ETH Price: $3,136.54 (-5.39%)

Contract Diff Checker

Contract Name:
Dispatcher

Contract Source Code:

// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./interfaces/IERC20.sol";
import "./interfaces/IQueryEngine.sol";

import "./lib/SafeMath.sol";
import "./lib/SafeERC20.sol";
import "./lib/AccessControl.sol";
import "./lib/Trader.sol";

/**
 * @title Dispatcher
 * @dev Executes trades on behalf of suppliers and maintains bankroll to support supplier strategies
 */
contract Dispatcher is AccessControl, Trader {
    // Allows safe math operations on uint256 values
    using SafeMath for uint256;

    // Allows easy manipulation on bytes
    using BytesLib for bytes;

    // Use safe ERC20 interface to gracefully handle non-compliant tokens
    using SafeERC20 for IERC20;

    /// @notice Version number of Dispatcher
    uint8 public version;

    /// @notice Admin role to manage whitelisted LPs
    bytes32 public constant MANAGE_LP_ROLE = keccak256("MANAGE_LP_ROLE");

    /// @notice Addresses with this role are allowed to provide liquidity to this contract
    /// @dev If no addresses with this role exist, all addresses can provide liquidity
    bytes32 public constant WHITELISTED_LP_ROLE = keccak256("WHITELISTED_LP_ROLE");

    /// @notice Admin role to restrict approval of tokens on dispatcher
    bytes32 public constant APPROVER_ROLE = keccak256("APPROVER_ROLE");  

    /// @notice Admin role to restrict withdrawal of funds from contract
    bytes32 public constant WITHDRAW_ROLE = keccak256("WITHDRAW_ROLE");    

    /// @notice Maximum ETH liquidity allowed in Dispatcher
    uint256 public MAX_LIQUIDITY;

    /// @notice Total current liquidity provided to Dispatcher
    uint256 public totalLiquidity;

    /// @notice Mapping of lp address to liquidity provided
    mapping(address => uint256) public lpBalances;

    /// @notice modifier to restrict functions to only users that have been added as LP manager
    modifier onlyLPManager() {
        require(hasRole(MANAGE_LP_ROLE, msg.sender), "Caller must have MANAGE_LP role");
        _;
    }

    /// @notice modifier to restrict functions to only users that have been added as an approver
    modifier onlyApprover() {
        require(hasRole(APPROVER_ROLE, msg.sender), "Caller must have APPROVER role");
        _;
    }

    /// @notice modifier to restrict functions to only users that have been added as a withdrawer
    modifier onlyWithdrawer() {
        require(hasRole(WITHDRAW_ROLE, msg.sender), "Caller must have WITHDRAW role");
        _;
    }

    /// @notice modifier to restrict functions to only users that have been whitelisted as an LP
    modifier onlyWhitelistedLP() {
        if(getRoleMemberCount(WHITELISTED_LP_ROLE) > 0) {
            require(hasRole(WHITELISTED_LP_ROLE, msg.sender), "Caller must have WHITELISTED_LP role");
        }
        _;
    }

    /// @notice Max liquidity updated event
    event MaxLiquidityUpdated(address indexed asset, uint256 indexed newAmount, uint256 oldAmount);

    /// @notice Liquidity Provided event
    event LiquidityProvided(address indexed asset, address indexed provider, uint256 amount);

    /// @notice Liquidity removed event
    event LiquidityRemoved(address indexed asset, address indexed provider, uint256 amount);

    /// @notice Initializes contract, setting up initial contract permissions
    /// @param _version Version number of Dispatcher
    /// @param _queryEngine Address of query engine contract
    /// @param _roleManager Address allowed to manage contract roles
    /// @param _lpManager Address allowed to manage LP whitelist
    /// @param _withdrawer Address allowed to withdraw profit from contract
    /// @param _trader Address allowed to make trades via this contract
    /// @param _supplier Address allowed to send opportunities to this contract
    /// @param _initialMaxLiquidity Initial max liquidity allowed in contract
    /// @param _lpWhitelist List of addresses that are allowed to provide liquidity to this contract
    constructor(
        uint8 _version,
        address _queryEngine,
        address _roleManager,
        address _lpManager,
        address _withdrawer,
        address _trader,
        address _supplier,
        uint256 _initialMaxLiquidity,
        address[] memory _lpWhitelist
    ) {
        version = _version;
        queryEngine = IQueryEngine(_queryEngine);
        _setupRole(MANAGE_LP_ROLE, _lpManager);
        _setRoleAdmin(WHITELISTED_LP_ROLE, MANAGE_LP_ROLE);
        _setupRole(WITHDRAW_ROLE, _withdrawer);
        _setupRole(TRADER_ROLE, _trader);
        _setupRole(APPROVER_ROLE, _supplier);
        _setupRole(APPROVER_ROLE, _withdrawer);
        _setupRole(DEFAULT_ADMIN_ROLE, _roleManager);
        MAX_LIQUIDITY = _initialMaxLiquidity;
        for(uint i; i < _lpWhitelist.length; i++) {
            _setupRole(WHITELISTED_LP_ROLE, _lpWhitelist[i]);
        }
    }

    /// @notice Receive function to allow contract to accept ETH
    receive() external payable {}
    
    /// @notice Fallback function in case receive function is not matched
    fallback() external payable {}

    /// @notice Returns true if given address is on the list of approvers
    /// @param addressToCheck the address to check
    /// @return true if address is approver
    function isApprover(address addressToCheck) external view returns(bool) {
        return hasRole(APPROVER_ROLE, addressToCheck);
    }

    /// @notice Returns true if given address is on the list of approved withdrawers
    /// @param addressToCheck the address to check
    /// @return true if address is withdrawer
    function isWithdrawer(address addressToCheck) external view returns(bool) {
        return hasRole(WITHDRAW_ROLE, addressToCheck);
    }

    /// @notice Returns true if given address is on the list of LP managers
    /// @param addressToCheck the address to check
    /// @return true if address is LP manager
    function isLPManager(address addressToCheck) external view returns(bool) {
        return hasRole(MANAGE_LP_ROLE, addressToCheck);
    }

    /// @notice Returns true if given address is on the list of whitelisted LPs
    /// @param addressToCheck the address to check
    /// @return true if address is whitelisted
    function isWhitelistedLP(address addressToCheck) external view returns(bool) {
        return hasRole(WHITELISTED_LP_ROLE, addressToCheck);
    }

    /// @notice Set approvals for external addresses to use Dispatcher contract tokens
    /// @param tokensToApprove the tokens to approve
    /// @param spender the address to allow spending of token
    function tokenAllowAll(
        address[] memory tokensToApprove, 
        address spender
    ) external onlyApprover {
        for(uint i = 0; i < tokensToApprove.length; i++) {
            IERC20 token = IERC20(tokensToApprove[i]);
            if (token.allowance(address(this), spender) != uint256(-1)) {
                token.safeApprove(spender, uint256(-1));
            }
        }
    }

    /// @notice Set approvals for external addresses to use Dispatcher contract tokens
    /// @param tokensToApprove the tokens to approve
    /// @param approvalAmounts the token approval amounts
    /// @param spender the address to allow spending of token
    function tokenAllow(
        address[] memory tokensToApprove, 
        uint256[] memory approvalAmounts, 
        address spender
    ) external onlyApprover {
        require(tokensToApprove.length == approvalAmounts.length, "not same length");
        for(uint i = 0; i < tokensToApprove.length; i++) {
            IERC20 token = IERC20(tokensToApprove[i]);
            if (token.allowance(address(this), spender) != uint256(-1)) {
                token.safeApprove(spender, approvalAmounts[i]);
            }
        }
    }

    /// @notice Rescue (withdraw) tokens from the smart contract
    /// @param tokens the tokens to withdraw
    /// @param amount the amount of each token to withdraw.  If zero, withdraws the maximum allowed amount for each token
    function rescueTokens(address[] calldata tokens, uint256 amount) external onlyWithdrawer {
        for (uint i = 0; i < tokens.length; i++) {
            IERC20 token = IERC20(tokens[i]);
            uint256 withdrawalAmount;
            uint256 tokenBalance = token.balanceOf(address(this));
            uint256 tokenAllowance = token.allowance(address(this), msg.sender);
            if (amount == 0) {
                if (tokenBalance > tokenAllowance) {
                    withdrawalAmount = tokenAllowance;
                } else {
                    withdrawalAmount = tokenBalance;
                }
            } else {
                require(tokenBalance >= amount, "Contract balance too low");
                require(tokenAllowance >= amount, "Increase token allowance");
                withdrawalAmount = amount;
            }
            token.safeTransferFrom(address(this), msg.sender, withdrawalAmount);
        }
    }

    /// @notice Set max ETH liquidity to accept for this contract
    /// @param newMax new max ETH liquidity
    function setMaxETHLiquidity(uint256 newMax) external onlyLPManager {
        emit MaxLiquidityUpdated(address(0), newMax, MAX_LIQUIDITY);
        MAX_LIQUIDITY = newMax;
    }

    /// @notice Provide ETH liquidity to Dispatcher
    function provideETHLiquidity() external payable onlyWhitelistedLP {
        require(totalLiquidity.add(msg.value) <= MAX_LIQUIDITY, "amount exceeds max liquidity");
        totalLiquidity = totalLiquidity.add(msg.value);
        lpBalances[msg.sender] = lpBalances[msg.sender].add(msg.value);
        emit LiquidityProvided(address(0), msg.sender, msg.value);
    }

    /// @notice Remove ETH liquidity from Dispatcher
    /// @param amount amount of liquidity to remove
    function removeETHLiquidity(uint256 amount) external {
        require(lpBalances[msg.sender] >= amount, "amount exceeds liquidity provided");
        require(totalLiquidity.sub(amount) >= 0, "amount exceeds total liquidity");
        require(address(this).balance.sub(amount) >= 0, "amount exceeds contract balance");
        lpBalances[msg.sender] = lpBalances[msg.sender].sub(amount);
        totalLiquidity = totalLiquidity.sub(amount);
        (bool success, ) = msg.sender.call{value: amount}("");
        require(success, "Could not withdraw ETH");
        emit LiquidityRemoved(address(0), msg.sender, amount);
    }

    /// @notice Withdraw ETH from the smart contract
    /// @param amount the amount of ETH to withdraw.  If zero, withdraws the maximum allowed amount.
    function withdrawEth(uint256 amount) external onlyWithdrawer {
        uint256 withdrawalAmount;
        uint256 withdrawableBalance = address(this).balance.sub(totalLiquidity);
        if (amount == 0) {
            withdrawalAmount = withdrawableBalance;
        } else {
            require(withdrawableBalance >= amount, "amount exceeds withdrawable balance");
            withdrawalAmount = amount;
        }
        (bool success, ) = msg.sender.call{value: withdrawalAmount}("");
        require(success, "Could not withdraw ETH");
    }

    /// @notice A non-view function to help estimate the cost of a given query in practice
    /// @param script the compiled bytecode for the series of function calls to get the final price
    /// @param inputLocations index locations within the script to insert input amounts dynamically
    function estimateQueryCost(bytes memory script, uint256[] memory inputLocations) public {
        queryEngine.queryAllPrices(script, inputLocations);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;

interface IERC20 {
    function name() external view returns (string memory);
    function symbol() external view returns (string memory);
    function decimals() external view returns (uint8);
    function totalSupply() external view returns (uint256);
    function balanceOf(address account) external view returns (uint256);
    function transfer(address recipient, uint256 amount) external returns (bool);
    function allowance(address owner, address spender) external view returns (uint256);
    function approve(address spender, uint256 amount) external returns (bool);
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;

interface IQueryEngine {
    function getPrice(address contractAddress, bytes memory data) external view returns (bytes memory);
    function queryAllPrices(bytes memory script, uint256[] memory inputLocations) external view returns (bytes memory);
    function query(bytes memory script, uint256[] memory inputLocations) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;

// From https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/Math.sol
// Subject to the MIT license.

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting with custom message on overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, errorMessage);

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on underflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot underflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction underflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on underflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot underflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, errorMessage);

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers.
     * Reverts on division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers.
     * Reverts with custom message on division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        // Solidity only automatically asserts when dividing by 0
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;

import "../interfaces/IERC20.sol";
import "./SafeMath.sol";
import "./Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using SafeMath for uint256;
    using Address for address;

    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        // solhint-disable-next-line max-line-length
        require((value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).add(value);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) { // Return data is optional
            // solhint-disable-next-line max-line-length
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "./EnumerableSet.sol";
import "./Address.sol";
import "./Context.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it.
 */
abstract contract AccessControl is Context {
    using EnumerableSet for EnumerableSet.AddressSet;
    using Address for address;

    struct RoleData {
        EnumerableSet.AddressSet members;
        bytes32 adminRole;
    }

    mapping (bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view returns (bool) {
        return _roles[role].members.contains(account);
    }

    /**
     * @dev Returns the number of accounts that have `role`. Can be used
     * together with {getRoleMember} to enumerate all bearers of a role.
     */
    function getRoleMemberCount(bytes32 role) public view returns (uint256) {
        return _roles[role].members.length();
    }

    /**
     * @dev Returns one of the accounts that have `role`. `index` must be a
     * value between 0 and {getRoleMemberCount}, non-inclusive.
     *
     * Role bearers are not sorted in any particular way, and their ordering may
     * change at any point.
     *
     * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
     * you perform all queries on the same block. See the following
     * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
     * for more information.
     */
    function getRoleMember(bytes32 role, uint256 index) public view returns (address) {
        return _roles[role].members.at(index);
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) public virtual {
        require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant");

        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) public virtual {
        require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke");

        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) public virtual {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        emit RoleAdminChanged(role, _roles[role].adminRole, adminRole);
        _roles[role].adminRole = adminRole;
    }

    function _grantRole(bytes32 role, address account) private {
        if (_roles[role].members.add(account)) {
            emit RoleGranted(role, account, _msgSender());
        }
    }

    function _revokeRole(bytes32 role, address account) private {
        if (_roles[role].members.remove(account)) {
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;

import "../interfaces/IQueryEngine.sol";

import "./BytesLib.sol";
import "./CalldataEditor.sol";
import "./AccessControl.sol";
import "./ReentrancyGuard.sol";

abstract contract Trader is ReentrancyGuard, AccessControl, CalldataEditor {
    using BytesLib for bytes;

    /// @notice Query contract
    IQueryEngine public queryEngine;

    /// @notice Trader role to restrict functions to set list of approved traders
    bytes32 public constant TRADER_ROLE = keccak256("TRADER_ROLE");

    /// @notice modifier to restrict functions to only users that have been added as a trader
    modifier onlyTrader() {
        require(hasRole(TRADER_ROLE, msg.sender), "Trader must have TRADER role");
        _;
    }

    /// @notice All trades must be profitable
    modifier mustBeProfitable(uint256 ethRequested) {
        uint256 contractBalanceBefore = address(this).balance;
        require(contractBalanceBefore >= ethRequested, "Not enough ETH in contract");
        _;
        require(address(this).balance >= contractBalanceBefore, "missing ETH");
    }

    /// @notice Trades must not be expired
    modifier notExpired(uint256 deadlineBlock) {
        require(deadlineBlock >= block.number, "trade expired");
        _;
    }

    /// @notice Trades must be executed within time window
    modifier onTime(uint256 minTimestamp, uint256 maxTimestamp) {
        require(maxTimestamp >= block.timestamp, "trade too late");
        require(minTimestamp <= block.timestamp, "trade too early");
        _;
    }

    /// @notice Returns true if given address is on the list of approved traders
    /// @param addressToCheck the address to check
    /// @return true if address is trader
    function isTrader(address addressToCheck) external view returns (bool) {
        return hasRole(TRADER_ROLE, addressToCheck);
    }

    /// @notice Makes a series of trades as single transaction if profitable without query
    /// @param executeScript the compiled bytecode for the series of function calls to execute the trade
    /// @param ethValue the amount of ETH to send with initial contract call
    function makeTrade(
        bytes memory executeScript,
        uint256 ethValue
    ) public onlyTrader nonReentrant mustBeProfitable(ethValue) {
        execute(executeScript, ethValue);
    }

    /// @notice Makes a series of trades as single transaction if profitable without query + block deadline
    /// @param executeScript the compiled bytecode for the series of function calls to execute the trade
    /// @param ethValue the amount of ETH to send with initial contract call
    /// @param blockDeadline block number when trade expires
    function makeTrade(
        bytes memory executeScript,
        uint256 ethValue,
        uint256 blockDeadline
    ) public onlyTrader nonReentrant notExpired(blockDeadline) mustBeProfitable(ethValue) {
        execute(executeScript, ethValue);
    }

    /// @notice Makes a series of trades as single transaction if profitable without query + within time window specified
    /// @param executeScript the compiled bytecode for the series of function calls to execute the trade
    /// @param ethValue the amount of ETH to send with initial contract call
    /// @param minTimestamp minimum block timestamp to execute trade
    /// @param maxTimestamp maximum timestamp to execute trade
    function makeTrade(
        bytes memory executeScript,
        uint256 ethValue,
        uint256 minTimestamp,
        uint256 maxTimestamp
    ) public onlyTrader nonReentrant onTime(minTimestamp, maxTimestamp) mustBeProfitable(ethValue) {
        execute(executeScript, ethValue);
    }

    /// @notice Makes a series of trades as single transaction if profitable
    /// @param queryScript the compiled bytecode for the series of function calls to get the final price
    /// @param queryInputLocations index locations within the queryScript to insert input amounts dynamically
    /// @param executeScript the compiled bytecode for the series of function calls to execute the trade
    /// @param executeInputLocations index locations within the executeScript to insert input amounts dynamically
    /// @param targetPrice profit target for this trade, if ETH>ETH, this should be ethValue + gas estimate * gas price
    /// @param ethValue the amount of ETH to send with initial contract call
    function makeTrade(
        bytes memory queryScript,
        uint256[] memory queryInputLocations,
        bytes memory executeScript,
        uint256[] memory executeInputLocations,
        uint256 targetPrice,
        uint256 ethValue
    ) public onlyTrader nonReentrant mustBeProfitable(ethValue) {
        bytes memory prices = queryEngine.queryAllPrices(queryScript, queryInputLocations);
        require(prices.toUint256(prices.length - 32) >= targetPrice, "Not profitable");
        for(uint i = 0; i < executeInputLocations.length; i++) {
            replaceDataAt(executeScript, prices.slice(i*32, 32), executeInputLocations[i]);
        }
        execute(executeScript, ethValue);
    }

    /// @notice Makes a series of trades as single transaction if profitable + block deadline
    /// @param queryScript the compiled bytecode for the series of function calls to get the final price
    /// @param queryInputLocations index locations within the queryScript to insert input amounts dynamically
    /// @param executeScript the compiled bytecode for the series of function calls to execute the trade
    /// @param executeInputLocations index locations within the executeScript to insert input amounts dynamically
    /// @param targetPrice profit target for this trade, if ETH>ETH, this should be ethValue + gas estimate * gas price
    /// @param ethValue the amount of ETH to send with initial contract call
    /// @param blockDeadline block number when trade expires
    function makeTrade(
        bytes memory queryScript,
        uint256[] memory queryInputLocations,
        bytes memory executeScript,
        uint256[] memory executeInputLocations,
        uint256 targetPrice,
        uint256 ethValue,
        uint256 blockDeadline
    ) public onlyTrader nonReentrant notExpired(blockDeadline) mustBeProfitable(ethValue) {
        bytes memory prices = queryEngine.queryAllPrices(queryScript, queryInputLocations);
        require(prices.toUint256(prices.length - 32) >= targetPrice, "Not profitable");
        for(uint i = 0; i < executeInputLocations.length; i++) {
            replaceDataAt(executeScript, prices.slice(i*32, 32), executeInputLocations[i]);
        }
        execute(executeScript, ethValue);
    }

    /// @notice Makes a series of trades as single transaction if profitable + within time window specified
    /// @param queryScript the compiled bytecode for the series of function calls to get the final price
    /// @param queryInputLocations index locations within the queryScript to insert input amounts dynamically
    /// @param executeScript the compiled bytecode for the series of function calls to execute the trade
    /// @param executeInputLocations index locations within the executeScript to insert input amounts dynamically
    /// @param targetPrice profit target for this trade, if ETH>ETH, this should be ethValue + gas estimate * gas price
    /// @param ethValue the amount of ETH to send with initial contract call
    /// @param minTimestamp minimum block timestamp to execute trade
    /// @param maxTimestamp maximum timestamp to execute trade
    function makeTrade(
        bytes memory queryScript,
        uint256[] memory queryInputLocations,
        bytes memory executeScript,
        uint256[] memory executeInputLocations,
        uint256 targetPrice,
        uint256 ethValue,
        uint256 minTimestamp,
        uint256 maxTimestamp
    ) public onlyTrader nonReentrant onTime(minTimestamp, maxTimestamp) mustBeProfitable(ethValue) {
        bytes memory prices = queryEngine.queryAllPrices(queryScript, queryInputLocations);
        require(prices.toUint256(prices.length - 32) >= targetPrice, "Not profitable");
        for(uint i = 0; i < executeInputLocations.length; i++) {
            replaceDataAt(executeScript, prices.slice(i*32, 32), executeInputLocations[i]);
        }
        execute(executeScript, ethValue);
    }

    /// @notice Executes series of function calls as single transaction
    /// @param script the compiled bytecode for the series of function calls to invoke
    /// @param ethValue the amount of ETH to send with initial contract call
    function execute(bytes memory script, uint256 ethValue) internal {
        // sequentially call contract methods
        uint256 location = 0;
        while (location < script.length) {
            address contractAddress = addressAt(script, location);
            uint256 calldataLength = uint256At(script, location + 0x14);
            uint256 calldataStart = location + 0x14 + 0x20;
            bytes memory callData = script.slice(calldataStart, calldataLength);
            if(location == 0) {
                callMethod(contractAddress, callData, ethValue);
            }
            else {
                callMethod(contractAddress, callData, 0);
            }
            location += (0x14 + 0x20 + calldataLength);
        }
    }

    /// @notice Calls the supplied calldata using the supplied contract address
    /// @param contractToCall the contract to call
    /// @param data the call data to execute
    /// @param ethValue the amount of ETH to send with initial contract call
    function callMethod(address contractToCall, bytes memory data, uint256 ethValue) internal {
        bool success;
        bytes memory returnData;
        address payable contractAddress = payable(contractToCall);
        if(ethValue > 0) {
            (success, returnData) = contractAddress.call{value: ethValue}(data);
        } else {
            (success, returnData) = contractAddress.call(data);
        }
        if (!success) {
            string memory revertMsg = getRevertMsg(returnData);
            revert(revertMsg);
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.2 <0.8.0;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        // solhint-disable-next-line no-inline-assembly
        assembly { size := extcodesize(account) }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: value }(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.staticcall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.3._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.3._
     */
    function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;

        // Position of the value in the `values` array, plus 1 because index 0
        // means a value is not in the set.
        mapping (bytes32 => uint256) _indexes;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We read and store the value's index to prevent multiple reads from the same storage slot
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) { // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = valueIndex - 1;
            uint256 lastIndex = set._values.length - 1;

            // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
            // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.

            bytes32 lastvalue = set._values[lastIndex];

            // Move the last value to the index where the value to delete is
            set._values[toDeleteIndex] = lastvalue;
            // Update the index for the moved value
            set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the index for the deleted slot
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._indexes[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

   /**
    * @dev Returns the value stored at position `index` in the set. O(1).
    *
    * Note that there are no guarantees on the ordering of values inside the
    * array, and it may change when more values are added or removed.
    *
    * Requirements:
    *
    * - `index` must be strictly less than {length}.
    */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        require(set._values.length > index, "EnumerableSet: index out of bounds");
        return set._values[index];
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

   /**
    * @dev Returns the value stored at position `index` in the set. O(1).
    *
    * Note that there are no guarantees on the ordering of values inside the
    * array, and it may change when more values are added or removed.
    *
    * Requirements:
    *
    * - `index` must be strictly less than {length}.
    */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(value)));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(value)));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(value)));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

   /**
    * @dev Returns the value stored at position `index` in the set. O(1).
    *
    * Note that there are no guarantees on the ordering of values inside the
    * array, and it may change when more values are added or removed.
    *
    * Requirements:
    *
    * - `index` must be strictly less than {length}.
    */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint256(_at(set._inner, index)));
    }


    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

   /**
    * @dev Returns the value stored at position `index` in the set. O(1).
    *
    * Note that there are no guarantees on the ordering of values inside the
    * array, and it may change when more values are added or removed.
    *
    * Requirements:
    *
    * - `index` must be strictly less than {length}.
    */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}

// SPDX-License-Identifier: Unlicense
/*
 * @title Solidity Bytes Arrays Utils
 * @author Gonçalo Sá <[email protected]>
 *
 * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
 *      The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
 */
pragma solidity ^0.7.0;

library BytesLib {
    function concat(
        bytes memory _preBytes,
        bytes memory _postBytes
    )
        internal
        pure
        returns (bytes memory)
    {
        bytes memory tempBytes;

        assembly {
            // Get a location of some free memory and store it in tempBytes as
            // Solidity does for memory variables.
            tempBytes := mload(0x40)

            // Store the length of the first bytes array at the beginning of
            // the memory for tempBytes.
            let length := mload(_preBytes)
            mstore(tempBytes, length)

            // Maintain a memory counter for the current write location in the
            // temp bytes array by adding the 32 bytes for the array length to
            // the starting location.
            let mc := add(tempBytes, 0x20)
            // Stop copying when the memory counter reaches the length of the
            // first bytes array.
            let end := add(mc, length)

            for {
                // Initialize a copy counter to the start of the _preBytes data,
                // 32 bytes into its memory.
                let cc := add(_preBytes, 0x20)
            } lt(mc, end) {
                // Increase both counters by 32 bytes each iteration.
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                // Write the _preBytes data into the tempBytes memory 32 bytes
                // at a time.
                mstore(mc, mload(cc))
            }

            // Add the length of _postBytes to the current length of tempBytes
            // and store it as the new length in the first 32 bytes of the
            // tempBytes memory.
            length := mload(_postBytes)
            mstore(tempBytes, add(length, mload(tempBytes)))

            // Move the memory counter back from a multiple of 0x20 to the
            // actual end of the _preBytes data.
            mc := end
            // Stop copying when the memory counter reaches the new combined
            // length of the arrays.
            end := add(mc, length)

            for {
                let cc := add(_postBytes, 0x20)
            } lt(mc, end) {
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                mstore(mc, mload(cc))
            }

            // Update the free-memory pointer by padding our last write location
            // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
            // next 32 byte block, then round down to the nearest multiple of
            // 32. If the sum of the length of the two arrays is zero then add
            // one before rounding down to leave a blank 32 bytes (the length block with 0).
            mstore(0x40, and(
              add(add(end, iszero(add(length, mload(_preBytes)))), 31),
              not(31) // Round down to the nearest 32 bytes.
            ))
        }

        return tempBytes;
    }

    function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
        assembly {
            // Read the first 32 bytes of _preBytes storage, which is the length
            // of the array. (We don't need to use the offset into the slot
            // because arrays use the entire slot.)
            let fslot := sload(_preBytes.slot)
            // Arrays of 31 bytes or less have an even value in their slot,
            // while longer arrays have an odd value. The actual length is
            // the slot divided by two for odd values, and the lowest order
            // byte divided by two for even values.
            // If the slot is even, bitwise and the slot with 255 and divide by
            // two to get the length. If the slot is odd, bitwise and the slot
            // with -1 and divide by two.
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)
            let newlength := add(slength, mlength)
            // slength can contain both the length and contents of the array
            // if length < 32 bytes so let's prepare for that
            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
            switch add(lt(slength, 32), lt(newlength, 32))
            case 2 {
                // Since the new array still fits in the slot, we just need to
                // update the contents of the slot.
                // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                sstore(
                    _preBytes.slot,
                    // all the modifications to the slot are inside this
                    // next block
                    add(
                        // we can just add to the slot contents because the
                        // bytes we want to change are the LSBs
                        fslot,
                        add(
                            mul(
                                div(
                                    // load the bytes from memory
                                    mload(add(_postBytes, 0x20)),
                                    // zero all bytes to the right
                                    exp(0x100, sub(32, mlength))
                                ),
                                // and now shift left the number of bytes to
                                // leave space for the length in the slot
                                exp(0x100, sub(32, newlength))
                            ),
                            // increase length by the double of the memory
                            // bytes length
                            mul(mlength, 2)
                        )
                    )
                )
            }
            case 1 {
                // The stored value fits in the slot, but the combined value
                // will exceed it.
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // The contents of the _postBytes array start 32 bytes into
                // the structure. Our first read should obtain the `submod`
                // bytes that can fit into the unused space in the last word
                // of the stored array. To get this, we read 32 bytes starting
                // from `submod`, so the data we read overlaps with the array
                // contents by `submod` bytes. Masking the lowest-order
                // `submod` bytes allows us to add that value directly to the
                // stored value.

                let submod := sub(32, slength)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(
                    sc,
                    add(
                        and(
                            fslot,
                            0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00
                        ),
                        and(mload(mc), mask)
                    )
                )

                for {
                    mc := add(mc, 0x20)
                    sc := add(sc, 1)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
            default {
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                // Start copying to the last used word of the stored array.
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // Copy over the first `submod` bytes of the new data as in
                // case 1 above.
                let slengthmod := mod(slength, 32)
                let mlengthmod := mod(mlength, 32)
                let submod := sub(32, slengthmod)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(sc, add(sload(sc), and(mload(mc), mask)))

                for {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
        }
    }

    function slice(
        bytes memory _bytes,
        uint256 _start,
        uint256 _length
    )
        internal
        pure
        returns (bytes memory)
    {
        require(_bytes.length >= (_start + _length), "Read out of bounds");

        bytes memory tempBytes;

        assembly {
            switch iszero(_length)
            case 0 {
                // Get a location of some free memory and store it in tempBytes as
                // Solidity does for memory variables.
                tempBytes := mload(0x40)

                // The first word of the slice result is potentially a partial
                // word read from the original array. To read it, we calculate
                // the length of that partial word and start copying that many
                // bytes into the array. The first word we copy will start with
                // data we don't care about, but the last `lengthmod` bytes will
                // land at the beginning of the contents of the new array. When
                // we're done copying, we overwrite the full first word with
                // the actual length of the slice.
                let lengthmod := and(_length, 31)

                // The multiplication in the next line is necessary
                // because when slicing multiples of 32 bytes (lengthmod == 0)
                // the following copy loop was copying the origin's length
                // and then ending prematurely not copying everything it should.
                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                let end := add(mc, _length)

                for {
                    // The multiplication in the next line has the same exact purpose
                    // as the one above.
                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    mstore(mc, mload(cc))
                }

                mstore(tempBytes, _length)

                //update free-memory pointer
                //allocating the array padded to 32 bytes like the compiler does now
                mstore(0x40, and(add(mc, 31), not(31)))
            }
            //if we want a zero-length slice let's just return a zero-length array
            default {
                tempBytes := mload(0x40)

                mstore(0x40, add(tempBytes, 0x20))
            }
        }

        return tempBytes;
    }

    function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
        require(_bytes.length >= (_start + 20), "Read out of bounds");
        address tempAddress;

        assembly {
            tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
        }

        return tempAddress;
    }

    function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
        require(_bytes.length >= (_start + 1), "Read out of bounds");
        uint8 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x1), _start))
        }

        return tempUint;
    }

    function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
        require(_bytes.length >= (_start + 2), "Read out of bounds");
        uint16 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x2), _start))
        }

        return tempUint;
    }

    function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
        require(_bytes.length >= (_start + 4), "Read out of bounds");
        uint32 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x4), _start))
        }

        return tempUint;
    }

    function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
        require(_bytes.length >= (_start + 8), "Read out of bounds");
        uint64 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x8), _start))
        }

        return tempUint;
    }

    function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
        require(_bytes.length >= (_start + 12), "Read out of bounds");
        uint96 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0xc), _start))
        }

        return tempUint;
    }

    function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
        require(_bytes.length >= (_start + 16), "Read out of bounds");
        uint128 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x10), _start))
        }

        return tempUint;
    }

    function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
        require(_bytes.length >= (_start + 32), "Read out of bounds");
        uint256 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x20), _start))
        }

        return tempUint;
    }

    function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
        require(_bytes.length >= (_start + 32), "Read out of bounds");
        bytes32 tempBytes32;

        assembly {
            tempBytes32 := mload(add(add(_bytes, 0x20), _start))
        }

        return tempBytes32;
    }

    function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
        bool success = true;

        assembly {
            let length := mload(_preBytes)

            // if lengths don't match the arrays are not equal
            switch eq(length, mload(_postBytes))
            case 1 {
                // cb is a circuit breaker in the for loop since there's
                //  no said feature for inline assembly loops
                // cb = 1 - don't breaker
                // cb = 0 - break
                let cb := 1

                let mc := add(_preBytes, 0x20)
                let end := add(mc, length)

                for {
                    let cc := add(_postBytes, 0x20)
                // the next line is the loop condition:
                // while(uint256(mc < end) + cb == 2)
                } eq(add(lt(mc, end), cb), 2) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    // if any of these checks fails then arrays are not equal
                    if iszero(eq(mload(mc), mload(cc))) {
                        // unsuccess:
                        success := 0
                        cb := 0
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }

    function equalStorage(
        bytes storage _preBytes,
        bytes memory _postBytes
    )
        internal
        view
        returns (bool)
    {
        bool success = true;

        assembly {
            // we know _preBytes_offset is 0
            let fslot := sload(_preBytes.slot)
            // Decode the length of the stored array like in concatStorage().
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)

            // if lengths don't match the arrays are not equal
            switch eq(slength, mlength)
            case 1 {
                // slength can contain both the length and contents of the array
                // if length < 32 bytes so let's prepare for that
                // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                if iszero(iszero(slength)) {
                    switch lt(slength, 32)
                    case 1 {
                        // blank the last byte which is the length
                        fslot := mul(div(fslot, 0x100), 0x100)

                        if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                            // unsuccess:
                            success := 0
                        }
                    }
                    default {
                        // cb is a circuit breaker in the for loop since there's
                        //  no said feature for inline assembly loops
                        // cb = 1 - don't breaker
                        // cb = 0 - break
                        let cb := 1

                        // get the keccak hash to get the contents of the array
                        mstore(0x0, _preBytes.slot)
                        let sc := keccak256(0x0, 0x20)

                        let mc := add(_postBytes, 0x20)
                        let end := add(mc, mlength)

                        // the next line is the loop condition:
                        // while(uint256(mc < end) + cb == 2)
                        for {} eq(add(lt(mc, end), cb), 2) {
                            sc := add(sc, 1)
                            mc := add(mc, 0x20)
                        } {
                            if iszero(eq(sload(sc), mload(mc))) {
                                // unsuccess:
                                success := 0
                                cb := 0
                            }
                        }
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;

import "./BytesLib.sol";

abstract contract CalldataEditor {
    using BytesLib for bytes;

    /// @notice Returns uint from chunk of the bytecode
    /// @param data the compiled bytecode for the series of function calls
    /// @param location the current 'cursor' location within the bytecode
    /// @return result uint
    function uint256At(bytes memory data, uint256 location) pure internal returns (uint256 result) {
        assembly {
            result := mload(add(data, add(0x20, location)))
        }
    }

    /// @notice Returns address from chunk of the bytecode
    /// @param data the compiled bytecode for the series of function calls
    /// @param location the current 'cursor' location within the bytecode
    /// @return result address
    function addressAt(bytes memory data, uint256 location) pure internal returns (address result) {
        uint256 word = uint256At(data, location);
        assembly {
            result := div(and(word, 0xffffffffffffffffffffffffffffffffffffffff000000000000000000000000),
                          0x1000000000000000000000000)
        }
    }

    /// @notice Returns the start of the calldata within a chunk of the bytecode
    /// @param data the compiled bytecode for the series of function calls
    /// @param location the current 'cursor' location within the bytecode
    /// @return result pointer to start of calldata
    function locationOf(bytes memory data, uint256 location) pure internal returns (uint256 result) {
        assembly {
            result := add(data, add(0x20, location))
        }
    }
    
    /// @notice Replace the bytes at the index location in original with new bytes
    /// @param original original bytes
    /// @param newBytes new bytes to replace in original
    /// @param location the index within the original bytes where to make the replacement
    function replaceDataAt(bytes memory original, bytes memory newBytes, uint256 location) pure internal {
        assembly {
            mstore(add(add(original, location), 0x20), mload(add(newBytes, 0x20)))
        }
    }

    /// @dev Get the revert message from a call
    /// @notice This is needed in order to get the human-readable revert message from a call
    /// @param res Response of the call
    /// @return Revert message string
    function getRevertMsg(bytes memory res) internal pure returns (string memory) {
        // If the res length is less than 68, then the transaction failed silently (without a revert message)
        if (res.length < 68) return 'Call failed for unknown reason';
        bytes memory revertData = res.slice(4, res.length - 4); // Remove the selector which is the first 4 bytes
        return abi.decode(revertData, (string)); // All that remains is the revert string
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor () {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):