ETH Price: $3,467.89 (+2.27%)
Gas: 7 Gwei

Contract Diff Checker

Contract Name:
StrategyRouterV2

Contract Source Code:

// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.15;

import "https://github.com/yearn/yearn-vaults/blob/v0.4.6/contracts/BaseStrategy.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";

interface IVault is IERC20 {
    function token() external view returns (address);

    function decimals() external view returns (uint256);

    function deposit() external;

    function pricePerShare() external view returns (uint256);

    function totalAssets() external view returns (uint256);

    function lockedProfit() external view returns (uint256);

    function lockedProfitDegradation() external view returns (uint256);

    function lastReport() external view returns (uint256);

    function withdraw(
        uint256 amount,
        address account,
        uint256 maxLoss
    ) external returns (uint256);
}

interface IOracle {
    // pull our asset price, in usdc, via yearn's oracle
    function getPriceUsdcRecommended(address tokenAddress)
        external
        view
        returns (uint256);
}

interface IHelper {
    function sharesToAmount(address vault, uint256 shares)
        external
        view
        returns (uint256);

    function amountToShares(address vault, uint256 amount)
        external
        view
        returns (uint256);
}

contract StrategyRouterV2 is BaseStrategy {
    using SafeERC20 for IERC20;

    /* ========== STATE VARIABLES ========== */

    /// @notice The newer yVault we are routing this strategy to.
    IVault public yVault;

    /// @notice Max percentage loss we will take, in basis points (100% = 10_000). Default setting is zero.
    uint256 public maxLoss;

    /// @notice Address of our share value helper contract, which we use for conversions between shares and underlying amounts. Big 🧠 math here.
    IHelper public constant shareValueHelper =
        IHelper(0x444443bae5bB8640677A8cdF94CB8879Fec948Ec);

    /// @notice Minimum profit size in USDC that we want to harvest.
    /// @dev Only used in harvestTrigger.
    uint256 public harvestProfitMinInUsdc;

    /// @notice Maximum profit size in USDC that we want to harvest (ignore gas price once we get here).
    /// @dev Only used in harvestTrigger.
    uint256 public harvestProfitMaxInUsdc;

    /// @notice Amount we accept as a loss in liquidatePosition if we don't get 100% back due to rounding errors.
    uint256 public dustThreshold;

    /// @notice Will only be true on the original deployed contract and not on clones; we don't want to clone a clone.
    bool public isOriginal = true;

    // Do I really need to explain this one?
    string internal strategyName;

    /* ========== CONSTRUCTOR ========== */

    constructor(
        address _vault,
        address _yVault,
        string memory _strategyName
    ) BaseStrategy(_vault) {
        _initializeThis(_yVault, _strategyName);
    }

    /* ========== CLONING ========== */

    event Cloned(address indexed clone);

    /// @notice Use this to clone an exact copy of this strategy on another vault.
    /// @param _vault Vault address we want to attach our new strategy to.
    /// @param _strategist Address to grant the strategist role.
    /// @param _rewards If we have any strategist rewards, send them here.
    /// @param _keeper Address to grant the keeper role.
    /// @param _yVault The newer vault we will route our funds to.
    /// @param _strategyName Name to use for our new strategy.
    function cloneRouterStrategy(
        address _vault,
        address _strategist,
        address _rewards,
        address _keeper,
        address _yVault,
        string memory _strategyName
    ) external virtual returns (address newStrategy) {
        require(isOriginal);
        // Copied from https://github.com/optionality/clone-factory/blob/master/contracts/CloneFactory.sol
        bytes20 addressBytes = bytes20(address(this));
        assembly {
            // EIP-1167 bytecode
            let clone_code := mload(0x40)
            mstore(
                clone_code,
                0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000
            )
            mstore(add(clone_code, 0x14), addressBytes)
            mstore(
                add(clone_code, 0x28),
                0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000
            )
            newStrategy := create(0, clone_code, 0x37)
        }

        StrategyRouterV2(newStrategy).initialize(
            _vault,
            _strategist,
            _rewards,
            _keeper,
            _yVault,
            _strategyName
        );

        emit Cloned(newStrategy);
    }

    function initialize(
        address _vault,
        address _strategist,
        address _rewards,
        address _keeper,
        address _yVault,
        string memory _strategyName
    ) public {
        require(address(yVault) == address(0));
        _initialize(_vault, _strategist, _rewards, _keeper);
        _initializeThis(_yVault, _strategyName);
    }

    function _initializeThis(address _yVault, string memory _strategyName)
        internal
    {
        yVault = IVault(_yVault);
        strategyName = _strategyName;
        harvestProfitMinInUsdc = 5_000e6;
        harvestProfitMaxInUsdc = 50_000e6;
        dustThreshold = 10;
    }

    /* ========== VIEWS ========== */

    /// @notice Strategy name.
    function name() external view override returns (string memory) {
        return strategyName;
    }

    /// @notice Total assets the strategy holds, sum of loose and staked want.
    function estimatedTotalAssets()
        public
        view
        virtual
        override
        returns (uint256)
    {
        return balanceOfWant() + valueOfInvestment();
    }

    /// @notice Assets delegated to another vault. Helps to avoid double-counting of TVL.
    /// @dev While a strategy may have loose want, only donations would be unaccounted for, and thus are not counted here.
    ///  Note that a strategy could also have loose want from a manual withdrawFromYVault() call.
    function delegatedAssets() public view override returns (uint256) {
        return vault.strategies(address(this)).totalDebt;
    }

    /// @notice Balance of want sitting in our strategy.
    function balanceOfWant() public view returns (uint256) {
        return want.balanceOf(address(this));
    }

    /// @notice Balance of underlying we are holding as vault tokens of our delegated vault.
    function valueOfInvestment() public view virtual returns (uint256) {
        return
            shareValueHelper.sharesToAmount(
                address(yVault),
                yVault.balanceOf(address(this))
            );
    }

    /// @notice Balance of underlying we will gain on our next harvest
    function claimableProfits() public view returns (uint256 profits) {
        uint256 assets = estimatedTotalAssets();
        uint256 debt = delegatedAssets();

        if (assets > debt) {
            unchecked {
                profits = assets - debt;
            }
        } else {
            profits = 0;
        }
    }

    /* ========== CORE STRATEGY FUNCTIONS ========== */

    function prepareReturn(uint256 _debtOutstanding)
        internal
        virtual
        override
        returns (
            uint256 _profit,
            uint256 _loss,
            uint256 _debtPayment
        )
    {
        // serious loss should never happen, but if it does, let's record it accurately
        uint256 assets = estimatedTotalAssets();
        uint256 debt = delegatedAssets();

        // if assets are greater than debt, things are working great!
        if (assets >= debt) {
            unchecked {
                _profit = assets - debt;
            }
            _debtPayment = _debtOutstanding;

            uint256 toFree = _profit + _debtPayment;

            // freed is math.min(wantBalance, toFree)
            (uint256 freed, ) = liquidatePosition(toFree);

            if (toFree > freed) {
                if (_debtPayment >= freed) {
                    _debtPayment = freed;
                    _profit = 0;
                } else {
                    unchecked {
                        _profit = freed - _debtPayment;
                    }
                }
            }
        }
        // if assets are less than debt, we are in trouble. don't worry about withdrawing here, just report losses
        else {
            unchecked {
                _loss = debt - assets;
            }
        }
    }

    function adjustPosition(uint256 _debtOutstanding)
        internal
        virtual
        override
    {
        if (emergencyExit) {
            return;
        }

        uint256 balance = balanceOfWant();
        if (balance > 0) {
            _checkAllowance(address(yVault), address(want), balance);
            yVault.deposit();
        }
    }

    function liquidatePosition(uint256 _amountNeeded)
        internal
        virtual
        override
        returns (uint256 _liquidatedAmount, uint256 _loss)
    {
        uint256 balance = balanceOfWant();
        if (balance >= _amountNeeded) {
            return (_amountNeeded, 0);
        }

        uint256 toWithdraw;
        unchecked {
            toWithdraw = _amountNeeded - balance;
        }

        // withdraw the remainder we need
        _withdrawFromYVault(toWithdraw);

        uint256 looseWant = balanceOfWant();

        // because of slippage, dust-sized losses are acceptable
        // however, we don't want to take losses for funds stuck in a strategy in the destination vault
        if (_amountNeeded > looseWant) {
            uint256 diff = _amountNeeded - looseWant;
            _liquidatedAmount = looseWant;
            if (diff < dustThreshold) {
                _loss = diff;
            }
        } else {
            _liquidatedAmount = _amountNeeded;
        }
    }

    /// @notice Manually withdraw underlying assets from our target vault.
    /// @dev Only governance or management may call this.
    /// @param _amount Shares of our target vault to withdraw.
    function withdrawFromYVault(uint256 _amount) external onlyVaultManagers {
        _withdrawFromYVault(_amount);
    }

    function _withdrawFromYVault(uint256 _amount) internal {
        if (_amount == 0) {
            return;
        }

        uint256 _balanceOfYShares = yVault.balanceOf(address(this));
        uint256 sharesToWithdraw =
            Math.min(
                shareValueHelper.amountToShares(address(yVault), _amount),
                _balanceOfYShares
            );

        if (sharesToWithdraw == 0) {
            return;
        }

        yVault.withdraw(sharesToWithdraw, address(this), maxLoss);
    }

    function liquidateAllPositions()
        internal
        virtual
        override
        returns (uint256 _amountFreed)
    {
        // withdraw as much as we can from vault tokens
        uint256 vaultTokenBalance = yVault.balanceOf(address(this));
        if (vaultTokenBalance > 0) {
            yVault.withdraw(vaultTokenBalance, address(this), maxLoss);
        }

        // return our want balance
        return balanceOfWant();
    }

    function prepareMigration(address _newStrategy) internal virtual override {
        IERC20(yVault).safeTransfer(
            _newStrategy,
            IERC20(yVault).balanceOf(address(this))
        );
    }

    function protectedTokens()
        internal
        view
        override
        returns (address[] memory ret)
    {}

    function _checkAllowance(
        address _contract,
        address _token,
        uint256 _amount
    ) internal {
        if (IERC20(_token).allowance(address(this), _contract) < _amount) {
            IERC20(_token).safeApprove(_contract, 0);
            IERC20(_token).safeApprove(_contract, type(uint256).max);
        }
    }

    /// @notice Convert our keeper's eth cost into want
    /// @dev We don't use this since we don't factor call cost into our harvestTrigger.
    /// @param _amtInWei Amount of ether spent.
    /// @return Value of ether in want.
    function ethToWant(uint256 _amtInWei)
        public
        view
        virtual
        override
        returns (uint256)
    {}

    /* ========== KEEP3RS ========== */

    /**
     * @notice
     *  Provide a signal to the keeper that harvest() should be called.
     *
     *  Don't harvest if a strategy is inactive.
     *  If our profit exceeds our upper limit, then harvest no matter what. For
     *  our lower profit limit, credit threshold, max delay, and manual force trigger,
     *  only harvest if our gas price is acceptable.
     *
     * @param callCostinEth The keeper's estimated gas cost to call harvest() (in wei).
     * @return True if harvest() should be called, false otherwise.
     */
    function harvestTrigger(uint256 callCostinEth)
        public
        view
        override
        returns (bool)
    {
        // Should not trigger if strategy is not active (no assets and no debtRatio). This means we don't need to adjust keeper job.
        if (!isActive()) {
            return false;
        }

        // harvest if we have a profit to claim at our upper limit without considering gas price
        uint256 claimableProfit = claimableProfitInUsdc();
        if (claimableProfit > harvestProfitMaxInUsdc) {
            return true;
        }

        // check if the base fee gas price is higher than we allow. if it is, block harvests.
        if (!isBaseFeeAcceptable()) {
            return false;
        }

        // trigger if we want to manually harvest, but only if our gas price is acceptable
        if (forceHarvestTriggerOnce) {
            return true;
        }

        // harvest if we have a sufficient profit to claim, but only if our gas price is acceptable
        if (claimableProfit > harvestProfitMinInUsdc) {
            return true;
        }

        StrategyParams memory params = vault.strategies(address(this));
        // harvest regardless of profit once we reach our maxDelay
        if (block.timestamp - params.lastReport > maxReportDelay) {
            return true;
        }

        // harvest our credit if it's above our threshold
        if (vault.creditAvailable() > creditThreshold) {
            return true;
        }

        // otherwise, we don't harvest
        return false;
    }

    /// @notice Calculates the profit if all claimable assets were sold for USDC (6 decimals).
    /// @dev Uses yearn's lens oracle, if returned values are strange then troubleshoot there.
    /// @return Total return in USDC from taking profits on yToken gains.
    function claimableProfitInUsdc() public view returns (uint256) {
        IOracle yearnOracle =
            IOracle(0x83d95e0D5f402511dB06817Aff3f9eA88224B030); // yearn lens oracle
        uint256 underlyingPrice =
            yearnOracle.getPriceUsdcRecommended(address(want));

        // Oracle returns prices as 6 decimals, so multiply by claimable amount and divide by token decimals
        return (claimableProfits() * underlyingPrice) / (10**yVault.decimals());
    }

    /* ========== SETTERS ========== */
    // These functions are useful for setting parameters of the strategy that may need to be adjusted.

    /// @notice Set the maximum loss we will accept (due to slippage or locked funds) on a vault withdrawal.
    /// @dev Generally, this should be zero, and this function will only be used in special/emergency cases.
    /// @param _maxLoss Max percentage loss we will take, in basis points (100% = 10_000).
    function setMaxLoss(uint256 _maxLoss) public onlyVaultManagers {
        maxLoss = _maxLoss;
    }

    /// @notice This allows us to set the dust threshold for our strategy.
    /// @param _dustThreshold This sets what dust is. If we have less than this remaining after withdrawing, accept it as a loss.
    function setDustThreshold(uint256 _dustThreshold)
        external
        onlyVaultManagers
    {
        require(_dustThreshold < 10000, "Your size is too much size");
        dustThreshold = _dustThreshold;
    }

    /**
     * @notice
     *  Here we set various parameters to optimize our harvestTrigger.
     * @param _harvestProfitMinInUsdc The amount of profit (in USDC, 6 decimals)
     *  that will trigger a harvest if gas price is acceptable.
     * @param _harvestProfitMaxInUsdc The amount of profit in USDC that
     *  will trigger a harvest regardless of gas price.
     */
    function setHarvestTriggerParams(
        uint256 _harvestProfitMinInUsdc,
        uint256 _harvestProfitMaxInUsdc
    ) external onlyVaultManagers {
        harvestProfitMinInUsdc = _harvestProfitMinInUsdc;
        harvestProfitMaxInUsdc = _harvestProfitMaxInUsdc;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.8.15;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

struct StrategyParams {
    uint256 performanceFee;
    uint256 activation;
    uint256 debtRatio;
    uint256 minDebtPerHarvest;
    uint256 maxDebtPerHarvest;
    uint256 lastReport;
    uint256 totalDebt;
    uint256 totalGain;
    uint256 totalLoss;
}

interface VaultAPI is IERC20 {
    function name() external view returns (string calldata);

    function symbol() external view returns (string calldata);

    function decimals() external view returns (uint256);

    function apiVersion() external pure returns (string memory);

    function permit(
        address owner,
        address spender,
        uint256 amount,
        uint256 expiry,
        bytes calldata signature
    ) external returns (bool);

    // NOTE: Vyper produces multiple signatures for a given function with "default" args
    function deposit() external returns (uint256);

    function deposit(uint256 amount) external returns (uint256);

    function deposit(uint256 amount, address recipient) external returns (uint256);

    // NOTE: Vyper produces multiple signatures for a given function with "default" args
    function withdraw() external returns (uint256);

    function withdraw(uint256 maxShares) external returns (uint256);

    function withdraw(uint256 maxShares, address recipient) external returns (uint256);

    function token() external view returns (address);

    function strategies(address _strategy) external view returns (StrategyParams memory);

    function pricePerShare() external view returns (uint256);

    function totalAssets() external view returns (uint256);

    function depositLimit() external view returns (uint256);

    function maxAvailableShares() external view returns (uint256);

    /**
     * View how much the Vault would increase this Strategy's borrow limit,
     * based on its present performance (since its last report). Can be used to
     * determine expectedReturn in your Strategy.
     */
    function creditAvailable() external view returns (uint256);

    /**
     * View how much the Vault would like to pull back from the Strategy,
     * based on its present performance (since its last report). Can be used to
     * determine expectedReturn in your Strategy.
     */
    function debtOutstanding() external view returns (uint256);

    /**
     * View how much the Vault expect this Strategy to return at the current
     * block, based on its present performance (since its last report). Can be
     * used to determine expectedReturn in your Strategy.
     */
    function expectedReturn() external view returns (uint256);

    /**
     * This is the main contact point where the Strategy interacts with the
     * Vault. It is critical that this call is handled as intended by the
     * Strategy. Therefore, this function will be called by BaseStrategy to
     * make sure the integration is correct.
     */
    function report(
        uint256 _gain,
        uint256 _loss,
        uint256 _debtPayment
    ) external returns (uint256);

    /**
     * This function should only be used in the scenario where the Strategy is
     * being retired but no migration of the positions are possible, or in the
     * extreme scenario that the Strategy needs to be put into "Emergency Exit"
     * mode in order for it to exit as quickly as possible. The latter scenario
     * could be for any reason that is considered "critical" that the Strategy
     * exits its position as fast as possible, such as a sudden change in
     * market conditions leading to losses, or an imminent failure in an
     * external dependency.
     */
    function revokeStrategy() external;

    /**
     * View the governance address of the Vault to assert privileged functions
     * can only be called by governance. The Strategy serves the Vault, so it
     * is subject to governance defined by the Vault.
     */
    function governance() external view returns (address);

    /**
     * View the management address of the Vault to assert privileged functions
     * can only be called by management. The Strategy serves the Vault, so it
     * is subject to management defined by the Vault.
     */
    function management() external view returns (address);

    /**
     * View the guardian address of the Vault to assert privileged functions
     * can only be called by guardian. The Strategy serves the Vault, so it
     * is subject to guardian defined by the Vault.
     */
    function guardian() external view returns (address);
}

/**
 * This interface is here for the keeper bot to use.
 */
interface StrategyAPI {
    function name() external view returns (string memory);

    function vault() external view returns (address);

    function want() external view returns (address);

    function apiVersion() external pure returns (string memory);

    function keeper() external view returns (address);

    function isActive() external view returns (bool);

    function delegatedAssets() external view returns (uint256);

    function estimatedTotalAssets() external view returns (uint256);

    function tendTrigger(uint256 callCost) external view returns (bool);

    function tend() external;

    function harvestTrigger(uint256 callCost) external view returns (bool);

    function harvest() external;

    event Harvested(uint256 profit, uint256 loss, uint256 debtPayment, uint256 debtOutstanding);
}

interface HealthCheck {
    function check(
        uint256 profit,
        uint256 loss,
        uint256 debtPayment,
        uint256 debtOutstanding,
        uint256 totalDebt
    ) external view returns (bool);
}

interface IBaseFee {
    function isCurrentBaseFeeAcceptable() external view returns (bool);
}

/**
 * @title Yearn Base Strategy
 * @author yearn.finance
 * @notice
 *  BaseStrategy implements all of the required functionality to interoperate
 *  closely with the Vault contract. This contract should be inherited and the
 *  abstract methods implemented to adapt the Strategy to the particular needs
 *  it has to create a return.
 *
 *  Of special interest is the relationship between `harvest()` and
 *  `vault.report()'. `harvest()` may be called simply because enough time has
 *  elapsed since the last report, and not because any funds need to be moved
 *  or positions adjusted. This is critical so that the Vault may maintain an
 *  accurate picture of the Strategy's performance. See  `vault.report()`,
 *  `harvest()`, and `harvestTrigger()` for further details.
 */

abstract contract BaseStrategy {
    using SafeERC20 for IERC20;
    string public metadataURI;

    // health checks
    bool public doHealthCheck;
    address public healthCheck;

    /**
     * @notice
     *  Used to track which version of `StrategyAPI` this Strategy
     *  implements.
     * @dev The Strategy's version must match the Vault's `API_VERSION`.
     * @return A string which holds the current API version of this contract.
     */
    function apiVersion() public pure returns (string memory) {
        return "0.4.6";
    }

    /**
     * @notice This Strategy's name.
     * @dev
     *  You can use this field to manage the "version" of this Strategy, e.g.
     *  `StrategySomethingOrOtherV1`. However, "API Version" is managed by
     *  `apiVersion()` function above.
     * @return This Strategy's name.
     */
    function name() external view virtual returns (string memory);

    /**
     * @notice
     *  The amount (priced in want) of the total assets managed by this strategy should not count
     *  towards Yearn's TVL calculations.
     * @dev
     *  You can override this field to set it to a non-zero value if some of the assets of this
     *  Strategy is somehow delegated inside another part of of Yearn's ecosystem e.g. another Vault.
     *  Note that this value must be strictly less than or equal to the amount provided by
     *  `estimatedTotalAssets()` below, as the TVL calc will be total assets minus delegated assets.
     *  Also note that this value is used to determine the total assets under management by this
     *  strategy, for the purposes of computing the management fee in `Vault`
     * @return
     *  The amount of assets this strategy manages that should not be included in Yearn's Total Value
     *  Locked (TVL) calculation across it's ecosystem.
     */
    function delegatedAssets() external view virtual returns (uint256) {
        return 0;
    }

    VaultAPI public vault;
    address public strategist;
    address public rewards;
    address public keeper;

    IERC20 public want;

    // So indexers can keep track of this
    event Harvested(uint256 profit, uint256 loss, uint256 debtPayment, uint256 debtOutstanding);

    event UpdatedStrategist(address newStrategist);

    event UpdatedKeeper(address newKeeper);

    event UpdatedRewards(address rewards);

    event UpdatedMinReportDelay(uint256 delay);

    event UpdatedMaxReportDelay(uint256 delay);

    event UpdatedBaseFeeOracle(address baseFeeOracle);

    event UpdatedCreditThreshold(uint256 creditThreshold);

    event ForcedHarvestTrigger(bool triggerState);

    event EmergencyExitEnabled();

    event UpdatedMetadataURI(string metadataURI);

    event SetHealthCheck(address);
    event SetDoHealthCheck(bool);

    // The minimum number of seconds between harvest calls. See
    // `setMinReportDelay()` for more details.
    uint256 public minReportDelay;

    // The maximum number of seconds between harvest calls. See
    // `setMaxReportDelay()` for more details.
    uint256 public maxReportDelay;

    // See note on `setEmergencyExit()`.
    bool public emergencyExit;

    // See note on `isBaseFeeOracleAcceptable()`.
    address public baseFeeOracle;

    // See note on `setCreditThreshold()`
    uint256 public creditThreshold;

    // See note on `setForceHarvestTriggerOnce`
    bool public forceHarvestTriggerOnce;

    // modifiers
    modifier onlyAuthorized() {
        _onlyAuthorized();
        _;
    }

    modifier onlyEmergencyAuthorized() {
        _onlyEmergencyAuthorized();
        _;
    }

    modifier onlyStrategist() {
        _onlyStrategist();
        _;
    }

    modifier onlyGovernance() {
        _onlyGovernance();
        _;
    }

    modifier onlyRewarder() {
        _onlyRewarder();
        _;
    }

    modifier onlyKeepers() {
        _onlyKeepers();
        _;
    }

    modifier onlyVaultManagers() {
        _onlyVaultManagers();
        _;
    }

    function _onlyAuthorized() internal {
        require(msg.sender == strategist || msg.sender == governance());
    }

    function _onlyEmergencyAuthorized() internal {
        require(msg.sender == strategist || msg.sender == governance() || msg.sender == vault.guardian() || msg.sender == vault.management());
    }

    function _onlyStrategist() internal {
        require(msg.sender == strategist);
    }

    function _onlyGovernance() internal {
        require(msg.sender == governance());
    }

    function _onlyRewarder() internal {
        require(msg.sender == governance() || msg.sender == strategist);
    }

    function _onlyKeepers() internal {
        require(
            msg.sender == keeper ||
                msg.sender == strategist ||
                msg.sender == governance() ||
                msg.sender == vault.guardian() ||
                msg.sender == vault.management()
        );
    }

    function _onlyVaultManagers() internal {
        require(msg.sender == vault.management() || msg.sender == governance());
    }

    constructor(address _vault) {
        _initialize(_vault, msg.sender, msg.sender, msg.sender);
    }

    /**
     * @notice
     *  Initializes the Strategy, this is called only once, when the
     *  contract is deployed.
     * @dev `_vault` should implement `VaultAPI`.
     * @param _vault The address of the Vault responsible for this Strategy.
     * @param _strategist The address to assign as `strategist`.
     * The strategist is able to change the reward address
     * @param _rewards  The address to use for pulling rewards.
     * @param _keeper The adddress of the _keeper. _keeper
     * can harvest and tend a strategy.
     */
    function _initialize(
        address _vault,
        address _strategist,
        address _rewards,
        address _keeper
    ) internal {
        require(address(want) == address(0), "Strategy already initialized");

        vault = VaultAPI(_vault);
        want = IERC20(vault.token());
        want.safeApprove(_vault, type(uint256).max); // Give Vault unlimited access (might save gas)
        strategist = _strategist;
        rewards = _rewards;
        keeper = _keeper;

        // initialize variables
        maxReportDelay = 30 days;
        creditThreshold = 1_000_000 * 10**vault.decimals(); // set this high by default so we don't get tons of false triggers if not changed

        vault.approve(rewards, type(uint256).max); // Allow rewards to be pulled
    }

    function setHealthCheck(address _healthCheck) external onlyVaultManagers {
        emit SetHealthCheck(_healthCheck);
        healthCheck = _healthCheck;
    }

    function setDoHealthCheck(bool _doHealthCheck) external onlyVaultManagers {
        emit SetDoHealthCheck(_doHealthCheck);
        doHealthCheck = _doHealthCheck;
    }

    /**
     * @notice
     *  Used to change `strategist`.
     *
     *  This may only be called by governance or the existing strategist.
     * @param _strategist The new address to assign as `strategist`.
     */
    function setStrategist(address _strategist) external onlyAuthorized {
        require(_strategist != address(0));
        strategist = _strategist;
        emit UpdatedStrategist(_strategist);
    }

    /**
     * @notice
     *  Used to change `keeper`.
     *
     *  `keeper` is the only address that may call `tend()` or `harvest()`,
     *  other than `governance()` or `strategist`. However, unlike
     *  `governance()` or `strategist`, `keeper` may *only* call `tend()`
     *  and `harvest()`, and no other authorized functions, following the
     *  principle of least privilege.
     *
     *  This may only be called by governance or the strategist.
     * @param _keeper The new address to assign as `keeper`.
     */
    function setKeeper(address _keeper) external onlyAuthorized {
        require(_keeper != address(0));
        keeper = _keeper;
        emit UpdatedKeeper(_keeper);
    }

    /**
     * @notice
     *  Used to change `rewards`. EOA or smart contract which has the permission
     *  to pull rewards from the vault.
     *
     *  This may only be called by the strategist.
     * @param _rewards The address to use for pulling rewards.
     */
    function setRewards(address _rewards) external onlyRewarder {
        require(_rewards != address(0));
        vault.approve(rewards, 0);
        rewards = _rewards;
        vault.approve(rewards, type(uint256).max);
        emit UpdatedRewards(_rewards);
    }

    /**
     * @notice
     *  Used to change `minReportDelay`. `minReportDelay` is the minimum number
     *  of blocks that should pass for `harvest()` to be called.
     *
     *  For external keepers (such as the Keep3r network), this is the minimum
     *  time between jobs to wait. (see `harvestTrigger()`
     *  for more details.)
     *
     *  This may only be called by governance or the strategist.
     * @param _delay The minimum number of seconds to wait between harvests.
     */
    function setMinReportDelay(uint256 _delay) external onlyAuthorized {
        minReportDelay = _delay;
        emit UpdatedMinReportDelay(_delay);
    }

    /**
     * @notice
     *  Used to change `maxReportDelay`. `maxReportDelay` is the maximum number
     *  of blocks that should pass for `harvest()` to be called.
     *
     *  For external keepers (such as the Keep3r network), this is the maximum
     *  time between jobs to wait. (see `harvestTrigger()`
     *  for more details.)
     *
     *  This may only be called by governance or the strategist.
     * @param _delay The maximum number of seconds to wait between harvests.
     */
    function setMaxReportDelay(uint256 _delay) external onlyAuthorized {
        maxReportDelay = _delay;
        emit UpdatedMaxReportDelay(_delay);
    }

    /**
     * @notice
     *  Used to ensure that any significant credit a strategy has from the
     *  vault will be automatically harvested.
     *
     *  This may only be called by governance or management.
     * @param _creditThreshold The number of want tokens that will
     *  automatically trigger a harvest.
     */
    function setCreditThreshold(uint256 _creditThreshold) external onlyVaultManagers {
        creditThreshold = _creditThreshold;
        emit UpdatedCreditThreshold(_creditThreshold);
    }

    /**
     * @notice
     *  Used to automatically trigger a harvest by our keepers. Can be
     *  useful if gas prices are too high now, and we want to harvest
     *  later once prices have lowered.
     *
     *  This may only be called by governance or management.
     * @param _forceHarvestTriggerOnce Value of true tells keepers to harvest
     *  our strategy
     */
    function setForceHarvestTriggerOnce(bool _forceHarvestTriggerOnce) external onlyVaultManagers {
        forceHarvestTriggerOnce = _forceHarvestTriggerOnce;
        emit ForcedHarvestTrigger(_forceHarvestTriggerOnce);
    }

    /**
     * @notice
     *  Used to set our baseFeeOracle, which checks the network's current base
     *  fee price to determine whether it is an optimal time to harvest or tend.
     *
     *  This may only be called by governance or management.
     * @param _baseFeeOracle Address of our baseFeeOracle
     */
    function setBaseFeeOracle(address _baseFeeOracle) external onlyVaultManagers {
        baseFeeOracle = _baseFeeOracle;
        emit UpdatedBaseFeeOracle(_baseFeeOracle);
    }

    /**
     * @notice
     *  Used to change `metadataURI`. `metadataURI` is used to store the URI
     * of the file describing the strategy.
     *
     *  This may only be called by governance or the strategist.
     * @param _metadataURI The URI that describe the strategy.
     */
    function setMetadataURI(string calldata _metadataURI) external onlyAuthorized {
        metadataURI = _metadataURI;
        emit UpdatedMetadataURI(_metadataURI);
    }

    /**
     * Resolve governance address from Vault contract, used to make assertions
     * on protected functions in the Strategy.
     */
    function governance() internal view returns (address) {
        return vault.governance();
    }

    /**
     * @notice
     *  Provide an accurate conversion from `_amtInWei` (denominated in wei)
     *  to `want` (using the native decimal characteristics of `want`).
     * @dev
     *  Care must be taken when working with decimals to assure that the conversion
     *  is compatible. As an example:
     *
     *      given 1e17 wei (0.1 ETH) as input, and want is USDC (6 decimals),
     *      with USDC/ETH = 1800, this should give back 1800000000 (180 USDC)
     *
     * @param _amtInWei The amount (in wei/1e-18 ETH) to convert to `want`
     * @return The amount in `want` of `_amtInEth` converted to `want`
     **/
    function ethToWant(uint256 _amtInWei) public view virtual returns (uint256);

    /**
     * @notice
     *  Provide an accurate estimate for the total amount of assets
     *  (principle + return) that this Strategy is currently managing,
     *  denominated in terms of `want` tokens.
     *
     *  This total should be "realizable" e.g. the total value that could
     *  *actually* be obtained from this Strategy if it were to divest its
     *  entire position based on current on-chain conditions.
     * @dev
     *  Care must be taken in using this function, since it relies on external
     *  systems, which could be manipulated by the attacker to give an inflated
     *  (or reduced) value produced by this function, based on current on-chain
     *  conditions (e.g. this function is possible to influence through
     *  flashloan attacks, oracle manipulations, or other DeFi attack
     *  mechanisms).
     *
     *  It is up to governance to use this function to correctly order this
     *  Strategy relative to its peers in the withdrawal queue to minimize
     *  losses for the Vault based on sudden withdrawals. This value should be
     *  higher than the total debt of the Strategy and higher than its expected
     *  value to be "safe".
     * @return The estimated total assets in this Strategy.
     */
    function estimatedTotalAssets() public view virtual returns (uint256);

    /*
     * @notice
     *  Provide an indication of whether this strategy is currently "active"
     *  in that it is managing an active position, or will manage a position in
     *  the future. This should correlate to `harvest()` activity, so that Harvest
     *  events can be tracked externally by indexing agents.
     * @return True if the strategy is actively managing a position.
     */
    function isActive() public view returns (bool) {
        return vault.strategies(address(this)).debtRatio > 0 || estimatedTotalAssets() > 0;
    }

    /**
     * Perform any Strategy unwinding or other calls necessary to capture the
     * "free return" this Strategy has generated since the last time its core
     * position(s) were adjusted. Examples include unwrapping extra rewards.
     * This call is only used during "normal operation" of a Strategy, and
     * should be optimized to minimize losses as much as possible.
     *
     * This method returns any realized profits and/or realized losses
     * incurred, and should return the total amounts of profits/losses/debt
     * payments (in `want` tokens) for the Vault's accounting (e.g.
     * `want.balanceOf(this) >= _debtPayment + _profit`).
     *
     * `_debtOutstanding` will be 0 if the Strategy is not past the configured
     * debt limit, otherwise its value will be how far past the debt limit
     * the Strategy is. The Strategy's debt limit is configured in the Vault.
     *
     * NOTE: `_debtPayment` should be less than or equal to `_debtOutstanding`.
     *       It is okay for it to be less than `_debtOutstanding`, as that
     *       should only used as a guide for how much is left to pay back.
     *       Payments should be made to minimize loss from slippage, debt,
     *       withdrawal fees, etc.
     *
     * See `vault.debtOutstanding()`.
     */
    function prepareReturn(uint256 _debtOutstanding)
        internal
        virtual
        returns (
            uint256 _profit,
            uint256 _loss,
            uint256 _debtPayment
        );

    /**
     * Perform any adjustments to the core position(s) of this Strategy given
     * what change the Vault made in the "investable capital" available to the
     * Strategy. Note that all "free capital" in the Strategy after the report
     * was made is available for reinvestment. Also note that this number
     * could be 0, and you should handle that scenario accordingly.
     *
     * See comments regarding `_debtOutstanding` on `prepareReturn()`.
     */
    function adjustPosition(uint256 _debtOutstanding) internal virtual;

    /**
     * Liquidate up to `_amountNeeded` of `want` of this strategy's positions,
     * irregardless of slippage. Any excess will be re-invested with `adjustPosition()`.
     * This function should return the amount of `want` tokens made available by the
     * liquidation. If there is a difference between them, `_loss` indicates whether the
     * difference is due to a realized loss, or if there is some other sitution at play
     * (e.g. locked funds) where the amount made available is less than what is needed.
     *
     * NOTE: The invariant `_liquidatedAmount + _loss <= _amountNeeded` should always be maintained
     */
    function liquidatePosition(uint256 _amountNeeded) internal virtual returns (uint256 _liquidatedAmount, uint256 _loss);

    /**
     * Liquidate everything and returns the amount that got freed.
     * This function is used during emergency exit instead of `prepareReturn()` to
     * liquidate all of the Strategy's positions back to the Vault.
     */

    function liquidateAllPositions() internal virtual returns (uint256 _amountFreed);

    /**
     * @notice
     *  Provide a signal to the keeper that `tend()` should be called. The
     *  keeper will provide the estimated gas cost that they would pay to call
     *  `tend()`, and this function should use that estimate to make a
     *  determination if calling it is "worth it" for the keeper. This is not
     *  the only consideration into issuing this trigger, for example if the
     *  position would be negatively affected if `tend()` is not called
     *  shortly, then this can return `true` even if the keeper might be
     *  "at a loss" (keepers are always reimbursed by Yearn).
     * @dev
     *  `callCostInWei` must be priced in terms of `wei` (1e-18 ETH).
     *
     *  This call and `harvestTrigger()` should never return `true` at the same
     *  time.
     * @param callCostInWei The keeper's estimated gas cost to call `tend()` (in wei).
     * @return `true` if `tend()` should be called, `false` otherwise.
     */
    function tendTrigger(uint256 callCostInWei) public view virtual returns (bool) {
        // We usually don't need tend, but if there are positions that need
        // active maintainence, overriding this function is how you would
        // signal for that.
        // If your implementation uses the cost of the call in want, you can
        // use uint256 callCost = ethToWant(callCostInWei);
        // It is highly suggested to use the baseFeeOracle here as well.

        return false;
    }

    /**
     * @notice
     *  Adjust the Strategy's position. The purpose of tending isn't to
     *  realize gains, but to maximize yield by reinvesting any returns.
     *
     *  See comments on `adjustPosition()`.
     *
     *  This may only be called by governance, the strategist, or the keeper.
     */
    function tend() external onlyKeepers {
        // Don't take profits with this call, but adjust for better gains
        adjustPosition(vault.debtOutstanding());
    }

    /**
     * @notice
     *  Provide a signal to the keeper that `harvest()` should be called. The
     *  keeper will provide the estimated gas cost that they would pay to call
     *  `harvest()`, and this function should use that estimate to make a
     *  determination if calling it is "worth it" for the keeper. This is not
     *  the only consideration into issuing this trigger, for example if the
     *  position would be negatively affected if `harvest()` is not called
     *  shortly, then this can return `true` even if the keeper might be "at a
     *  loss" (keepers are always reimbursed by Yearn).
     * @dev
     *  `callCostInWei` must be priced in terms of `wei` (1e-18 ETH).
     *
     *  This call and `tendTrigger` should never return `true` at the
     *  same time.
     *
     *  See `maxReportDelay`, `creditThreshold` to adjust the
     *  strategist-controlled parameters that will influence whether this call
     *  returns `true` or not. These parameters will be used in conjunction
     *  with the parameters reported to the Vault (see `params`) to determine
     *  if calling `harvest()` is merited.
     *
     *  This trigger also checks the network's base fee to avoid harvesting during
     *  times of high network congestion.
     *
     *  Consider use of super.harvestTrigger() in any override to build on top
     *  of this logic instead of replacing it. For example, if using `minReportDelay`.
     *
     *  It is expected that an external system will check `harvestTrigger()`.
     *  This could be a script run off a desktop or cloud bot (e.g.
     *  https://github.com/iearn-finance/yearn-vaults/blob/main/scripts/keep.py),
     *  or via an integration with the Keep3r network (e.g.
     *  https://github.com/Macarse/GenericKeep3rV2/blob/master/contracts/keep3r/GenericKeep3rV2.sol).
     * @param callCostInWei The keeper's estimated gas cost to call `harvest()` (in wei).
     * @return `true` if `harvest()` should be called, `false` otherwise.
     */
    function harvestTrigger(uint256 callCostInWei) public view virtual returns (bool) {
        // Should not trigger if strategy is not active (no assets or no debtRatio)
        if (!isActive()) return false;

        // check if the base fee gas price is higher than we allow. if it is, block harvests.
        if (!isBaseFeeAcceptable()) return false;

        // trigger if we want to manually harvest, but only if our gas price is acceptable
        if (forceHarvestTriggerOnce) return true;

        // Should trigger if hasn't been called in a while
        StrategyParams memory params = vault.strategies(address(this));
        if ((block.timestamp - params.lastReport) >= maxReportDelay) return true;

        // harvest our credit if it's above our threshold or return false
        return (vault.creditAvailable() > creditThreshold);
    }

    /**
     * @notice
     *  Check if the current network base fee is below our external target. If
     *  not, then harvestTrigger will return false.
     * @return `true` if `harvest()` should be allowed, `false` otherwise.
     */
    function isBaseFeeAcceptable() public view returns (bool) {
        if (baseFeeOracle == address(0)) return true;
        else return IBaseFee(baseFeeOracle).isCurrentBaseFeeAcceptable();
    }

    /**
     * @notice
     *  Harvests the Strategy, recognizing any profits or losses and adjusting
     *  the Strategy's position.
     *
     *  In the rare case the Strategy is in emergency shutdown, this will exit
     *  the Strategy's position.
     *
     *  This may only be called by governance, the strategist, or the keeper.
     * @dev
     *  When `harvest()` is called, the Strategy reports to the Vault (via
     *  `vault.report()`), so in some cases `harvest()` must be called in order
     *  to take in profits, to borrow newly available funds from the Vault, or
     *  otherwise adjust its position. In other cases `harvest()` must be
     *  called to report to the Vault on the Strategy's position, especially if
     *  any losses have occurred.
     */
    function harvest() external onlyKeepers {
        uint256 profit = 0;
        uint256 loss = 0;
        uint256 debtOutstanding = vault.debtOutstanding();
        uint256 debtPayment = 0;
        if (emergencyExit) {
            // Free up as much capital as possible
            uint256 amountFreed = liquidateAllPositions();
            if (amountFreed < debtOutstanding) {
                loss = debtOutstanding - amountFreed;
            } else if (amountFreed > debtOutstanding) {
                profit = amountFreed - debtOutstanding;
            }
            debtPayment = debtOutstanding - loss;
        } else {
            // Free up returns for Vault to pull
            (profit, loss, debtPayment) = prepareReturn(debtOutstanding);
        }

        // we're done harvesting, so reset our trigger if we used it
        forceHarvestTriggerOnce = false;
        emit ForcedHarvestTrigger(false);

        // Allow Vault to take up to the "harvested" balance of this contract,
        // which is the amount it has earned since the last time it reported to
        // the Vault.
        uint256 totalDebt = vault.strategies(address(this)).totalDebt;
        debtOutstanding = vault.report(profit, loss, debtPayment);

        // Check if free returns are left, and re-invest them
        adjustPosition(debtOutstanding);

        // call healthCheck contract
        if (doHealthCheck && healthCheck != address(0)) {
            require(HealthCheck(healthCheck).check(profit, loss, debtPayment, debtOutstanding, totalDebt), "!healthcheck");
        } else {
            emit SetDoHealthCheck(true);
            doHealthCheck = true;
        }

        emit Harvested(profit, loss, debtPayment, debtOutstanding);
    }

    /**
     * @notice
     *  Withdraws `_amountNeeded` to `vault`.
     *
     *  This may only be called by the Vault.
     * @param _amountNeeded How much `want` to withdraw.
     * @return _loss Any realized losses
     */
    function withdraw(uint256 _amountNeeded) external returns (uint256 _loss) {
        require(msg.sender == address(vault), "!vault");
        // Liquidate as much as possible to `want`, up to `_amountNeeded`
        uint256 amountFreed;
        (amountFreed, _loss) = liquidatePosition(_amountNeeded);
        // Send it directly back (NOTE: Using `msg.sender` saves some gas here)
        want.safeTransfer(msg.sender, amountFreed);
        // NOTE: Reinvest anything leftover on next `tend`/`harvest`
    }

    /**
     * Do anything necessary to prepare this Strategy for migration, such as
     * transferring any reserve or LP tokens, CDPs, or other tokens or stores of
     * value.
     */
    function prepareMigration(address _newStrategy) internal virtual;

    /**
     * @notice
     *  Transfers all `want` from this Strategy to `_newStrategy`.
     *
     *  This may only be called by the Vault.
     * @dev
     * The new Strategy's Vault must be the same as this Strategy's Vault.
     *  The migration process should be carefully performed to make sure all
     * the assets are migrated to the new address, which should have never
     * interacted with the vault before.
     * @param _newStrategy The Strategy to migrate to.
     */
    function migrate(address _newStrategy) external {
        require(msg.sender == address(vault));
        require(BaseStrategy(_newStrategy).vault() == vault);
        prepareMigration(_newStrategy);
        want.safeTransfer(_newStrategy, want.balanceOf(address(this)));
    }

    /**
     * @notice
     *  Activates emergency exit. Once activated, the Strategy will exit its
     *  position upon the next harvest, depositing all funds into the Vault as
     *  quickly as is reasonable given on-chain conditions.
     *
     *  This may only be called by governance or the strategist.
     * @dev
     *  See `vault.setEmergencyShutdown()` and `harvest()` for further details.
     */
    function setEmergencyExit() external onlyEmergencyAuthorized {
        emergencyExit = true;
        if (vault.strategies(address(this)).debtRatio != 0) {
            vault.revokeStrategy();
        }

        emit EmergencyExitEnabled();
    }

    /**
     * Override this to add all tokens/tokenized positions this contract
     * manages on a *persistent* basis (e.g. not just for swapping back to
     * want ephemerally).
     *
     * NOTE: Do *not* include `want`, already included in `sweep` below.
     *
     * Example:
     * ```
     *    function protectedTokens() internal override view returns (address[] memory) {
     *      address[] memory protected = new address[](3);
     *      protected[0] = tokenA;
     *      protected[1] = tokenB;
     *      protected[2] = tokenC;
     *      return protected;
     *    }
     * ```
     */
    function protectedTokens() internal view virtual returns (address[] memory);

    /**
     * @notice
     *  Removes tokens from this Strategy that are not the type of tokens
     *  managed by this Strategy. This may be used in case of accidentally
     *  sending the wrong kind of token to this Strategy.
     *
     *  Tokens will be sent to `governance()`.
     *
     *  This will fail if an attempt is made to sweep `want`, or any tokens
     *  that are protected by this Strategy.
     *
     *  This may only be called by governance.
     * @dev
     *  Implement `protectedTokens()` to specify any additional tokens that
     *  should be protected from sweeping in addition to `want`.
     * @param _token The token to transfer out of this vault.
     */
    function sweep(address _token) external onlyGovernance {
        require(_token != address(want), "!want");
        require(_token != address(vault), "!shares");

        address[] memory _protectedTokens = protectedTokens();
        for (uint256 i; i < _protectedTokens.length; i++) require(_token != _protectedTokens[i], "!protected");

        IERC20(_token).safeTransfer(governance(), IERC20(_token).balanceOf(address(this)));
    }
}

abstract contract BaseStrategyInitializable is BaseStrategy {
    bool public isOriginal = true;
    event Cloned(address indexed clone);

    constructor(address _vault) BaseStrategy(_vault) {}

    function initialize(
        address _vault,
        address _strategist,
        address _rewards,
        address _keeper
    ) external virtual {
        _initialize(_vault, _strategist, _rewards, _keeper);
    }

    function clone(address _vault) external returns (address) {
        return clone(_vault, msg.sender, msg.sender, msg.sender);
    }

    function clone(
        address _vault,
        address _strategist,
        address _rewards,
        address _keeper
    ) public returns (address newStrategy) {
        require(isOriginal, "!clone");
        // Copied from https://github.com/optionality/clone-factory/blob/master/contracts/CloneFactory.sol
        bytes20 addressBytes = bytes20(address(this));

        assembly {
            // EIP-1167 bytecode
            let clone_code := mload(0x40)
            mstore(clone_code, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
            mstore(add(clone_code, 0x14), addressBytes)
            mstore(add(clone_code, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
            newStrategy := create(0, clone_code, 0x37)
        }

        BaseStrategyInitializable(newStrategy).initialize(_vault, _strategist, _rewards, _keeper);

        emit Cloned(newStrategy);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):