ETH Price: $2,620.78 (-0.16%)

Contract Diff Checker

Contract Name:
EthenaMinting

Contract Source Code:

// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.20;

/* solhint-disable private-vars-leading-underscore */
/* solhint-disable var-name-mixedcase */

import "./SingleAdminAccessControl.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import "@openzeppelin/contracts/interfaces/IERC1271.sol";

import "./interfaces/IUSDe.sol";
import "./interfaces/IEthenaMinting.sol";
import "./interfaces/IWETH9.sol";

/**
 * @title Ethena Minting
 * @notice This contract mints and redeems USDe, the first staked Ethereum delta-neutral backed synthetic dollar
 */
contract EthenaMinting is IEthenaMinting, SingleAdminAccessControl, ReentrancyGuard {
  using SafeERC20 for IERC20;
  using EnumerableSet for EnumerableSet.AddressSet;

  /* --------------- CONSTANTS --------------- */

  /// @notice EIP712 domain
  bytes32 private constant EIP712_DOMAIN =
    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

  /// @notice route type
  bytes32 private constant ROUTE_TYPE = keccak256("Route(address[] addresses,uint128[] ratios)");

  /// @notice order type
  bytes32 private constant ORDER_TYPE = keccak256(
    "Order(string order_id,uint8 order_type,uint128 expiry,uint120 nonce,address benefactor,address beneficiary,address collateral_asset,uint128 collateral_amount,uint128 usde_amount)"
  );

  /// @notice role enabling to invoke mint
  bytes32 private constant MINTER_ROLE = keccak256("MINTER_ROLE");

  /// @notice role enabling to invoke redeem
  bytes32 private constant REDEEMER_ROLE = keccak256("REDEEMER_ROLE");

  /// @notice role enabling to transfer collateral to custody wallets
  bytes32 private constant COLLATERAL_MANAGER_ROLE = keccak256("COLLATERAL_MANAGER_ROLE");

  /// @notice role enabling to disable mint and redeem and remove minters and redeemers in an emergency
  bytes32 private constant GATEKEEPER_ROLE = keccak256("GATEKEEPER_ROLE");

  /// @notice EIP712 domain hash
  bytes32 private constant EIP712_DOMAIN_TYPEHASH = keccak256(abi.encodePacked(EIP712_DOMAIN));

  /// @notice EIP 1271 magic value hash
  bytes4 private constant EIP1271_MAGICVALUE = bytes4(keccak256("isValidSignature(bytes32,bytes)"));

  /// @notice address denoting native ether
  address private constant NATIVE_TOKEN = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;

  /// @notice EIP712 name
  bytes32 private constant EIP_712_NAME = keccak256("EthenaMinting");

  /// @notice holds EIP712 revision
  bytes32 private constant EIP712_REVISION = keccak256("1");

  /// @notice required ratio for route
  uint128 private constant ROUTE_REQUIRED_RATIO = 10_000;

  /// @notice stablecoin price ratio multiplier
  uint128 private constant STABLES_RATIO_MULTIPLIER = 10000;

  /// @notice wrapped ethereum
  IWETH9 private immutable WETH;

  /* --------------- STATE VARIABLES --------------- */

  /// @notice usde stablecoin
  IUSDe public immutable usde;

  // @notice whitelisted benefactors
  EnumerableSet.AddressSet private _whitelistedBenefactors;

  // @notice approved beneficiaries for a given benefactor
  mapping(address => EnumerableSet.AddressSet) private _approvedBeneficiariesPerBenefactor;

  // @notice custodian addresses
  EnumerableSet.AddressSet private _custodianAddresses;

  /// @notice holds computable chain id
  uint256 private immutable _chainId;

  /// @notice holds computable domain separator
  bytes32 private immutable _domainSeparator;

  /// @notice user deduplication
  mapping(address => mapping(uint256 => uint256)) private _orderBitmaps;

  /// @notice For smart contracts to delegate signing to EOA address
  mapping(address => mapping(address => DelegatedSignerStatus)) public delegatedSigner;

  // @notice the allowed price delta in bps for stablecoin minting
  uint128 public stablesDeltaLimit;

  /// @notice global single block totals
  GlobalConfig public globalConfig;

  /// @notice running total USDe minted/redeemed per single block
  mapping(uint256 => BlockTotals) public totalPerBlock;

  /// @notice total USDe that can be minted/redeemed across all assets per single block.
  mapping(uint256 => mapping(address => BlockTotals)) public totalPerBlockPerAsset;

  /// @notice configurations per token asset
  mapping(address => TokenConfig) public tokenConfig;

  /* --------------- MODIFIERS --------------- */

  /// @notice ensure that the already minted USDe in the actual block plus the amount to be minted is below the maximum mint amount
  /// @param mintAmount The USDe amount to be minted
  /// @param asset The asset to be minted
  modifier belowMaxMintPerBlock(uint128 mintAmount, address asset) {
    TokenConfig memory _config = tokenConfig[asset];
    if (!_config.isActive) revert UnsupportedAsset();
    if (totalPerBlockPerAsset[block.number][asset].mintedPerBlock + mintAmount > _config.maxMintPerBlock) {
      revert MaxMintPerBlockExceeded();
    }
    _;
  }

  /// @notice ensure that the already redeemed USDe in the actual block plus the amount to be redeemed is below the maximum redeem amount
  /// @param redeemAmount The USDe amount to be redeemed
  /// @param asset The asset to be redeemed
  modifier belowMaxRedeemPerBlock(uint128 redeemAmount, address asset) {
    TokenConfig memory _config = tokenConfig[asset];
    if (!_config.isActive) revert UnsupportedAsset();
    if (totalPerBlockPerAsset[block.number][asset].redeemedPerBlock + redeemAmount > _config.maxRedeemPerBlock) {
      revert MaxRedeemPerBlockExceeded();
    }
    _;
  }

  /// @notice ensure that the global, overall minted USDe in the actual block
  /// @notice plus the amount to be minted is below globalMaxMintPerBlock
  /// @param mintAmount The USDe amount to be minted
  modifier belowGlobalMaxMintPerBlock(uint128 mintAmount) {
    uint128 totalMintedThisBlock = totalPerBlock[uint128(block.number)].mintedPerBlock;
    if (totalMintedThisBlock + mintAmount > globalConfig.globalMaxMintPerBlock) revert GlobalMaxMintPerBlockExceeded();
    _;
  }

  /// @notice ensure that the global, overall redeemed USDe in the actual block
  /// @notice plus the amount to be redeemed is below globalMaxRedeemPerBlock
  /// @param redeemAmount The USDe amount to be redeemed
  modifier belowGlobalMaxRedeemPerBlock(uint128 redeemAmount) {
    uint128 totalRedeemedThisBlock = totalPerBlock[block.number].redeemedPerBlock;
    if (totalRedeemedThisBlock + redeemAmount > globalConfig.globalMaxRedeemPerBlock) {
      revert GlobalMaxRedeemPerBlockExceeded();
    }
    _;
  }

  /* --------------- CONSTRUCTOR --------------- */

  constructor(
    IUSDe _usde,
    IWETH9 _weth,
    address[] memory _assets,
    TokenConfig[] memory _tokenConfig,
    GlobalConfig memory _globalConfig,
    address[] memory _custodians,
    address _admin
  ) {
    if (address(_usde) == address(0)) revert InvalidUSDeAddress();
    if (address(_weth) == address(0)) revert InvalidZeroAddress();
    if (_tokenConfig.length == 0) revert NoAssetsProvided();
    if (_assets.length == 0) revert NoAssetsProvided();
    if (_admin == address(0)) revert InvalidZeroAddress();
    usde = _usde;
    WETH = _weth;

    _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);

    // Ensure every token config has an asset key
    if (_tokenConfig.length != _assets.length) {
      revert InvalidAssetAddress();
    }

    for (uint128 j = 0; j < _custodians.length;) {
      addCustodianAddress(_custodians[j]);
      unchecked {
        ++j;
      }
    }

    // Set the global max USDe mint/redeem limits
    globalConfig = _globalConfig;

    // Set the max mint/redeem limits per block for each asset
    for (uint128 k = 0; k < _tokenConfig.length;) {
      if (tokenConfig[_assets[k]].isActive || _assets[k] == address(0) || _assets[k] == address(usde)) {
        revert InvalidAssetAddress();
      }
      _setTokenConfig(_assets[k], _tokenConfig[k]);
      unchecked {
        ++k;
      }
    }

    if (msg.sender != _admin) {
      _grantRole(DEFAULT_ADMIN_ROLE, _admin);
    }

    _chainId = block.chainid;
    _domainSeparator = _computeDomainSeparator();

    emit USDeSet(address(_usde));
  }

  /* --------------- EXTERNAL --------------- */

  /**
   * @notice Fallback function to receive ether
   */
  receive() external payable {
    emit Received(msg.sender, msg.value);
  }

  /**
   * @notice Mint stablecoins from assets
   * @param order struct containing order details and confirmation from server
   * @param signature signature of the taker
   */
  function mint(Order calldata order, Route calldata route, Signature calldata signature)
    external
    override
    nonReentrant
    onlyRole(MINTER_ROLE)
    belowMaxMintPerBlock(order.usde_amount, order.collateral_asset)
    belowGlobalMaxMintPerBlock(order.usde_amount)
  {
    if (order.order_type != OrderType.MINT) revert InvalidOrder();
    verifyOrder(order, signature);
    if (!verifyRoute(route)) revert InvalidRoute();
    _deduplicateOrder(order.benefactor, order.nonce);
    // Add to the minted amount in this block
    totalPerBlockPerAsset[block.number][order.collateral_asset].mintedPerBlock += order.usde_amount;
    totalPerBlock[block.number].mintedPerBlock += order.usde_amount;
    _transferCollateral(
      order.collateral_amount, order.collateral_asset, order.benefactor, route.addresses, route.ratios
    );
    usde.mint(order.beneficiary, order.usde_amount);
    emit Mint(
      order.order_id,
      order.benefactor,
      order.beneficiary,
      msg.sender,
      order.collateral_asset,
      order.collateral_amount,
      order.usde_amount
    );
  }

  /**
   * @notice Mint stablecoins from assets
   * @param order struct containing order details and confirmation from server
   * @param signature signature of the taker
   */
  function mintWETH(Order calldata order, Route calldata route, Signature calldata signature)
    external
    nonReentrant
    onlyRole(MINTER_ROLE)
    belowMaxMintPerBlock(order.usde_amount, order.collateral_asset)
    belowGlobalMaxMintPerBlock(order.usde_amount)
  {
    if (order.order_type != OrderType.MINT) revert InvalidOrder();
    verifyOrder(order, signature);
    if (!verifyRoute(route)) revert InvalidRoute();
    _deduplicateOrder(order.benefactor, order.nonce);
    // Add to the minted amount in this block
    totalPerBlockPerAsset[block.number][order.collateral_asset].mintedPerBlock += order.usde_amount;
    totalPerBlock[block.number].mintedPerBlock += order.usde_amount;
    // Checks that the collateral asset is WETH also
    _transferEthCollateral(
      order.collateral_amount, order.collateral_asset, order.benefactor, route.addresses, route.ratios
    );
    usde.mint(order.beneficiary, order.usde_amount);
    emit Mint(
      order.order_id,
      order.benefactor,
      order.beneficiary,
      msg.sender,
      order.collateral_asset,
      order.collateral_amount,
      order.usde_amount
    );
  }

  /**
   * @notice Redeem stablecoins for assets
   * @param order struct containing order details and confirmation from server
   * @param signature signature of the taker
   */
  function redeem(Order calldata order, Signature calldata signature)
    external
    override
    nonReentrant
    onlyRole(REDEEMER_ROLE)
    belowMaxRedeemPerBlock(order.usde_amount, order.collateral_asset)
    belowGlobalMaxRedeemPerBlock(order.usde_amount)
  {
    if (order.order_type != OrderType.REDEEM) revert InvalidOrder();
    verifyOrder(order, signature);
    _deduplicateOrder(order.benefactor, order.nonce);
    // Add to the redeemed amount in this block
    totalPerBlockPerAsset[block.number][order.collateral_asset].redeemedPerBlock += order.usde_amount;
    totalPerBlock[block.number].redeemedPerBlock += order.usde_amount;
    usde.burnFrom(order.benefactor, order.usde_amount);
    _transferToBeneficiary(order.beneficiary, order.collateral_asset, order.collateral_amount);
    emit Redeem(
      order.order_id,
      order.benefactor,
      order.beneficiary,
      msg.sender,
      order.collateral_asset,
      order.collateral_amount,
      order.usde_amount
    );
  }

  /// @notice Sets the overall, global maximum USDe mint size per block
  function setGlobalMaxMintPerBlock(uint128 _globalMaxMintPerBlock) external onlyRole(DEFAULT_ADMIN_ROLE) {
    globalConfig.globalMaxMintPerBlock = _globalMaxMintPerBlock;
  }

  /// @notice Sets the overall, global maximum USDe redeem size per block
  function setGlobalMaxRedeemPerBlock(uint128 _globalMaxRedeemPerBlock) external onlyRole(DEFAULT_ADMIN_ROLE) {
    globalConfig.globalMaxRedeemPerBlock = _globalMaxRedeemPerBlock;
  }

  /// @notice Disables the mint and redeem
  function disableMintRedeem() external onlyRole(GATEKEEPER_ROLE) {
    globalConfig.globalMaxMintPerBlock = 0;
    globalConfig.globalMaxRedeemPerBlock = 0;
  }

  /// @notice Enables smart contracts to delegate an address for signing
  function setDelegatedSigner(address _delegateTo) external {
    delegatedSigner[_delegateTo][msg.sender] = DelegatedSignerStatus.PENDING;
    emit DelegatedSignerInitiated(_delegateTo, msg.sender);
  }

  /// @notice The delegated address to confirm delegation
  function confirmDelegatedSigner(address _delegatedBy) external {
    if (delegatedSigner[msg.sender][_delegatedBy] != DelegatedSignerStatus.PENDING) {
      revert DelegationNotInitiated();
    }
    delegatedSigner[msg.sender][_delegatedBy] = DelegatedSignerStatus.ACCEPTED;
    emit DelegatedSignerAdded(msg.sender, _delegatedBy);
  }

  /// @notice Enables smart contracts to undelegate an address for signing
  function removeDelegatedSigner(address _removedSigner) external {
    delegatedSigner[_removedSigner][msg.sender] = DelegatedSignerStatus.REJECTED;
    emit DelegatedSignerRemoved(_removedSigner, msg.sender);
  }

  /// @notice transfers an asset to a custody wallet
  function transferToCustody(address wallet, address asset, uint128 amount)
    external
    nonReentrant
    onlyRole(COLLATERAL_MANAGER_ROLE)
  {
    if (wallet == address(0) || !_custodianAddresses.contains(wallet)) revert InvalidAddress();
    if (asset == NATIVE_TOKEN) {
      (bool success,) = wallet.call{value: amount}("");
      if (!success) revert TransferFailed();
    } else {
      IERC20(asset).safeTransfer(wallet, amount);
    }
    emit CustodyTransfer(wallet, asset, amount);
  }

  /// @notice Removes an asset from the supported assets list
  function removeSupportedAsset(address asset) external onlyRole(DEFAULT_ADMIN_ROLE) {
    if (!tokenConfig[asset].isActive) revert InvalidAssetAddress();
    delete tokenConfig[asset];
    emit AssetRemoved(asset);
  }

  /// @notice Checks if an asset is supported.
  function isSupportedAsset(address asset) external view returns (bool) {
    return tokenConfig[asset].isActive;
  }

  /// @notice Removes an custodian from the custodian address list
  function removeCustodianAddress(address custodian) external onlyRole(DEFAULT_ADMIN_ROLE) {
    if (!_custodianAddresses.remove(custodian)) revert InvalidCustodianAddress();
    emit CustodianAddressRemoved(custodian);
  }

  /// @notice Removes the minter role from an account, this can ONLY be executed by the gatekeeper role
  /// @param minter The address to remove the minter role from
  function removeMinterRole(address minter) external onlyRole(GATEKEEPER_ROLE) {
    _revokeRole(MINTER_ROLE, minter);
  }

  /// @notice Removes the redeemer role from an account, this can ONLY be executed by the gatekeeper role
  /// @param redeemer The address to remove the redeemer role from
  function removeRedeemerRole(address redeemer) external onlyRole(GATEKEEPER_ROLE) {
    _revokeRole(REDEEMER_ROLE, redeemer);
  }

  /// @notice Removes the collateral manager role from an account, this can ONLY be executed by the gatekeeper role
  /// @param collateralManager The address to remove the collateralManager role from
  function removeCollateralManagerRole(address collateralManager) external onlyRole(GATEKEEPER_ROLE) {
    _revokeRole(COLLATERAL_MANAGER_ROLE, collateralManager);
  }

  /// @notice Removes the benefactor address from the benefactor whitelist
  function removeWhitelistedBenefactor(address benefactor) external onlyRole(DEFAULT_ADMIN_ROLE) {
    if (!_whitelistedBenefactors.remove(benefactor)) revert InvalidAddress();
    emit BenefactorRemoved(benefactor);
  }

  /* --------------- PUBLIC --------------- */

  /// @notice Adds an custodian to the supported custodians list.
  function addCustodianAddress(address custodian) public onlyRole(DEFAULT_ADMIN_ROLE) {
    if (custodian == address(0) || custodian == address(usde) || !_custodianAddresses.add(custodian)) {
      revert InvalidCustodianAddress();
    }
    emit CustodianAddressAdded(custodian);
  }

  /// @notice Adds a benefactor address to the benefactor whitelist
  function addWhitelistedBenefactor(address benefactor) public onlyRole(DEFAULT_ADMIN_ROLE) {
    if (benefactor == address(0) || !_whitelistedBenefactors.add(benefactor)) {
      revert InvalidBenefactorAddress();
    }
    emit BenefactorAdded(benefactor);
  }

  /// @notice Adds a beneficiary address to the approved beneficiaries list.
  /// @notice Only the benefactor can add or remove corresponding beneficiaries
  /// @param beneficiary The beneficiary address
  /// @param status The status of the beneficiary, true to be added, false to be removed.
  function setApprovedBeneficiary(address beneficiary, bool status) public {
    if (status) {
      if (!_approvedBeneficiariesPerBenefactor[msg.sender].add(beneficiary)) {
        revert InvalidBeneficiaryAddress();
      }
      else {
        emit BeneficiaryAdded(msg.sender, beneficiary);
      }
    } else {
      if (!_approvedBeneficiariesPerBenefactor[msg.sender].remove(beneficiary)) {
        revert InvalidBeneficiaryAddress();
      } else {
        emit BeneficiaryRemoved(msg.sender, beneficiary);
      }
    }
  }

  /// @notice Get the domain separator for the token
  /// @dev Return cached value if chainId matches cache, otherwise recomputes separator, to prevent replay attack across forks
  /// @return The domain separator of the token at current chain
  function getDomainSeparator() public view returns (bytes32) {
    if (block.chainid == _chainId) {
      return _domainSeparator;
    }
    return _computeDomainSeparator();
  }

  /// @notice hash an Order struct
  function hashOrder(Order calldata order) public view override returns (bytes32) {
    return ECDSA.toTypedDataHash(getDomainSeparator(), keccak256(encodeOrder(order)));
  }

  function encodeOrder(Order calldata order) public pure returns (bytes memory) {
    return abi.encode(
      ORDER_TYPE,
      keccak256(bytes(order.order_id)),
      order.order_type,
      order.expiry,
      order.nonce,
      order.benefactor,
      order.beneficiary,
      order.collateral_asset,
      order.collateral_amount,
      order.usde_amount
    );
  }

  /// @notice assert validity of signed order
  function verifyOrder(Order calldata order, Signature calldata signature)
    public
    view
    override
    returns (bytes32 taker_order_hash)
  {
    taker_order_hash = hashOrder(order);
    if (signature.signature_type == SignatureType.EIP712) {
      address signer = ECDSA.recover(taker_order_hash, signature.signature_bytes);
      if (!(signer == order.benefactor || delegatedSigner[signer][order.benefactor] == DelegatedSignerStatus.ACCEPTED))
      {
        revert InvalidEIP712Signature();
      }
    } else if (signature.signature_type == SignatureType.EIP1271) {
      if (
        IERC1271(order.benefactor).isValidSignature(taker_order_hash, signature.signature_bytes) != EIP1271_MAGICVALUE
      ) {
        revert InvalidEIP1271Signature();
      }
    } else {
      revert UnknownSignatureType();
    }
    if (!_whitelistedBenefactors.contains(order.benefactor)) {
      revert BenefactorNotWhitelisted();
    }
    if (!_approvedBeneficiariesPerBenefactor[order.benefactor].contains(order.beneficiary)) {
      revert BeneficiaryNotApproved();
    }
    TokenType typeOfToken = tokenConfig[order.collateral_asset].tokenType;
    if (typeOfToken == TokenType.STABLE) {
      if (!verifyStablesLimit(order.collateral_amount, order.usde_amount, order.collateral_asset, order.order_type)) {
        revert InvalidStablePrice();
      }
    }
    if (order.beneficiary == address(0)) revert InvalidAddress();
    if (order.collateral_amount == 0 || order.usde_amount == 0) revert InvalidAmount();
    if (block.timestamp > order.expiry) revert SignatureExpired();
  }

  /// @notice assert validity of route object per type
  function verifyRoute(Route calldata route) public view override returns (bool) {
    uint128 totalRatio = 0;
    if (route.addresses.length != route.ratios.length) {
      return false;
    }
    if (route.addresses.length == 0) {
      return false;
    }
    for (uint128 i = 0; i < route.addresses.length;) {
      if (!_custodianAddresses.contains(route.addresses[i]) || route.addresses[i] == address(0) || route.ratios[i] == 0)
      {
        return false;
      }
      totalRatio += route.ratios[i];
      unchecked {
        ++i;
      }
    }
    return (totalRatio == ROUTE_REQUIRED_RATIO);
  }

  /// @notice verify validity of nonce by checking its presence
  function verifyNonce(address sender, uint128 nonce) public view override returns (uint128, uint256, uint256) {
    if (nonce == 0) revert InvalidNonce();
    uint128 invalidatorSlot = uint64(nonce) >> 8;
    uint256 invalidatorBit = 1 << uint8(nonce);
    uint256 invalidator = _orderBitmaps[sender][invalidatorSlot];
    if (invalidator & invalidatorBit != 0) revert InvalidNonce();

    return (invalidatorSlot, invalidator, invalidatorBit);
  }

  function verifyStablesLimit(
    uint128 collateralAmount,
    uint128 usdeAmount,
    address collateralAsset,
    OrderType orderType
  ) public view returns (bool) {
    uint128 usdeDecimals = _getDecimals(address(usde));
    uint128 collateralDecimals = _getDecimals(collateralAsset);

    uint128 normalizedCollateralAmount;
    uint128 scale = uint128(
      usdeDecimals > collateralDecimals
        ? 10 ** (usdeDecimals - collateralDecimals)
        : 10 ** (collateralDecimals - usdeDecimals)
    );

    normalizedCollateralAmount = usdeDecimals > collateralDecimals ? collateralAmount * scale : collateralAmount / scale;

    uint128 difference = normalizedCollateralAmount > usdeAmount
      ? normalizedCollateralAmount - usdeAmount
      : usdeAmount - normalizedCollateralAmount;

    uint128 differenceInBps = (difference * STABLES_RATIO_MULTIPLIER) / usdeAmount;

    if (orderType == OrderType.MINT) {
      return usdeAmount > normalizedCollateralAmount ? differenceInBps <= stablesDeltaLimit : true;
    } else {
      return normalizedCollateralAmount > usdeAmount ? differenceInBps <= stablesDeltaLimit : true;
    }
  }

  /* --------------- PRIVATE --------------- */

  /// @notice deduplication of taker order
  function _deduplicateOrder(address sender, uint128 nonce) private {
    (uint128 invalidatorSlot, uint256 invalidator, uint256 invalidatorBit) = verifyNonce(sender, nonce);
    _orderBitmaps[sender][invalidatorSlot] = invalidator | invalidatorBit;
  }

  /* --------------- INTERNAL --------------- */

  /// @notice transfer supported asset to beneficiary address
  function _transferToBeneficiary(address beneficiary, address asset, uint128 amount) internal {
    if (asset == NATIVE_TOKEN) {
      if (address(this).balance < amount) revert InvalidAmount();
      (bool success,) = (beneficiary).call{value: amount}("");
      if (!success) revert TransferFailed();
    } else {
      if (!tokenConfig[asset].isActive) revert UnsupportedAsset();
      IERC20(asset).safeTransfer(beneficiary, amount);
    }
  }

  /// @notice transfer supported asset to array of custody addresses per defined ratio
  function _transferCollateral(
    uint128 amount,
    address asset,
    address benefactor,
    address[] calldata addresses,
    uint128[] calldata ratios
  ) internal {
    // cannot mint using unsupported asset or native ETH even if it is supported for redemptions
    if (!tokenConfig[asset].isActive || asset == NATIVE_TOKEN) revert UnsupportedAsset();
    IERC20 token = IERC20(asset);
    uint128 totalTransferred = 0;
    for (uint128 i = 0; i < addresses.length;) {
      uint128 amountToTransfer = (amount * ratios[i]) / ROUTE_REQUIRED_RATIO;
      token.safeTransferFrom(benefactor, addresses[i], amountToTransfer);
      totalTransferred += amountToTransfer;
      unchecked {
        ++i;
      }
    }
    uint128 remainingBalance = amount - totalTransferred;
    if (remainingBalance > 0) {
      token.safeTransferFrom(benefactor, addresses[addresses.length - 1], remainingBalance);
    }
  }

  /// @notice transfer supported asset to array of custody addresses per defined ratio
  function _transferEthCollateral(
    uint128 amount,
    address asset,
    address benefactor,
    address[] calldata addresses,
    uint128[] calldata ratios
  ) internal {
    if (!tokenConfig[asset].isActive || asset == NATIVE_TOKEN || asset != address(WETH)) revert UnsupportedAsset();
    IERC20 token = IERC20(asset);
    token.safeTransferFrom(benefactor, address(this), amount);

    WETH.withdraw(amount);

    uint128 totalTransferred = 0;
    for (uint128 i = 0; i < addresses.length;) {
      uint128 amountToTransfer = (amount * ratios[i]) / ROUTE_REQUIRED_RATIO;
      (bool success,) = addresses[i].call{value: amountToTransfer}("");
      if (!success) revert TransferFailed();
      totalTransferred += amountToTransfer;
      unchecked {
        ++i;
      }
    }
    uint128 remainingBalance = amount - totalTransferred;
    if (remainingBalance > 0) {
      (bool success,) = addresses[addresses.length - 1].call{value: remainingBalance}("");
      if (!success) revert TransferFailed();
    }
  }

  function _setTokenConfig(address asset, TokenConfig memory _tokenConfig) internal {
    if (_tokenConfig.maxMintPerBlock == 0 || _tokenConfig.maxRedeemPerBlock == 0) {
      revert InvalidAmount();
    }
    _tokenConfig.isActive = true;
    tokenConfig[asset] = _tokenConfig;
  }

  function addSupportedAsset(address asset, TokenConfig memory _tokenConfig) external onlyRole(DEFAULT_ADMIN_ROLE) {
    if (tokenConfig[asset].isActive || asset == address(0) || asset == address(usde)) {
      revert InvalidAssetAddress();
    }
    _setTokenConfig(asset, _tokenConfig);
    emit AssetAdded(asset);
  }

  function setMaxMintPerBlock(uint128 _maxMintPerBlock, address asset) external onlyRole(DEFAULT_ADMIN_ROLE) {
    _setMaxMintPerBlock(_maxMintPerBlock, asset);
  }

  function _setMaxMintPerBlock(uint128 _maxMintPerBlock, address asset) internal {
    uint128 oldMaxMintPerBlock = tokenConfig[asset].maxMintPerBlock;
    tokenConfig[asset].maxMintPerBlock = _maxMintPerBlock;
    emit MaxMintPerBlockChanged(oldMaxMintPerBlock, _maxMintPerBlock, asset);
  }

  function setMaxRedeemPerBlock(uint128 _maxRedeemPerBlock, address asset) external onlyRole(DEFAULT_ADMIN_ROLE) {
    _setMaxRedeemPerBlock(_maxRedeemPerBlock, asset);
  }

  /// @notice Sets the max redeemPerBlock limit for a given asset
  function _setMaxRedeemPerBlock(uint128 _maxRedeemPerBlock, address asset) internal {
    uint128 oldMaxRedeemPerBlock = tokenConfig[asset].maxRedeemPerBlock;
    tokenConfig[asset].maxRedeemPerBlock = _maxRedeemPerBlock;
    emit MaxRedeemPerBlockChanged(oldMaxRedeemPerBlock, _maxRedeemPerBlock, asset);
  }

  /// @notice Compute the current domain separator
  /// @return The domain separator for the token
  function _computeDomainSeparator() internal view returns (bytes32) {
    return keccak256(abi.encode(EIP712_DOMAIN, EIP_712_NAME, EIP712_REVISION, block.chainid, address(this)));
  }

  // @notice Set the token type for a given token
  function setTokenType(address asset, TokenType tokenType) external onlyRole(DEFAULT_ADMIN_ROLE) {
    if (!tokenConfig[asset].isActive) revert UnsupportedAsset();
    tokenConfig[asset].tokenType = tokenType;
    emit TokenTypeSet(asset, uint(tokenType));
  }

  /// @notice set the allowed price delta in bps for stablecoin minting
  function setStablesDeltaLimit(uint128 _stablesDeltaLimit) external onlyRole(DEFAULT_ADMIN_ROLE) {
    stablesDeltaLimit = _stablesDeltaLimit;
  }

  /// @notice get the decimals of a token
  function _getDecimals(address token) internal view returns (uint128) {
    uint8 decimals = IERC20Metadata(token).decimals();
    return uint128(decimals);
  }

  /* --------------- GETTERS --------------- */

  /// @notice returns whether an address is a custodian
  function isCustodianAddress(address custodian) public view returns (bool) {
    return _custodianAddresses.contains(custodian);
  }

  /// @notice returns whether an address is a whitelisted benefactor
  function isWhitelistedBenefactor(address benefactor) public view returns (bool) {
    return _whitelistedBenefactors.contains(benefactor);
  }

  /// @notice returns whether an address is a approved beneficiary per benefactor
  function isApprovedBeneficiary(address benefactor, address beneficiary) public view returns (bool) {
    return _approvedBeneficiariesPerBenefactor[benefactor].contains(beneficiary);
  }
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.20;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/interfaces/IERC5313.sol";
import "./interfaces/ISingleAdminAccessControl.sol";

/**
 * @title SingleAdminAccessControl
 * @notice SingleAdminAccessControl is a contract that provides a single admin role
 * @notice This contract is a simplified alternative to OpenZeppelin's AccessControlDefaultAdminRules
 */
abstract contract SingleAdminAccessControl is IERC5313, ISingleAdminAccessControl, AccessControl {
  address private _currentDefaultAdmin;
  address private _pendingDefaultAdmin;

  modifier notAdmin(bytes32 role) {
    if (role == DEFAULT_ADMIN_ROLE) revert InvalidAdminChange();
    _;
  }

  /// @notice Transfer the admin role to a new address
  /// @notice This can ONLY be executed by the current admin
  /// @param newAdmin address
  function transferAdmin(address newAdmin) external onlyRole(DEFAULT_ADMIN_ROLE) {
    if (newAdmin == msg.sender) revert InvalidAdminChange();
    _pendingDefaultAdmin = newAdmin;
    emit AdminTransferRequested(_currentDefaultAdmin, newAdmin);
  }

  function acceptAdmin() external {
    if (msg.sender != _pendingDefaultAdmin) revert NotPendingAdmin();
    _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
  }

  /// @notice grant a role
  /// @notice can only be executed by the current single admin
  /// @notice admin role cannot be granted externally
  /// @param role bytes32
  /// @param account address
  function grantRole(bytes32 role, address account) public override onlyRole(DEFAULT_ADMIN_ROLE) notAdmin(role) {
    _grantRole(role, account);
  }

  /// @notice revoke a role
  /// @notice can only be executed by the current admin
  /// @notice admin role cannot be revoked
  /// @param role bytes32
  /// @param account address
  function revokeRole(bytes32 role, address account) public override onlyRole(DEFAULT_ADMIN_ROLE) notAdmin(role) {
    _revokeRole(role, account);
  }

  /// @notice renounce the role of msg.sender
  /// @notice admin role cannot be renounced
  /// @param role bytes32
  /// @param account address
  function renounceRole(bytes32 role, address account) public virtual override notAdmin(role) {
    super.renounceRole(role, account);
  }

  /**
   * @dev See {IERC5313-owner}.
   */
  function owner() public view virtual returns (address) {
    return _currentDefaultAdmin;
  }

  /**
   * @notice no way to change admin without removing old admin first
   */
  function _grantRole(bytes32 role, address account) internal override {
    if (role == DEFAULT_ADMIN_ROLE) {
      emit AdminTransferred(_currentDefaultAdmin, account);
      _revokeRole(DEFAULT_ADMIN_ROLE, _currentDefaultAdmin);
      _currentDefaultAdmin = account;
      delete _pendingDefaultAdmin;
    }
    super._grantRole(role, account);
  }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position of the value in the `values` array, plus 1 because index 0
        // means a value is not in the set.
        mapping(bytes32 => uint256) _indexes;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We read and store the value's index to prevent multiple reads from the same storage slot
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = valueIndex - 1;
            uint256 lastIndex = set._values.length - 1;

            if (lastIndex != toDeleteIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the last value to the index where the value to delete is
                set._values[toDeleteIndex] = lastValue;
                // Update the index for the moved value
                set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the index for the deleted slot
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._indexes[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 *
 * _Available since v4.1._
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.20;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";

interface IUSDe is IERC20, IERC20Permit, IERC20Metadata {
  function mint(address _to, uint256 _amount) external;

  function burn(uint256 _amount) external;

  function burnFrom(address account, uint256 amount) external;

  function grantRole(bytes32 role, address account) external;

  function setMinter(address newMinter) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

/* solhint-disable var-name-mixedcase  */

import "./IEthenaMintingEvents.sol";

interface IEthenaMinting is IEthenaMintingEvents {
  enum Role {
    Minter,
    Redeemer
  }

  enum OrderType {
    MINT,
    REDEEM
  }

  enum TokenType {
    STABLE,
    ASSET
  }

  enum SignatureType {
    EIP712,
    EIP1271
  }

  enum DelegatedSignerStatus {
    REJECTED,
    PENDING,
    ACCEPTED
  }

  struct Signature {
    SignatureType signature_type;
    bytes signature_bytes;
  }

  struct Route {
    address[] addresses;
    uint128[] ratios;
  }

  struct Order {
    string order_id;
    OrderType order_type;
    uint120 expiry;
    uint128 nonce;
    address benefactor;
    address beneficiary;
    address collateral_asset;
    uint128 collateral_amount;
    uint128 usde_amount;
  }

  struct TokenConfig {
    /// @notice tracks asset type (STABLE or ASSET)
    TokenType tokenType;
    /// @notice tracks if the asset is active
    bool isActive;
    /// @notice max mint per block this given asset
    uint128 maxMintPerBlock;
    /// @notice max redeem per block this given asset
    uint128 maxRedeemPerBlock;
  }

  struct BlockTotals {
    /// @notice USDe minted per block / per asset per block
    uint128 mintedPerBlock;
    /// @notice USDe redeemed per block / per asset per block
    uint128 redeemedPerBlock;
  }

  struct GlobalConfig {
    /// @notice max USDe that can be minted across all assets within a single block.
    uint128 globalMaxMintPerBlock;
    /// @notice max USDe that can be redeemed across all assets within a single block.
    uint128 globalMaxRedeemPerBlock;
  }

  error InvalidAddress();
  error InvalidUSDeAddress();
  error InvalidZeroAddress();
  error InvalidAssetAddress();
  error InvalidBenefactorAddress();
  error InvalidBeneficiaryAddress();
  error InvalidCustodianAddress();
  error InvalidOrder();
  error InvalidAmount();
  error InvalidRoute();
  error InvalidStablePrice();
  error UnknownSignatureType();
  error UnsupportedAsset();
  error NoAssetsProvided();
  error BenefactorNotWhitelisted();
  error BeneficiaryNotApproved();
  error InvalidEIP712Signature();
  error InvalidEIP1271Signature();
  error InvalidNonce();
  error SignatureExpired();
  error TransferFailed();
  error DelegationNotInitiated();
  error MaxMintPerBlockExceeded();
  error MaxRedeemPerBlockExceeded();
  error GlobalMaxMintPerBlockExceeded();
  error GlobalMaxRedeemPerBlockExceeded();


  function hashOrder(Order calldata order) external view returns (bytes32);

  function verifyOrder(Order calldata order, Signature calldata signature) external view returns (bytes32);

  function verifyRoute(Route calldata route) external view returns (bool);

  function verifyNonce(address sender, uint128 nonce) external view returns (uint128, uint256, uint256);

  function verifyStablesLimit(uint128 collateralAmount, uint128 usdeAmount, address collateralAsset, OrderType orderType) external view returns (bool);

  function mint(Order calldata order, Route calldata route, Signature calldata signature) external;

  function mintWETH(Order calldata order, Route calldata route, Signature calldata signature) external;

  function redeem(Order calldata order, Signature calldata signature) external;
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.20;

interface IWETH9 {
  function deposit() external payable;
  function withdraw(uint256 wad) external payable;
  function totalSupply() external returns (uint256);
  function approve(address guy, uint256 wad) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5313.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface for the Light Contract Ownership Standard.
 *
 * A standardized minimal interface required to identify an account that controls a contract
 *
 * _Available since v4.9._
 */
interface IERC5313 {
    /**
     * @dev Gets the address of the owner.
     */
    function owner() external view returns (address);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

interface ISingleAdminAccessControl {
  error InvalidAdminChange();
  error NotPendingAdmin();

  event AdminTransferred(address indexed oldAdmin, address indexed newAdmin);
  event AdminTransferRequested(address indexed oldAdmin, address indexed newAdmin);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

/* solhint-disable var-name-mixedcase  */

interface IEthenaMintingEvents {
  /// @notice Event emitted when contract receives ETH
  event Received(address, uint256);

  /// @notice Event emitted when USDe is minted
  event Mint(
    string indexed order_id,
    address indexed benefactor,
    address indexed beneficiary,
    address minter,
    address collateral_asset,
    uint256 collateral_amount,
    uint256 usde_amount
  );

  /// @notice Event emitted when funds are redeemed
  event Redeem(
    string indexed order_id,
    address indexed benefactor,
    address indexed beneficiary,
    address redeemer,
    address collateral_asset,
    uint256 collateral_amount,
    uint256 usde_amount
  );

  /// @notice Event emitted when a supported asset is added
  event AssetAdded(address indexed asset);

  /// @notice Event emitted when a supported asset is removed
  event AssetRemoved(address indexed asset);

  /// @notice Event emitted when a benefactor address is added
  event BenefactorAdded(address indexed benefactor);

  /// @notice Event emitted when a beneficiary address is added or updated
  event BeneficiaryAdded(address indexed benefactor, address indexed beneficiary);

  /// @notice Event emitted when a benefactor address is removed
  event BenefactorRemoved(address indexed benefactor);

  /// @notice Event emitted when a beneficiary address is removed
  event BeneficiaryRemoved(address indexed benefactor, address indexed beneficiary);

  // @notice Event emitted when a custodian address is added
  event CustodianAddressAdded(address indexed custodian);

  // @notice Event emitted when a custodian address is removed
  event CustodianAddressRemoved(address indexed custodian);

  /// @notice Event emitted when assets are moved to custody provider wallet
  event CustodyTransfer(address indexed wallet, address indexed asset, uint256 amount);

  /// @notice Event emitted when USDe is set
  event USDeSet(address indexed USDe);

  /// @notice Event emitted when the max mint per block is changed
  event MaxMintPerBlockChanged(uint256 oldMaxMintPerBlock, uint256 newMaxMintPerBlock, address indexed asset);

  /// @notice Event emitted when the max redeem per block is changed
  event MaxRedeemPerBlockChanged(uint256 oldMaxRedeemPerBlock, uint256 newMaxRedeemPerBlock, address indexed asset);

  /// @notice Event emitted when a delegated signer is added, enabling it to sign orders on behalf of another address
  event DelegatedSignerAdded(address indexed signer, address indexed delegator);

  /// @notice Event emitted when a delegated signer is removed
  event DelegatedSignerRemoved(address indexed signer, address indexed delegator);

  /// @notice Event emitted when a delegated signer is initiated
  event DelegatedSignerInitiated(address indexed signer, address indexed delegator);

  /// @notice Event emitted when the token type for a token is set.
  event TokenTypeSet(address indexed token, uint tokenType);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):