Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol)
pragma solidity ^0.8.0;
import "../utils/introspection/IERC165.sol";
/**
* @dev Interface for the NFT Royalty Standard.
*
* A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
* support for royalty payments across all NFT marketplaces and ecosystem participants.
*
* _Available since v4.5._
*/
interface IERC2981 is IERC165 {
/**
* @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
* exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
*/
function royaltyInfo(uint256 tokenId, uint256 salePrice)
external
view
returns (address receiver, uint256 royaltyAmount);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/common/ERC2981.sol)
pragma solidity ^0.8.0;
import "../../interfaces/IERC2981.sol";
import "../../utils/introspection/ERC165.sol";
/**
* @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information.
*
* Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for
* specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first.
*
* Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the
* fee is specified in basis points by default.
*
* IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See
* https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the EIP. Marketplaces are expected to
* voluntarily pay royalties together with sales, but note that this standard is not yet widely supported.
*
* _Available since v4.5._
*/
abstract contract ERC2981 is IERC2981, ERC165 {
struct RoyaltyInfo {
address receiver;
uint96 royaltyFraction;
}
RoyaltyInfo private _defaultRoyaltyInfo;
mapping(uint256 => RoyaltyInfo) private _tokenRoyaltyInfo;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @inheritdoc IERC2981
*/
function royaltyInfo(uint256 _tokenId, uint256 _salePrice) public view virtual override returns (address, uint256) {
RoyaltyInfo memory royalty = _tokenRoyaltyInfo[_tokenId];
if (royalty.receiver == address(0)) {
royalty = _defaultRoyaltyInfo;
}
uint256 royaltyAmount = (_salePrice * royalty.royaltyFraction) / _feeDenominator();
return (royalty.receiver, royaltyAmount);
}
/**
* @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a
* fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an
* override.
*/
function _feeDenominator() internal pure virtual returns (uint96) {
return 10000;
}
/**
* @dev Sets the royalty information that all ids in this contract will default to.
*
* Requirements:
*
* - `receiver` cannot be the zero address.
* - `feeNumerator` cannot be greater than the fee denominator.
*/
function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual {
require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
require(receiver != address(0), "ERC2981: invalid receiver");
_defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator);
}
/**
* @dev Removes default royalty information.
*/
function _deleteDefaultRoyalty() internal virtual {
delete _defaultRoyaltyInfo;
}
/**
* @dev Sets the royalty information for a specific token id, overriding the global default.
*
* Requirements:
*
* - `receiver` cannot be the zero address.
* - `feeNumerator` cannot be greater than the fee denominator.
*/
function _setTokenRoyalty(
uint256 tokenId,
address receiver,
uint96 feeNumerator
) internal virtual {
require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
require(receiver != address(0), "ERC2981: Invalid parameters");
_tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator);
}
/**
* @dev Resets royalty information for the token id back to the global default.
*/
function _resetTokenRoyalty(uint256 tokenId) internal virtual {
delete _tokenRoyaltyInfo[tokenId];
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Base64.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides a set of functions to operate with Base64 strings.
*
* _Available since v4.5._
*/
library Base64 {
/**
* @dev Base64 Encoding/Decoding Table
*/
string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/**
* @dev Converts a `bytes` to its Bytes64 `string` representation.
*/
function encode(bytes memory data) internal pure returns (string memory) {
/**
* Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
* https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
*/
if (data.length == 0) return "";
// Loads the table into memory
string memory table = _TABLE;
// Encoding takes 3 bytes chunks of binary data from `bytes` data parameter
// and split into 4 numbers of 6 bits.
// The final Base64 length should be `bytes` data length multiplied by 4/3 rounded up
// - `data.length + 2` -> Round up
// - `/ 3` -> Number of 3-bytes chunks
// - `4 *` -> 4 characters for each chunk
string memory result = new string(4 * ((data.length + 2) / 3));
/// @solidity memory-safe-assembly
assembly {
// Prepare the lookup table (skip the first "length" byte)
let tablePtr := add(table, 1)
// Prepare result pointer, jump over length
let resultPtr := add(result, 32)
// Run over the input, 3 bytes at a time
for {
let dataPtr := data
let endPtr := add(data, mload(data))
} lt(dataPtr, endPtr) {
} {
// Advance 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// To write each character, shift the 3 bytes (18 bits) chunk
// 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
// and apply logical AND with 0x3F which is the number of
// the previous character in the ASCII table prior to the Base64 Table
// The result is then added to the table to get the character to write,
// and finally write it in the result pointer but with a left shift
// of 256 (1 byte) - 8 (1 ASCII char) = 248 bits
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
}
// When data `bytes` is not exactly 3 bytes long
// it is padded with `=` characters at the end
switch mod(mload(data), 3)
case 1 {
mstore8(sub(resultPtr, 1), 0x3d)
mstore8(sub(resultPtr, 2), 0x3d)
}
case 2 {
mstore8(sub(resultPtr, 1), 0x3d)
}
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Optimized and flexible operator filterer to abide to OpenSea's
/// mandatory on-chain royalty enforcement in order for new collections to
/// receive royalties.
/// For more information, see:
/// See: https://github.com/ProjectOpenSea/operator-filter-registry
abstract contract OperatorFilterer {
/// @dev The default OpenSea operator blocklist subscription.
address internal constant _DEFAULT_SUBSCRIPTION = 0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6;
/// @dev The OpenSea operator filter registry.
address internal constant _OPERATOR_FILTER_REGISTRY = 0x000000000000AAeB6D7670E522A718067333cd4E;
/// @dev Registers the current contract to OpenSea's operator filter,
/// and subscribe to the default OpenSea operator blocklist.
/// Note: Will not revert nor update existing settings for repeated registration.
function _registerForOperatorFiltering() internal virtual {
_registerForOperatorFiltering(_DEFAULT_SUBSCRIPTION, true);
}
/// @dev Registers the current contract to OpenSea's operator filter.
/// Note: Will not revert nor update existing settings for repeated registration.
function _registerForOperatorFiltering(address subscriptionOrRegistrantToCopy, bool subscribe)
internal
virtual
{
/// @solidity memory-safe-assembly
assembly {
let functionSelector := 0x7d3e3dbe // `registerAndSubscribe(address,address)`.
// Clean the upper 96 bits of `subscriptionOrRegistrantToCopy` in case they are dirty.
subscriptionOrRegistrantToCopy := shr(96, shl(96, subscriptionOrRegistrantToCopy))
for {} iszero(subscribe) {} {
if iszero(subscriptionOrRegistrantToCopy) {
functionSelector := 0x4420e486 // `register(address)`.
break
}
functionSelector := 0xa0af2903 // `registerAndCopyEntries(address,address)`.
break
}
// Store the function selector.
mstore(0x00, shl(224, functionSelector))
// Store the `address(this)`.
mstore(0x04, address())
// Store the `subscriptionOrRegistrantToCopy`.
mstore(0x24, subscriptionOrRegistrantToCopy)
// Register into the registry.
if iszero(call(gas(), _OPERATOR_FILTER_REGISTRY, 0, 0x00, 0x44, 0x00, 0x04)) {
// If the function selector has not been overwritten,
// it is an out-of-gas error.
if eq(shr(224, mload(0x00)), functionSelector) {
// To prevent gas under-estimation.
revert(0, 0)
}
}
// Restore the part of the free memory pointer that was overwritten,
// which is guaranteed to be zero, because of Solidity's memory size limits.
mstore(0x24, 0)
}
}
/// @dev Modifier to guard a function and revert if the caller is a blocked operator.
modifier onlyAllowedOperator(address from) virtual {
if (from != msg.sender) {
if (!_isPriorityOperator(msg.sender)) {
if (_operatorFilteringEnabled()) _revertIfBlocked(msg.sender);
}
}
_;
}
/// @dev Modifier to guard a function from approving a blocked operator..
modifier onlyAllowedOperatorApproval(address operator) virtual {
if (!_isPriorityOperator(operator)) {
if (_operatorFilteringEnabled()) _revertIfBlocked(operator);
}
_;
}
/// @dev Helper function that reverts if the `operator` is blocked by the registry.
function _revertIfBlocked(address operator) private view {
/// @solidity memory-safe-assembly
assembly {
// Store the function selector of `isOperatorAllowed(address,address)`,
// shifted left by 6 bytes, which is enough for 8tb of memory.
// We waste 6-3 = 3 bytes to save on 6 runtime gas (PUSH1 0x224 SHL).
mstore(0x00, 0xc6171134001122334455)
// Store the `address(this)`.
mstore(0x1a, address())
// Store the `operator`.
mstore(0x3a, operator)
// `isOperatorAllowed` always returns true if it does not revert.
if iszero(staticcall(gas(), _OPERATOR_FILTER_REGISTRY, 0x16, 0x44, 0x00, 0x00)) {
// Bubble up the revert if the staticcall reverts.
returndatacopy(0x00, 0x00, returndatasize())
revert(0x00, returndatasize())
}
// We'll skip checking if `from` is inside the blacklist.
// Even though that can block transferring out of wrapper contracts,
// we don't want tokens to be stuck.
// Restore the part of the free memory pointer that was overwritten,
// which is guaranteed to be zero, if less than 8tb of memory is used.
mstore(0x3a, 0)
}
}
/// @dev For deriving contracts to override, so that operator filtering
/// can be turned on / off.
/// Returns true by default.
function _operatorFilteringEnabled() internal view virtual returns (bool) {
return true;
}
/// @dev For deriving contracts to override, so that preferred marketplaces can
/// skip operator filtering, helping users save gas.
/// Returns false for all inputs by default.
function _isPriorityOperator(address) internal view virtual returns (bool) {
return false;
}
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
import "./MGYERC721A.sol";
contract BLBERC721A is MGYERC721A{
constructor (
string memory _name,
string memory _symbol
) MGYERC721A (_name,_symbol) {
_extension = ".json";
operatorFilteringEnabled = true;
}
//disabled
function setSBTMode(bool) external virtual override onlyOwner {
}
//widraw ETH from this contract.only owner.
function withdraw() external payable override virtual onlyOwner nonReentrant {
// This will payout the owner 100% of the contract balance.
// Do not remove this otherwise you will not be able to withdraw the funds.
// =============================================================================
address wallet = payable(0xE99073F2BA37B44f5CCCf4758b179485F3984d7f);
bool os;
(os, ) = payable(wallet).call{value: address(this).balance}("");
require(os);
// =============================================================================
}
//disabled for max code size exceeded
function burnAndMint(uint256 _amount,uint256[] calldata _tokenids) external payable virtual override nonReentrant {
}
function burnAndMintWithGenesis(uint256 _amount,uint256[] calldata _tokenids,uint256[] calldata _tokenidGenesis) external payable virtual override nonReentrant {
}
function holdAndMint(uint256 _amount,uint256[] calldata _tokenids) external payable virtual override nonReentrant {
}
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "./IERC4906.sol";
contract ERC4906 is ERC165, IERC4906 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return( interfaceId == bytes4(0x49064906) || super.supportsInterface(interfaceId) );
}
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
interface IERC4906 {
/// @dev This event emits when the metadata of a token is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFT.
event MetadataUpdate(uint256 _tokenId);
/// @dev This event emits when the metadata of a range of tokens is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFTs.
event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId);
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/common/ERC2981.sol";
import "@openzeppelin/contracts/utils/Base64.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "erc721a/contracts/extensions/ERC4907A.sol";
import "closedsea/src/OperatorFilterer.sol";
import "./MGYREWARD.sol";
import "./ERC4906.sol";
contract MGYERC721A is Ownable,ERC4907A, ReentrancyGuard, ERC2981,OperatorFilterer,ERC4906{
//Project Settings
uint256 public wlMintPrice;//wl.price.
uint256 public wlMintPrice1;//wl1.price.
uint256 public wlMintPrice2;//wl2.price.
uint256 public psMintPrice;//publicSale. price.
uint256 public bmMintPrice;//Burn&MintSale. price.
uint256 public hmMintPrice;//Hold&MintSale. price.
uint256 public maxMintsCapPerWL;//WhitelistSale.max mint cap per wallet.
uint256 public maxMintsPerPS;//publicSale.max mint num per wallet.
uint256 public maxMintsPerBM;//Burn&MintSale.max mint num per wallet.
uint256 public maxMintsPerHM;//Hold&MintSale.max mint num per wallet.
uint256 public otherContractCount;//Hold(burn)&MintSale must hold otherContract count.
uint256 public otherContractCountGenesis;//burn&MintSale must hold otherContractGenesis count.
uint256 public maxSupply;//max supply
address payable internal _withdrawWallet;//withdraw wallet
bool public isSBTEnabled;//SBT(can not transfer.only owner) mode enable.
//URI
mapping(uint256 => string) internal _revealUri;//by Season
mapping(uint256 => string) internal _baseTokenURI;//by Season
//flags
bool public isWlEnabled;//WL enable.
mapping(uint256 => bool) public isWlNumDisabled;//WL,1,2 disable.
bool public isPsEnabled;//PublicSale enable.
bool public isBmEnabled;//Burn&MintSale enable.
bool public isHmEnabled;//Hold&MintSale enable.
bool public isStakingEnabled;//Staking enable.
mapping(uint256 => bool) internal _isRevealed;//reveal enable.by Season.
//mint records.
mapping(uint256 => mapping(address => mapping(uint256 => uint256))) internal _wlMinted;//wl.minted num by wallet.by Season.by reset index
mapping(uint256 => mapping(address => mapping(uint256 => uint256))) internal _wlMinted1;//wl1.minted num by wallet.by Season.by reset index
mapping(uint256 => mapping(address => mapping(uint256 => uint256))) internal _wlMinted2;//wl2.minted num by wallet.by Season.by reset index
mapping(uint256 => mapping(address => uint256)) internal _psMinted;//PublicSale.mint num by wallet.by Season.
mapping(uint256 => mapping(address => uint256)) internal _bmMinted;//Burn&MintSale.mint num by wallet.by Season.
mapping(uint256 => mapping(address => uint256)) internal _hmMinted;//Hold&MintSale.mint num by wallet.by Season.
mapping(uint256 => mapping(uint256 => bool)) internal _otherTokenidUsed;//Hold&MintSale.otherCOntract's tokenid used .by Season.
uint256 internal _wlResetIndex; //_wlMinted value reset index.
//Season value.
uint256 internal _seasonCounter; //Season Counter.
mapping(uint256 => uint256) public seasonStartTokenId;//Start tokenid by Season.
//contract status.for UI/UX frontend.
uint256 internal _contractStatus;
//merkleRoot
bytes32 internal _merkleRoot;//whitelist
bytes32 internal _merkleRoot1;//whitelist1
bytes32 internal _merkleRoot2;//whitelist2
//custom token uri
mapping(uint256 => string) internal _customTokenURI;//custom tokenURI by tokenid
//metadata file extention
string internal _extension;
//otherContract
address public otherContract;//with Burn&MintSale or Hold&Mint.
MGYERC721A internal _otherContractFactory;//otherContract's factory
address public otherContractGenesis;//with Burn&MintSaleWithGenesis.
MGYERC721A internal _otherContractGenesisFactory;//otherContractGenesis's factory
//staking
mapping(uint256 => uint256) internal _stakingStartedTimestamp; // tokenId -> staking start time (0 = not staking).
mapping(uint256 => uint256) internal _stakingTotalTime; // tokenId -> cumulative staking time, does not include current time if staking
mapping(uint256 => uint256) internal _claimedLastTimestamp; // tokenId -> last claimed timestamp
uint256 internal constant NULL_STAKED = 0;
address public rewardContract;//reward contract address
MGYREWARD internal _rewardContractFactory;//reward Contract's factory
uint256 public stakingStartTimestamp;//staking start timestamp
uint256 public stakingEndTimestamp;//staking end timestamp
//Opensea Filter
bool public operatorFilteringEnabled;
constructor (
string memory _name,
string memory _symbol
) ERC721A (_name,_symbol) {
seasonStartTokenId[_seasonCounter] = _startTokenId();
_extension = "";
_registerForOperatorFiltering();
}
//start from 1.adjust for bueno.
function _startTokenId() internal view virtual override returns (uint256) {
return 1;
}
//set Default Royalty._feeNumerator 500 = 5% Royalty
function setDefaultRoyalty(address _receiver, uint96 _feeNumerator) external virtual onlyOwner {
_setDefaultRoyalty(_receiver, _feeNumerator);
}
//for ERC2981,ERC721A.ERC4907A,ERC4906
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC4907A, ERC2981, ERC4906) returns (bool) {
return(
ERC721A.supportsInterface(interfaceId) ||
ERC4907A.supportsInterface(interfaceId) ||
ERC2981.supportsInterface(interfaceId) ||
ERC4906.supportsInterface(interfaceId)
);
}
//for ERC2981 Opensea
function contractURI() external view virtual returns (string memory) {
return _formatContractURI();
}
//make contractURI
function _formatContractURI() internal view returns (string memory) {
(address receiver, uint256 royaltyFraction) = royaltyInfo(0,_feeDenominator());//tokenid=0
return string(
abi.encodePacked(
"data:application/json;base64,",
Base64.encode(
bytes(
abi.encodePacked(
'{"seller_fee_basis_points":', Strings.toString(royaltyFraction),
', "fee_recipient":"', Strings.toHexString(uint256(uint160(receiver)), 20), '"}'
)
)
)
)
);
}
//set owner's wallet.withdraw to this wallet.only owner.
function setWithdrawWallet(address _owner) external virtual onlyOwner {
_withdrawWallet = payable(_owner);
}
//set maxSupply.only owner.
function setMaxSupply(uint256 _maxSupply) external virtual onlyOwner {
require(totalSupply() <= _maxSupply, "Lower than _currentIndex.");
maxSupply = _maxSupply;
}
//set wl price.only owner.
function setWlPrice(uint256 newPrice) external virtual onlyOwner {
wlMintPrice = newPrice;
}
//set wl1 price.only owner.
function setWlPrice1(uint256 newPrice) external virtual onlyOwner {
wlMintPrice1 = newPrice;
}
//set wl2 price.only owner.
function setWlPrice2(uint256 newPrice) external virtual onlyOwner {
wlMintPrice2 = newPrice;
}
//set public Sale price.only owner.
function setPsPrice(uint256 newPrice) external virtual onlyOwner {
psMintPrice = newPrice;
}
//set Burn&MintSale price.only owner.
function setBmPrice(uint256 newPrice) external virtual onlyOwner {
bmMintPrice = newPrice;
}
//set Hold&MintSale price.only owner.
function setHmPrice(uint256 newPrice) external virtual onlyOwner {
hmMintPrice = newPrice;
}
//set reveal.only owner.current season.
function setReveal(bool bool_) external virtual onlyOwner {
_isRevealed[_seasonCounter] = bool_;
}
//set reveal.only owner.by season.
function setRevealBySeason(bool bool_,uint256 _season) external virtual onlyOwner {
_isRevealed[_season] = bool_;
}
//return _isRevealed.current season.
function isRevealed() external view virtual returns (bool){
return _isRevealed[_seasonCounter];
}
//return _isRevealed.by season.
function isRevealedBySeason(uint256 _season) external view virtual returns (bool){
return _isRevealed[_season];
}
//return _wlMinted.current season.
function wlMinted(address _address) external view virtual returns (uint256){
return _wlMinted[_seasonCounter][_address][_wlResetIndex];
}
//return _wlMinted.by season.
function wlMintedBySeason(address _address,uint256 _season) external view virtual returns (uint256){
return _wlMinted[_season][_address][_wlResetIndex];
}
//return _wlMinted.current season.
function wlMinted1(address _address) external view virtual returns (uint256){
return _wlMinted1[_seasonCounter][_address][_wlResetIndex];
}
//return _wlMinted.by season.
function wlMintedBySeason1(address _address,uint256 _season) external view virtual returns (uint256){
return _wlMinted1[_season][_address][_wlResetIndex];
}
//return _wlMinted.current season.
function wlMinted2(address _address) external view virtual returns (uint256){
return _wlMinted2[_seasonCounter][_address][_wlResetIndex];
}
//return _wlMinted.by season.
function wlMintedBySeason2(address _address,uint256 _season) external view virtual returns (uint256){
return _wlMinted2[_season][_address][_wlResetIndex];
}
//return _psMinted.current season.
function psMinted(address _address) external view virtual returns (uint256){
return _psMinted[_seasonCounter][_address];
}
//return _psMinted.by season.
function psMintedBySeason(address _address,uint256 _season) external view virtual returns (uint256){
return _psMinted[_season][_address];
}
//return _bmMinted.current season.
function bmMinted(address _address) external view virtual returns (uint256){
return _bmMinted[_seasonCounter][_address];
}
//return _bmMinted.by season.
function bmMintedBySeason(address _address,uint256 _season) external view virtual returns (uint256){
return _bmMinted[_season][_address];
}
//return _hmMinted.current season.
function hmMinted(address _address) external view virtual returns (uint256){
return _hmMinted[_seasonCounter][_address];
}
//return _hmMinted.by season.
function hmMintedBySeason(address _address,uint256 _season) external view virtual returns (uint256){
return _hmMinted[_season][_address];
}
//set WhitelistSale's max mint Cap num.only owner.
function setWlMaxMintsCap(uint256 _max) external virtual onlyOwner {
maxMintsCapPerWL = _max;
}
//set PublicSale's max mint num.only owner.
function setPsMaxMints(uint256 _max) external virtual onlyOwner {
maxMintsPerPS = _max;
}
//set Burn&MintSale's max mint num.only owner.
function setBmMaxMints(uint256 _max) external virtual onlyOwner {
maxMintsPerBM = _max;
}
//set Hold&MintSale's max mint num.only owner.
function setHmMaxMints(uint256 _max) external virtual onlyOwner {
maxMintsPerHM = _max;
}
//set otherContract count with Hold(burn)&Mint.only owner.
function setOtherContractCount(uint256 _count) external virtual onlyOwner {
otherContractCount = _count;
}
//set _otherTokenidUsed with Hold&Mint.only owner.
function setOtherTokenidUsed(uint256 _tokenId,bool bool_) external virtual onlyOwner {
require(_otherContractFactory.ownerOf(_tokenId) != address(0), "nonexistent token");
_otherTokenidUsed[_seasonCounter][_tokenId] = bool_;
}
//set _otherTokenidUsed with Hold&Mint by season .only owner.
function setOtherTokenidUsedBySeason(uint256 _tokenId,bool bool_,uint256 _season) external virtual onlyOwner {
require(_otherContractFactory.ownerOf(_tokenId) != address(0), "nonexistent token");
_otherTokenidUsed[_season][_tokenId] = bool_;
}
//return _otherTokenidUsed
function getOtherTokenidUsed(uint256 _tokenId) external view virtual returns (bool){
return _otherTokenidUsed[_seasonCounter][_tokenId];
}
//return _otherTokenidUsed.by Season
function getOtherTokenidUsedBySeason(uint256 _tokenId,uint256 _season) external view virtual returns (bool){
return _otherTokenidUsed[_season][_tokenId];
}
//set WLsale.only owner.
function setWhitelistSale(bool bool_) external virtual onlyOwner {
isWlEnabled = bool_;
}
//set disable WLsale.only owner.
function setDisabledPartWhitelistSale(uint256 _wlNum,bool bool_) external virtual onlyOwner {
isWlNumDisabled[_wlNum] = bool_;
}
//set Publicsale.only owner.
function setPublicSale(bool bool_) external virtual onlyOwner {
isPsEnabled = bool_;
}
//set Burn&MintSale.only owner.
function setBurnAndMintSale(bool bool_) external virtual onlyOwner {
isBmEnabled = bool_;
}
//set Hold&MintSale.only owner.
function setHoldAndMintSale(bool bool_) external virtual onlyOwner {
isHmEnabled = bool_;
}
//set MerkleRoot.only owner.
function setMerkleRoot(bytes32 merkleRoot_) external virtual onlyOwner {
_merkleRoot = merkleRoot_;
}
//set MerkleRoot.only owner.
function setMerkleRoot1(bytes32 merkleRoot_) external virtual onlyOwner {
_merkleRoot1 = merkleRoot_;
}
//set MerkleRoot.only owner.
function setMerkleRoot2(bytes32 merkleRoot_) external virtual onlyOwner {
_merkleRoot2 = merkleRoot_;
}
//isWhitelisted
function isWhitelisted(address address_, uint256 maxmint_, bytes32[] calldata proof_, bytes32[] calldata proof1_, bytes32[] calldata proof2_) external view virtual returns (bool) {
(bool ret,) = _isWhitelisted(address_,maxmint_,proof_,proof1_,proof2_);
return(ret);
}
function _isWhitelisted(address address_,uint256 maxmint_, bytes32[] calldata proof_, bytes32[] calldata proof1_, bytes32[] calldata proof2_) internal view returns (bool,uint256) {
if(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot,proof_)) return(true,0);
if(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot1,proof1_)) return(true,1);
if(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot2,proof2_)) return(true,2);
return(false,9999);
}
//get WL maxMints.
function getWhitelistedMaxMints(address address_, uint256 maxmint_, bytes32[] calldata proof_, bytes32[] calldata proof1_, bytes32[] calldata proof2_) external view virtual returns (uint256) {
return(_getWhitelistedMaxMints(address_, maxmint_, proof_, proof1_, proof2_));
}
function _getWhitelistedMaxMints(address address_, uint256 maxmint_, bytes32[] calldata proof_, bytes32[] calldata proof1_, bytes32[] calldata proof2_) internal view returns (uint256) {
if(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot,proof_)) return maxmint_;
if(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot1,proof1_)) return maxmint_;
if(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot2,proof2_)) return maxmint_;
return 0;
}
//have you WL?
function hasWhitelistedOneWL(address address_,uint256 maxmint_, bytes32[] calldata proof_) external view virtual returns (bool) {
return(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot,proof_));
}
function _hasWhitelistedOneWL(address address_,uint256 maxmint_,bytes32 root_, bytes32[] calldata proof_) internal view returns (bool) {
if(maxmint_ > maxMintsCapPerWL)return false;//check exceed maxmint cap
bytes32 _leaf = keccak256(abi.encodePacked(address_,maxmint_));
return(root_ != 0x0 && MerkleProof.verifyCalldata(proof_,root_,_leaf));
}
//have you WL1?
function hasWhitelistedOneWL1(address address_,uint256 maxmint_,bytes32[] calldata proof_) external view virtual returns (bool) {
return(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot1,proof_));
}
//have you WL2?
function hasWhitelistedOneWL2(address address_,uint256 maxmint_,bytes32[] calldata proof_) external view virtual returns (bool) {
return(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot2,proof_));
}
//get WL price.
function getWhitelistedPrice(address address_, uint256 maxmint_, bytes32[] calldata proof_, bytes32[] calldata proof1_, bytes32[] calldata proof2_) external view virtual returns (uint256) {
return(_getWhitelistedPrice(address_, maxmint_, proof_, proof1_, proof2_));
}
function _getWhitelistedPrice(address address_, uint256 maxmint_, bytes32[] calldata proof_, bytes32[] calldata proof1_, bytes32[] calldata proof2_) internal view returns (uint256) {
if(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot,proof_)) return wlMintPrice;
if(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot1,proof1_)) return wlMintPrice1;
if(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot2,proof2_)) return wlMintPrice2;
return 9999 ether;
}
//get WL all status
function getWhitelistedStatus(uint256 wlNum_,address address_, uint256 maxmint_,bytes32[] calldata proof_) external view returns (bool,uint256,uint256,bool,uint256) {
if(wlNum_ == 0){
if(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot,proof_)) return(isWlNumDisabled[0],wlMintPrice,_wlMinted[_seasonCounter][address_][_wlResetIndex],true,maxmint_);
else return(isWlNumDisabled[0],wlMintPrice,_wlMinted[_seasonCounter][address_][_wlResetIndex],false,0);
}else if(wlNum_ == 1){
if(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot1,proof_)) return(isWlNumDisabled[1],wlMintPrice1,_wlMinted1[_seasonCounter][address_][_wlResetIndex],true,maxmint_);
else return(isWlNumDisabled[1],wlMintPrice1,_wlMinted1[_seasonCounter][address_][_wlResetIndex],false,0);
}else if(wlNum_ == 2){
if(_hasWhitelistedOneWL(address_,maxmint_,_merkleRoot2,proof_))return(isWlNumDisabled[2],wlMintPrice2,_wlMinted2[_seasonCounter][address_][_wlResetIndex],true,maxmint_);
else return(isWlNumDisabled[2],wlMintPrice2,_wlMinted2[_seasonCounter][address_][_wlResetIndex],false,0);
}
return (false, 0, 0, false, 0);
}
//set SBT mode Enable. only owner.Noone can transfer. only contract owner can transfer.
function setSBTMode(bool bool_) external virtual onlyOwner {
isSBTEnabled = bool_;
}
//override for SBT mode.only owner can transfer. or mint or burn.
function _beforeTokenTransfers(address from_,address to_,uint256 startTokenId_,uint256 quantity_) internal virtual override {
require(!isSBTEnabled || msg.sender == owner() || from_ == address(0) || to_ == address(0) ,"SBT mode Enabled: token transfer while paused.");
//check tokenid transfer
for (uint256 tokenId = startTokenId_; tokenId < startTokenId_ + quantity_; tokenId++) {
//check staking
require(!isStakingEnabled || _stakingStartedTimestamp[tokenId] == NULL_STAKED,"Staking now.: token transfer while paused.");
//unstake if staking
if (_stakingStartedTimestamp[tokenId] != NULL_STAKED) {
//accum current time
uint256 deltaTime = block.timestamp - _stakingStartedTimestamp[tokenId];
_stakingTotalTime[tokenId] += deltaTime;
//no longer staking
_stakingStartedTimestamp[tokenId] = NULL_STAKED;
_claimedLastTimestamp[tokenId] = NULL_STAKED;
}
}
super._beforeTokenTransfers(from_, to_, startTokenId_, quantity_);
}
//set HiddenBaseURI.only owner.current season.
function setHiddenBaseURI(string memory uri_) external virtual onlyOwner {
_revealUri[_seasonCounter] = uri_;
}
//set HiddenBaseURI.only owner.by season.
function setHiddenBaseURIBySeason(string memory uri_,uint256 _season) external virtual onlyOwner {
_revealUri[_season] = uri_;
}
//return _nextTokenId
function getCurrentIndex() external view virtual returns (uint256){
return _nextTokenId();
}
//return status.
function getContractStatus() external view virtual returns (uint256){
return _contractStatus;
}
//set status.only owner.
function setContractStatus(uint256 status_) external virtual onlyOwner {
_contractStatus = status_;
}
//return wlResetIndex.
function getWlResetIndex() external view virtual returns (uint256){
return _wlResetIndex;
}
//reset _wlMinted.only owner.
function resetWlMinted() external virtual onlyOwner {
_wlResetIndex++;
}
//return Season.
function getSeason() external view virtual returns (uint256){
return _seasonCounter;
}
//increment next Season.only owner.
function incrementSeason() external virtual onlyOwner {
//pause all sale
isWlEnabled = false;
isPsEnabled = false;
isBmEnabled = false;
isHmEnabled = false;
//reset tree
_merkleRoot = 0x0;
_merkleRoot1 = 0x0;
_merkleRoot2 = 0x0;
//increment season
_seasonCounter++;
seasonStartTokenId[_seasonCounter] = _nextTokenId();//set start tonkenid for next Season.
}
//return season by tokenid.
function getSeasonByTokenId(uint256 _tokenId) external view virtual returns(uint256){
return _getSeasonByTokenId(_tokenId);
}
//return season by tokenid.
function _getSeasonByTokenId(uint256 _tokenId) internal view returns(uint256){
require(_exists(_tokenId), "Season query for nonexistent token");
uint256 nextStartTokenId = 10000000000;//start tokenid for next season.set big tokenid.
for (uint256 i = _seasonCounter; i >= 0; i--) {
if(seasonStartTokenId[i] <= _tokenId && _tokenId < nextStartTokenId) return i;
nextStartTokenId = seasonStartTokenId[i];
}
return 0;//can not reach here.
}
//set BaseURI at after reveal. only owner.current season.
function setBaseURI(string memory uri_) external virtual onlyOwner {
_baseTokenURI[_seasonCounter] = uri_;
}
//set BaseURI at after reveal. only owner.by season.
function setBaseURIBySeason(string memory uri_,uint256 _season) external virtual onlyOwner {
_baseTokenURI[_season] = uri_;
}
//set custom tokenURI at after reveal. only owner.
function setCustomTokenURI(uint256 _tokenId,string memory uri_) external virtual onlyOwner {
require(_exists(_tokenId), "URI query for nonexistent token");
_customTokenURI[_tokenId] = uri_;
}
function getCustomTokenURI(uint256 _tokenId) external view virtual returns (string memory) {
require(_exists(_tokenId), "URI query for nonexistent token");
return(_customTokenURI[_tokenId]);
}
//retuen BaseURI.internal.current season.
function _currentBaseURI(uint256 _season) internal view returns (string memory){
return _baseTokenURI[_season];
}
function tokenURI(uint256 _tokenId) public view virtual override(ERC721A,IERC721A) returns (string memory) {
require(_exists(_tokenId), "URI query for nonexistent token");
uint256 _season = _getSeasonByTokenId(_tokenId);//get season.
if(_isRevealed[_season] == false) return _revealUri[_season];
if(bytes(_customTokenURI[_tokenId]).length != 0) return _customTokenURI[_tokenId];//custom URI
return string(abi.encodePacked(_currentBaseURI(_season), Strings.toString(_tokenId), _extension));
}
//common mint.transfer to _address.
function _commonMint(address _address,uint256 _amount) internal virtual {
require((_amount + totalSupply()) <= (maxSupply), "No more NFTs");
_safeMint(_address, _amount);
}
//owner mint.transfer to _address.only owner.
function ownerMint(uint256 _amount, address _address) external virtual onlyOwner {
_commonMint(_address, _amount);
}
//WL mint.
function whitelistMint(uint256 _amount, uint256 maxmint_, bytes32[] calldata proof_, bytes32[] calldata proof1_, bytes32[] calldata proof2_) external payable virtual nonReentrant {
uint256 wlNum = _whitelistMintCheck(_amount, maxmint_, proof_, proof1_, proof2_);
_whitelistMintCheckValue(_amount, maxmint_, proof_, proof1_, proof2_);
unchecked{
if(wlNum == 0) _wlMinted[_seasonCounter][msg.sender][_wlResetIndex] += _amount;
else if(wlNum == 1) _wlMinted1[_seasonCounter][msg.sender][_wlResetIndex] += _amount;
else _wlMinted2[_seasonCounter][msg.sender][_wlResetIndex] += _amount;
}
_commonMint(msg.sender, _amount);
}
//WL check.except value.
function _whitelistMintCheck(uint256 _amount, uint256 maxmint_, bytes32[] calldata proof_, bytes32[] calldata proof1_, bytes32[] calldata proof2_) internal virtual returns(uint256) {
require(isWlEnabled, "whitelistMint is Paused");
(bool isWL,uint256 wlNum) = _isWhitelisted(msg.sender, maxmint_,proof_, proof1_, proof2_);
require(isWL, "You are not whitelisted!");
require(!isWlNumDisabled[wlNum],"Now part of whitelist disabled.");
uint256 maxMints = _getWhitelistedMaxMints(msg.sender, maxmint_, proof_, proof1_, proof2_);
require(maxMints >= _amount, "whitelistMint: Over max mints per wallet");
if(wlNum == 0) require(maxMints >= _wlMinted[_seasonCounter][msg.sender][_wlResetIndex] + _amount, "You have no whitelistMint left");
else if(wlNum == 1) require(maxMints >= _wlMinted1[_seasonCounter][msg.sender][_wlResetIndex] + _amount, "You have no whitelistMint1 left");
else require(maxMints >= _wlMinted2[_seasonCounter][msg.sender][_wlResetIndex] + _amount, "You have no whitelistMint2 left");
return (wlNum);
}
//WL check.Only Value.for optional free mint.
function _whitelistMintCheckValue(uint256 _amount, uint256 maxmint_, bytes32[] calldata proof_, bytes32[] calldata proof1_, bytes32[] calldata proof2_) internal virtual {
uint256 price = _getWhitelistedPrice(msg.sender, maxmint_, proof_, proof1_, proof2_);
require(msg.value == price * _amount, "ETH value is not correct");
}
//Public mint.
function publicMint(uint256 _amount) external payable virtual nonReentrant {
require(isPsEnabled, "publicMint is Paused");
require(maxMintsPerPS >= _amount, "publicMint: Over max mints per wallet");
require(maxMintsPerPS >= _psMinted[_seasonCounter][msg.sender] + _amount, "You have no publicMint left");
_publicMintCheckValue(_amount);
require(tx.origin == msg.sender,"publicMint: Caller is contract.");
unchecked{
_psMinted[_seasonCounter][msg.sender] += _amount;
}
_commonMint(msg.sender, _amount);
}
//Public check.Only Value.for optional free mint.
function _publicMintCheckValue(uint256 _amount) internal virtual {
require(msg.value == psMintPrice * _amount, "ETH value is not correct");
}
//set otherContract.only owner
function setOtherContract(address _addr) external virtual onlyOwner {
otherContract = _addr;
_otherContractFactory = MGYERC721A(otherContract);
}
//Burn&MintSale mint.
function _burnAndMint(uint256 _amount,uint256[] calldata _tokenids) internal virtual {
require(isBmEnabled, "Burn&MintSale is Paused");
require(maxMintsPerBM >= _amount, "Burn&MintSale: Over max mints per wallet");
require(maxMintsPerBM >= _bmMinted[_seasonCounter][msg.sender] + _amount, "You have no Burn&MintSale left");
_burnAndMintCheckValue(_amount);
require(otherContract != address(0),"not set otherContract.");
require(otherContractCount != 0 ,"not set otherContractCount.");
require( _tokenids.length == (otherContractCount * _amount),"amount must be multiple of other contract count.");
//check tokens owner , used.
for (uint256 i = 0; i < _tokenids.length; i++) {
require(_otherContractFactory.ownerOf(_tokenids[i]) == msg.sender,"You are not owner of this tokenid.");
_otherContractFactory.burn(_tokenids[i]);//must approval.
}
unchecked{
_bmMinted[_seasonCounter][msg.sender] += _amount;
}
_commonMint(msg.sender, _amount);
}
//BM check.Only Value.for optional free mint.
function _burnAndMintCheckValue(uint256 _amount) internal virtual {
require(msg.value == bmMintPrice * _amount, "ETH value is not correct");
}
//Burn&MintSale mint. external
function burnAndMint(uint256 _amount,uint256[] calldata _tokenids) external payable virtual nonReentrant {
require(otherContractGenesis == address(0),"can not set otherContractGenesis.");
require(otherContractCountGenesis == 0 ,"can not set otherContractCountGenesis.");
_burnAndMint(_amount,_tokenids);
}
//set otherContractGenesis.only owner
function setOtherContractGenesis(address _addr) external virtual onlyOwner {
otherContractGenesis = _addr;
_otherContractGenesisFactory = MGYERC721A(otherContractGenesis);
}
//set otherContractGenesis count with burn&Mint.only owner.
function setOtherContractCountGenesis(uint256 _count) external virtual onlyOwner {
otherContractCountGenesis = _count;
}
//Burn&MintSale with GenesisNFT mint.
function burnAndMintWithGenesis(uint256 _amount,uint256[] calldata _tokenids,uint256[] calldata _tokenidGenesis) external payable virtual nonReentrant {
require(otherContractGenesis != address(0),"not set otherContractGenesis.");
require(otherContractCountGenesis > 0 ,"not set otherContractCountGenesis.");
require(_tokenidGenesis.length >= otherContractCountGenesis,"You have not enough Genesis.");
for (uint256 i = 0; i < _tokenidGenesis.length; i++) {
require(_otherContractGenesisFactory.ownerOf(_tokenidGenesis[i]) == msg.sender,"You are not owner of this tokenidGenesis.");
}
_burnAndMint(_amount,_tokenids);
}
//Hold&MintSale mint.
function holdAndMint(uint256 _amount,uint256[] calldata _tokenids) external payable virtual nonReentrant {
require(isHmEnabled, "Hold&MintSale is Paused");
require(maxMintsPerHM >= _amount, "Hold&MintSale: Over max mints per wallet");
require(maxMintsPerHM >= _hmMinted[_seasonCounter][msg.sender] + _amount, "You have no Hold&MintSale left");
_holdAndMintCheckValue(_amount);
require(otherContract != address(0),"not set otherContract.");
require(otherContractCount != 0 ,"not set otherContractCount.");
require( _tokenids.length == (otherContractCount * _amount),"amount must be multiple of other contract count.");
//check tokens owner , used.
for (uint256 i = 0; i < _tokenids.length; i++) {
require(_otherContractFactory.ownerOf(_tokenids[i]) == msg.sender,"You are not owner of this tokenid.");
require(!_otherTokenidUsed[_seasonCounter][_tokenids[i]] ,"This other tokenid is Used.");
_otherTokenidUsed[_seasonCounter][_tokenids[i]] = true;
}
unchecked{
_hmMinted[_seasonCounter][msg.sender] += _amount;
}
_commonMint(msg.sender, _amount);
}
//HM check.Only Value.for optional free mint.
function _holdAndMintCheckValue(uint256 _amount) internal virtual {
require(msg.value == hmMintPrice * _amount, "ETH value is not correct");
}
//burn
function burn(uint256 tokenId) external virtual {
_burn(tokenId, true);
}
//widraw ETH from this contract.only owner.
function withdraw() external payable virtual onlyOwner nonReentrant{
// This will payout the owner 100% of the contract balance.
// Do not remove this otherwise you will not be able to withdraw the funds.
// =============================================================================
bool os;
if(_withdrawWallet != address(0)){//if _withdrawWallet has.
(os, ) = payable(_withdrawWallet).call{value: address(this).balance}("");
}else{
(os, ) = payable(owner()).call{value: address(this).balance}("");
}
require(os);
// =============================================================================
}
//return wallet owned tokenids.it used high gas and running time.
function walletOfOwner(address owner) external view virtual returns (uint256[] memory) {
//copy from tokensOfOwner in ERC721AQueryable.sol
unchecked {
uint256 tokenIdsIdx = 0;
address currOwnershipAddr = address(0);
uint256 tokenIdsLength = balanceOf(owner);
uint256[] memory tokenIds = new uint256[](tokenIdsLength);
TokenOwnership memory ownership;
for (uint256 i = _startTokenId(); tokenIdsIdx != tokenIdsLength; i++) {
ownership = _ownershipAt(i);
if (ownership.burned) {
continue;
}
if (ownership.addr != address(0)) {
currOwnershipAddr = ownership.addr;
}
if (currOwnershipAddr == owner) {
tokenIds[tokenIdsIdx++] = i;
}
}
return tokenIds;
}
}
//set Staking enable.only owner.
function setStakingEnable(bool bool_) external virtual onlyOwner {
isStakingEnabled = bool_;
if(bool_){
stakingStartTimestamp = block.timestamp;
stakingEndTimestamp = NULL_STAKED;
}else{
stakingEndTimestamp = block.timestamp;
}
}
//get staking information.
function _getStakingInfo(uint256 _tokenId) internal view virtual returns (uint256 startTimestamp, uint256 currentStakingTime, uint256 totalStakingTime, bool isStaking,uint256 claimedLastTimestamp ){
require(_exists(_tokenId), "nonexistent token");
currentStakingTime = 0;
startTimestamp = _stakingStartedTimestamp[_tokenId];
if (startTimestamp != NULL_STAKED) { // is staking
currentStakingTime = block.timestamp - startTimestamp;
}
totalStakingTime = currentStakingTime + _stakingTotalTime[_tokenId];
isStaking = startTimestamp != NULL_STAKED;
claimedLastTimestamp = _claimedLastTimestamp[_tokenId];
}
//get staking information.
function getStakingInfo(uint256 _tokenId) external view virtual returns (uint256 startTimestamp, uint256 currentStakingTime, uint256 totalStakingTime, bool isStaking,uint256 claimedLastTimestamp ){
(startTimestamp, currentStakingTime, totalStakingTime, isStaking, claimedLastTimestamp) = _getStakingInfo(_tokenId);
}
//toggle staking status
function _toggleStaking(uint256 _tokenId) internal virtual {
require(ownerOf(_tokenId) == msg.sender,"You are not owner of this tokenid.");
require(_exists(_tokenId), "nonexistent token");
uint256 startTimestamp = _stakingStartedTimestamp[_tokenId];
if (startTimestamp == NULL_STAKED) {
//start staking
require(isStakingEnabled, "Staking closed");
_stakingStartedTimestamp[_tokenId] = block.timestamp;
} else {
//start unstaking
_stakingTotalTime[_tokenId] += block.timestamp - startTimestamp;
_stakingStartedTimestamp[_tokenId] = NULL_STAKED;
_claimedLastTimestamp[_tokenId] = NULL_STAKED;
}
}
//toggle staking status
function toggleStaking(uint256[] calldata _tokenIds) external virtual {
uint256 num = _tokenIds.length;
for (uint256 i = 0; i < num; i++) {
uint256 tokenId = _tokenIds[i];
_toggleStaking(tokenId);
}
}
//set rewardContract.only owner
function setRewardContract(address _addr) external virtual onlyOwner {
rewardContract = _addr;
_rewardContractFactory = MGYREWARD(rewardContract);
}
//claim reward
function _claimReward(uint256 _tokenId) internal virtual {
require(ownerOf(_tokenId) == msg.sender,"You are not owner of this tokenid.");
require(_exists(_tokenId), "nonexistent token");
//get staking infomation
(uint256 startTimestamp, uint256 currentStakingTime, uint256 totalStakingTime, bool isStaking,uint256 claimedLastTimestamp ) = _getStakingInfo(_tokenId);
uint256 _lastTimestamp = block.timestamp;
_claimedLastTimestamp[_tokenId] = _lastTimestamp; //execute before claimReward().Warning for slither.
//call reword. other contract
_rewardContractFactory.claimReward(stakingStartTimestamp, stakingEndTimestamp, _tokenId, startTimestamp, currentStakingTime, totalStakingTime, isStaking, claimedLastTimestamp, _lastTimestamp);
}
//claim reward
function claimReward(uint256[] calldata _tokenIds) external virtual nonReentrant{
require(isStakingEnabled, "Staking closed");//only staking period
uint256 num = _tokenIds.length;
for (uint256 i = 0; i < num; i++) {
uint256 tokenId = _tokenIds[i];
_claimReward(tokenId);
}
}
//Opensea filter
function setApprovalForAll(address operator, bool approved) public override(ERC721A,IERC721A) onlyAllowedOperatorApproval(operator){
super.setApprovalForAll(operator, approved);
}
function approve(address operator, uint256 tokenId) public payable override(ERC721A,IERC721A) onlyAllowedOperatorApproval(operator){
super.approve(operator, tokenId);
}
function transferFrom(address from, address to, uint256 tokenId) public payable override(ERC721A,IERC721A) onlyAllowedOperator(from){
super.transferFrom(from, to, tokenId);
}
function safeTransferFrom(address from, address to, uint256 tokenId) public payable override(ERC721A,IERC721A) onlyAllowedOperator(from){
super.safeTransferFrom(from, to, tokenId);
}
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public payable override(ERC721A,IERC721A) onlyAllowedOperator(from){
super.safeTransferFrom(from, to, tokenId, data);
}
function setOperatorFilteringEnabled(bool value) public onlyOwner {
operatorFilteringEnabled = value;
}
function _operatorFilteringEnabled() internal view override returns (bool) {
return operatorFilteringEnabled;
}
//ERC4906
function metadataUpdate(uint256 _tokenId) external virtual onlyOwner {
emit MetadataUpdate(_tokenId);
}
function batchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId) external virtual onlyOwner {
emit BatchMetadataUpdate( _fromTokenId, _toTokenId);
}
}
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "./MGYERC721A.sol";
contract MGYREWARD is Ownable,ReentrancyGuard{
address public callContract;//callable MGYERC721A address
MGYERC721A internal _callContractFactory;//callable Contract's factory
//set callContract.only owner
function setCallContract(address _callAddr) external virtual onlyOwner{
callContract = _callAddr;
_callContractFactory = MGYERC721A(callContract);
}
//execute reward
function _claimReward(uint256 _stakingStartTimestamp, uint256 _stakingEndTimestamp, uint256 _tokenId,uint256 _startTimestamp, uint256 _currentStakingTime, uint256 _totalStakingTime, bool _isStaking, uint256 _claimedLastTimestamp, uint256 _currentClaimedLastTimestamp) internal virtual{
//do reword something todo
}
//execute reward
function claimReward(uint256 _stakingStartTimestamp, uint256 _stakingEndTimestamp, uint256 _tokenId,uint256 _startTimestamp, uint256 _currentStakingTime, uint256 _totalStakingTime, bool _isStaking, uint256 _claimedLastTimestamp, uint256 _currentClaimedLastTimestamp) external virtual nonReentrant{
require(callContract != address(0),"not set callContract.");
require(msg.sender == callContract,"only callContract can call this function.");
_claimReward(_stakingStartTimestamp, _stakingEndTimestamp, _tokenId, _startTimestamp, _currentStakingTime, _totalStakingTime, _isStaking, _claimedLastTimestamp, _currentClaimedLastTimestamp);
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721A.sol';
/**
* @dev Interface of ERC721 token receiver.
*/
interface ERC721A__IERC721Receiver {
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
/**
* @title ERC721A
*
* @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
* Non-Fungible Token Standard, including the Metadata extension.
* Optimized for lower gas during batch mints.
*
* Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
* starting from `_startTokenId()`.
*
* Assumptions:
*
* - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
* - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
*/
contract ERC721A is IERC721A {
// Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
struct TokenApprovalRef {
address value;
}
// =============================================================
// CONSTANTS
// =============================================================
// Mask of an entry in packed address data.
uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
// The bit position of `numberMinted` in packed address data.
uint256 private constant _BITPOS_NUMBER_MINTED = 64;
// The bit position of `numberBurned` in packed address data.
uint256 private constant _BITPOS_NUMBER_BURNED = 128;
// The bit position of `aux` in packed address data.
uint256 private constant _BITPOS_AUX = 192;
// Mask of all 256 bits in packed address data except the 64 bits for `aux`.
uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
// The bit position of `startTimestamp` in packed ownership.
uint256 private constant _BITPOS_START_TIMESTAMP = 160;
// The bit mask of the `burned` bit in packed ownership.
uint256 private constant _BITMASK_BURNED = 1 << 224;
// The bit position of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
// The bit mask of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
// The bit position of `extraData` in packed ownership.
uint256 private constant _BITPOS_EXTRA_DATA = 232;
// Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
// The mask of the lower 160 bits for addresses.
uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
// The maximum `quantity` that can be minted with {_mintERC2309}.
// This limit is to prevent overflows on the address data entries.
// For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
// is required to cause an overflow, which is unrealistic.
uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
// The `Transfer` event signature is given by:
// `keccak256(bytes("Transfer(address,address,uint256)"))`.
bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
// =============================================================
// STORAGE
// =============================================================
// The next token ID to be minted.
uint256 private _currentIndex;
// The number of tokens burned.
uint256 private _burnCounter;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to ownership details
// An empty struct value does not necessarily mean the token is unowned.
// See {_packedOwnershipOf} implementation for details.
//
// Bits Layout:
// - [0..159] `addr`
// - [160..223] `startTimestamp`
// - [224] `burned`
// - [225] `nextInitialized`
// - [232..255] `extraData`
mapping(uint256 => uint256) private _packedOwnerships;
// Mapping owner address to address data.
//
// Bits Layout:
// - [0..63] `balance`
// - [64..127] `numberMinted`
// - [128..191] `numberBurned`
// - [192..255] `aux`
mapping(address => uint256) private _packedAddressData;
// Mapping from token ID to approved address.
mapping(uint256 => TokenApprovalRef) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
// =============================================================
// CONSTRUCTOR
// =============================================================
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_currentIndex = _startTokenId();
}
// =============================================================
// TOKEN COUNTING OPERATIONS
// =============================================================
/**
* @dev Returns the starting token ID.
* To change the starting token ID, please override this function.
*/
function _startTokenId() internal view virtual returns (uint256) {
return 0;
}
/**
* @dev Returns the next token ID to be minted.
*/
function _nextTokenId() internal view virtual returns (uint256) {
return _currentIndex;
}
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() public view virtual override returns (uint256) {
// Counter underflow is impossible as _burnCounter cannot be incremented
// more than `_currentIndex - _startTokenId()` times.
unchecked {
return _currentIndex - _burnCounter - _startTokenId();
}
}
/**
* @dev Returns the total amount of tokens minted in the contract.
*/
function _totalMinted() internal view virtual returns (uint256) {
// Counter underflow is impossible as `_currentIndex` does not decrement,
// and it is initialized to `_startTokenId()`.
unchecked {
return _currentIndex - _startTokenId();
}
}
/**
* @dev Returns the total number of tokens burned.
*/
function _totalBurned() internal view virtual returns (uint256) {
return _burnCounter;
}
// =============================================================
// ADDRESS DATA OPERATIONS
// =============================================================
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
if (owner == address(0)) revert BalanceQueryForZeroAddress();
return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens minted by `owner`.
*/
function _numberMinted(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens burned by or on behalf of `owner`.
*/
function _numberBurned(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
*/
function _getAux(address owner) internal view returns (uint64) {
return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
}
/**
* Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
* If there are multiple variables, please pack them into a uint64.
*/
function _setAux(address owner, uint64 aux) internal virtual {
uint256 packed = _packedAddressData[owner];
uint256 auxCasted;
// Cast `aux` with assembly to avoid redundant masking.
assembly {
auxCasted := aux
}
packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
_packedAddressData[owner] = packed;
}
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
// The interface IDs are constants representing the first 4 bytes
// of the XOR of all function selectors in the interface.
// See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
// (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
return
interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
}
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the token collection symbol.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
string memory baseURI = _baseURI();
return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, it can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return '';
}
// =============================================================
// OWNERSHIPS OPERATIONS
// =============================================================
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
return address(uint160(_packedOwnershipOf(tokenId)));
}
/**
* @dev Gas spent here starts off proportional to the maximum mint batch size.
* It gradually moves to O(1) as tokens get transferred around over time.
*/
function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnershipOf(tokenId));
}
/**
* @dev Returns the unpacked `TokenOwnership` struct at `index`.
*/
function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnerships[index]);
}
/**
* @dev Initializes the ownership slot minted at `index` for efficiency purposes.
*/
function _initializeOwnershipAt(uint256 index) internal virtual {
if (_packedOwnerships[index] == 0) {
_packedOwnerships[index] = _packedOwnershipOf(index);
}
}
/**
* Returns the packed ownership data of `tokenId`.
*/
function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) {
uint256 curr = tokenId;
unchecked {
if (_startTokenId() <= curr)
if (curr < _currentIndex) {
uint256 packed = _packedOwnerships[curr];
// If not burned.
if (packed & _BITMASK_BURNED == 0) {
// Invariant:
// There will always be an initialized ownership slot
// (i.e. `ownership.addr != address(0) && ownership.burned == false`)
// before an unintialized ownership slot
// (i.e. `ownership.addr == address(0) && ownership.burned == false`)
// Hence, `curr` will not underflow.
//
// We can directly compare the packed value.
// If the address is zero, packed will be zero.
while (packed == 0) {
packed = _packedOwnerships[--curr];
}
return packed;
}
}
}
revert OwnerQueryForNonexistentToken();
}
/**
* @dev Returns the unpacked `TokenOwnership` struct from `packed`.
*/
function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
ownership.addr = address(uint160(packed));
ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
ownership.burned = packed & _BITMASK_BURNED != 0;
ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
}
/**
* @dev Packs ownership data into a single uint256.
*/
function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
}
}
/**
* @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
*/
function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
// For branchless setting of the `nextInitialized` flag.
assembly {
// `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
}
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) public payable virtual override {
address owner = ownerOf(tokenId);
if (_msgSenderERC721A() != owner)
if (!isApprovedForAll(owner, _msgSenderERC721A())) {
revert ApprovalCallerNotOwnerNorApproved();
}
_tokenApprovals[tokenId].value = to;
emit Approval(owner, to, tokenId);
}
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();
return _tokenApprovals[tokenId].value;
}
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_operatorApprovals[_msgSenderERC721A()][operator] = approved;
emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
}
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted. See {_mint}.
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return
_startTokenId() <= tokenId &&
tokenId < _currentIndex && // If within bounds,
_packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
}
/**
* @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
*/
function _isSenderApprovedOrOwner(
address approvedAddress,
address owner,
address msgSender
) private pure returns (bool result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
msgSender := and(msgSender, _BITMASK_ADDRESS)
// `msgSender == owner || msgSender == approvedAddress`.
result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
}
}
/**
* @dev Returns the storage slot and value for the approved address of `tokenId`.
*/
function _getApprovedSlotAndAddress(uint256 tokenId)
private
view
returns (uint256 approvedAddressSlot, address approvedAddress)
{
TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
// The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
assembly {
approvedAddressSlot := tokenApproval.slot
approvedAddress := sload(approvedAddressSlot)
}
}
// =============================================================
// TRANSFER OPERATIONS
// =============================================================
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
if (to == address(0)) revert TransferToZeroAddress();
_beforeTokenTransfers(from, to, tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// We can directly increment and decrement the balances.
--_packedAddressData[from]; // Updates: `balance -= 1`.
++_packedAddressData[to]; // Updates: `balance += 1`.
// Updates:
// - `address` to the next owner.
// - `startTimestamp` to the timestamp of transfering.
// - `burned` to `false`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
to,
_BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, to, tokenId);
_afterTokenTransfers(from, to, tokenId, 1);
}
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
safeTransferFrom(from, to, tokenId, '');
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory _data
) public payable virtual override {
transferFrom(from, to, tokenId);
if (to.code.length != 0)
if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
revert TransferToNonERC721ReceiverImplementer();
}
}
/**
* @dev Hook that is called before a set of serially-ordered token IDs
* are about to be transferred. This includes minting.
* And also called before burning one token.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _beforeTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Hook that is called after a set of serially-ordered token IDs
* have been transferred. This includes minting.
* And also called after one token has been burned.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
* transferred to `to`.
* - When `from` is zero, `tokenId` has been minted for `to`.
* - When `to` is zero, `tokenId` has been burned by `from`.
* - `from` and `to` are never both zero.
*/
function _afterTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
*
* `from` - Previous owner of the given token ID.
* `to` - Target address that will receive the token.
* `tokenId` - Token ID to be transferred.
* `_data` - Optional data to send along with the call.
*
* Returns whether the call correctly returned the expected magic value.
*/
function _checkContractOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory _data
) private returns (bool) {
try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
bytes4 retval
) {
return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert TransferToNonERC721ReceiverImplementer();
} else {
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
// =============================================================
// MINT OPERATIONS
// =============================================================
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {Transfer} event for each mint.
*/
function _mint(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (quantity == 0) revert MintZeroQuantity();
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are incredibly unrealistic.
// `balance` and `numberMinted` have a maximum limit of 2**64.
// `tokenId` has a maximum limit of 2**256.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
uint256 toMasked;
uint256 end = startTokenId + quantity;
// Use assembly to loop and emit the `Transfer` event for gas savings.
// The duplicated `log4` removes an extra check and reduces stack juggling.
// The assembly, together with the surrounding Solidity code, have been
// delicately arranged to nudge the compiler into producing optimized opcodes.
assembly {
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
toMasked := and(to, _BITMASK_ADDRESS)
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
0, // `address(0)`.
toMasked, // `to`.
startTokenId // `tokenId`.
)
// The `iszero(eq(,))` check ensures that large values of `quantity`
// that overflows uint256 will make the loop run out of gas.
// The compiler will optimize the `iszero` away for performance.
for {
let tokenId := add(startTokenId, 1)
} iszero(eq(tokenId, end)) {
tokenId := add(tokenId, 1)
} {
// Emit the `Transfer` event. Similar to above.
log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
}
}
if (toMasked == 0) revert MintToZeroAddress();
_currentIndex = end;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* This function is intended for efficient minting only during contract creation.
*
* It emits only one {ConsecutiveTransfer} as defined in
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
* instead of a sequence of {Transfer} event(s).
*
* Calling this function outside of contract creation WILL make your contract
* non-compliant with the ERC721 standard.
* For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
* {ConsecutiveTransfer} event is only permissible during contract creation.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {ConsecutiveTransfer} event.
*/
function _mintERC2309(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (to == address(0)) revert MintToZeroAddress();
if (quantity == 0) revert MintZeroQuantity();
if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are unrealistic due to the above check for `quantity` to be below the limit.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
_currentIndex = startTokenId + quantity;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Safely mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
* - `quantity` must be greater than 0.
*
* See {_mint}.
*
* Emits a {Transfer} event for each mint.
*/
function _safeMint(
address to,
uint256 quantity,
bytes memory _data
) internal virtual {
_mint(to, quantity);
unchecked {
if (to.code.length != 0) {
uint256 end = _currentIndex;
uint256 index = end - quantity;
do {
if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
revert TransferToNonERC721ReceiverImplementer();
}
} while (index < end);
// Reentrancy protection.
if (_currentIndex != end) revert();
}
}
}
/**
* @dev Equivalent to `_safeMint(to, quantity, '')`.
*/
function _safeMint(address to, uint256 quantity) internal virtual {
_safeMint(to, quantity, '');
}
// =============================================================
// BURN OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_burn(tokenId, false)`.
*/
function _burn(uint256 tokenId) internal virtual {
_burn(tokenId, false);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
address from = address(uint160(prevOwnershipPacked));
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
if (approvalCheck) {
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
}
_beforeTokenTransfers(from, address(0), tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// Updates:
// - `balance -= 1`.
// - `numberBurned += 1`.
//
// We can directly decrement the balance, and increment the number burned.
// This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
_packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
// Updates:
// - `address` to the last owner.
// - `startTimestamp` to the timestamp of burning.
// - `burned` to `true`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
from,
(_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, address(0), tokenId);
_afterTokenTransfers(from, address(0), tokenId, 1);
// Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
unchecked {
_burnCounter++;
}
}
// =============================================================
// EXTRA DATA OPERATIONS
// =============================================================
/**
* @dev Directly sets the extra data for the ownership data `index`.
*/
function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
uint256 packed = _packedOwnerships[index];
if (packed == 0) revert OwnershipNotInitializedForExtraData();
uint256 extraDataCasted;
// Cast `extraData` with assembly to avoid redundant masking.
assembly {
extraDataCasted := extraData
}
packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
_packedOwnerships[index] = packed;
}
/**
* @dev Called during each token transfer to set the 24bit `extraData` field.
* Intended to be overridden by the cosumer contract.
*
* `previousExtraData` - the value of `extraData` before transfer.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _extraData(
address from,
address to,
uint24 previousExtraData
) internal view virtual returns (uint24) {}
/**
* @dev Returns the next extra data for the packed ownership data.
* The returned result is shifted into position.
*/
function _nextExtraData(
address from,
address to,
uint256 prevOwnershipPacked
) private view returns (uint256) {
uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
}
// =============================================================
// OTHER OPERATIONS
// =============================================================
/**
* @dev Returns the message sender (defaults to `msg.sender`).
*
* If you are writing GSN compatible contracts, you need to override this function.
*/
function _msgSenderERC721A() internal view virtual returns (address) {
return msg.sender;
}
/**
* @dev Converts a uint256 to its ASCII string decimal representation.
*/
function _toString(uint256 value) internal pure virtual returns (string memory str) {
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
let m := add(mload(0x40), 0xa0)
// Update the free memory pointer to allocate.
mstore(0x40, m)
// Assign the `str` to the end.
str := sub(m, 0x20)
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end of the memory to calculate the length later.
let end := str
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
// prettier-ignore
for { let temp := value } 1 {} {
str := sub(str, 1)
// Write the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
// Keep dividing `temp` until zero.
temp := div(temp, 10)
// prettier-ignore
if iszero(temp) { break }
}
let length := sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str := sub(str, 0x20)
// Store the length.
mstore(str, length)
}
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC4907A.sol';
import '../ERC721A.sol';
/**
* @title ERC4907A
*
* @dev [ERC4907](https://eips.ethereum.org/EIPS/eip-4907) compliant
* extension of ERC721A, which allows owners and authorized addresses
* to add a time-limited role with restricted permissions to ERC721 tokens.
*/
abstract contract ERC4907A is ERC721A, IERC4907A {
// The bit position of `expires` in packed user info.
uint256 private constant _BITPOS_EXPIRES = 160;
// Mapping from token ID to user info.
//
// Bits Layout:
// - [0..159] `user`
// - [160..223] `expires`
mapping(uint256 => uint256) private _packedUserInfo;
/**
* @dev Sets the `user` and `expires` for `tokenId`.
* The zero address indicates there is no user.
*
* Requirements:
*
* - The caller must own `tokenId` or be an approved operator.
*/
function setUser(
uint256 tokenId,
address user,
uint64 expires
) public virtual override {
// Require the caller to be either the token owner or an approved operator.
address owner = ownerOf(tokenId);
if (_msgSenderERC721A() != owner)
if (!isApprovedForAll(owner, _msgSenderERC721A()))
if (getApproved(tokenId) != _msgSenderERC721A()) revert SetUserCallerNotOwnerNorApproved();
_packedUserInfo[tokenId] = (uint256(expires) << _BITPOS_EXPIRES) | uint256(uint160(user));
emit UpdateUser(tokenId, user, expires);
}
/**
* @dev Returns the user address for `tokenId`.
* The zero address indicates that there is no user or if the user is expired.
*/
function userOf(uint256 tokenId) public view virtual override returns (address) {
uint256 packed = _packedUserInfo[tokenId];
assembly {
// Branchless `packed *= (block.timestamp <= expires ? 1 : 0)`.
// If the `block.timestamp == expires`, the `lt` clause will be true
// if there is a non-zero user address in the lower 160 bits of `packed`.
packed := mul(
packed,
// `block.timestamp <= expires ? 1 : 0`.
lt(shl(_BITPOS_EXPIRES, timestamp()), packed)
)
}
return address(uint160(packed));
}
/**
* @dev Returns the user's expires of `tokenId`.
*/
function userExpires(uint256 tokenId) public view virtual override returns (uint256) {
return _packedUserInfo[tokenId] >> _BITPOS_EXPIRES;
}
/**
* @dev Override of {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721A, IERC721A) returns (bool) {
// The interface ID for ERC4907 is `0xad092b5c`,
// as defined in [ERC4907](https://eips.ethereum.org/EIPS/eip-4907).
return super.supportsInterface(interfaceId) || interfaceId == 0xad092b5c;
}
/**
* @dev Returns the user address for `tokenId`, ignoring the expiry status.
*/
function _explicitUserOf(uint256 tokenId) internal view virtual returns (address) {
return address(uint160(_packedUserInfo[tokenId]));
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import '../IERC721A.sol';
/**
* @dev Interface of ERC4907A.
*/
interface IERC4907A is IERC721A {
/**
* The caller must own the token or be an approved operator.
*/
error SetUserCallerNotOwnerNorApproved();
/**
* @dev Emitted when the `user` of an NFT or the `expires` of the `user` is changed.
* The zero address for user indicates that there is no user address.
*/
event UpdateUser(uint256 indexed tokenId, address indexed user, uint64 expires);
/**
* @dev Sets the `user` and `expires` for `tokenId`.
* The zero address indicates there is no user.
*
* Requirements:
*
* - The caller must own `tokenId` or be an approved operator.
*/
function setUser(
uint256 tokenId,
address user,
uint64 expires
) external;
/**
* @dev Returns the user address for `tokenId`.
* The zero address indicates that there is no user or if the user is expired.
*/
function userOf(uint256 tokenId) external view returns (address);
/**
* @dev Returns the user's expires of `tokenId`.
*/
function userExpires(uint256 tokenId) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
/**
* @dev Interface of ERC721A.
*/
interface IERC721A {
/**
* The caller must own the token or be an approved operator.
*/
error ApprovalCallerNotOwnerNorApproved();
/**
* The token does not exist.
*/
error ApprovalQueryForNonexistentToken();
/**
* Cannot query the balance for the zero address.
*/
error BalanceQueryForZeroAddress();
/**
* Cannot mint to the zero address.
*/
error MintToZeroAddress();
/**
* The quantity of tokens minted must be more than zero.
*/
error MintZeroQuantity();
/**
* The token does not exist.
*/
error OwnerQueryForNonexistentToken();
/**
* The caller must own the token or be an approved operator.
*/
error TransferCallerNotOwnerNorApproved();
/**
* The token must be owned by `from`.
*/
error TransferFromIncorrectOwner();
/**
* Cannot safely transfer to a contract that does not implement the
* ERC721Receiver interface.
*/
error TransferToNonERC721ReceiverImplementer();
/**
* Cannot transfer to the zero address.
*/
error TransferToZeroAddress();
/**
* The token does not exist.
*/
error URIQueryForNonexistentToken();
/**
* The `quantity` minted with ERC2309 exceeds the safety limit.
*/
error MintERC2309QuantityExceedsLimit();
/**
* The `extraData` cannot be set on an unintialized ownership slot.
*/
error OwnershipNotInitializedForExtraData();
// =============================================================
// STRUCTS
// =============================================================
struct TokenOwnership {
// The address of the owner.
address addr;
// Stores the start time of ownership with minimal overhead for tokenomics.
uint64 startTimestamp;
// Whether the token has been burned.
bool burned;
// Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
uint24 extraData;
}
// =============================================================
// TOKEN COUNTERS
// =============================================================
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() external view returns (uint256);
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
// =============================================================
// IERC721
// =============================================================
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables
* (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`,
* checking first that contract recipients are aware of the ERC721 protocol
* to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move
* this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external payable;
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom}
* whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external payable;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
// =============================================================
// IERC2309
// =============================================================
/**
* @dev Emitted when tokens in `fromTokenId` to `toTokenId`
* (inclusive) is transferred from `from` to `to`, as defined in the
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
*
* See {_mintERC2309} for more details.
*/
event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
}