Contract Source Code:
//SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
contract SHO is Ownable, ReentrancyGuard {
using SafeERC20 for IERC20;
uint32 constant HUNDRED_PERCENT = 1e6;
struct User1 {
uint16 claimedUnlocksCount;
uint16 eliminatedAfterUnlock;
uint120 allocation;
}
struct User2 {
uint120 allocation;
uint120 debt;
uint16 claimedUnlocksCount;
uint120 currentUnlocked;
uint120 currentClaimed;
uint120 totalUnlocked;
uint120 totalClaimed;
}
mapping(address => User1) public users1;
mapping(address => User2) public users2;
IERC20 public immutable shoToken;
uint64 public immutable startTime;
address public immutable feeCollector;
uint32 public immutable baseFeePercentage1;
uint32 public immutable baseFeePercentage2;
uint32 public immutable freeClaimablePercentage;
address public immutable burnValley;
uint32 public immutable burnPercentage;
uint32[] public unlockPercentages;
uint32[] public unlockPeriods;
uint120[] public extraFees2;
bool public whitelistingAllowed = true;
uint16 passedUnlocksCount;
uint120 public globalTotalAllocation1;
uint120 public globalTotalAllocation2;
uint16 public collectedFeesUnlocksCount;
uint120 public extraFees1Allocation;
uint120 public extraFees1AllocationUncollectable;
event Whitelist (
address user,
uint120 allocation,
uint8 option
);
event Claim1 (
address indexed user,
uint16 currentUnlock,
uint120 claimedTokens
);
event Claim2 (
address indexed user,
uint16 currentUnlock,
uint120 claimedTokens,
uint120 baseClaimed,
uint120 chargedfee
);
event FeeCollection (
uint16 currentUnlock,
uint120 totalFee,
uint120 extraFee,
uint120 burned
);
event UserElimination (
address user,
uint16 currentUnlock
);
event Update (
uint16 passedUnlocksCount
);
modifier onlyWhitelistedUser1(address userAddress) {
require(users1[userAddress].allocation > 0, "SHO: passed address is not whitelisted or does not have the correct option");
_;
}
modifier onlyWhitelistedUser2() {
require(users2[msg.sender].allocation > 0, "SHO: caller is not whitelisted or does not have the correct option");
_;
}
/**
@param _shoToken token that whitelisted users claim
@param _unlockPercentagesDiff array of unlock percentages as differentials
(how much of total user's whitelisted allocation can a user claim per unlock)
@param _unlockPeriodsDiff array of unlock periods as differentials
(when unlocks happen from startTime)
@param _baseFeePercentage1 base fee in percentage for option 1 users
@param _baseFeePercentage2 base fee in percentage for option 2 users
@param _feeCollector EOA that receives fees
@param _startTime when users can start claiming
@param _burnValley burned tokens are sent to this address if the SHO token is not burnable
@param _burnPercentage burn percentage of extra fees
@param _freeClaimablePercentage how much can users of type 2 claim in the current unlock without a fee
*/
constructor(
IERC20 _shoToken,
uint32[] memory _unlockPercentagesDiff,
uint32[] memory _unlockPeriodsDiff,
uint32 _baseFeePercentage1,
uint32 _baseFeePercentage2,
address _feeCollector,
uint64 _startTime,
address _burnValley,
uint32 _burnPercentage,
uint32 _freeClaimablePercentage
) {
require(address(_shoToken) != address(0), "SHO: sho token zero address");
require(_unlockPercentagesDiff.length > 0, "SHO: 0 unlock percentages");
require(_unlockPercentagesDiff.length <= 800, "SHO: too many unlock percentages");
require(_unlockPeriodsDiff.length == _unlockPercentagesDiff.length, "SHO: different array lengths");
require(_baseFeePercentage1 <= HUNDRED_PERCENT, "SHO: base fee percentage 1 higher than 100%");
require(_baseFeePercentage2 <= HUNDRED_PERCENT, "SHO: base fee percentage 2 higher than 100%");
require(_feeCollector != address(0), "SHO: fee collector zero address");
require(_startTime > block.timestamp, "SHO: start time must be in future");
require(_burnValley != address(0), "SHO: burn valley zero address");
require(_burnPercentage <= HUNDRED_PERCENT, "SHO: burn percentage higher than 100%");
require(_freeClaimablePercentage <= HUNDRED_PERCENT, "SHO: free claimable percentage higher than 100%");
// build arrays of sums for easier calculations
uint32[] memory _unlockPercentages = _buildArraySum(_unlockPercentagesDiff);
uint32[] memory _unlockPeriods = _buildArraySum(_unlockPeriodsDiff);
require(_unlockPercentages[_unlockPercentages.length - 1] == HUNDRED_PERCENT, "SHO: invalid unlock percentages");
shoToken = _shoToken;
unlockPercentages = _unlockPercentages;
unlockPeriods = _unlockPeriods;
baseFeePercentage1 = _baseFeePercentage1;
baseFeePercentage2 = _baseFeePercentage2;
feeCollector = _feeCollector;
startTime = _startTime;
burnValley = _burnValley;
burnPercentage = _burnPercentage;
freeClaimablePercentage = _freeClaimablePercentage;
extraFees2 = new uint120[](_unlockPercentagesDiff.length);
}
/**
@param userAddresses addresses to whitelist
@param allocations users total allocation
@param options user types
*/
function whitelistUsers(
address[] calldata userAddresses,
uint120[] calldata allocations,
uint8[] calldata options,
bool last
) external onlyOwner {
require(whitelistingAllowed, "SHO: whitelisting not allowed anymore");
require(userAddresses.length != 0, "SHO: zero length array");
require(userAddresses.length == allocations.length, "SHO: different array lengths");
require(userAddresses.length == options.length, "SHO: different array lengths");
uint120 _globalTotalAllocation1;
uint120 _globalTotalAllocation2;
for (uint256 i = 0; i < userAddresses.length; i++) {
address userAddress = userAddresses[i];
require(options[i] == 1 || options[i] == 2, "SHO: invalid user option");
require(users1[userAddress].allocation == 0, "SHO: some users are already whitelisted");
require(users2[userAddress].allocation == 0, "SHO: some users are already whitelisted");
if (options[i] == 1) {
users1[userAddress].allocation = allocations[i];
_globalTotalAllocation1 += allocations[i];
} else if (options[i] == 2) {
users2[userAddress].allocation = allocations[i];
_globalTotalAllocation2 += allocations[i];
}
emit Whitelist(
userAddresses[i],
allocations[i],
options[i]
);
}
globalTotalAllocation1 += _globalTotalAllocation1;
globalTotalAllocation2 += _globalTotalAllocation2;
if (last) {
whitelistingAllowed = false;
}
}
function claimUser1() external returns (uint120 amountToClaim) {
return claimUser1(msg.sender);
}
/**
Users type 1 claims all the available amount without increasing the fee.
(there's still the baseFee deducted from their allocation).
*/
function claimUser1(address userAddress) onlyWhitelistedUser1(userAddress) public nonReentrant returns (uint120 amountToClaim) {
update();
User1 memory user = users1[userAddress];
require(passedUnlocksCount > 0, "SHO: no unlocks passed");
require(user.claimedUnlocksCount < passedUnlocksCount, "SHO: nothing to claim");
uint16 currentUnlock = passedUnlocksCount - 1;
if (user.eliminatedAfterUnlock > 0) {
require(user.claimedUnlocksCount < user.eliminatedAfterUnlock, "SHO: nothing to claim");
currentUnlock = user.eliminatedAfterUnlock - 1;
}
uint32 lastUnlockPercentage = user.claimedUnlocksCount > 0 ? unlockPercentages[user.claimedUnlocksCount - 1] : 0;
amountToClaim = _applyPercentage(user.allocation, unlockPercentages[currentUnlock] - lastUnlockPercentage);
amountToClaim = _applyBaseFee(amountToClaim, 1);
user.claimedUnlocksCount = currentUnlock + 1;
users1[userAddress] = user;
shoToken.safeTransfer(userAddress, amountToClaim);
emit Claim1(
userAddress,
currentUnlock,
amountToClaim
);
}
/**
Removes all the future allocation of passed user type 1 addresses.
They can still claim the unlock they were eliminated in.
@param userAddresses whitelisted user addresses to eliminate
*/
function eliminateUsers1(address[] calldata userAddresses) external onlyOwner {
update();
require(passedUnlocksCount > 0, "SHO: no unlocks passed");
uint16 currentUnlock = passedUnlocksCount - 1;
require(currentUnlock < unlockPeriods.length - 1, "SHO: eliminating in the last unlock");
for (uint256 i = 0; i < userAddresses.length; i++) {
address userAddress = userAddresses[i];
User1 memory user = users1[userAddress];
require(user.allocation > 0, "SHO: some user not option 1");
require(user.eliminatedAfterUnlock == 0, "SHO: some user already eliminated");
uint120 userAllocation = _applyBaseFee(user.allocation, 1);
uint120 uncollectable = _applyPercentage(userAllocation, unlockPercentages[currentUnlock]);
extraFees1Allocation += userAllocation;
extraFees1AllocationUncollectable += uncollectable;
users1[userAddress].eliminatedAfterUnlock = currentUnlock + 1;
emit UserElimination(
userAddress,
currentUnlock
);
}
}
/**
User type 2 claims all the remaining amount of previous unlocks and can claim up to baseFeePercentage of the current unlock tokens without causing a fee.
@param extraAmountToClaim the extra amount is also equal to the charged fee (user claims 100 more the first unlock, can claim 200 less the second unlock)
*/
function claimUser2(
uint120 extraAmountToClaim
) external nonReentrant onlyWhitelistedUser2 returns (
uint120 amountToClaim,
uint120 baseClaimAmount,
uint120 currentUnlocked
) {
update();
User2 memory user = users2[msg.sender];
require(passedUnlocksCount > 0, "SHO: no unlocks passed");
uint16 currentUnlock = passedUnlocksCount - 1;
if (user.claimedUnlocksCount < passedUnlocksCount) {
amountToClaim = _updateUserCurrent(user, currentUnlock);
baseClaimAmount = _getCurrentBaseClaimAmount(user, currentUnlock);
amountToClaim += baseClaimAmount;
user.currentClaimed += baseClaimAmount;
} else {
require(extraAmountToClaim > 0, "SHO: nothing to claim");
}
currentUnlocked = user.currentUnlocked;
if (extraAmountToClaim > 0) {
require(extraAmountToClaim <= user.currentUnlocked - user.currentClaimed, "SHO: passed extra amount too high");
amountToClaim += extraAmountToClaim;
user.currentClaimed += extraAmountToClaim;
_chargeFee(user, extraAmountToClaim, currentUnlock);
}
require(amountToClaim > 0, "SHO: nothing to claim");
user.totalClaimed += amountToClaim;
users2[msg.sender] = user;
shoToken.safeTransfer(msg.sender, amountToClaim);
emit Claim2(
msg.sender,
currentUnlock,
amountToClaim,
baseClaimAmount,
extraAmountToClaim
);
}
/**
It's important that the fees are collectable not depedning on if users are claiming.
Anybody can call this but the fees go to the fee collector.
*/
function collectFees() external nonReentrant returns (uint120 baseFee, uint120 extraFee, uint120 burned) {
update();
require(collectedFeesUnlocksCount < passedUnlocksCount, "SHO: no fees to collect");
uint16 currentUnlock = passedUnlocksCount - 1;
// base fee from users type 1 and 2
uint32 lastUnlockPercentage = collectedFeesUnlocksCount > 0 ? unlockPercentages[collectedFeesUnlocksCount - 1] : 0;
uint120 globalAllocation1 = _applyPercentage(globalTotalAllocation1, unlockPercentages[currentUnlock] - lastUnlockPercentage);
uint120 globalAllocation2 = _applyPercentage(globalTotalAllocation2, unlockPercentages[currentUnlock] - lastUnlockPercentage);
baseFee = _applyPercentage(globalAllocation1, baseFeePercentage1);
baseFee += _applyPercentage(globalAllocation2, baseFeePercentage2);
// extra fees from users type 2
uint120 extraFee2;
if (globalTotalAllocation2 > 0) {
for (uint16 i = collectedFeesUnlocksCount; i <= currentUnlock; i++) {
extraFee2 += extraFees2[i];
}
}
// extra fees from users type 1
uint120 extraFees1AllocationTillNow = _applyPercentage(extraFees1Allocation, unlockPercentages[currentUnlock]);
uint120 extraFee1 = extraFees1AllocationTillNow - extraFees1AllocationUncollectable;
extraFees1AllocationUncollectable = extraFees1AllocationTillNow;
extraFee = extraFee1 + extraFee2;
uint120 totalFee = baseFee + extraFee;
burned = _burn(extraFee);
collectedFeesUnlocksCount = currentUnlock + 1;
shoToken.safeTransfer(feeCollector, totalFee - burned);
emit FeeCollection(
currentUnlock,
totalFee,
extraFee,
burned
);
}
/**
Updates passedUnlocksCount.
*/
function update() public {
uint16 _passedUnlocksCount = getPassedUnlocksCount();
if (_passedUnlocksCount > passedUnlocksCount) {
passedUnlocksCount = _passedUnlocksCount;
emit Update(_passedUnlocksCount);
}
}
// PUBLIC VIEW FUNCTIONS
function getPassedUnlocksCount() public view returns (uint16 _passedUnlocksCount) {
require(block.timestamp >= startTime, "SHO: before startTime");
uint256 timeSinceStart = block.timestamp - startTime;
uint256 maxReleases = unlockPeriods.length;
_passedUnlocksCount = passedUnlocksCount;
while (_passedUnlocksCount < maxReleases && timeSinceStart >= unlockPeriods[_passedUnlocksCount]) {
_passedUnlocksCount++;
}
}
function getTotalUnlocksCount() public view returns (uint16 totalUnlocksCount) {
return uint16(unlockPercentages.length);
}
// PRIVATE FUNCTIONS
function _burn(uint120 amount) private returns (uint120 burned) {
burned = _applyPercentage(amount, burnPercentage);
if (burned == 0) return 0;
uint256 balanceBefore = shoToken.balanceOf(address(this));
address(shoToken).call(abi.encodeWithSignature("burn(uint256)", burned));
uint256 balanceAfter = shoToken.balanceOf(address(this));
if (balanceBefore == balanceAfter) {
shoToken.safeTransfer(burnValley, burned);
}
}
function _updateUserCurrent(User2 memory user, uint16 currentUnlock) private view returns (uint120 claimableFromPreviousUnlocks) {
claimableFromPreviousUnlocks = _getClaimableFromPreviousUnlocks(user, currentUnlock);
uint120 newUnlocked = claimableFromPreviousUnlocks - (user.currentUnlocked - user.currentClaimed);
uint32 unlockPercentageDiffCurrent = currentUnlock > 0 ?
unlockPercentages[currentUnlock] - unlockPercentages[currentUnlock - 1] : unlockPercentages[currentUnlock];
uint120 currentUnlocked = _applyPercentage(user.allocation, unlockPercentageDiffCurrent);
currentUnlocked = _applyBaseFee(currentUnlocked, 2);
newUnlocked += currentUnlocked;
if (newUnlocked >= user.debt) {
newUnlocked -= user.debt;
} else {
newUnlocked = 0;
}
if (claimableFromPreviousUnlocks >= user.debt) {
claimableFromPreviousUnlocks -= user.debt;
user.debt = 0;
} else {
user.debt -= claimableFromPreviousUnlocks;
claimableFromPreviousUnlocks = 0;
}
if (currentUnlocked >= user.debt) {
currentUnlocked -= user.debt;
user.debt = 0;
} else {
user.debt -= currentUnlocked;
currentUnlocked = 0;
}
user.totalUnlocked += newUnlocked;
user.currentUnlocked = currentUnlocked;
user.currentClaimed = 0;
user.claimedUnlocksCount = passedUnlocksCount;
}
function _getClaimableFromPreviousUnlocks(User2 memory user, uint16 currentUnlock) private view returns (uint120 claimableFromPreviousUnlocks) {
uint32 lastUnlockPercentage = user.claimedUnlocksCount > 0 ? unlockPercentages[user.claimedUnlocksCount - 1] : 0;
uint32 previousUnlockPercentage = currentUnlock > 0 ? unlockPercentages[currentUnlock - 1] : 0;
uint120 claimableFromMissedUnlocks = _applyPercentage(user.allocation, previousUnlockPercentage - lastUnlockPercentage);
claimableFromMissedUnlocks = _applyBaseFee(claimableFromMissedUnlocks, 2);
claimableFromPreviousUnlocks = user.currentUnlocked - user.currentClaimed;
claimableFromPreviousUnlocks += claimableFromMissedUnlocks;
}
function _getCurrentBaseClaimAmount(User2 memory user, uint16 currentUnlock) private view returns (uint120 baseClaimAmount) {
if (currentUnlock < unlockPeriods.length - 1) {
baseClaimAmount =_applyPercentage(user.currentUnlocked, freeClaimablePercentage);
} else {
baseClaimAmount = user.currentUnlocked;
}
}
function _chargeFee(User2 memory user, uint120 fee, uint16 currentUnlock) private {
user.debt += fee;
while (fee > 0 && currentUnlock < unlockPeriods.length - 1) {
uint16 nextUnlock = currentUnlock + 1;
uint120 nextUserAvailable = _applyPercentage(user.allocation, unlockPercentages[nextUnlock] - unlockPercentages[currentUnlock]);
nextUserAvailable = _applyBaseFee(nextUserAvailable, 2);
uint120 currentUnlockFee = fee <= nextUserAvailable ? fee : nextUserAvailable;
extraFees2[nextUnlock] += currentUnlockFee;
fee -= currentUnlockFee;
currentUnlock++;
}
}
function _applyPercentage(uint120 value, uint32 percentage) private pure returns (uint120) {
return uint120(uint256(value) * percentage / HUNDRED_PERCENT);
}
function _applyBaseFee(uint120 value, uint8 option) private view returns (uint120) {
return value - _applyPercentage(value, option == 1 ? baseFeePercentage1 : baseFeePercentage2);
}
function _buildArraySum(uint32[] memory diffArray) internal pure returns (uint32[] memory) {
uint256 len = diffArray.length;
uint32[] memory sumArray = new uint32[](len);
uint32 lastSum = 0;
for (uint256 i = 0; i < len; i++) {
if (i > 0) {
lastSum = sumArray[i - 1];
}
sumArray[i] = lastSum + diffArray[i];
}
return sumArray;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.0 (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.0 (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.0 (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.0 (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.0 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.0 (utils/Address.sol)
pragma solidity ^0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
assembly {
size := extcodesize(account)
}
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}