Contract Name:
RaBitDescriptorV3
Contract Source Code:
<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>
// SPDX-License-Identifier: MIT
/*********************************
* *
* (\_/) *
* *
*********************************/
// rabits.xyz
// twitter.com/rabitsxyz
pragma solidity ^0.8.13;
import './base64.sol';
import "./IRaBitDescriptor.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
contract RaBitDescriptorV3 is IRaBitDescriptor {
struct Color {
string value;
string name;
}
struct Trait {
string content;
string name;
Color color;
}
using Strings for uint256;
string private constant SVG_END_TAG = '</svg>';
function tokenURI(uint256 tokenId, uint256 seed) external pure override returns (string memory) {
uint256[4] memory colors = [seed % 100000000000000 / 1000000000000, seed % 10000000000 / 100000000, seed % 1000000 / 10000, seed % 100];
Trait memory head = getHead(seed / 100000000000000, colors[0]);
Trait memory face = getFace(seed % 1000000000000 / 10000000000, colors[1]);
Trait memory body = getBody(seed % 100000000 / 1000000, colors[2]);
Trait memory feet = getFeet(seed % 10000 / 100, colors[3]);
string memory colorCount = calculateColorCount(colors);
string memory rawSvg = string(
abi.encodePacked(
'<svg width="320" height="320" viewBox="0 0 320 320" xmlns="http://www.w3.org/2000/svg">',
'<rect width="100%" height="100%" fill="#2c2c2c"/>',
'<text x="160" y="130" font-family="Courier,monospace" font-weight="700" font-size="20" text-anchor="middle" letter-spacing="1">',
head.content,
face.content,
body.content,
feet.content,
'</text>',
SVG_END_TAG
)
);
string memory encodedSvg = Base64.encode(bytes(rawSvg));
string memory description = 'RBT';
return string(
abi.encodePacked(
'data:application/json;base64,',
Base64.encode(
bytes(
abi.encodePacked(
'{',
'"name":"RaBit #', tokenId.toString(), '",',
'"description":"', description, '",',
'"image": "', 'data:image/svg+xml;base64,', encodedSvg, '",',
'"attributes": [{"trait_type": "Head", "value": "', head.name,' (',head.color.name,')', '"},',
'{"trait_type": "Face", "value": "', face.name,' (',face.color.name,')', '"},',
'{"trait_type": "Body", "value": "', body.name,' (',body.color.name,')', '"},',
'{"trait_type": "Feet", "value": "', feet.name,' (',feet.color.name,')', '"},',
'{"trait_type": "Colors", "value": ', colorCount, '}',
']',
'}')
)
)
)
);
}
function getColor(uint256 seed) private pure returns (Color memory) {
if (seed == 10) {
return Color("#ff5733", "Mango Orange");
}
if (seed == 11) {
return Color("#7a8ccc", "Slate Blue");
}
if (seed == 12) {
return Color("#ffebcd", "Blanched Almond");
}
if (seed == 13) {
return Color("#03c6fc", "Electric Blue");
}
if (seed == 14) {
return Color("#ff0080", "Fuchsia");
}
if (seed == 15) {
return Color("#ffea00", "Yellow");
}
if (seed == 16) {
return Color("#33cc33", "Forest Green");
}
if (seed == 17) {
return Color("#ff6666", "Coral Pink");
}
if (seed == 18) {
return Color("#00ffcc", "Turquoise");
}
if (seed == 19) {
return Color("#ffb347", "Dark Salmon");
}
if (seed == 20) {
return Color("#ff6b6b", "Indian Red");
}
if (seed == 21) {
return Color("#bf00ff", "Purple");
}
if (seed == 22) {
return Color("#ffa07a", "Light Salmon");
}
if (seed == 23) {
return Color("#4d4dff", "Cornflower Blue");
}
if (seed == 24) {
return Color("#ffcccc", "Cotton Candy");
}
if (seed == 25) {
return Color("#7f00ff", "Electric Purple");
}
if (seed == 26) {
return Color("#00e6e6", "Caribbean Green");
}
if (seed == 27) {
return Color("#ffb6c1", "Light Pink");
}
if (seed == 28) {
return Color("#666699", "Slate Gray");
}
if (seed == 29) {
return Color("#00ccff", "Sky Blue");
}
return Color('','');
}
function getHead(uint256 seed, uint256 colorSeed) private pure returns (Trait memory) {
Color memory color = getColor(colorSeed);
string memory content;
string memory name;
if (seed == 10) {
content = "/)_/)";
name = "Slanted Curved";
}
if (seed == 11) {
content = "//_//";
name = "Slanted";
}
if (seed == 12) {
content = "||_||";
name = "Vertical";
}
if (seed == 13) {
content = "()_()";
name = "Rounded";
}
if (seed == 14) {
content = "(\\_/)";
name = "Outward Curved";
}
if (seed == 15) {
content = "//_\\\\";
name = "Inward Straight";
}
if (seed == 16) {
content = "( Y )";
name = "Wide";
}
return Trait(string(abi.encodePacked('<tspan fill="', color.value, '">', content, '</tspan>')), name, color);
}
function getFace(uint256 seed, uint256 colorSeed) private pure returns (Trait memory) {
Color memory color = getColor(colorSeed);
string memory content;
string memory name;
if (seed == 10) {
content = "(`x`)";
name = "Angry";
}
if (seed == 11) {
content = "('x')";
name = "Content";
}
if (seed == 12) {
content = "('x-)";
name = "Wink";
}
if (seed == 13) {
content = "(`x')";
name = "Suspicious";
}
if (seed == 14) {
content = "(;.;)";
name = "Crying";
}
if (seed == 15) {
content = "(*.*)";
name = "Starry-Eyed";
}
if (seed == 15) {
content = "(^x^)";
name = "Happy";
}
if (seed == 16) {
content = "(-x-)";
name = "Sleeping";
}
return Trait(string(abi.encodePacked('<tspan dy="20" x="160" fill="', color.value, '">', content, '</tspan>')), name, color);
}
function getBody(uint256 seed, uint256 colorSeed) private pure returns (Trait memory) {
Color memory color = getColor(colorSeed);
string memory content;
string memory name;
if (seed == 10) {
content = "/ > <3";
name = "Love";
}
if (seed == 11) {
content = "/ > $";
name = "Money";
}
if (seed == 12) {
content = "/ > o";
name = "Cookie";
}
if (seed == 13) {
content = "(\\+/)";
name = "Priest";
}
if (seed == 14) {
content = "{ :~}";
name = "Shirt";
}
if (seed == 15) {
content = "{\\:/}";
name = "Suit";
}
if (seed == 16) {
content = "{\\~/}";
name = "Tux";
}
return Trait(string(abi.encodePacked('<tspan dy="25" x="160" fill="', color.value, '">', content, '</tspan>')), name, color);
}
function getFeet(uint256 seed, uint256 colorSeed) private pure returns (Trait memory) {
Color memory color = getColor(colorSeed);
string memory content;
string memory name;
uint256 y;
if (seed == 10) {
content = "(=)(=)";
name = "Thick Paws";
y = 25;
}
if (seed == 11) {
content = "o(\")(\")";
name = "Tail";
y = 25;
}
if (seed == 12) {
content = "c(\"\")(\"\")";
name = "Big Paws Small Tail";
y = 25;
}
if (seed == 13) {
content = "(^)(^)";
name = "Sharp Paws";
y = 25;
}
if (seed == 14) {
content = "o_U..U";
name = "Small Paws Small Tail";
y = 25;
}
if (seed == 15) {
content = "UU";
name = "Standing";
y = 22;
}
return Trait(string(abi.encodePacked('<tspan dy="',y.toString(),'" x="160" fill="', color.value, '">', content, '</tspan>')), name, color);
}
function calculateColorCount(uint256[4] memory colors) private pure returns (string memory) {
uint256 count;
for (uint256 i = 0; i < 4; i++) {
for (uint256 j = 0; j < 4; j++) {
if (colors[i] == colors[j]) {
count++;
}
}
}
if (count == 4) {
return '4';
}
if (count == 6) {
return '3';
}
if (count == 8 || count == 10) {
return '2';
}
if (count == 16) {
return '1';
}
return '0';
}
}
<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>
// SPDX-License-Identifier: MIT
/*********************************
* *
* (\_/) *
* *
*********************************/
pragma solidity ^0.8.13;
interface IRaBitDescriptor {
function tokenURI(uint256 tokenId, uint256 seed) external view returns (string memory);
}
<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0;
/// @title Base64
/// @author Brecht Devos - <[email protected]>
/// @notice Provides functions for encoding/decoding base64
library Base64 {
string internal constant TABLE_ENCODE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
bytes internal constant TABLE_DECODE = hex"0000000000000000000000000000000000000000000000000000000000000000"
hex"00000000000000000000003e0000003f3435363738393a3b3c3d000000000000"
hex"00000102030405060708090a0b0c0d0e0f101112131415161718190000000000"
hex"001a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132330000000000";
function encode(bytes memory data) internal pure returns (string memory) {
if (data.length == 0) return '';
// load the table into memory
string memory table = TABLE_ENCODE;
// multiply by 4/3 rounded up
uint256 encodedLen = 4 * ((data.length + 2) / 3);
// add some extra buffer at the end required for the writing
string memory result = new string(encodedLen + 32);
assembly {
// set the actual output length
mstore(result, encodedLen)
// prepare the lookup table
let tablePtr := add(table, 1)
// input ptr
let dataPtr := data
let endPtr := add(dataPtr, mload(data))
// result ptr, jump over length
let resultPtr := add(result, 32)
// run over the input, 3 bytes at a time
for {} lt(dataPtr, endPtr) {}
{
// read 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// write 4 characters
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1)
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1)
mstore8(resultPtr, mload(add(tablePtr, and(shr( 6, input), 0x3F))))
resultPtr := add(resultPtr, 1)
mstore8(resultPtr, mload(add(tablePtr, and( input, 0x3F))))
resultPtr := add(resultPtr, 1)
}
// padding with '='
switch mod(mload(data), 3)
case 1 { mstore(sub(resultPtr, 2), shl(240, 0x3d3d)) }
case 2 { mstore(sub(resultPtr, 1), shl(248, 0x3d)) }
}
return result;
}
function decode(string memory _data) internal pure returns (bytes memory) {
bytes memory data = bytes(_data);
if (data.length == 0) return new bytes(0);
require(data.length % 4 == 0, "invalid base64 decoder input");
// load the table into memory
bytes memory table = TABLE_DECODE;
// every 4 characters represent 3 bytes
uint256 decodedLen = (data.length / 4) * 3;
// add some extra buffer at the end required for the writing
bytes memory result = new bytes(decodedLen + 32);
assembly {
// padding with '='
let lastBytes := mload(add(data, mload(data)))
if eq(and(lastBytes, 0xFF), 0x3d) {
decodedLen := sub(decodedLen, 1)
if eq(and(lastBytes, 0xFFFF), 0x3d3d) {
decodedLen := sub(decodedLen, 1)
}
}
// set the actual output length
mstore(result, decodedLen)
// prepare the lookup table
let tablePtr := add(table, 1)
// input ptr
let dataPtr := data
let endPtr := add(dataPtr, mload(data))
// result ptr, jump over length
let resultPtr := add(result, 32)
// run over the input, 4 characters at a time
for {} lt(dataPtr, endPtr) {}
{
// read 4 characters
dataPtr := add(dataPtr, 4)
let input := mload(dataPtr)
// write 3 bytes
let output := add(
add(
shl(18, and(mload(add(tablePtr, and(shr(24, input), 0xFF))), 0xFF)),
shl(12, and(mload(add(tablePtr, and(shr(16, input), 0xFF))), 0xFF))),
add(
shl( 6, and(mload(add(tablePtr, and(shr( 8, input), 0xFF))), 0xFF)),
and(mload(add(tablePtr, and( input , 0xFF))), 0xFF)
)
)
mstore(resultPtr, shl(232, output))
resultPtr := add(resultPtr, 3)
}
}
return result;
}
}
<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}