ETH Price: $1,572.33 (+3.18%)

Contract Diff Checker

Contract Name:
RaBitDescriptorV3

Contract Source Code:

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT

/*********************************
*                                *
*            (\_/)               *
*                                *
 *********************************/

// rabits.xyz
// twitter.com/rabitsxyz

pragma solidity ^0.8.13;

import './base64.sol';
import "./IRaBitDescriptor.sol";
import "@openzeppelin/contracts/utils/Strings.sol";

contract RaBitDescriptorV3 is IRaBitDescriptor {
    struct Color {
        string value;
        string name;
    }
    struct Trait {
        string content;
        string name;
        Color color;
    }
    using Strings for uint256;

    string private constant SVG_END_TAG = '</svg>';

    function tokenURI(uint256 tokenId, uint256 seed) external pure override returns (string memory) {
        uint256[4] memory colors = [seed % 100000000000000 / 1000000000000, seed % 10000000000 / 100000000, seed % 1000000 / 10000, seed % 100];
        Trait memory head = getHead(seed / 100000000000000, colors[0]);
        Trait memory face = getFace(seed % 1000000000000 / 10000000000, colors[1]);
        Trait memory body = getBody(seed % 100000000 / 1000000, colors[2]);
        Trait memory feet = getFeet(seed % 10000 / 100, colors[3]);
        string memory colorCount = calculateColorCount(colors);

        string memory rawSvg = string(
            abi.encodePacked(
                '<svg width="320" height="320" viewBox="0 0 320 320" xmlns="http://www.w3.org/2000/svg">',
                '<rect width="100%" height="100%" fill="#2c2c2c"/>',
                '<text x="160" y="130" font-family="Courier,monospace" font-weight="700" font-size="20" text-anchor="middle" letter-spacing="1">',
                head.content,
                face.content,
                body.content,
                feet.content,
                '</text>',
                SVG_END_TAG
            )
        );

        string memory encodedSvg = Base64.encode(bytes(rawSvg));
        string memory description = 'RBT';

        return string(
            abi.encodePacked(
                'data:application/json;base64,',
                Base64.encode(
                    bytes(
                        abi.encodePacked(
                            '{',
                            '"name":"RaBit #', tokenId.toString(), '",',
                            '"description":"', description, '",',
                            '"image": "', 'data:image/svg+xml;base64,', encodedSvg, '",',
                            '"attributes": [{"trait_type": "Head", "value": "', head.name,' (',head.color.name,')', '"},',
                            '{"trait_type": "Face", "value": "', face.name,' (',face.color.name,')', '"},',
                            '{"trait_type": "Body", "value": "', body.name,' (',body.color.name,')', '"},',
                            '{"trait_type": "Feet", "value": "', feet.name,' (',feet.color.name,')', '"},',
                            '{"trait_type": "Colors", "value": ', colorCount, '}',
                            ']',
                            '}')
                    )
                )
            )
        );
    }

    function getColor(uint256 seed) private pure returns (Color memory) {
        if (seed == 10) {
            return Color("#ff5733", "Mango Orange");
        }
        if (seed == 11) {
            return Color("#7a8ccc", "Slate Blue");
        }
        if (seed == 12) {
            return Color("#ffebcd", "Blanched Almond");
        }
        if (seed == 13) {
            return Color("#03c6fc", "Electric Blue");
        }
        if (seed == 14) {
            return Color("#ff0080", "Fuchsia");
        }
        if (seed == 15) {
            return Color("#ffea00", "Yellow");
        }
        if (seed == 16) {
            return Color("#33cc33", "Forest Green");
        }
        if (seed == 17) {
            return Color("#ff6666", "Coral Pink");
        }
        if (seed == 18) {
            return Color("#00ffcc", "Turquoise");
        }
        if (seed == 19) {
            return Color("#ffb347", "Dark Salmon");
        }
        if (seed == 20) {
            return Color("#ff6b6b", "Indian Red");
        }
        if (seed == 21) {
            return Color("#bf00ff", "Purple");
        }
        if (seed == 22) {
            return Color("#ffa07a", "Light Salmon");
        }
        if (seed == 23) {
            return Color("#4d4dff", "Cornflower Blue");
        }
        if (seed == 24) {
            return Color("#ffcccc", "Cotton Candy");
        }
        if (seed == 25) {
            return Color("#7f00ff", "Electric Purple");
        }
        if (seed == 26) {
            return Color("#00e6e6", "Caribbean Green");
        }
        if (seed == 27) {
            return Color("#ffb6c1", "Light Pink");
        }
        if (seed == 28) {
            return Color("#666699", "Slate Gray");
        }
        if (seed == 29) {
            return Color("#00ccff", "Sky Blue");
        }

        return Color('','');
    }

    function getHead(uint256 seed, uint256 colorSeed) private pure returns (Trait memory) {
        Color memory color = getColor(colorSeed);
        string memory content;
        string memory name;
        if (seed == 10) {
            content = "/)_/)";
            name = "Slanted Curved";
        }
        if (seed == 11) {
            content = "//_//";
            name = "Slanted";
        }
        if (seed == 12) {
            content = "||_||";
            name = "Vertical";
        }
        if (seed == 13) {
            content = "()_()";
            name = "Rounded";
        }
        if (seed == 14) {
            content = "(\\_/)";
            name = "Outward Curved";
        }
        if (seed == 15) {
            content = "//_\\\\";
            name = "Inward Straight";
        }
        if (seed == 16) {
            content = "( Y )";
            name = "Wide";
        }

        return Trait(string(abi.encodePacked('<tspan fill="', color.value, '">', content, '</tspan>')), name, color);
    }

    function getFace(uint256 seed, uint256 colorSeed) private pure returns (Trait memory) {
        Color memory color = getColor(colorSeed);
        string memory content;
        string memory name;
        if (seed == 10) {
            content = "(`x`)";
            name = "Angry";
        }
        if (seed == 11) {
            content = "('x')";
            name = "Content";
        }
        if (seed == 12) {
            content = "('x-)";
            name = "Wink";
        }
        if (seed == 13) {
            content = "(`x')";
            name = "Suspicious";
        }
        if (seed == 14) {
            content = "(;.;)";
            name = "Crying";
        }
        if (seed == 15) {
            content = "(*.*)";
            name = "Starry-Eyed";
        }
        if (seed == 15) {
            content = "(^x^)";
            name = "Happy";
        }
        if (seed == 16) {
            content = "(-x-)";
            name = "Sleeping";
        }
        return Trait(string(abi.encodePacked('<tspan dy="20" x="160" fill="', color.value, '">', content, '</tspan>')), name, color);
    }

    function getBody(uint256 seed, uint256 colorSeed) private pure returns (Trait memory) {
        Color memory color = getColor(colorSeed);
        string memory content;
        string memory name;
        if (seed == 10) {
            content = "/ > &lt;3";
            name = "Love";
        }
        if (seed == 11) {
            content = "/ > $";
            name = "Money";
        }
        if (seed == 12) {
            content = "/ > o";
            name = "Cookie";
        }
        if (seed == 13) {
            content = "(\\+/)";
            name = "Priest";
        }
        if (seed == 14) {
            content = "{ :~}";
            name = "Shirt";
        }
        if (seed == 15) {
            content = "{\\:/}";
            name = "Suit";
        }
        if (seed == 16) {
            content = "{\\~/}";
            name = "Tux";
        }

        return Trait(string(abi.encodePacked('<tspan dy="25" x="160" fill="', color.value, '">', content, '</tspan>')), name, color);
    }

    function getFeet(uint256 seed, uint256 colorSeed) private pure returns (Trait memory) {
        Color memory color = getColor(colorSeed);
        string memory content;
        string memory name;
        uint256 y;
        if (seed == 10) {
            content = "(=)(=)";
            name = "Thick Paws";
            y = 25;
        }
        if (seed == 11) {
            content = "o(\")(\")";
            name = "Tail";
            y = 25;
        }
        if (seed == 12) {
            content = "c(\"\")(\"\")";
            name = "Big Paws Small Tail";
            y = 25;
        }
        if (seed == 13) {
            content = "(^)(^)";
            name = "Sharp Paws";
            y = 25;
        }
        if (seed == 14) {
            content = "o_U..U";
            name = "Small Paws Small Tail";
            y = 25;
        }
        if (seed == 15) {
            content = "UU";
            name = "Standing";
            y = 22;
        }

        return Trait(string(abi.encodePacked('<tspan dy="',y.toString(),'" x="160" fill="', color.value, '">', content, '</tspan>')), name, color);
    }

    function calculateColorCount(uint256[4] memory colors) private pure returns (string memory) {
        uint256 count;
        for (uint256 i = 0; i < 4; i++) {
            for (uint256 j = 0; j < 4; j++) {
                if (colors[i] == colors[j]) {
                    count++;
                }
            }
        }

        if (count == 4) {
            return '4';
        }
        if (count == 6) {
            return '3';
        }
        if (count == 8 || count == 10) {
            return '2';
        }
        if (count == 16) {
            return '1';
        }

        return '0';
    }
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT

/*********************************
*                                *
*            (\_/)               *
*                                *
 *********************************/

pragma solidity ^0.8.13;

interface IRaBitDescriptor {
    function tokenURI(uint256 tokenId, uint256 seed) external view returns (string memory);
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0;

/// @title Base64
/// @author Brecht Devos - <[email protected]>
/// @notice Provides functions for encoding/decoding base64
library Base64 {
    string internal constant TABLE_ENCODE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
    bytes  internal constant TABLE_DECODE = hex"0000000000000000000000000000000000000000000000000000000000000000"
    hex"00000000000000000000003e0000003f3435363738393a3b3c3d000000000000"
    hex"00000102030405060708090a0b0c0d0e0f101112131415161718190000000000"
    hex"001a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132330000000000";

    function encode(bytes memory data) internal pure returns (string memory) {
        if (data.length == 0) return '';

        // load the table into memory
        string memory table = TABLE_ENCODE;

        // multiply by 4/3 rounded up
        uint256 encodedLen = 4 * ((data.length + 2) / 3);

        // add some extra buffer at the end required for the writing
        string memory result = new string(encodedLen + 32);

        assembly {
        // set the actual output length
            mstore(result, encodedLen)

        // prepare the lookup table
            let tablePtr := add(table, 1)

        // input ptr
            let dataPtr := data
            let endPtr := add(dataPtr, mload(data))

        // result ptr, jump over length
            let resultPtr := add(result, 32)

        // run over the input, 3 bytes at a time
            for {} lt(dataPtr, endPtr) {}
            {
            // read 3 bytes
                dataPtr := add(dataPtr, 3)
                let input := mload(dataPtr)

            // write 4 characters
                mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                resultPtr := add(resultPtr, 1)
                mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                resultPtr := add(resultPtr, 1)
                mstore8(resultPtr, mload(add(tablePtr, and(shr( 6, input), 0x3F))))
                resultPtr := add(resultPtr, 1)
                mstore8(resultPtr, mload(add(tablePtr, and(        input,  0x3F))))
                resultPtr := add(resultPtr, 1)
            }

        // padding with '='
            switch mod(mload(data), 3)
            case 1 { mstore(sub(resultPtr, 2), shl(240, 0x3d3d)) }
            case 2 { mstore(sub(resultPtr, 1), shl(248, 0x3d)) }
        }

        return result;
    }

    function decode(string memory _data) internal pure returns (bytes memory) {
        bytes memory data = bytes(_data);

        if (data.length == 0) return new bytes(0);
        require(data.length % 4 == 0, "invalid base64 decoder input");

        // load the table into memory
        bytes memory table = TABLE_DECODE;

        // every 4 characters represent 3 bytes
        uint256 decodedLen = (data.length / 4) * 3;

        // add some extra buffer at the end required for the writing
        bytes memory result = new bytes(decodedLen + 32);

        assembly {
        // padding with '='
            let lastBytes := mload(add(data, mload(data)))
            if eq(and(lastBytes, 0xFF), 0x3d) {
                decodedLen := sub(decodedLen, 1)
                if eq(and(lastBytes, 0xFFFF), 0x3d3d) {
                    decodedLen := sub(decodedLen, 1)
                }
            }

        // set the actual output length
            mstore(result, decodedLen)

        // prepare the lookup table
            let tablePtr := add(table, 1)

        // input ptr
            let dataPtr := data
            let endPtr := add(dataPtr, mload(data))

        // result ptr, jump over length
            let resultPtr := add(result, 32)

        // run over the input, 4 characters at a time
            for {} lt(dataPtr, endPtr) {}
            {
            // read 4 characters
                dataPtr := add(dataPtr, 4)
                let input := mload(dataPtr)

            // write 3 bytes
                let output := add(
                add(
                shl(18, and(mload(add(tablePtr, and(shr(24, input), 0xFF))), 0xFF)),
                shl(12, and(mload(add(tablePtr, and(shr(16, input), 0xFF))), 0xFF))),
                add(
                shl( 6, and(mload(add(tablePtr, and(shr( 8, input), 0xFF))), 0xFF)),
                and(mload(add(tablePtr, and(        input , 0xFF))), 0xFF)
                )
                )
                mstore(resultPtr, shl(232, output))
                resultPtr := add(resultPtr, 3)
            }
        }

        return result;
    }
}

<i class='far fa-question-circle text-muted ms-2' data-bs-trigger='hover' data-bs-toggle='tooltip' data-bs-html='true' data-bs-title='Click on the check box to select individual contract to compare. Only 1 contract can be selected from each side.'></i>

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):