = _maxWhitelistSupply;
        numInitialTeams = _numInitialTeams;
        maxMintPerAddress = _maxMintPerAddress;

        merkleRoot = _merkleRoot;

        mintEnded = false;
    }

    modifier onlyOwner() {
        if (msg.sender != owner) revert NotOwner();
        _;
    }

    function setOwner(address payable _newOwner) public onlyOwner {
        owner = _newOwner;
        emit OwnerChanged(_newOwner);
    }

    function updateBaseURI(string memory _baseUri) public onlyOwner {
        BASE_URI = _baseUri;
        emit BaseURIUpdated();
    }

    function endMinting() public onlyOwner {
        if (mintEnded) revert MintingEnded();
        mintEnded = true;
        emit MintEnded();
    }

    function tokenURI(uint256 _tokenId) public view virtual override returns (string memory) {
        return string.concat(BASE_URI, Strings.toString(_tokenId));
    }

    function getMintedAmount(address _addr) public view returns(uint256) {
        return addressNumMinted[_addr];
    }

    function checkInWhitelist(address _addr, uint256 amount, bytes32[] calldata merkleProof) public view returns(bool) {
        bytes32 node = keccak256(abi.encodePacked(_addr, amount));
        return MerkleProof.verify(merkleProof, merkleRoot, node);
    }

    function claim(uint256 amount, bytes32[] calldata merkleProof) external {
        if (claimed[msg.sender]) revert AlreadyClaimed();
        if (numWhitelistMinted + amount > maxWhitelistSupply) revert MaxSupplyReached();

        // verify the merkle proof
        address to = msg.sender;
        if (!checkInWhitelist(to, amount, merkleProof)) revert InvalidProof();

        if (addressNumMinted[to] + amount > maxMintPerAddress) revert MaxMintAmountReached();

        for (uint256 i = numMinted; i < numMinted + amount; i ++) {
            _mint(to, i);
        }

        claimed[msg.sender] = true;
        addressNumMinted[to] += amount;
        numWhitelistMinted += amount;
        numMinted += amount;
    }

    function mint() public payable {
        if (mintEnded) revert MintingEnded();
        if (numPublicMinted == maxPublicSupply) revert MaxSupplyReached();
        if (msg.value != mintCost) revert IncorrectPayment(mintCost, msg.value);

        address to = msg.sender;
        if (addressNumMinted[to] == maxMintPerAddress) revert MaxMintAmountReached();
        
        _mint(to, numMinted);

        addressNumMinted[to] += 1;
        numPublicMinted += 1;
        numMinted += 1;
    }

    function batchMint(uint256 numToMint) public payable {
        if (mintEnded) revert MintingEnded();
        if (numPublicMinted + numToMint > maxPublicSupply) revert MaxSupplyReached();
        if (msg.value != mintCost * numToMint) revert IncorrectPayment(mintCost, msg.value);

        address to = msg.sender;
        if (addressNumMinted[to] + numToMint > maxMintPerAddress) revert MaxMintAmountReached();

        for (uint256 i = numMinted; i < numMinted + numToMint; i ++) {
            _mint(to, i);
        }

        addressNumMinted[to] += numToMint;
        numPublicMinted += numToMint;
        numMinted += numToMint;
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):