Contract Source Code:
// File: openzeppelin-solidity\contracts\utils\Address.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.2;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
import "./Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.6.12;
import "./Ownable.sol";
contract Rebasable is Ownable {
address private _rebaser;
event TransferredRebasership(address indexed previousRebaser, address indexed newRebaser);
constructor() internal {
address msgSender = _msgSender();
_rebaser = msgSender;
emit TransferredRebasership(address(0), msgSender);
}
function Rebaser() public view returns(address) {
return _rebaser;
}
modifier onlyRebaser() {
require(_rebaser == _msgSender(), "caller is not rebaser");
_;
}
function transferRebasership(address newRebaser) public virtual onlyOwner {
require(newRebaser != address(0), "new rebaser is address zero");
emit TransferredRebasership(_rebaser, newRebaser);
_rebaser = newRebaser;
}
}
/*
SPDX-License-Identifier: MIT
https://riseprotocol.io
Copyright 2020
*/
/// SWC-103: Floating Pragma
interface IUniswapV2Factory {
function createPair(address tokenA, address tokenB) external returns (address pair);
}
interface IUniswapV2Pair {
function sync() external;
}
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
}
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountETH);
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
}
pragma solidity 0.6.12;
import "./RiseSafeMath.sol";
import "./Ownable.sol";
import "./Rebaser.sol";
import "./Address.sol";
contract Rise is Ownable, Rebasable
{
using RiseSafeMath for uint256;
using Address for address;
IUniswapV2Router02 public immutable _uniswapV2Router;
event Transfer(address indexed from, address indexed to, uint amount);
event Approval(address indexed owner, address indexed spender, uint amount);
event Rebase(uint256 indexed epoch, uint256 scalingFactor);
event WhitelistFrom(address _addr, bool _whitelisted);
event WhitelistTo(address _addr, bool _whitelisted);
event UniswapPairAddress(address _addr, bool _whitelisted);
string public name = "Rise Protocol";
string public symbol = "RISE";
uint8 public decimals = 9;
address public BurnAddress = 0x000000000000000000000000000000000000dEaD;
address public rewardAddress;
/**
* @notice Internal decimals used to handle scaling factor
*/
uint256 public constant internalDecimals = 10**9;
/**
* @notice Used for percentage maths
*/
uint256 public constant BASE = 10**9;
/**
* @notice Scaling factor that adjusts everyone's balances
*/
uint256 public RiseScalingFactor = BASE;
mapping (address => uint256) private _rOwned;
mapping (address => uint256) private _tOwned;
mapping (address => mapping (address => uint256)) internal _allowedFragments;
mapping (address => bool) private _isExcluded;
address[] private _excluded;
mapping(address => bool) public whitelistFrom;
mapping(address => bool) public whitelistTo;
mapping(address => bool) public uniswapPairAddress;
address private currentPoolAddress;
address private currentPairTokenAddress;
address public uniswapETHPool;
address[] public futurePools;
uint256 initSupply = 10**5 * 10**9;
uint256 _totalSupply = 10**5 * 10**9;
uint16 public SELL_FEE = 6;
uint16 public TX_FEE = 2;
uint16 public BURN_TOP = 1;
uint16 public BURN_BOTTOM = 2;
uint256 private _tFeeTotal;
uint256 private constant MAX = ~uint256(0);
uint256 private _rTotal = (MAX - (MAX % _totalSupply));
uint16 public FYFee = 100;
uint256 public _maxTxAmount = 500 * 10**9;
uint256 public _minTokensBeforeSwap = 100 * 10**9;
uint256 public _autoSwapCallerFee = 2 * 10**9;
uint256 public liquidityRewardRate = 2;
bool private inSwapAndLiquify;
bool public swapAndLiquifyEnabled;
bool public tradingEnabled;
event MaxTxAmountUpdated(uint256 maxTxAmount);
event TradingEnabled();
event SwapAndLiquifyEnabledUpdated(bool enabled);
event SwapAndLiquify(
address indexed pairTokenAddress,
uint256 tokensSwapped,
uint256 pairTokenReceived,
uint256 tokensIntoLiqudity
);
event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);
event AutoSwapCallerFeeUpdated(uint256 autoSwapCallerFee);
modifier lockTheSwap {
inSwapAndLiquify = true;
_;
inSwapAndLiquify = false;
}
constructor(IUniswapV2Router02 uniswapV2Router)
public
Ownable()
Rebasable()
{
_uniswapV2Router = uniswapV2Router;
currentPoolAddress = IUniswapV2Factory(uniswapV2Router.factory())
.createPair(address(this), uniswapV2Router.WETH());
currentPairTokenAddress = uniswapV2Router.WETH();
uniswapETHPool = currentPoolAddress;
rewardAddress = address(this);
updateSwapAndLiquifyEnabled(false);
_rOwned[_msgSender()] = reflectionFromToken(_totalSupply, false);
emit Transfer(address(0), _msgSender(), _totalSupply);
}
function totalSupply() public view returns (uint256)
{
return _totalSupply;
}
function getSellBurn(uint256 value) public view returns (uint256)
{
uint256 nPercent = value.mul(SELL_FEE).divRound(100);
return nPercent;
}
function getTxBurn(uint256 value) public view returns (uint256)
{
uint256 nPercent = value.mul(TX_FEE).divRound(100);
return nPercent;
}
function _isWhitelisted(address _from, address _to) internal view returns (bool)
{
return whitelistFrom[_from]||whitelistTo[_to];
}
function _isUniswapPairAddress(address _addr) internal view returns (bool)
{
return uniswapPairAddress[_addr];
}
function setWhitelistedTo(address _addr, bool _whitelisted) external onlyOwner
{
emit WhitelistTo(_addr, _whitelisted);
whitelistTo[_addr] = _whitelisted;
}
function setTxFee(uint16 fee) external onlyOwner
{
require(fee < 50, 'Rise: Transaction fee should be less than 40%');
TX_FEE = fee;
}
function setFYFee(uint16 fee) external onlyOwner
{
require(fee > 2, 'Rise: Frictionless yield fee should be less than 50%');
FYFee = fee;
}
function setSellFee(uint16 fee) external onlyOwner
{
require(fee < 50, 'Rise: Sell fee should be less than 50%');
SELL_FEE = fee;
}
function setBurnTop(uint16 burntop) external onlyOwner
{
BURN_TOP = burntop;
}
function setBurnBottom(uint16 burnbottom) external onlyOwner
{
BURN_BOTTOM = burnbottom;
}
function setWhitelistedFrom(address _addr, bool _whitelisted) external onlyOwner
{
emit WhitelistFrom(_addr, _whitelisted);
whitelistFrom[_addr] = _whitelisted;
}
function setUniswapPairAddress(address _addr, bool _whitelisted) external onlyOwner
{
emit UniswapPairAddress(_addr, _whitelisted);
uniswapPairAddress[_addr] = _whitelisted;
}
function addfuturePool(address futurePool) external onlyOwner
{
IUniswapV2Pair(futurePool).sync();
futurePools.push(futurePool);
}
function maxScalingFactor() external view returns (uint256)
{
return _maxScalingFactor();
}
function _maxScalingFactor() internal view returns (uint256)
{
// scaling factor can only go up to 2**256-1 = initSupply * RiseScalingFactor
// this is used to check if RiseScalingFactor will be too high to compute balances when rebasing.
return uint256(-1) / initSupply;
}
function transfer(address recipient, uint256 amount) public returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
_transfer(sender, recipient, amount);
// decrease allowance
_approve(sender, _msgSender(), _allowedFragments[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function balanceOf(address account) public view returns (uint256) {
if (_isExcluded[account]) return _tOwned[account].mul(RiseScalingFactor).div(internalDecimals);
uint256 tOwned = tokenFromReflection(_rOwned[account]);
return _scaling(tOwned);
}
function balanceOfUnderlying(address account) external view returns (uint256)
{
return tokenFromReflection(_rOwned[account]);
}
function allowance(address owner_, address spender) external view returns (uint256)
{
return _allowedFragments[owner_][spender];
}
function approve(address spender, uint256 amount) public returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function increaseAllowance(address spender, uint256 addedValue) external returns (bool)
{
_allowedFragments[msg.sender][spender] = _allowedFragments[msg.sender][spender].add(addedValue);
emit Approval(msg.sender, spender, _allowedFragments[msg.sender][spender]);
return true;
}
function decreaseAllowance(address spender, uint256 subtractedValue) external returns (bool)
{
uint256 oldValue = _allowedFragments[msg.sender][spender];
if (subtractedValue >= oldValue)
{
_allowedFragments[msg.sender][spender] = 0;
}
else
{
_allowedFragments[msg.sender][spender] = oldValue.sub(subtractedValue);
}
emit Approval(msg.sender, spender, _allowedFragments[msg.sender][spender]);
return true;
}
function _approve(address owner, address spender, uint256 amount) private {
require(owner != address(0), "Rise: approve from the zero address");
require(spender != address(0), "Rise: approve to the zero address");
_allowedFragments[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
function isExcluded(address account) public view returns (bool)
{
return _isExcluded[account];
}
function totalFees() public view returns (uint256)
{
return _tFeeTotal;
}
function reflect(uint256 tAmount) public
{
address sender = _msgSender();
require(!_isExcluded[sender], "Excluded addresses cannot call this function");
uint256 currentRate = _getRate();
uint256 TAmount = tAmount.mul(internalDecimals).div(RiseScalingFactor);
uint256 rAmount = TAmount.mul(currentRate);
_rOwned[sender] = _rOwned[sender].sub(rAmount);
_rTotal = _rTotal.sub(rAmount);
_tFeeTotal = _tFeeTotal.add(tAmount);
}
function reflectionFromToken(uint256 tAmount, bool deductTransferFee) public view returns(uint256)
{
require(tAmount <= _totalSupply, "Amount must be less than supply");
uint256 currentRate = _getRate();
uint256 TAmount = tAmount.mul(internalDecimals).div(RiseScalingFactor);
uint256 fee = getTxBurn(TAmount);
uint256 rAmount = TAmount.mul(currentRate);
if (!deductTransferFee) {
return rAmount;
} else {
(uint256 rTransferAmount,,,) = _getRValues(TAmount, fee, currentRate);
return rTransferAmount;
}
}
function tokenFromReflection(uint256 rAmount) public view returns(uint256)
{
require(rAmount <= _rTotal, "Amount must be less than total reflections");
uint256 currentRate = _getRate();
return rAmount.div(currentRate);
}
function excludeAccount(address account) external onlyOwner()
{
require(!_isExcluded[account], "Account is already excluded");
if(_rOwned[account] > 0) {
_rOwned[account] = tokenFromReflection(_rOwned[account]);
}
_isExcluded[account] = true;
_excluded.push(account);
}
function includeAccount(address account) external onlyOwner()
{
require(_isExcluded[account], "Account is already excluded");
for (uint256 i = 0; i < _excluded.length; i++) {
if (_excluded[i] == account) {
_excluded[i] = _excluded[_excluded.length - 1];
_rOwned[account] = 0;
_isExcluded[account] = false;
_excluded.pop();
break;
}
}
}
function _transfer(address sender, address recipient, uint256 amount) private
{
require(sender != address(0), "Rise: cannot transfer from the zero address");
require(recipient != address(0), "Rise: cannot transfer to the zero address");
require(amount > 0, "Rise: Transfer amount must be greater than zero");
if(sender != owner() && recipient != owner() && !inSwapAndLiquify) {
require(amount <= _maxTxAmount, "Rise: Transfer amount exceeds the maxTxAmount.");
if((_msgSender() == currentPoolAddress || _msgSender() == address(_uniswapV2Router)) && !tradingEnabled)
require(false, "Rise: trading is disabled.");
}
if(!inSwapAndLiquify) {
uint256 lockedBalanceForPool = balanceOf(address(this));
bool overMinTokenBalance = lockedBalanceForPool >= _minTokensBeforeSwap;
currentPairTokenAddress == _uniswapV2Router.WETH();
if (
overMinTokenBalance &&
msg.sender != currentPoolAddress &&
swapAndLiquifyEnabled
) {
swapAndLiquifyForEth(lockedBalanceForPool);
}
}
if (_isExcluded[sender] && !_isExcluded[recipient]) {
_transferFromExcluded(sender, recipient, amount);
} else if (!_isExcluded[sender] && _isExcluded[recipient]) {
_transferToExcluded(sender, recipient, amount);
} else if (!_isExcluded[sender] && !_isExcluded[recipient]) {
_transferStandard(sender, recipient, amount);
} else if (_isExcluded[sender] && _isExcluded[recipient]) {
_transferBothExcluded(sender, recipient, amount);
} else {
_transferStandard(sender, recipient, amount);
}
}
receive() external payable {}
function swapAndLiquifyForEth(uint256 lockedBalanceForPool) private lockTheSwap {
// split the contract balance except swapCallerFee into halves
uint256 lockedForSwap = lockedBalanceForPool.sub(_autoSwapCallerFee);
uint256 forLiquidity = lockedForSwap.divRound(liquidityRewardRate);
uint256 forLiquidityReward = lockedForSwap.sub(forLiquidity);
uint256 half = forLiquidity.div(2);
uint256 otherHalf = forLiquidity.sub(half);
// capture the contract's current ETH balance.
// this is so that we can capture exactly the amount of ETH that the
// swap creates, and not make the liquidity event include any ETH that
// has been manually sent to the contract
uint256 initialBalance = address(this).balance;
// swap tokens for ETH
swapTokensForEth(half);
// how much ETH did we just swap into?
uint256 newBalance = address(this).balance.sub(initialBalance);
// add liquidity to uniswap
addLiquidityForEth(otherHalf, newBalance);
emit SwapAndLiquify(_uniswapV2Router.WETH(), half, newBalance, otherHalf);
_transfer(address(this), uniswapETHPool, forLiquidityReward);
_transfer(address(this), tx.origin, _autoSwapCallerFee);
}
function swapTokensForEth(uint256 tokenAmount) private {
// generate the uniswap pair path of token -> weth
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = _uniswapV2Router.WETH();
_approve(address(this), address(_uniswapV2Router), tokenAmount);
// make the swap
_uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(
tokenAmount,
0, // accept any amount of ETH
path,
address(this),
block.timestamp
);
}
function addLiquidityForEth(uint256 tokenAmount, uint256 ethAmount) private {
// approve token transfer to cover all possible scenarios
_approve(address(this), address(_uniswapV2Router), tokenAmount);
// add the liquidity
_uniswapV2Router.addLiquidityETH{value: ethAmount}(
address(this),
tokenAmount,
0, // slippage is unavoidable
0, // slippage is unavoidable
address(this),
block.timestamp
);
}
function _transferStandard(address sender, address recipient, uint256 tAmount) private
{
uint256 currentRate = _getRate();
uint256 TAmount = tAmount.mul(internalDecimals).div(RiseScalingFactor);
uint256 rAmount = TAmount.mul(currentRate);
_rOwned[sender] = _rOwned[sender].sub(rAmount);
if(inSwapAndLiquify) {
_rOwned[recipient] = _rOwned[recipient].add(rAmount);
emit Transfer(sender, recipient, tAmount);
}
else if (_isUniswapPairAddress(recipient))
{
uint256 fee = getSellBurn(TAmount);
(uint256 rTransferAmount, uint256 rBurnFee, uint256 rFYFee, uint256 rRewardFee) = _getRValues(rAmount, fee, currentRate);
(uint256 tTransferAmount, uint256 tFYFee, uint256 tBurnFee, uint256 tRewardFee) = _getTValues(TAmount, fee);
_totalSupply = _totalSupply.sub(_scaling(tBurnFee));
_reflectFee(rFYFee, tFYFee);
_transferStandardSell(sender, recipient, tBurnFee, rTransferAmount, rBurnFee, rRewardFee, tTransferAmount, tRewardFee);
}
else
{
if(!_isWhitelisted(sender, recipient))
{
uint256 fee = getTxBurn(TAmount);
(uint256 rTransferAmount, uint256 rBurnFee, uint256 rFYFee, uint256 rRewardFee) = _getRValues(rAmount, fee, currentRate);
(uint256 tTransferAmount, uint256 tFYFee, uint256 tBurnFee, uint256 tRewardFee) = _getTValues(TAmount, fee);
_totalSupply = _totalSupply.sub(_scaling(tBurnFee));
_reflectFee(rFYFee, tFYFee);
_transferStandardTx(sender, recipient, tBurnFee, rTransferAmount, rBurnFee, rRewardFee, tTransferAmount, tRewardFee);
}
else
{
_rOwned[recipient] = _rOwned[recipient].add(rAmount);
emit Transfer(sender, recipient, tAmount);
}
}
}
function _transferStandardSell(address sender, address recipient, uint256 tBurnFee, uint256 rTransferAmount, uint256 rBurnFee, uint256 rRewardFee, uint256 tTransferAmount, uint256 tRewardFee) private
{
_rOwned[BurnAddress] = _rOwned[BurnAddress].add(rBurnFee);
_rOwned[recipient] = _rOwned[recipient].add(rTransferAmount);
_rOwned[rewardAddress] = _rOwned[rewardAddress].add(rRewardFee);
emit Transfer(sender, recipient, _scaling(tTransferAmount));
emit Transfer(sender, BurnAddress, _scaling(tBurnFee));
emit Transfer(sender, rewardAddress, _scaling(tRewardFee));
}
function _transferStandardTx(address sender, address recipient, uint256 tBurnFee, uint256 rTransferAmount, uint256 rBurnFee, uint256 rRewardFee, uint256 tTransferAmount, uint256 tRewardFee) private
{
_rOwned[BurnAddress] = _rOwned[BurnAddress].add(rBurnFee);
_rOwned[recipient] = _rOwned[recipient].add(rTransferAmount);
_rOwned[rewardAddress] = _rOwned[rewardAddress].add(rRewardFee);
emit Transfer(sender, recipient, _scaling(tTransferAmount));
emit Transfer(sender, BurnAddress, _scaling(tBurnFee));
emit Transfer(sender, rewardAddress, _scaling(tRewardFee));
}
function _transferToExcluded(address sender, address recipient, uint256 tAmount) private
{
uint256 currentRate = _getRate();
uint256 TAmount = tAmount.mul(internalDecimals).div(RiseScalingFactor);
uint256 rAmount = TAmount.mul(currentRate);
_rOwned[sender] = _rOwned[sender].sub(rAmount);
if(inSwapAndLiquify) {
_rOwned[recipient] = _rOwned[recipient].add(rAmount);
emit Transfer(sender, recipient, tAmount);
}
else if(_isUniswapPairAddress(recipient))
{
uint256 fee = getSellBurn(TAmount);
(, uint256 rBurnFee, uint256 rFYFee, uint256 rRewardFee) = _getRValues(rAmount, fee, currentRate);
(uint256 tTransferAmount, uint256 tFYFee, uint256 tBurnFee, uint256 tRewardFee) = _getTValues(TAmount, fee);
_totalSupply = _totalSupply.sub(_scaling(tBurnFee));
_reflectFee(rFYFee, tFYFee);
_transferToExcludedSell(sender, recipient, tBurnFee, rBurnFee, rRewardFee, tTransferAmount, tRewardFee);
}
else
{
if(!_isWhitelisted(sender, recipient))
{
uint256 fee = getTxBurn(TAmount);
(, uint256 rBurnFee, uint256 rFYFee, uint256 rRewardFee) = _getRValues(rAmount, fee, currentRate);
(uint256 tTransferAmount, uint256 tFYFee, uint256 tBurnFee, uint256 tRewardFee) = _getTValues(TAmount, fee);
_totalSupply = _totalSupply.sub(_scaling(tBurnFee));
_reflectFee(rFYFee, tFYFee);
_transferToExcludedSell(sender, recipient, tBurnFee, rBurnFee, rRewardFee, tTransferAmount, tRewardFee);
}
else
{
_tOwned[recipient] = _tOwned[recipient].add(TAmount);
emit Transfer(sender, recipient, tAmount);
}
}
}
function _transferToExcludedSell (address sender, address recipient, uint256 tBurnFee, uint256 tTransferAmount, uint256 rBurnFee, uint256 rRewardFee, uint256 tRewardFee) private
{
_rOwned[BurnAddress] = _rOwned[BurnAddress].add(rBurnFee);
_tOwned[recipient] = _tOwned[recipient].add(tTransferAmount);
_rOwned[rewardAddress] = _rOwned[rewardAddress].add(rRewardFee);
emit Transfer(sender, recipient, _scaling(tTransferAmount));
emit Transfer(sender, BurnAddress, _scaling(tBurnFee));
emit Transfer(sender, rewardAddress, _scaling(tRewardFee));
}
function _transferToExcludedTx (address sender, address recipient, uint256 tBurnFee, uint256 tTransferAmount, uint256 rBurnFee, uint256 rRewardFee, uint256 tRewardFee) private
{
_rOwned[BurnAddress] = _rOwned[BurnAddress].add(rBurnFee);
_tOwned[recipient] = _tOwned[recipient].add(tTransferAmount);
_rOwned[rewardAddress] = _rOwned[rewardAddress].add(rRewardFee);
emit Transfer(sender, recipient, _scaling(tTransferAmount));
emit Transfer(sender, BurnAddress, _scaling(tBurnFee));
emit Transfer(sender, rewardAddress, _scaling(tRewardFee));
}
function _transferFromExcluded(address sender, address recipient, uint256 tAmount) private
{
uint256 currentRate = _getRate();
uint256 TAmount = tAmount.mul(internalDecimals).div(RiseScalingFactor);
uint256 rAmount = TAmount.mul(currentRate);
_tOwned[sender] = _tOwned[sender].sub(tAmount);
_rOwned[sender] = _rOwned[sender].sub(rAmount);
if(inSwapAndLiquify) {
_rOwned[recipient] = _rOwned[recipient].add(rAmount);
emit Transfer(sender, recipient, tAmount);
}
else if(_isUniswapPairAddress(recipient))
{
uint256 fee = getSellBurn(TAmount);
(uint256 rTransferAmount, uint256 rBurnFee, uint256 rFYFee, uint256 rRewardFee) = _getRValues(rAmount, fee, currentRate);
(uint256 tTransferAmount, uint256 tFYFee, uint256 tBurnFee, uint256 tRewardFee) = _getTValues(TAmount, fee);
_totalSupply = _totalSupply.sub(_scaling(tBurnFee));
_reflectFee(rFYFee, tFYFee);
_transferFromExcludedSell(sender, recipient, tBurnFee, rTransferAmount, rBurnFee, rRewardFee, tTransferAmount, tRewardFee);
}
else
{
if(!_isWhitelisted(sender, recipient))
{
uint256 fee = getTxBurn(TAmount);
(uint256 rTransferAmount, uint256 rBurnFee, uint256 rFYFee, uint256 rRewardFee) = _getRValues(rAmount, fee, currentRate);
(uint256 tTransferAmount, uint256 tFYFee, uint256 tBurnFee, uint256 tRewardFee) = _getTValues(TAmount, fee);
_totalSupply = _totalSupply.sub(_scaling(tBurnFee));
_reflectFee(rFYFee, tFYFee);
_transferFromExcludedTx(sender, recipient, tBurnFee, rTransferAmount, rBurnFee, rRewardFee, tTransferAmount, tRewardFee);
}
else
{
_rOwned[recipient] = _rOwned[recipient].add(rAmount);
emit Transfer(sender, recipient, tAmount);
}
}
}
function _transferFromExcludedSell(address sender, address recipient, uint256 tBurnFee, uint256 rTransferAmount, uint256 rBurnFee, uint256 rRewardFee, uint256 tTransferAmount, uint256 tRewardFee) private
{
_rOwned[BurnAddress] = _rOwned[BurnAddress].add(rBurnFee);
_rOwned[recipient] = _rOwned[recipient].add(rTransferAmount);
_rOwned[rewardAddress] = _rOwned[rewardAddress].add(rRewardFee);
emit Transfer(sender, recipient, _scaling(tTransferAmount));
emit Transfer(sender, BurnAddress, _scaling(tBurnFee));
emit Transfer(sender, rewardAddress, _scaling(tRewardFee));
}
function _transferFromExcludedTx(address sender, address recipient, uint256 tBurnFee, uint256 rTransferAmount, uint256 rBurnFee, uint256 rRewardFee, uint256 tTransferAmount, uint256 tRewardFee) private
{
_rOwned[BurnAddress] = _rOwned[BurnAddress].add(rBurnFee);
_rOwned[recipient] = _rOwned[recipient].add(rTransferAmount);
_rOwned[rewardAddress] = _rOwned[rewardAddress].add(rRewardFee);
emit Transfer(sender, recipient, _scaling(tTransferAmount));
emit Transfer(sender, BurnAddress, _scaling(tBurnFee));
emit Transfer(sender, rewardAddress, _scaling(tRewardFee));
}
function _transferBothExcluded(address sender, address recipient, uint256 tAmount) private
{
uint256 currentRate = _getRate();
uint256 TAmount = tAmount.mul(internalDecimals).div(RiseScalingFactor);
uint256 rAmount = TAmount.mul(currentRate);
_tOwned[sender] = _tOwned[sender].sub(tAmount);
_rOwned[sender] = _rOwned[sender].sub(rAmount);
if(inSwapAndLiquify) {
_rOwned[recipient] = _rOwned[recipient].add(rAmount);
emit Transfer(sender, recipient, tAmount);
}
else if(_isUniswapPairAddress(recipient))
{
uint256 fee = getSellBurn(TAmount);
(uint256 rTransferAmount, uint256 rBurnFee, uint256 rFYFee, uint256 rRewardFee) = _getRValues(rAmount, fee, currentRate);
(uint256 tTransferAmount, uint256 tFYFee, uint256 tBurnFee, uint256 tRewardFee) = _getTValues(TAmount, fee);
_totalSupply = _totalSupply.sub(_scaling(tBurnFee));
_reflectFee(rFYFee, tFYFee);
_transferBothExcludedSell(sender, recipient, tBurnFee, rTransferAmount, rBurnFee, rRewardFee, tTransferAmount, tRewardFee);
}
else
{
if(!_isWhitelisted(sender, recipient))
{
uint256 fee = getTxBurn(TAmount);
(uint256 rTransferAmount, uint256 rBurnFee, uint256 rFYFee, uint256 rRewardFee) = _getRValues(rAmount, fee, currentRate);
(uint256 tTransferAmount, uint256 tFYFee, uint256 tBurnFee, uint256 tRewardFee) = _getTValues(TAmount, fee);
_totalSupply = _totalSupply.sub(_scaling(tBurnFee));
_reflectFee(rFYFee, tFYFee);
_transferBothExcludedTx(sender, recipient, tBurnFee, rTransferAmount, rBurnFee, rRewardFee, tTransferAmount, tRewardFee);
}
else
{
_rOwned[recipient] = _rOwned[recipient].add(rAmount);
_tOwned[recipient] = _tOwned[recipient].add(TAmount);
emit Transfer(sender, recipient, tAmount);
}
}
}
function _transferBothExcludedSell(address sender, address recipient, uint256 tBurnFee, uint256 rTransferAmount, uint256 rBurnFee, uint256 tTransferAmount, uint256 rRewardFee, uint256 tRewardFee) private
{
_rOwned[BurnAddress] = _rOwned[BurnAddress].add(rBurnFee);
_rOwned[recipient] = _rOwned[recipient].add(rTransferAmount);
_tOwned[recipient] = _tOwned[recipient].add(tTransferAmount);
_rOwned[rewardAddress] = _rOwned[rewardAddress].add(rRewardFee);
emit Transfer(sender, recipient, _scaling(tTransferAmount));
emit Transfer(sender, BurnAddress, _scaling(tBurnFee));
emit Transfer(sender, rewardAddress, _scaling(tRewardFee));
}
function _transferBothExcludedTx(address sender, address recipient, uint256 tBurnFee, uint256 rTransferAmount, uint256 rBurnFee, uint256 tTransferAmount, uint256 rRewardFee, uint256 tRewardFee) private
{
_rOwned[BurnAddress] = _rOwned[BurnAddress].add(rBurnFee);
_rOwned[recipient] = _rOwned[recipient].add(rTransferAmount);
_tOwned[recipient] = _tOwned[recipient].add(tTransferAmount);
_rOwned[rewardAddress] = _rOwned[rewardAddress].add(rRewardFee);
emit Transfer(sender, recipient, _scaling(tTransferAmount));
emit Transfer(sender, BurnAddress, _scaling(tBurnFee));
emit Transfer(sender, rewardAddress, _scaling(tRewardFee));
}
function _scaling(uint256 amount) private view returns (uint256)
{
uint256 scaledAmount = amount.mul(RiseScalingFactor).div(internalDecimals);
return(scaledAmount);
}
function _reflectFee(uint256 rFee, uint256 tFee) private
{
_rTotal = _rTotal.sub(rFee);
_tFeeTotal = _tFeeTotal.add(tFee);
}
function _getTValues(uint256 TAmount, uint256 fee) private view returns (uint256, uint256, uint256, uint256)
{
uint256 tFYFee = TAmount.div(FYFee);
uint256 tBurnFee = BURN_TOP*fee/BURN_BOTTOM;
uint256 tRewardFee = fee.sub(tBurnFee);
uint256 tTransferAmount = TAmount.sub(tFYFee).sub(tBurnFee).sub(tRewardFee);
return (tTransferAmount, tFYFee, tBurnFee, tRewardFee);
}
function _getRValues(uint256 rAmount, uint256 fee, uint256 currentRate) private view returns (uint256, uint256, uint256, uint256)
{
uint256 rFYFee = rAmount.div(FYFee);
uint256 rBurnFee = (BURN_TOP*fee/BURN_BOTTOM).mul(currentRate);
uint256 rRewardFee = fee.mul(currentRate).sub(rBurnFee);
uint256 rTransferAmount = _getRValues2(rAmount, rFYFee, rBurnFee, rRewardFee);
return (rTransferAmount, rBurnFee, rFYFee, rRewardFee);
}
function _getRValues2(uint256 rAmount, uint256 rFYFee, uint256 rBurnFee, uint256 rRewardFee) private pure returns (uint256)
{
uint256 rTransferAmount = rAmount.sub(rFYFee).sub(rBurnFee).sub(rRewardFee);
return (rTransferAmount);
}
function _getRate() private view returns(uint256)
{
(uint256 rSupply, uint256 tSupply) = _getCurrentSupply();
return rSupply.div(tSupply);
}
function _getCurrentSupply() private view returns(uint256, uint256)
{
uint256 rSupply = _rTotal;
uint256 tSupply = initSupply;
for (uint256 i = 0; i < _excluded.length; i++) {
if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return (_rTotal, initSupply);
rSupply = rSupply.sub(_rOwned[_excluded[i]]);
tSupply = tSupply.sub(_tOwned[_excluded[i]]);
}
if (rSupply < _rTotal.div(initSupply)) return (_rTotal, initSupply);
return (rSupply, tSupply);
}
function _setRewardAddress(address rewards_) external onlyOwner
{
rewardAddress = rewards_;
}
/**
* @notice Initiates a new rebase operation, provided the minimum time period has elapsed.
*
* @dev The supply adjustment equals (totalSupply * DeviationFromTargetRate) / rebaseLag
* Where DeviationFromTargetRate is (MarketOracleRate - targetRate) / targetRate
* and targetRate is CpiOracleRate / baseCpi
*/
function rebase(uint256 epoch, uint256 indexDelta, bool positive) external onlyRebaser returns (uint256)
{
uint256 currentRate = _getRate();
if (!positive)
{
uint256 newScalingFactor = RiseScalingFactor.mul(BASE.sub(indexDelta)).div(BASE);
RiseScalingFactor = newScalingFactor;
_totalSupply = ((initSupply.sub(_rOwned[BurnAddress].div(currentRate))
.mul(RiseScalingFactor).div(internalDecimals)));
emit Rebase(epoch, RiseScalingFactor);
IUniswapV2Pair(uniswapETHPool).sync();
for (uint256 i = 0; i < futurePools.length; i++) {
address futurePoolAddress = futurePools[i];
IUniswapV2Pair(futurePoolAddress).sync();
}
return _totalSupply;
}
else
{
uint256 newScalingFactor = RiseScalingFactor.mul(BASE.add(indexDelta)).div(BASE);
if (newScalingFactor < _maxScalingFactor())
{
RiseScalingFactor = newScalingFactor;
}
else
{
RiseScalingFactor = _maxScalingFactor();
}
_totalSupply = ((initSupply.sub(_rOwned[BurnAddress].div(currentRate))
.mul(RiseScalingFactor).div(internalDecimals)));
emit Rebase(epoch, RiseScalingFactor);
IUniswapV2Pair(uniswapETHPool).sync();
for (uint256 i = 0; i < futurePools.length; i++) {
address futurePoolAddress = futurePools[i];
IUniswapV2Pair(futurePoolAddress).sync();
}
return _totalSupply;
}
}
function getCurrentPoolAddress() public view returns(address) {
return currentPoolAddress;
}
function getCurrentPairTokenAddress() public view returns(address) {
return currentPairTokenAddress;
}
function _setMaxTxAmount(uint256 maxTxAmount) external onlyOwner() {
require(maxTxAmount >= 10**8 , 'Rise: maxTxAmount should be greater than 0.1 RISE');
_maxTxAmount = maxTxAmount;
emit MaxTxAmountUpdated(maxTxAmount);
}
function _setMinTokensBeforeSwap(uint256 minTokensBeforeSwap) external onlyOwner() {
require(minTokensBeforeSwap >= 1 * 10**9 && minTokensBeforeSwap <= 2000 * 10**9, 'Rise: minTokenBeforeSwap should be between 1 and 2000 RISE');
require(minTokensBeforeSwap > _autoSwapCallerFee , 'Rise: minTokenBeforeSwap should be greater than autoSwapCallerFee');
_minTokensBeforeSwap = minTokensBeforeSwap;
emit MinTokensBeforeSwapUpdated(minTokensBeforeSwap);
}
function _setAutoSwapCallerFee(uint256 autoSwapCallerFee) external onlyOwner() {
require(autoSwapCallerFee >= 10**8, 'Rise: autoSwapCallerFee should be greater than 0.1 RISE');
_autoSwapCallerFee = autoSwapCallerFee;
emit AutoSwapCallerFeeUpdated(autoSwapCallerFee);
}
function updateSwapAndLiquifyEnabled(bool _enabled) public onlyOwner {
swapAndLiquifyEnabled = _enabled;
emit SwapAndLiquifyEnabledUpdated(_enabled);
}
function _enableTrading() external onlyOwner() {
tradingEnabled = true;
TradingEnabled();
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library RiseSafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
function ceil(uint256 a, uint256 m) internal pure returns (uint256)
{
uint256 c = add(a,m);
uint256 d = sub(c,1);
return mul(div(d,m),m);
}
function divRound(uint256 x, uint256 y) internal pure returns (uint256) {
require(y != 0, "Div by zero");
uint256 r = x / y;
if (x % y != 0) {
r = r + 1;
}
return r;
}
}