Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)
pragma solidity ^0.8.0;
import "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(
address from,
address to,
uint256 amount
) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.17;
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Deposit, FCNVaultMetadata, OptionBarrierType, OptionBarrier, VaultStatus, Withdrawal } from "./Structs.sol";
import { IOracle } from "./interfaces/IOracle.sol";
import { ICegaState } from "./interfaces/ICegaState.sol";
library Calculations {
uint256 public constant DAYS_IN_YEAR = 365;
uint256 public constant SECONDS_TO_DAYS = 86400;
uint256 public constant BPS_DECIMALS = 10 ** 4;
uint256 public constant LARGE_CONSTANT = 10 ** 18;
uint256 public constant ORACLE_STALE_DELAY = 1 days;
/**
* @notice Calculates the current yield accumulated to the current day for a given vault
*/
function calculateCurrentYield(FCNVaultMetadata storage self) public {
require(self.vaultStatus == VaultStatus.Traded, "500:WS");
uint256 currentTime = block.timestamp;
if (currentTime > self.tradeExpiry) {
self.vaultStatus = VaultStatus.TradeExpired;
return;
}
uint256 numberOfDaysPassed = (currentTime - self.tradeDate) / SECONDS_TO_DAYS;
self.totalCouponPayoff = calculateCouponPayment(self.underlyingAmount, self.aprBps, numberOfDaysPassed);
}
/**
* @notice Permissionless method that reads price from oracle contracts and checks if barrier is triggered
* @param cegaStateAddress is the address of the CegaState contract that stores the oracle addresses
*/
function checkBarriers(FCNVaultMetadata storage self, address cegaStateAddress) public {
if (self.isKnockedIn == true) {
return;
}
require(self.vaultStatus == VaultStatus.Traded, "500:WS");
for (uint256 i = 0; i < self.optionBarriersCount; i++) {
OptionBarrier storage optionBarrier = self.optionBarriers[i];
// Knock In: Check if current price is less than barrier
if (optionBarrier.barrierType == OptionBarrierType.KnockIn) {
address oracle = getOracleAddress(optionBarrier, cegaStateAddress);
(, int256 answer, uint256 startedAt, , ) = IOracle(oracle).latestRoundData();
require(block.timestamp - ORACLE_STALE_DELAY <= startedAt, "400:T");
if (uint256(answer) <= optionBarrier.barrierAbsoluteValue) {
self.isKnockedIn = true;
}
}
}
}
/**
* @notice Calculates the final payoff for a given vault
* @param self is the FCNVaultMetadata
* @param cegaStateAddress is address of cegaState
*/
function calculateVaultFinalPayoff(
FCNVaultMetadata storage self,
address cegaStateAddress
) public returns (uint256) {
uint256 totalPrincipal;
uint256 totalCouponPayment;
uint256 principalToReturnBps = BPS_DECIMALS;
require(
(self.vaultStatus == VaultStatus.TradeExpired || self.vaultStatus == VaultStatus.PayoffCalculated),
"500:WS"
);
// Calculate coupon payment
totalCouponPayment = calculateCouponPayment(self.underlyingAmount, self.aprBps, self.tenorInDays);
// Calculate principal
if (self.isKnockedIn) {
principalToReturnBps = calculateKnockInRatio(self, cegaStateAddress);
}
totalPrincipal = (self.underlyingAmount * principalToReturnBps) / BPS_DECIMALS;
uint256 vaultFinalPayoff = totalPrincipal + totalCouponPayment;
self.totalCouponPayoff = totalCouponPayment;
self.vaultFinalPayoff = vaultFinalPayoff;
self.vaultStatus = VaultStatus.PayoffCalculated;
return vaultFinalPayoff;
}
/**
* @notice Calculates the percentage of principal to return to users if a knock in occurs.
* Iterates through all knock-in barriers and checks the ratio of (spot/strike) for each asset
* Returns the minimum of the knock-in ratios.
* @param self is the FCNVaultMetadata
* @param cegaStateAddress is address of cegaState
*/
function calculateKnockInRatio(
FCNVaultMetadata storage self,
address cegaStateAddress
) public view returns (uint256) {
OptionBarrier[] memory optionBarriers = self.optionBarriers;
uint256 optionBarriersCount = self.optionBarriersCount;
uint256 minRatioBps = LARGE_CONSTANT;
for (uint256 i = 0; i < optionBarriersCount; i++) {
OptionBarrier memory optionBarrier = optionBarriers[i];
address oracle = getOracleAddress(optionBarrier, cegaStateAddress);
(, int256 answer, uint256 startedAt, , ) = IOracle(oracle).latestRoundData();
require(block.timestamp - ORACLE_STALE_DELAY <= startedAt, "400:T");
// Only calculate the ratio if it is a knock in barrier
if (optionBarrier.barrierType == OptionBarrierType.KnockIn) {
uint256 ratioBps = (uint256(answer) * LARGE_CONSTANT) / optionBarrier.strikeAbsoluteValue;
minRatioBps = Math.min(ratioBps, minRatioBps);
}
}
return ((minRatioBps * BPS_DECIMALS)) / LARGE_CONSTANT;
}
/**
* @notice Calculates the fees that should be collected from a given vault
* @param managementFeeBps is the management fee in bps
* @param yieldFeeBps is the yield fee in bps
*/
function calculateFees(
FCNVaultMetadata storage self,
uint256 managementFeeBps,
uint256 yieldFeeBps
) public view returns (uint256, uint256, uint256) {
uint256 totalFee = 0;
uint256 managementFee = 0;
uint256 yieldFee = 0;
uint256 underlyingAmount = self.underlyingAmount;
uint256 numberOfDaysPassed = (self.tradeExpiry - self.vaultStart) / SECONDS_TO_DAYS;
managementFee =
(underlyingAmount * numberOfDaysPassed * managementFeeBps * LARGE_CONSTANT) /
DAYS_IN_YEAR /
BPS_DECIMALS /
LARGE_CONSTANT;
if (self.vaultFinalPayoff > underlyingAmount) {
uint256 profit = self.vaultFinalPayoff - underlyingAmount;
yieldFee = (profit * yieldFeeBps) / BPS_DECIMALS;
}
totalFee = managementFee + yieldFee;
return (totalFee, managementFee, yieldFee);
}
/**
* @notice Calculates the coupon payment accumulated for a given number of daysPassed
* @param underlyingAmount is the amount of assets
* @param aprBps is the apr in bps
* @param daysPassed is the number of days that coupon payments have been accured for
*/
function calculateCouponPayment(
uint256 underlyingAmount,
uint256 aprBps,
uint256 daysPassed
) private pure returns (uint256) {
return (underlyingAmount * daysPassed * aprBps * LARGE_CONSTANT) / DAYS_IN_YEAR / BPS_DECIMALS / LARGE_CONSTANT;
}
/**
* @notice Gets the oracle address for a given optionBarrier
* @param optionBarrier is the option barrier
* @param cegaStateAddress is the address of the Cega state contract
*/
function getOracleAddress(
OptionBarrier memory optionBarrier,
address cegaStateAddress
) private view returns (address) {
ICegaState cegaState = ICegaState(cegaStateAddress);
address oracle = cegaState.oracleAddresses(optionBarrier.oracleName);
require(oracle != address(0), "400:Unregistered");
return oracle;
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.17;
import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import { ICegaState } from "./interfaces/ICegaState.sol";
import { Deposit, FCNVaultMetadata, OptionBarrierType, OptionBarrier, VaultStatus, Withdrawal } from "./Structs.sol";
import { FCNVault } from "./FCNVault.sol";
import { Calculations } from "./Calculations.sol";
contract FCNProduct is ReentrancyGuard {
using SafeERC20 for IERC20;
using Calculations for FCNVaultMetadata;
event FCNProductCreated(
address indexed cegaState,
address indexed asset,
string name,
uint256 managementFeeBps,
uint256 yieldFeeBps,
uint256 maxDepositAmountLimit,
uint256 minDepositAmount,
uint256 minWithdrawalAmount
);
event ManagementFeeBpsUpdated(uint256 managementFeeBps);
event YieldFeeBpsUpdated(uint256 yieldFeeBps);
event MinDepositAmountUpdated(uint256 minDepositAmount);
event MinWithdrawalAmountUpdated(uint256 minWithdrawalAmount);
event IsDepositQueueOpenUpdated(bool isDepositQueueOpen);
event MaxDepositAmountLimitUpdated(uint256 maxDepositAmountLimit);
event VaultCreated(address indexed vaultAddress, string _tokenSymbol, string _tokenName, uint256 _vaultStart);
event VaultMetadataUpdated(address indexed vaultAddress);
event VaultRemoved(address indexed vaultAddress);
event TradeDataSet(
address indexed vaultAddress,
uint256 _tradeDate,
uint256 _tradeExpiry,
uint256 _aprBps,
uint256 _tenorInDays
);
event OptionBarrierAdded(
address indexed vaultAddress,
uint256 barrierBps,
uint256 barrierAbsoluteValue,
uint256 strikeBps,
uint256 strikeAbsoluteValue,
string asset,
string oracleName,
OptionBarrierType barrierType
);
event OptionBarrierUpated(
address indexed vaultAddress,
uint256 index,
string _asset,
uint256 _strikeAbsoluteValue,
uint256 _barrierAbsoluteValue
);
event OptionBarrierOracleUpdated(address indexed vaultAddress, uint256 index, string _asset, string _oracleName);
event OptionBarrierRemoved(address indexed vaultAddress, uint256 index, string asset);
event VaultStatusUpdated(address indexed vaultAddress, VaultStatus vaultStatus);
event DepositQueued(address indexed receiver, uint256 amount);
event DepositProcessed(address indexed vaultAddress, address indexed receiver, uint256 amount);
event KnockInStatusUpdated(address indexed vaultAddress, bool isKnockIn);
event FeesCollected(
address indexed vaultAddress,
uint256 managementFee,
uint256 yieldFee,
uint256 totalFee,
VaultStatus vaultStatus
);
event WithdrawalQueued(address indexed vaultAddress, address indexed receiver, uint256 amountShares);
event WithdrawalProcessed(
address indexed vaultAddress,
address indexed receiver,
uint256 amountShares,
uint256 amountAssets
);
event VaultRollover(address indexed vaultAddress, uint256 vaultStart, VaultStatus vaultStatus);
event VaultFinalPayoffCalculated(address indexed vaultAddress, uint256 finalPayoffAmount, VaultStatus vaultStatus);
event BarriersChecked(address indexed vaultAddress, bool isKnockedIn);
event AssetsReceivedFromCegaState(address indexed vaultAddress, uint256 amount);
event AssetsSentToTrade(
address indexed vaultAddress,
address indexed receiver,
uint256 amount,
VaultStatus vaultStatus
);
ICegaState public cegaState;
address public immutable asset;
string public name;
uint256 public managementFeeBps; // basis points
uint256 public yieldFeeBps; // basis points
bool public isDepositQueueOpen;
uint256 public maxDepositAmountLimit;
uint256 public minDepositAmount;
uint256 public minWithdrawalAmount;
uint256 public sumVaultUnderlyingAmounts;
uint256 public queuedDepositsTotalAmount;
uint256 public queuedDepositsCount;
mapping(address => FCNVaultMetadata) public vaults;
address[] public vaultAddresses;
Deposit[] public depositQueue;
mapping(address => Withdrawal[]) public withdrawalQueues;
/**
* @notice Creates a new FCNProduct
* @param _cegaState is the address of the CegaState contract
* @param _asset is the underlying asset this product accepts
* @param _name is the name of the product
* @param _managementFeeBps is the management fee in bps
* @param _yieldFeeBps is the yield fee in bps
* @param _maxDepositAmountLimit is the deposit limit for the product
* @param _minDepositAmount is the minimum units of underlying for a user to deposit
* @param _minWithdrawalAmount is the minimum units of vault shares for a user to withdraw
*/
constructor(
address _cegaState,
address _asset,
string memory _name,
uint256 _managementFeeBps,
uint256 _yieldFeeBps,
uint256 _maxDepositAmountLimit,
uint256 _minDepositAmount,
uint256 _minWithdrawalAmount
) {
require(_managementFeeBps < 1e4, "400:IB");
require(_yieldFeeBps < 1e4, "400:IB");
require(_minDepositAmount > 0, "400:IU");
require(_minWithdrawalAmount > 0, "400:IU");
cegaState = ICegaState(_cegaState);
asset = _asset;
name = _name;
managementFeeBps = _managementFeeBps;
yieldFeeBps = _yieldFeeBps;
maxDepositAmountLimit = _maxDepositAmountLimit;
isDepositQueueOpen = false;
minDepositAmount = _minDepositAmount;
minWithdrawalAmount = _minWithdrawalAmount;
emit FCNProductCreated(
_cegaState,
_asset,
_name,
_managementFeeBps,
_yieldFeeBps,
_maxDepositAmountLimit,
_minDepositAmount,
_minWithdrawalAmount
);
}
/**
* @notice Asserts whether the sender has the DEFAULT_ADMIN_ROLE
*/
modifier onlyDefaultAdmin() {
require(cegaState.isDefaultAdmin(msg.sender), "403:DA");
_;
}
/**
* @notice Asserts whether the sender has the TRADER_ADMIN_ROLE
*/
modifier onlyTraderAdmin() {
require(cegaState.isTraderAdmin(msg.sender), "403:TA");
_;
}
/**
* @notice Asserts whether the sender has the OPERATOR_ADMIN_ROLE
*/
modifier onlyOperatorAdmin() {
require(cegaState.isOperatorAdmin(msg.sender), "403:OA");
_;
}
/**
* @notice Asserts that the vault has been initialized & is a Cega Vault
* @param vaultAddress is the address of the vault
*/
modifier onlyValidVault(address vaultAddress) {
require(vaults[vaultAddress].vaultStart != 0, "400:VA");
_;
}
/**
* @notice Returns array of vault addresses associated with the product
*/
function getVaultAddresses() public view returns (address[] memory) {
return vaultAddresses;
}
/**
* @notice Returns vault metadata for a given vault address, includes OptionBarrier array in output
* @param vaultAddress is the address of the vault
*/
function getVaultMetadata(address vaultAddress) public view returns (FCNVaultMetadata memory) {
return vaults[vaultAddress];
}
/**
* @notice Sets the management fee for the product
* @param _managementFeeBps is the management fee in bps (100% = 10000)
*/
function setManagementFeeBps(uint256 _managementFeeBps) public onlyOperatorAdmin {
require(_managementFeeBps < 1e4, "400:IB");
managementFeeBps = _managementFeeBps;
emit ManagementFeeBpsUpdated(_managementFeeBps);
}
/**
* @notice Sets the yieldfee for the product
* @param _yieldFeeBps is the management fee in bps (100% = 10000)
*/
function setYieldFeeBps(uint256 _yieldFeeBps) public onlyOperatorAdmin {
require(_yieldFeeBps < 1e4, "400:IB");
yieldFeeBps = _yieldFeeBps;
emit YieldFeeBpsUpdated(_yieldFeeBps);
}
/**
* @notice Sets the min deposit amount for the product
* @param _minDepositAmount is the minimum units of underlying for a user to deposit
*/
function setMinDepositAmount(uint256 _minDepositAmount) public onlyOperatorAdmin {
require(_minDepositAmount > 0, "400:IU");
minDepositAmount = _minDepositAmount;
emit MinDepositAmountUpdated(_minDepositAmount);
}
/**
* @notice Sets the min withdrawal amount for the product
* @param _minWithdrawalAmount is the minimum units of vault shares for a user to withdraw
*/
function setMinWithdrawalAmount(uint256 _minWithdrawalAmount) public onlyOperatorAdmin {
require(_minWithdrawalAmount > 0, "400:IU");
minWithdrawalAmount = _minWithdrawalAmount;
emit MinWithdrawalAmountUpdated(_minWithdrawalAmount);
}
/**
* @notice Toggles whether the product is open or closed for deposits
* @param _isDepositQueueOpen is a boolean for whether the deposit queue is accepting deposits
*/
function setIsDepositQueueOpen(bool _isDepositQueueOpen) public onlyOperatorAdmin {
isDepositQueueOpen = _isDepositQueueOpen;
emit IsDepositQueueOpenUpdated(_isDepositQueueOpen);
}
/**
* @notice Sets the maximum deposit limit for the product
* @param _maxDepositAmountLimit is the deposit limit for the product
*/
function setMaxDepositAmountLimit(uint256 _maxDepositAmountLimit) public onlyTraderAdmin {
require(queuedDepositsTotalAmount + sumVaultUnderlyingAmounts <= _maxDepositAmountLimit, "400:TooSmall");
maxDepositAmountLimit = _maxDepositAmountLimit;
emit MaxDepositAmountLimitUpdated(_maxDepositAmountLimit);
}
/**
* @notice Creates a new vault for the product & maps the new vault address to the vaultMetadata
* @param _tokenName is the name of the token for the vault
* @param _tokenSymbol is the symbol for the vault's token
* @param _vaultStart is the timestamp of the vault's start
*/
function createVault(
string memory _tokenName,
string memory _tokenSymbol,
uint256 _vaultStart
) public onlyTraderAdmin returns (address vaultAddress) {
require(_vaultStart != 0, "400:VS");
FCNVault vault = new FCNVault(asset, _tokenName, _tokenSymbol);
address newVaultAddress = address(vault);
vaultAddresses.push(newVaultAddress);
// vaultMetadata & all of its fields are automatically initialized if it doesn't already exist in the mapping
FCNVaultMetadata storage vaultMetadata = vaults[newVaultAddress];
vaultMetadata.vaultStart = _vaultStart;
vaultMetadata.vaultAddress = newVaultAddress;
// Leverage is always set to 1
vaultMetadata.leverage = 1;
emit VaultCreated(newVaultAddress, _tokenSymbol, _tokenName, _vaultStart);
return newVaultAddress;
}
/**
* @notice defaultAdmin has the ability to override & change the vaultMetadata
* If a value is not input, it will override to the default value
* @param vaultAddress is the address of the vault
* @param metadata is the vault's metadata that we want to change to
*/
function setVaultMetadata(
address vaultAddress,
FCNVaultMetadata calldata metadata
) public onlyDefaultAdmin onlyValidVault(vaultAddress) {
require(metadata.vaultStart > 0, "400:VS");
require(metadata.leverage == 1, "400:L");
vaults[vaultAddress] = metadata;
emit VaultMetadataUpdated(vaultAddress);
}
/**
* @notice defaultAdmin has the ability to remove a Vault
* @param i is the index of the vault in the vaultAddresses array
*/
function removeVault(uint256 i) public onlyDefaultAdmin {
address vaultAddress = vaultAddresses[i];
vaultAddresses[i] = vaultAddresses[vaultAddresses.length - 1];
vaultAddresses.pop();
delete vaults[vaultAddress];
emit VaultRemoved(vaultAddress);
}
/**
* @notice Trader admin sets the trade data after the auction
* @param vaultAddress is the address of the vault
* @param _tradeDate is the official timestamp of when the options contracts begins
* @param _tradeExpiry is the timestamp of when the trade will expire
* @param _aprBps is the APR in bps
* @param _tenorInDays is the length of the options contract
*/
function setTradeData(
address vaultAddress,
uint256 _tradeDate,
uint256 _tradeExpiry,
uint256 _aprBps,
uint256 _tenorInDays
) public onlyTraderAdmin onlyValidVault(vaultAddress) {
FCNVaultMetadata storage metadata = vaults[vaultAddress];
require(metadata.vaultStatus == VaultStatus.NotTraded, "500:WS");
require(_tradeDate >= metadata.vaultStart, "400:TD");
require(_tradeExpiry > _tradeDate, "400:TE");
// allow for a 1 day difference in input tenor and derived tenor
uint256 derivedDays = (_tradeExpiry - _tradeDate) / 1 days;
if (derivedDays < _tenorInDays) {
require(_tenorInDays - derivedDays <= 1, "400:TN");
} else {
require(derivedDays - _tenorInDays <= 1, "400:TN");
}
metadata.tradeDate = _tradeDate;
metadata.tradeExpiry = _tradeExpiry;
metadata.aprBps = _aprBps;
metadata.tenorInDays = _tenorInDays;
emit TradeDataSet(vaultAddress, _tradeDate, _tradeExpiry, _aprBps, _tenorInDays);
}
/**
* @notice Trader admin can add an option with barriers to a given vault
* @param vaultAddress is the address of the vault
* @param optionBarrier is the data for the option with barriers
*/
function addOptionBarrier(
address vaultAddress,
OptionBarrier calldata optionBarrier
) public onlyTraderAdmin onlyValidVault(vaultAddress) {
FCNVaultMetadata storage metadata = vaults[vaultAddress];
require(
metadata.vaultStatus == VaultStatus.DepositsClosed || metadata.vaultStatus == VaultStatus.NotTraded,
"500:WS"
);
metadata.optionBarriers.push(optionBarrier);
metadata.optionBarriersCount++;
emit OptionBarrierAdded(
vaultAddress,
optionBarrier.barrierBps,
optionBarrier.barrierAbsoluteValue,
optionBarrier.strikeBps,
optionBarrier.strikeAbsoluteValue,
optionBarrier.asset,
optionBarrier.oracleName,
optionBarrier.barrierType
);
}
/**
* @notice Trader admin has ability to update price fixings & observation time.
* @param vaultAddress is the address of the vault
* @param index is the index of the option barrier we want to update
* @param _asset is the ticker symbol of the asset we want to update
* (included as a safety check since the asset name should match the option barrier at given index)
* @param _strikeAbsoluteValue is the actual strike price of the asset
* @param _barrierAbsoluteValue is the actual price that will cause the barrier to be triggered
*/
function updateOptionBarrier(
address vaultAddress,
uint256 index,
string calldata _asset,
uint256 _strikeAbsoluteValue,
uint256 _barrierAbsoluteValue
) public onlyTraderAdmin onlyValidVault(vaultAddress) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
require(_strikeAbsoluteValue > 0, "400:SV");
require(_barrierAbsoluteValue > 0, "400:BV");
OptionBarrier storage optionBarrier = vaultMetadata.optionBarriers[index];
require(keccak256(abi.encodePacked(optionBarrier.asset)) == keccak256(abi.encodePacked(_asset)), "400:AS");
optionBarrier.strikeAbsoluteValue = _strikeAbsoluteValue;
optionBarrier.barrierAbsoluteValue = _barrierAbsoluteValue;
emit OptionBarrierUpated(vaultAddress, index, _asset, _strikeAbsoluteValue, _barrierAbsoluteValue);
}
/**
* @notice Operator admin has ability to update the oracle for an option barrier.
* @param vaultAddress is the address of the vault
* @param index is the index of the option barrier we want to update
* @param _asset is the ticker symbol of the asset we want to update
* (included as a safety check since the asset name should match the option barrier at given index)
* @param newOracleName is the name of the new oracle (must also register this name in CegaState)
*/
function updateOptionBarrierOracle(
address vaultAddress,
uint256 index,
string calldata _asset,
string memory newOracleName
) public onlyOperatorAdmin onlyValidVault(vaultAddress) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
require(
vaultMetadata.vaultStatus == VaultStatus.DepositsClosed ||
vaultMetadata.vaultStatus == VaultStatus.NotTraded,
"500:WS"
);
OptionBarrier storage optionBarrier = vaultMetadata.optionBarriers[index];
require(keccak256(abi.encodePacked(optionBarrier.asset)) == keccak256(abi.encodePacked(_asset)), "400:AS");
require(cegaState.oracleAddresses(newOracleName) != address(0), "400:OR");
optionBarrier.oracleName = newOracleName;
emit OptionBarrierOracleUpdated(vaultAddress, index, _asset, newOracleName);
}
/**
* @notice Trader admin has ability to remove an option barrier.
* The index for all option barriers to the right of the index are shifted by one to the left.
* @param vaultAddress is the address of the vault
* @param index is the index of the option barrier we want to remove
* @param _asset is the ticker symbol of the asset we want to update
* (included as a safety check since the asset should match the option barrier at given index)
*/
function removeOptionBarrier(
address vaultAddress,
uint256 index,
string calldata _asset
) public onlyTraderAdmin onlyValidVault(vaultAddress) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
require(
vaultMetadata.vaultStatus == VaultStatus.DepositsClosed ||
vaultMetadata.vaultStatus == VaultStatus.NotTraded,
"500:WS"
);
OptionBarrier[] storage optionBarriers = vaultMetadata.optionBarriers;
require(
keccak256(abi.encodePacked(optionBarriers[index].asset)) == keccak256(abi.encodePacked(_asset)),
"400:AS"
);
// swap and pop
optionBarriers[index] = optionBarriers[optionBarriers.length - 1];
optionBarriers.pop();
vaultMetadata.optionBarriersCount -= 1;
emit OptionBarrierRemoved(vaultAddress, index, _asset);
}
/**
* Operator admin has ability to override the vault's status
* @param vaultAddress is the address of the vault
* @param _vaultStatus is the new status for the vault
*/
function setVaultStatus(
address vaultAddress,
VaultStatus _vaultStatus
) public onlyOperatorAdmin onlyValidVault(vaultAddress) {
FCNVaultMetadata storage metadata = vaults[vaultAddress];
metadata.vaultStatus = _vaultStatus;
emit VaultStatusUpdated(vaultAddress, _vaultStatus);
}
/**
* Trader admin has ability to set the vault to "DepositsOpen" state
* @param vaultAddress is the address of the vault
*/
function openVaultDeposits(address vaultAddress) public onlyTraderAdmin onlyValidVault(vaultAddress) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
require(vaultMetadata.vaultStatus == VaultStatus.DepositsClosed, "500:WS");
vaultMetadata.vaultStatus = VaultStatus.DepositsOpen;
emit VaultStatusUpdated(vaultAddress, VaultStatus.DepositsOpen);
}
/**
* Default admin has an override to set the knock in status for a vault
* @param vaultAddress is the address of the vault
* @param newState is the new state for isKnockedIn
*/
function setKnockInStatus(
address vaultAddress,
bool newState
) public onlyDefaultAdmin onlyValidVault(vaultAddress) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
vaultMetadata.isKnockedIn = newState;
emit KnockInStatusUpdated(vaultAddress, newState);
}
/**
* Transfers assets from the user to the product
* @param amount is the amount of assets being deposited
*/
function addToDepositQueue(uint256 amount) public nonReentrant {
require(isDepositQueueOpen, "500:NotOpen");
require(amount >= minDepositAmount, "400:DA");
queuedDepositsCount += 1;
queuedDepositsTotalAmount += amount;
require(queuedDepositsTotalAmount + sumVaultUnderlyingAmounts <= maxDepositAmountLimit, "500:TooBig");
IERC20(asset).safeTransferFrom(msg.sender, address(this), amount);
depositQueue.push(Deposit({ amount: amount, receiver: msg.sender }));
emit DepositQueued(msg.sender, amount);
}
/**
* Processes the product's deposit queue into a specific vault
* @param vaultAddress is the address of the vault
* @param maxProcessCount is the number of elements in the deposit queue to be processed
*/
function processDepositQueue(
address vaultAddress,
uint256 maxProcessCount
) public nonReentrant onlyTraderAdmin onlyValidVault(vaultAddress) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
require(vaultMetadata.vaultStatus == VaultStatus.DepositsOpen, "500:WS");
FCNVault vault = FCNVault(vaultAddress);
require(!(vaultMetadata.underlyingAmount == 0 && vault.totalSupply() > 0), "500:Z");
uint256 processCount = Math.min(queuedDepositsCount, maxProcessCount);
Deposit storage deposit;
while (processCount > 0) {
deposit = depositQueue[queuedDepositsCount - 1];
queuedDepositsTotalAmount -= deposit.amount;
vault.deposit(deposit.amount, deposit.receiver);
vaultMetadata.underlyingAmount += deposit.amount;
sumVaultUnderlyingAmounts += deposit.amount;
vaultMetadata.currentAssetAmount += deposit.amount;
depositQueue.pop();
queuedDepositsCount -= 1;
processCount -= 1;
emit DepositProcessed(vaultAddress, deposit.receiver, deposit.amount);
}
if (queuedDepositsCount == 0) {
vaultMetadata.vaultStatus = VaultStatus.NotTraded;
emit VaultStatusUpdated(vaultAddress, VaultStatus.NotTraded);
}
}
/**
* @notice Queues a withdrawal for the token holder of a specific vault token
* @param vaultAddress is the address of the vault
* @param amountShares is the number of vault tokens to be redeemed
*/
function addToWithdrawalQueue(
address vaultAddress,
uint256 amountShares
) public nonReentrant onlyValidVault(vaultAddress) {
require(amountShares >= minWithdrawalAmount, "400:WA");
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
IERC20(vaultAddress).safeTransferFrom(msg.sender, address(this), amountShares);
Withdrawal[] storage withdrawalQueue = withdrawalQueues[vaultAddress];
withdrawalQueue.push(Withdrawal({ amountShares: amountShares, receiver: msg.sender }));
vaultMetadata.queuedWithdrawalsCount += 1;
vaultMetadata.queuedWithdrawalsSharesAmount += amountShares;
emit WithdrawalQueued(vaultAddress, msg.sender, amountShares);
}
/**
* @notice Permissionless method that reads price from oracle contracts and checks if barrier is triggered
* @param vaultAddress is address of the vault
*/
function checkBarriers(address vaultAddress) public onlyValidVault(vaultAddress) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
vaultMetadata.checkBarriers(address(cegaState));
emit BarriersChecked(vaultAddress, vaultMetadata.isKnockedIn);
}
/**
* @notice Calculates the final payoff for a given vault
* @param vaultAddress is address of the vault
*/
function calculateVaultFinalPayoff(
address vaultAddress
) public onlyValidVault(vaultAddress) returns (uint256 vaultFinalPayoff) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
vaultFinalPayoff = vaultMetadata.calculateVaultFinalPayoff(address(cegaState));
emit VaultFinalPayoffCalculated(vaultAddress, vaultFinalPayoff, VaultStatus.PayoffCalculated);
}
/**
* @notice Calculates the percentage of principal to return to users if a knock in occurs.
* Iterates through all knock-in barriers and checks the ratio of (spot/strike) for each asset
* Returns the minimum of the knock-in ratios.
* @param vaultAddress is address of the vault
*/
function calculateKnockInRatio(address vaultAddress) public view returns (uint256 knockInRatio) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
return vaultMetadata.calculateKnockInRatio(address(cegaState));
}
/**
* @notice receive assets and allocate the underlying asset to the specified vault's balance
* @param vaultAddress is the address of the vault
* @param amount is the amount to transfer
*/
function receiveAssetsFromCegaState(
address vaultAddress,
uint256 amount
) public nonReentrant onlyValidVault(vaultAddress) {
require(msg.sender == address(cegaState), "403:CS");
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
IERC20(asset).safeTransferFrom(msg.sender, address(this), amount);
vaultMetadata.currentAssetAmount += amount;
emit AssetsReceivedFromCegaState(vaultAddress, amount);
}
/**
* @notice Calculates the fees that should be collected from a given vault
* @param vaultAddress is the address of the vault
*/
function calculateFees(
address vaultAddress
) public view returns (uint256 totalFee, uint256 managementFee, uint256 yieldFee) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
return vaultMetadata.calculateFees(managementFeeBps, yieldFeeBps);
}
/**
* @notice Transfers the correct amount of fees to the fee recipient
* @param vaultAddress is the address of the vault
*/
function collectFees(address vaultAddress) public nonReentrant onlyTraderAdmin onlyValidVault(vaultAddress) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
require(vaultMetadata.vaultStatus == VaultStatus.PayoffCalculated, "500:WS");
(uint256 totalFees, uint256 managementFee, uint256 yieldFee) = calculateFees(vaultAddress);
totalFees = Math.min(totalFees, vaultMetadata.vaultFinalPayoff);
IERC20(asset).safeTransfer(cegaState.feeRecipient(), totalFees);
vaultMetadata.currentAssetAmount -= totalFees;
vaultMetadata.vaultStatus = VaultStatus.FeesCollected;
sumVaultUnderlyingAmounts -= vaultMetadata.underlyingAmount;
vaultMetadata.underlyingAmount = vaultMetadata.vaultFinalPayoff - totalFees;
sumVaultUnderlyingAmounts += vaultMetadata.underlyingAmount;
emit FeesCollected(vaultAddress, managementFee, yieldFee, totalFees, VaultStatus.FeesCollected);
}
/**
* @notice Processes all the queued withdrawals in the withdrawal queue
* @param vaultAddress is the address of the vault
* @param maxProcessCount is the maximum number of withdrawals to process in the queue
*/
function processWithdrawalQueue(
address vaultAddress,
uint256 maxProcessCount
) public nonReentrant onlyTraderAdmin onlyValidVault(vaultAddress) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
// Needs zombie state so that we can restore the vault
require(
vaultMetadata.vaultStatus == VaultStatus.FeesCollected || vaultMetadata.vaultStatus == VaultStatus.Zombie,
"500:WS"
);
Withdrawal[] storage withdrawalQueue = withdrawalQueues[vaultAddress];
FCNVault vault = FCNVault(vaultAddress);
uint256 processCount = Math.min(vaultMetadata.queuedWithdrawalsCount, maxProcessCount);
uint256 amountAssets;
Withdrawal memory withdrawal;
while (processCount > 0) {
withdrawal = withdrawalQueue[vaultMetadata.queuedWithdrawalsCount - 1];
amountAssets = vault.redeem(withdrawal.amountShares);
vaultMetadata.underlyingAmount -= amountAssets;
sumVaultUnderlyingAmounts -= amountAssets;
vaultMetadata.queuedWithdrawalsSharesAmount -= withdrawal.amountShares;
IERC20(asset).safeTransfer(withdrawal.receiver, amountAssets);
vaultMetadata.currentAssetAmount -= amountAssets;
withdrawalQueue.pop();
vaultMetadata.queuedWithdrawalsCount -= 1;
processCount -= 1;
emit WithdrawalProcessed(vaultAddress, withdrawal.receiver, withdrawal.amountShares, amountAssets);
}
if (vaultMetadata.queuedWithdrawalsCount == 0) {
if (vaultMetadata.underlyingAmount == 0 && vault.totalSupply() > 0) {
vaultMetadata.vaultStatus = VaultStatus.Zombie;
emit VaultStatusUpdated(vaultAddress, VaultStatus.Zombie);
} else {
vaultMetadata.vaultStatus = VaultStatus.WithdrawalQueueProcessed;
emit VaultStatusUpdated(vaultAddress, VaultStatus.WithdrawalQueueProcessed);
}
}
}
/**
* @notice Resets the vault to the default state after the trade is settled
* @param vaultAddress is the address of the vault
*/
function rolloverVault(address vaultAddress) public onlyTraderAdmin onlyValidVault(vaultAddress) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
require(vaultMetadata.vaultStatus == VaultStatus.WithdrawalQueueProcessed, "500:WS");
require(vaultMetadata.tradeExpiry != 0, "400:TE");
vaultMetadata.vaultStart = vaultMetadata.tradeExpiry;
vaultMetadata.tradeDate = 0;
vaultMetadata.tradeExpiry = 0;
vaultMetadata.aprBps = 0;
vaultMetadata.vaultStatus = VaultStatus.DepositsClosed;
vaultMetadata.totalCouponPayoff = 0;
vaultMetadata.vaultFinalPayoff = 0;
vaultMetadata.isKnockedIn = false;
emit VaultRollover(vaultAddress, vaultMetadata.vaultStart, VaultStatus.DepositsClosed);
}
/**
* @notice Trader sends assets from the product to a third party wallet address
* @param vaultAddress is the address of the vault
* @param receiver is the receiver of the assets
* @param amount is the amount of the assets to be sent
*/
function sendAssetsToTrade(
address vaultAddress,
address receiver,
uint256 amount
) public nonReentrant onlyTraderAdmin onlyValidVault(vaultAddress) {
require(cegaState.marketMakerAllowList(receiver), "400:NotAllowed");
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
require(amount <= vaultMetadata.currentAssetAmount, "400:TooBig");
IERC20(asset).safeTransfer(receiver, amount);
vaultMetadata.currentAssetAmount = vaultMetadata.currentAssetAmount - amount;
vaultMetadata.vaultStatus = VaultStatus.Traded;
emit AssetsSentToTrade(vaultAddress, receiver, amount, VaultStatus.Traded);
}
/**
* @notice Calculates the current yield accumulated to the current day for a given vault
* @param vaultAddress is the address of the vault
*/
function calculateCurrentYield(address vaultAddress) public onlyValidVault(vaultAddress) {
FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress];
vaultMetadata.calculateCurrentYield();
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { FCNProduct } from "./FCNProduct.sol";
import { FCNVaultMetadata, VaultStatus } from "./Structs.sol";
contract FCNVault is ERC20, Ownable {
using SafeERC20 for ERC20;
address public asset;
FCNProduct public fcnProduct;
/**
* @notice Creates a new FCNVault that is owned by the FCNProduct
* @param _asset is the address of the underlying asset
* @param _tokenName is the name of the token
* @param _tokenSymbol is the name of the token symbol
*/
constructor(address _asset, string memory _tokenName, string memory _tokenSymbol) ERC20(_tokenName, _tokenSymbol) {
asset = _asset;
fcnProduct = FCNProduct(owner());
}
function decimals() public view virtual override returns (uint8) {
return 6;
}
/**
* @notice Returns underlying amount associated for the vault
*/
function totalAssets() public view returns (uint256) {
(, , , , , uint256 underlyingAmount, , , , , , , , , , ) = fcnProduct.vaults(address(this));
return underlyingAmount;
}
/**
* @notice Converts units of shares to assets
* @param shares is the number of vault tokens
*/
function convertToAssets(uint256 shares) public view returns (uint256) {
uint256 _totalSupply = totalSupply();
if (_totalSupply == 0) return 0;
return (shares * totalAssets()) / _totalSupply;
}
/**
* @notice Converts units assets to shares
* @param assets is the amount of underlying assets
*/
function convertToShares(uint256 assets) public view returns (uint256) {
uint256 _totalSupply = totalSupply();
uint256 _totalAssets = totalAssets();
if (_totalAssets == 0 || _totalSupply == 0) return assets;
return (assets * _totalSupply) / _totalAssets;
}
/**
* Product can deposit into the vault
* @param assets is the number of underlying assets to be deposited
* @param receiver is the address of the original depositor
*/
function deposit(uint256 assets, address receiver) public onlyOwner returns (uint256) {
uint256 shares = convertToShares(assets);
_mint(receiver, shares);
return shares;
}
/**
* Redeem a given amount of shares in return for assets
* Shares are burned from the caller
* @param shares is the amount of shares (vault tokens) to be redeemed
*/
function redeem(uint256 shares) external onlyOwner returns (uint256) {
uint256 assets = convertToAssets(shares);
_burn(msg.sender, shares);
return assets;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
interface IAggregatorV3 {
function decimals() external view returns (uint8);
function description() external view returns (string memory);
function version() external view returns (uint256);
function getRoundData(
uint80 _roundId
)
external
view
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
function latestRoundData()
external
view
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.17;
interface ICegaState {
function marketMakerAllowList(address marketMaker) external view returns (bool);
function products(string memory productName) external view returns (address);
function oracleAddresses(string memory oracleName) external view returns (address);
function oracleNames() external view returns (string[] memory);
function productNames() external view returns (string[] memory);
function feeRecipient() external view returns (address);
function isDefaultAdmin(address sender) external view returns (bool);
function isTraderAdmin(address sender) external view returns (bool);
function isOperatorAdmin(address sender) external view returns (bool);
function isServiceAdmin(address sender) external view returns (bool);
function getOracleNames() external view returns (string[] memory);
function addOracle(string memory oracleName, address oracleAddress) external;
function removeOracle(string memory oracleName) external;
function getProductNames() external view returns (string[] memory);
function addProduct(string memory productName, address product) external;
function removeProduct(string memory productName) external;
function updateMarketMakerPermission(address marketMaker, bool allow) external;
function setFeeRecipient(address _feeRecipient) external;
function moveAssetsToProduct(string memory productName, address vaultAddress, uint256 amount) external;
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.17;
import { IAggregatorV3 } from "./IAggregatorV3.sol";
import { RoundData } from "../Structs.sol";
interface IOracle is IAggregatorV3 {
function decimals() external view returns (uint8);
function description() external view returns (string memory);
function version() external view returns (uint256);
function cegaState() external view returns (address);
function oracleData() external view returns (RoundData[] memory);
function nextRoundId() external view returns (uint80);
function addNextRoundData(RoundData calldata _roundData) external;
function updateRoundData(uint80 roundId, RoundData calldata _roundData) external;
function getRoundData(
uint80 _roundId
)
external
view
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
function latestRoundData()
external
view
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.17;
enum OptionBarrierType {
None,
KnockIn
}
struct Deposit {
uint256 amount;
address receiver;
}
struct Withdrawal {
uint256 amountShares;
address receiver;
}
enum VaultStatus {
DepositsClosed,
DepositsOpen,
NotTraded,
Traded,
TradeExpired,
PayoffCalculated,
FeesCollected,
WithdrawalQueueProcessed,
Zombie
}
struct OptionBarrier {
uint256 barrierBps;
uint256 barrierAbsoluteValue;
uint256 strikeBps;
uint256 strikeAbsoluteValue;
string asset;
string oracleName;
OptionBarrierType barrierType;
}
struct FCNVaultMetadata {
uint256 vaultStart;
uint256 tradeDate;
uint256 tradeExpiry;
uint256 aprBps;
uint256 tenorInDays;
uint256 underlyingAmount; // This is how many assets were ever deposited into the vault
uint256 currentAssetAmount; // This is how many assets are currently allocated for the vault (not sent for trade)
uint256 totalCouponPayoff;
uint256 vaultFinalPayoff;
uint256 queuedWithdrawalsSharesAmount;
uint256 queuedWithdrawalsCount;
uint256 optionBarriersCount;
uint256 leverage;
address vaultAddress;
VaultStatus vaultStatus;
bool isKnockedIn;
OptionBarrier[] optionBarriers;
}
struct RoundData {
int256 answer;
uint256 startedAt;
uint256 updatedAt;
uint80 answeredInRound;
}