Contract Source Code:
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import "./interfaces/IEsAPEX2.sol";
import "../utils/Ownable.sol";
import "../libraries/TransferHelper.sol";
import "../libraries/FullMath.sol";
contract EsAPEX2 is IEsAPEX2, Ownable {
using FullMath for uint256;
string public constant override name = "esApeX";
string public constant override symbol = "esAPEX";
uint8 public constant override decimals = 18;
address public immutable override apeXToken;
address public override treasury;
uint256 public override forceWithdrawMinRemainRatio; // max:10000, default:1666
uint256 public override vestTime;
uint256 public override totalSupply;
mapping(address => uint256) public override balanceOf;
mapping(address => mapping(address => uint256)) public override allowance;
mapping(address => bool) public isMinter;
mapping(address => VestInfo[]) public userVestInfos;
constructor(
address owner_,
address apeXToken_,
address treasury_,
uint256 vestTime_,
uint256 forceWithdrawMinRemainRatio_
) {
owner = owner_;
apeXToken = apeXToken_;
treasury = treasury_;
vestTime = vestTime_;
forceWithdrawMinRemainRatio = forceWithdrawMinRemainRatio_;
isMinter[owner] = true;
}
function addMinter(address minter) external onlyOwner {
require(!isMinter[minter], "minter already exist");
isMinter[minter] = true;
}
function removeMinter(address minter) external onlyOwner {
require(isMinter[minter], "minter not found");
isMinter[minter] = false;
}
function updateTreasury(address newTreasury) external onlyOwner {
require(newTreasury != address(0), "zero address");
treasury = newTreasury;
}
function updateVestTime(uint256 newVestTime) external onlyOwner {
emit VestTimeChanged(vestTime, newVestTime);
vestTime = newVestTime;
}
function updateForceWithdrawMinRemainRatio(uint256 newRatio) external onlyOwner {
require(newRatio <= 10000, "newRatio > 10000");
emit ForceWithdrawMinRemainRatioChanged(forceWithdrawMinRemainRatio, newRatio);
forceWithdrawMinRemainRatio = newRatio;
}
function mint(address to, uint256 amount) external override returns (bool) {
require(isMinter[msg.sender], "not minter");
require(amount > 0, "zero amount");
TransferHelper.safeTransferFrom(apeXToken, msg.sender, address(this), amount);
_mint(to, amount);
return true;
}
function vest(uint256 amount) external override {
require(amount > 0, "zero amount");
uint256 fromBalance = balanceOf[msg.sender];
require(fromBalance >= amount, "not enough balance to be vest");
_transfer(msg.sender, address(this), amount);
VestInfo memory info = VestInfo({
startTime: block.timestamp,
endTime: block.timestamp + vestTime,
vestAmount: amount,
claimedAmount: 0,
forceWithdrawn: false
});
uint256 vestId = userVestInfos[msg.sender].length;
userVestInfos[msg.sender].push(info);
emit Vest(msg.sender, amount, info.endTime, vestId);
}
function withdraw(address to, uint256 vestId, uint256 amount) external override {
_withdraw(to, vestId, amount);
}
function batchWithdraw(address to, uint256[] memory vestIds, uint256[] memory amounts) external override {
require(vestIds.length == amounts.length, "two arrays' length not the same");
for (uint256 i = 0; i < vestIds.length; i++) {
_withdraw(to, vestIds[i], amounts[i]);
}
}
function forceWithdraw(
address to,
uint256 vestId
) external override returns (uint256 withdrawAmount, uint256 penalty) {
return _forceWithdraw(to, vestId);
}
function batchForceWithdraw(
address to,
uint256[] memory vestIds
) external override returns (uint256 withdrawAmount, uint256 penalty) {
for (uint256 i = 0; i < vestIds.length; i++) {
(uint256 withdrawAmount_, uint256 penalty_) = _forceWithdraw(to, vestIds[i]);
withdrawAmount += withdrawAmount_;
penalty += penalty_;
}
}
function transfer(address to, uint256 value) external override returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
function transferFrom(address from, address to, uint256 value) external override returns (bool) {
_spendAllowance(from, msg.sender, value);
_transfer(from, to, value);
return true;
}
function approve(address spender, uint256 value) external override returns (bool) {
_approve(msg.sender, spender, value);
return true;
}
function getVestInfo(address user, uint256 vestId) external view override returns (VestInfo memory) {
return userVestInfos[user][vestId];
}
function getVestInfosByPage(
address user,
uint256 offset,
uint256 size
) external view override returns (VestInfo[] memory vestInfos) {
uint256 len = userVestInfos[user].length;
if (offset > len) {
return vestInfos;
}
if (size >= len - offset) {
size = len - offset;
}
vestInfos = new VestInfo[](size);
for (uint256 i = 0; i < len; i++) {
vestInfos[i] = userVestInfos[user][offset + i];
}
}
function getVestInfosLength(address user) external view override returns (uint256 length) {
return userVestInfos[user].length;
}
function getClaimable(address user, uint256 vestId) external view override returns (uint256 claimable) {
return _getClaimable(user, vestId);
}
function getTotalClaimable(
address user,
uint256[] memory vestIds
) external view override returns (uint256 claimable) {
for (uint256 i = 0; i < vestIds.length; i++) {
claimable += _getClaimable(user, vestIds[i]);
}
}
function getLocking(address user, uint256 vestId) external view override returns (uint256 locking) {
return _getLocking(user, vestId);
}
function getTotalLocking(address user, uint256[] memory vestIds) external view override returns (uint256 locking) {
for (uint256 i = 0; i < vestIds.length; i++) {
locking += _getLocking(user, vestIds[i]);
}
}
function getForceWithdrawable(
address user,
uint256 vestId
) external view override returns (uint256 withdrawable, uint256 penalty) {
return _getForceWithdrawable(user, vestId);
}
function getTotalForceWithdrawable(
address user,
uint256[] memory vestIds
) external view override returns (uint256 withdrawable, uint256 penalty) {
for (uint256 i = 0; i < vestIds.length; i++) {
(uint256 withdrawable_, uint256 penalty_) = _getForceWithdrawable(user, vestIds[i]);
withdrawable += withdrawable_;
penalty += penalty_;
}
}
function _getClaimable(address user, uint256 vestId) internal view returns (uint256 claimable) {
VestInfo memory info = userVestInfos[user][vestId];
if (!info.forceWithdrawn) {
uint256 pastTime = block.timestamp - info.startTime;
uint256 wholeTime = info.endTime - info.startTime;
if (pastTime >= wholeTime) {
claimable = info.vestAmount;
} else {
claimable = info.vestAmount.mulDiv(pastTime, wholeTime);
}
claimable = claimable - info.claimedAmount;
}
}
function _getLocking(address user, uint256 vestId) internal view returns (uint256 locking) {
VestInfo memory info = userVestInfos[user][vestId];
if (!info.forceWithdrawn) {
if (block.timestamp >= info.endTime) {
locking = 0;
} else {
uint256 leftTime = info.endTime - block.timestamp;
uint256 wholeTime = info.endTime - info.startTime;
locking = info.vestAmount.mulDiv(leftTime, wholeTime);
}
}
}
function _getForceWithdrawable(
address user,
uint256 vestId
) internal view returns (uint256 withdrawable, uint256 penalty) {
VestInfo memory info = userVestInfos[user][vestId];
uint256 locking = _getLocking(user, vestId);
uint256 left = (locking *
(forceWithdrawMinRemainRatio +
((10000 - forceWithdrawMinRemainRatio) * (block.timestamp - info.startTime)) /
vestTime)) / 10000;
if (left > locking) left = locking;
uint256 claimable = _getClaimable(user, vestId);
withdrawable = claimable + left;
penalty = locking - left;
}
function _withdraw(address to, uint256 vestId, uint256 amount) internal {
require(to != address(0), "can not withdraw to zero address");
require(amount > 0, "zero amount");
VestInfo storage info = userVestInfos[msg.sender][vestId];
require(!info.forceWithdrawn, "already force withdrawn");
uint256 claimable = _getClaimable(msg.sender, vestId);
require(amount <= claimable, "amount > claimable");
info.claimedAmount += amount;
TransferHelper.safeTransfer(apeXToken, to, amount);
_burn(address(this), amount);
emit Withdraw(msg.sender, to, amount, vestId);
}
function _forceWithdraw(address to, uint256 vestId) internal returns (uint256 withdrawAmount, uint256 penalty) {
require(to != address(0), "can not withdraw to zero address");
VestInfo storage info = userVestInfos[msg.sender][vestId];
require(!info.forceWithdrawn, "already force withdrawn");
(withdrawAmount, penalty) = _getForceWithdrawable(msg.sender, vestId);
require(withdrawAmount > 0, "withdrawAmount is zero");
TransferHelper.safeTransfer(apeXToken, to, withdrawAmount);
if (penalty > 0) TransferHelper.safeTransfer(apeXToken, treasury, penalty);
info.claimedAmount += withdrawAmount;
info.forceWithdrawn = true;
_burn(address(this), withdrawAmount + penalty);
emit ForceWithdraw(msg.sender, to, withdrawAmount, penalty, vestId);
}
function _spendAllowance(address from, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance[from][spender];
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= value, "insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - value);
}
}
}
function _mint(address to, uint256 value) internal {
totalSupply = totalSupply + value;
balanceOf[to] = balanceOf[to] + value;
emit Transfer(address(0), to, value);
}
function _burn(address from, uint256 value) internal {
require(balanceOf[from] >= value, "balance of from < value");
balanceOf[from] = balanceOf[from] - value;
totalSupply = totalSupply - value;
emit Transfer(from, address(0), value);
}
function _approve(address _owner, address spender, uint256 value) private {
allowance[_owner][spender] = value;
emit Approval(_owner, spender, value);
}
function _transfer(address from, address to, uint256 value) private {
require(to != address(0), "can not tranfer to zero address");
uint256 fromBalance = balanceOf[from];
require(fromBalance >= value, "transfer amount exceeds balance");
balanceOf[from] = fromBalance - value;
balanceOf[to] = balanceOf[to] + value;
emit Transfer(from, to, value);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import "../../interfaces/IERC20.sol";
interface IEsAPEX2 is IERC20 {
event ForceWithdrawMinRemainRatioChanged(uint256 oldRatio, uint256 newRatio);
event VestTimeChanged(uint256 oldVestTime, uint256 newVestTime);
event Vest(address indexed user, uint256 amount, uint256 endTime, uint256 vestId);
event Withdraw(address indexed user, address indexed to, uint256 amount, uint256 vestId);
event ForceWithdraw(
address indexed user,
address indexed to,
uint256 withdrawAmount,
uint256 penalty,
uint256 vestId
);
struct VestInfo {
uint256 startTime;
uint256 endTime;
uint256 vestAmount;
uint256 claimedAmount;
bool forceWithdrawn;
}
function apeXToken() external view returns (address);
function treasury() external view returns (address);
function forceWithdrawMinRemainRatio() external view returns (uint256);
function vestTime() external view returns (uint256);
function getVestInfo(address user, uint256 vestId) external view returns (VestInfo memory);
function getVestInfosByPage(
address user,
uint256 offset,
uint256 size
) external view returns (VestInfo[] memory vestInfos);
function getVestInfosLength(address user) external view returns (uint256 length);
function getClaimable(address user, uint256 vestId) external view returns (uint256 claimable);
function getTotalClaimable(address user, uint256[] memory vestIds) external view returns (uint256 claimable);
function getLocking(address user, uint256 vestId) external view returns (uint256 locking);
function getTotalLocking(address user, uint256[] memory vestIds) external view returns (uint256 locking);
function getForceWithdrawable(address user, uint256 vestId)
external
view
returns (uint256 withdrawable, uint256 penalty);
function getTotalForceWithdrawable(address user, uint256[] memory vestIds)
external
view
returns (uint256 withdrawable, uint256 penalty);
function mint(address to, uint256 apeXAmount) external returns (bool);
function vest(uint256 amount) external;
function withdraw(
address to,
uint256 vestId,
uint256 amount
) external;
function batchWithdraw(
address to,
uint256[] memory vestIds,
uint256[] memory amounts
) external;
function forceWithdraw(address to, uint256 vestId) external returns (uint256 withdrawAmount, uint256 penalty);
function batchForceWithdraw(address to, uint256[] memory vestIds)
external
returns (uint256 withdrawAmount, uint256 penalty);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
abstract contract Ownable {
address public owner;
address public pendingOwner;
event NewOwner(address indexed oldOwner, address indexed newOwner);
event NewPendingOwner(address indexed oldPendingOwner, address indexed newPendingOwner);
modifier onlyOwner() {
require(msg.sender == owner, "Ownable: REQUIRE_OWNER");
_;
}
function setPendingOwner(address newPendingOwner) external onlyOwner {
require(pendingOwner != newPendingOwner, "Ownable: ALREADY_SET");
emit NewPendingOwner(pendingOwner, newPendingOwner);
pendingOwner = newPendingOwner;
}
function acceptOwner() external {
require(msg.sender == pendingOwner, "Ownable: REQUIRE_PENDING_OWNER");
address oldOwner = owner;
address oldPendingOwner = pendingOwner;
owner = pendingOwner;
pendingOwner = address(0);
emit NewOwner(oldOwner, owner);
emit NewPendingOwner(oldPendingOwner, pendingOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false
library TransferHelper {
function safeApprove(
address token,
address to,
uint256 value
) internal {
// bytes4(keccak256(bytes('approve(address,uint256)')));
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));
require(
success && (data.length == 0 || abi.decode(data, (bool))),
"TransferHelper::safeApprove: approve failed"
);
}
function safeTransfer(
address token,
address to,
uint256 value
) internal {
// bytes4(keccak256(bytes('transfer(address,uint256)')));
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));
require(
success && (data.length == 0 || abi.decode(data, (bool))),
"TransferHelper::safeTransfer: transfer failed"
);
}
function safeTransferFrom(
address token,
address from,
address to,
uint256 value
) internal {
// bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));
require(
success && (data.length == 0 || abi.decode(data, (bool))),
"TransferHelper::transferFrom: transferFrom failed"
);
}
function safeTransferETH(address to, uint256 value) internal {
(bool success, ) = to.call{value: value}(new bytes(0));
require(success, "TransferHelper::safeTransferETH: ETH transfer failed");
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
// todo unchecked
unchecked {
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = (~denominator + 1) & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IERC20 {
event Approval(address indexed owner, address indexed spender, uint256 value);
event Transfer(address indexed from, address indexed to, uint256 value);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 value) external returns (bool);
function transfer(address to, uint256 value) external returns (bool);
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool);
function totalSupply() external view returns (uint256);
function balanceOf(address owner) external view returns (uint256);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external pure returns (uint8);
}