Contract Name:
CosmicBloom
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;
// ERC721A from Chiru Labs
import 'erc721a/contracts/extensions/ERC721ABurnable.sol';
import 'erc721a/contracts/extensions/ERC721AQueryable.sol';
// ClosedSea by Vectorized
import 'closedsea/src/OperatorFilterer.sol';
// OZ Libraries
import '@openzeppelin/contracts/access/Ownable.sol';
/**
* @title ERC721A_NFTCExtended
* @author @NFTCulture
* @dev ERC721A plus NFTC-preferred extensions and add-ons.
*
* Using implementation and approach created by Vectorized for OperatorFilterer.
* See: https://github.com/Vectorized/closedsea/blob/main/src/example/ExampleERC721A.sol
*
* @notice Be sure to add the following to your impl constructor:
* >> _registerForOperatorFiltering();
* >> operatorFilteringEnabled = true;
*/
abstract contract ERC721A_NFTCExtended is ERC721ABurnable, ERC721AQueryable, OperatorFilterer, Ownable {
bool public operatorFilteringEnabled;
function setApprovalForAll(address operator, bool approved) public override onlyAllowedOperatorApproval(operator) {
super.setApprovalForAll(operator, approved);
}
function approve(address operator, uint256 tokenId) public payable override onlyAllowedOperatorApproval(operator) {
super.approve(operator, tokenId);
}
function transferFrom(address from, address to, uint256 tokenId) public payable override onlyAllowedOperator(from) {
super.transferFrom(from, to, tokenId);
}
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public payable override onlyAllowedOperator(from) {
super.safeTransferFrom(from, to, tokenId);
}
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory data
) public payable override onlyAllowedOperator(from) {
super.safeTransferFrom(from, to, tokenId, data);
}
/**
* Failsafe in case we need to turn operator filtering off.
*/
function setOperatorFilteringEnabled(bool value) external onlyOwner {
operatorFilteringEnabled = value;
}
/**
* Failsafe in case we need to change what subscription we are using, for whatever reason.
*/
function registerForOperatorFiltering(address subscription, bool subscribe) external onlyOwner {
_registerForOperatorFiltering(subscription, subscribe);
}
/**
* Can be called after manually invoking 'unregister' on the registry using this contract's
* address and the contract owner's wallet to execute the transaction.
*
* If called repeatedly, will do nothing.
*/
function repeatRegistration() external {
_registerForOperatorFiltering();
}
function _operatorFilteringEnabled() internal view virtual override returns (bool) {
return operatorFilteringEnabled;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;
// NFTC Open Source Libraries See: https://github.com/NFTCulture/nftc-open-contracts
import {BooleanPacking} from '@nftculture/nftc-open-contracts/contracts/utility/BooleanPacking.sol';
// OZ Libraries
import '@openzeppelin/contracts/access/Ownable.sol';
/**
* @title PhasedMintBase
* @author @NiftyMike, NFT Culture
* @dev PhasedMint: An approach to a standard system of controlling mint phases.
*/
abstract contract PhasedMintBase is Ownable {
using BooleanPacking for uint256;
// BooleanPacking used on _mintControlFlags
uint256 internal _mintControlFlags;
uint256 private immutable PUBLIC_MINT_PHASE;
uint256 public publicMintPricePerNft;
modifier isPublicMinting() {
require(_mintControlFlags.getBoolean(PUBLIC_MINT_PHASE), 'Minting stopped');
_;
}
constructor(uint256 publicMintPhase, uint256 __publicMintPricePerNft) {
PUBLIC_MINT_PHASE = publicMintPhase;
publicMintPricePerNft = __publicMintPricePerNft;
}
function _setMintingState(bool __publicMintingActive, uint256 __publicMintPricePerNft)
internal
returns (uint256)
{
uint256 tempControlFlags;
tempControlFlags = tempControlFlags.setBoolean(PUBLIC_MINT_PHASE, __publicMintingActive);
if (__publicMintPricePerNft > 0) {
publicMintPricePerNft = __publicMintPricePerNft;
}
return tempControlFlags;
}
function isPublicMintingActive() external view returns (bool) {
return _isPublicMintingActive();
}
function _isPublicMintingActive() internal view returns (bool) {
return _mintControlFlags.getBoolean(PUBLIC_MINT_PHASE);
}
function supportedPhases() external view returns (uint256) {
return PUBLIC_MINT_PHASE;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;
// OZ Libraries
import '@openzeppelin/contracts/access/Ownable.sol';
import './PhasedMintBase.sol';
/**
* @title PhasedMintThree
* @author @NiftyMike, NFT Culture
* @dev PhasedMint: An approach to a standard system of controlling mint phases.
*
* This is the "Three" phase mint flavor of the PhasedMint approach.
*
* Note: Since the last phase is always assumed to be the public mint phase, we only
* need to define the first and second phases here.
*/
contract PhasedMintThree is Ownable, PhasedMintBase {
using BooleanPacking for uint256;
uint256 private constant PHASE_ONE = 1;
uint256 private constant PHASE_TWO = 2;
uint256 public phaseOnePricePerNft;
uint256 public phaseTwoPricePerNft;
modifier isPhaseOne() {
require(_mintControlFlags.getBoolean(PHASE_ONE), 'Phase one stopped');
_;
}
modifier isPhaseTwo() {
require(_mintControlFlags.getBoolean(PHASE_TWO), 'Phase two stopped');
_;
}
constructor(
uint256 __phaseOnePricePerNft,
uint256 __phaseTwoPricePerNft,
uint256 __publicMintPricePerNft
) PhasedMintBase(3, __publicMintPricePerNft) {
phaseOnePricePerNft = __phaseOnePricePerNft;
phaseTwoPricePerNft = __phaseTwoPricePerNft;
}
function setMintingState(
bool __phaseOneActive,
bool __phaseTwoActive,
bool __publicMintingActive,
uint256 __phaseOnePricePerNft,
uint256 __phaseTwoPricePerNft,
uint256 __publicMintPricePerNft
) external onlyOwner {
uint256 tempControlFlags = _setMintingState(__publicMintingActive, __publicMintPricePerNft);
tempControlFlags = tempControlFlags.setBoolean(PHASE_ONE, __phaseOneActive);
tempControlFlags = tempControlFlags.setBoolean(PHASE_TWO, __phaseTwoActive);
_mintControlFlags = tempControlFlags;
if (__phaseOnePricePerNft > 0) {
phaseOnePricePerNft = __phaseOnePricePerNft;
}
if (__phaseTwoPricePerNft > 0) {
phaseTwoPricePerNft = __phaseTwoPricePerNft;
}
}
function isPhaseOneActive() external view returns (bool) {
return _isPhaseOneActive();
}
function _isPhaseOneActive() internal view returns (bool) {
return _mintControlFlags.getBoolean(PHASE_ONE);
}
function isPhaseTwoActive() external view returns (bool) {
return _isPhaseTwoActive();
}
function _isPhaseTwoActive() internal view returns (bool) {
return _mintControlFlags.getBoolean(PHASE_TWO);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;
// NFTC Open Source Contracts See: https://github.com/NFTCulture/nftc-open-contracts
import '@nftculture/nftc-open-contracts/contracts/utility/AuxHelper32.sol';
// NFTC Prerelease Contracts
import '@nftculture/nftc-contract-library/contracts/whitelisting/MerkleLeaves.sol';
// NFTC Prerelease Libraries
import {MerkleClaimList} from '@nftculture/nftc-contract-library/contracts/whitelisting/MerkleClaimList.sol';
error IndexedProofInvalid_PhaseOne();
/**
* @title PhaseOneIsIndexed
* @author @NiftyMike, NFT Culture
* @dev Indexed Merkle Tree mint functionality for Phase One of a mint.
*/
abstract contract PhaseOneIsIndexed is MerkleLeaves, AuxHelper32 {
using MerkleClaimList for MerkleClaimList.Root;
MerkleClaimList.Root private _phaseOneRoot;
constructor() {}
/**
* @dev Set the root of this merkle tree.
*/
function _setPhaseOneRoot(bytes32 __root) internal {
_phaseOneRoot._setRoot(__root);
}
function checkProof_PhaseOne(
bytes32[] calldata proof,
address wallet,
uint256 index
) external view returns (bool) {
return _phaseOneRoot._checkLeaf(proof, _generateIndexedLeaf(wallet, index));
}
function getNextEntryIndex_PhaseOne(address wallet) external view returns (uint256) {
(uint32 phaseOnePurchases, ) = _unpack32(_getPackedPurchasesAs64(wallet));
return phaseOnePurchases;
}
function getTokensPurchased_PhaseOne(address wallet) external view returns (uint32) {
(uint32 phaseOnePurchases, ) = _unpack32(_getPackedPurchasesAs64(wallet));
return phaseOnePurchases;
}
function _getPackedPurchasesAs64(address wallet) internal view virtual returns (uint64);
function _proofMintTokens_PhaseOne(
address claimant,
bytes32[] calldata proof,
uint256 newBalance,
uint256 count,
address destination
) internal {
// Verify proof matches expected target total number of indexed mints.
if (!_phaseOneRoot._checkLeaf(proof, _generateIndexedLeaf(claimant, newBalance - 1))) {
//Zero-based index.
revert IndexedProofInvalid_PhaseOne();
}
_internalMintTokens(destination, count);
}
function _proofMintTokensOfFlavor_PhaseOne(
address claimant,
bytes32[] calldata proof,
uint256 newBalance,
uint256 count,
uint256 flavorId,
address destination
) internal {
// Verify proof matches expected target total number of indexed mints.
if (!_phaseOneRoot._checkLeaf(proof, _generateIndexedLeaf(claimant, newBalance - 1))) {
//Zero-based index.
revert IndexedProofInvalid_PhaseOne();
}
_internalMintTokens(destination, count, flavorId);
}
function _internalMintTokens(address destination, uint256 count) internal virtual;
function _internalMintTokens(
address destination,
uint256 count,
uint256 flavorId
) internal virtual;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;
// NFTC Open Source Contracts See: https://github.com/NFTCulture/nftc-open-contracts
import '@nftculture/nftc-open-contracts/contracts/utility/AuxHelper32.sol';
// NFTC Prerelease Contracts
import '@nftculture/nftc-contract-library/contracts/whitelisting/MerkleLeaves.sol';
// NFTC Prerelease Libraries
import {MerkleClaimList} from '@nftculture/nftc-contract-library/contracts/whitelisting/MerkleClaimList.sol';
error IndexedProofInvalid_PhaseTwo();
/**
* @title PhaseTwoIsIndexed
* @author @NiftyMike, NFT Culture
* @dev Indexed Merkle Tree mint functionality for Phase Two of a mint.
*/
abstract contract PhaseTwoIsIndexed is MerkleLeaves, AuxHelper32 {
using MerkleClaimList for MerkleClaimList.Root;
MerkleClaimList.Root private _phaseTwoRoot;
constructor() {}
function _setPhaseTwoRoot(bytes32 __root) internal {
_phaseTwoRoot._setRoot(__root);
}
function checkProof_PhaseTwo(
bytes32[] calldata proof,
address wallet,
uint256 index
) external view returns (bool) {
return _phaseTwoRoot._checkLeaf(proof, _generateIndexedLeaf(wallet, index));
}
function getNextEntryIndex_PhaseTwo(address wallet) external view returns (uint256) {
(, uint32 phaseTwoPurchases) = _unpack32(_getPackedPurchasesAs64(wallet));
return phaseTwoPurchases;
}
function getTokensPurchased_PhaseTwo(address wallet) external view returns (uint32) {
(, uint32 phaseTwoPurchases) = _unpack32(_getPackedPurchasesAs64(wallet));
return phaseTwoPurchases;
}
function _getPackedPurchasesAs64(address wallet) internal view virtual returns (uint64);
function _proofMintTokens_PhaseTwo(
address claimant,
bytes32[] calldata proof,
uint256 newBalance,
uint256 count,
address destination
) internal {
// Verify proof matches expected target total number of indexed mints.
if (!_phaseTwoRoot._checkLeaf(proof, _generateIndexedLeaf(claimant, newBalance - 1))) {
//Zero-based index.
revert IndexedProofInvalid_PhaseTwo();
}
_internalMintTokens(destination, count);
}
function _proofMintTokensOfFlavor_PhaseTwo(
address claimant,
bytes32[] calldata proof,
uint256 newBalance,
uint256 count,
uint256 flavorId,
address destination
) internal {
// Verify proof matches expected target total number of indexed mints.
if (!_phaseTwoRoot._checkLeaf(proof, _generateIndexedLeaf(claimant, newBalance - 1))) {
//Zero-based index.
revert IndexedProofInvalid_PhaseTwo();
}
_internalMintTokens(destination, count, flavorId);
}
function _internalMintTokens(address destination, uint256 count) internal virtual;
function _internalMintTokens(
address destination,
uint256 count,
uint256 flavorId
) internal virtual;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;
import '@openzeppelin/contracts/utils/Context.sol';
/**
* @title PrivilegedMinter
* @author @NiftyMike | @NFTCulture
* @dev Control functions for supporting a privileged minter that mints to other, typically custodial wallets.
*/
abstract contract PrivilegedMinter is Context {
address internal _privilegedMinter;
modifier onlyPrivilegedMinter() {
require(_privilegedMinter == _msgSender(), 'DM: caller is not delegate');
_;
}
constructor(address __defaultPrivilegedMinter) {
_privilegedMinter = __defaultPrivilegedMinter;
}
function _setPrivilegedMinter(address __newPrivilegedMinter) internal virtual {
_privilegedMinter = __newPrivilegedMinter;
}
function getPrivilegedMinter() external view returns (address) {
return _privilegedMinter;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;
import {MerkleRoot} from './MerkleRoot.sol';
/**
* @title MerkleClaimList
* @author @NiftyMike, NFT Culture
* @dev Basic functionality for a MerkleTree that will be used as a "Claimlist"
*
* "Claimlist" - an approach for validating callers that is backed by a Merkle Tree.
* Cheap to set the master claim, not that expensive to check the claim. Requires
* off-chain generation of the Merkle Tree.
*
* This library allows you to declare a member variable like:
* MerkleClaimList.Root private _claimRoot;
*
* The benefit of packaging this as a library, is that if you need multiple merkle trees in your
* contract, you can declare multiple member variables using this library, and use them in similar fashion.
*
* see also: NFTC Labs' MerkleLeaves.sol, which is a companion abstract contract which contains helper
* methods for generating leaves for the Merkle Tree.
*/
library MerkleClaimList {
using MerkleRoot for bytes32;
struct Root {
// This variable should never be directly accessed by users of the library. See OZ comments in other libraries for more info.
bytes32 _root;
}
/**
* @dev Validate that a leaf is part of this merkle tree.
*/
function _checkLeaf(
Root storage root,
bytes32[] calldata proof,
bytes32 leaf
) internal view returns (bool) {
return root._root.check(proof, leaf);
}
/**
* @dev Set the root of this merkle tree.
*/
function _setRoot(Root storage root, bytes32 __root) internal {
root._root = __root;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;
/**
* @title MerkleLeaves
* @author @NiftyMike, NFT Culture
* @dev Merkle Leaves for Merkle Trees - This is a companion contract to NFTC Labs' MerkleClaimList.sol library.
* It provides leaf generation functions for both indexed and non-indexed merkle trees.
* It also provides wrapper methods to expose the leaf generation functions to off-chain callers.
*
* Off-chain access is useful, because both the contract and the caller need to be able to generate the
* leaves in a perfectly identical manner, so the generators are exposed to make it easier.
*/
abstract contract MerkleLeaves {
/**
* @notice External: generate a leaf for a wallet.
*
* @param wallet Address to hash.
*/
function getLeafFor(address wallet) external pure returns (bytes32) {
return _generateLeaf(wallet);
}
/**
* @notice External: generate a leaf for a wallet and an embedded index value.
*
* @param wallet Address to hash.
* @param index integer index to assign the leaf.
*/
function getIndexedLeafFor(address wallet, uint256 index)
external
pure
returns (bytes32)
{
return _generateIndexedLeaf(wallet, index);
}
/**
* @dev Generate a merkle leaf based only on a wallet address. This is useful when all users
* represented in the tree are eligible for the exact same thing, such as one free mint.
*
* A tiered system can be supported by this approach, by making seperate merkle trees and
* mint functions per tier, but that approach will become ungainly if you have to support more
* than a few tiers.
*/
function _generateLeaf(address wallet) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(wallet));
}
/**
* @dev Generate a merkle leaf based on a wallet address and an index. This is useful when all
* users represented in the tree are eligible for different amounts of something.
*/
function _generateIndexedLeaf(address wallet, uint256 index)
internal
pure
returns (bytes32)
{
return keccak256(abi.encodePacked(wallet, "_", index));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;
import {MerkleProof} from '@openzeppelin/contracts/utils/cryptography/MerkleProof.sol';
/**
* @title MerkleRoot
* @author @NiftyMike, NFT Culture
* @dev Companion library to OpenZeppelin's MerkleProof.
* Allows you to abstract away merkle functionality a bit further, you now just need to
* worry about dealing with your merkle root.
*
* Using this library allows you to treat bytes32 member variables as Merkle Roots, with a
* slightly easier to use api then the OZ library.
*/
library MerkleRoot {
using MerkleProof for bytes32[];
function check(
bytes32 root,
bytes32[] calldata proof,
bytes32 leaf
) internal pure returns (bool) {
return proof.verify(root, leaf);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;
import "./SlimPaymentSplitter.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
/**
* @title LockedPaymentSplitter
* @author @NiftyMike, NFT Culture
* @dev A wrapper around SlimPaymentSplitter which adds on security elements.
*
* Based on OpenZeppelin Contracts v4.4.1 (finance/PaymentSplitter.sol)
*/
abstract contract LockedPaymentSplitter is SlimPaymentSplitter, Ownable {
/**
* @dev Overrides release() method, so that it can only be called by owner.
* @notice Owner: Release funds to a specific address.
*
* @param account Payable address that will receive funds.
*/
function release(address payable account) public override onlyOwner {
super.release(account);
}
/**
* @dev Triggers a transfer to caller's address of the amount of Ether they are owed, according to their percentage of the
* total shares and their previous withdrawals.
* @notice Sender: request payment.
*/
function releaseToSelf() public {
super.release(payable(msg.sender));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;
import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/utils/Context.sol";
/**
* @title SlimPaymentSplitter
* @author @NiftyMike, NFT Culture
* @dev A drop-in slim replacement version of OZ's Payment Splitter. All ERC-20 token functionality removed.
*
* Based on OpenZeppelin Contracts v4.4.1 (finance/PaymentSplitter.sol)
*/
contract SlimPaymentSplitter is Context {
event PayeeAdded(address account, uint256 shares);
event PaymentReleased(address to, uint256 amount);
event PaymentReceived(address from, uint256 amount);
event PayeeTransferred(address oldOwner, address newOwner);
uint256 private _totalShares;
uint256 private _totalReleased;
mapping(address => uint256) private _shares;
mapping(address => uint256) private _released;
address[] private _payees;
/**
* @dev Creates an instance of `PaymentSplitter` where each account in `payees` is assigned the number of shares at
* the matching position in the `shares` array.
*
* All addresses in `payees` must be non-zero. Both arrays must have the same non-zero length, and there must be no
* duplicates in `payees`.
*/
constructor(address[] memory payees, uint256[] memory shares_) payable {
require(
payees.length == shares_.length,
"PaymentSplitter: payees and shares length mismatch"
);
require(payees.length > 0, "PaymentSplitter: no payees");
for (uint256 i = 0; i < payees.length; i++) {
_addPayee(payees[i], shares_[i]);
}
}
/**
* @dev The Ether received will be logged with {PaymentReceived} events. Note that these events are not fully
* reliable: it's possible for a contract to receive Ether without triggering this function. This only affects the
* reliability of the events, and not the actual splitting of Ether.
*
* To learn more about this see the Solidity documentation for
* https://solidity.readthedocs.io/en/latest/contracts.html#fallback-function[fallback
* functions].
*/
receive() external payable virtual {
emit PaymentReceived(_msgSender(), msg.value);
}
/**
* @dev Getter for the total shares held by payees.
*/
function totalShares() public view returns (uint256) {
return _totalShares;
}
/**
* @dev Getter for the total amount of Ether already released.
*/
function totalReleased() public view returns (uint256) {
return _totalReleased;
}
/**
* @dev Getter for the amount of shares held by an account.
*/
function shares(address account) public view returns (uint256) {
return _shares[account];
}
/**
* @dev Getter for the amount of Ether already released to a payee.
*/
function released(address account) public view returns (uint256) {
return _released[account];
}
/**
* @dev Getter for the address of the payee number `index`.
*/
function payee(uint256 index) public view returns (address) {
return _payees[index];
}
/**
* @dev Triggers a transfer to `account` of the amount of Ether they are owed, according to their percentage of the
* total shares and their previous withdrawals.
*/
function release(address payable account) public virtual {
require(_shares[account] > 0, "PaymentSplitter: account has no shares");
uint256 totalReceived = address(this).balance + totalReleased();
uint256 payment = _pendingPayment(
account,
totalReceived,
released(account)
);
require(payment != 0, "PaymentSplitter: account is not due payment");
_released[account] += payment;
_totalReleased += payment;
Address.sendValue(account, payment);
emit PaymentReleased(account, payment);
}
/**
* @dev internal logic for computing the pending payment of an `account` given the token historical balances and
* already released amounts.
*/
function _pendingPayment(
address account,
uint256 totalReceived,
uint256 alreadyReleased
) private view returns (uint256) {
return
(totalReceived * _shares[account]) / _totalShares - alreadyReleased;
}
/**
* @dev Add a new payee to the contract.
* @param account The address of the payee to add.
* @param shares_ The number of shares owned by the payee.
*/
function _addPayee(address account, uint256 shares_) private {
require(
account != address(0),
"PaymentSplitter: account is the zero address"
);
require(shares_ > 0, "PaymentSplitter: shares are 0");
require(
_shares[account] == 0,
"PaymentSplitter: account already has shares"
);
_payees.push(account);
_shares[account] = shares_;
_totalShares = _totalShares + shares_;
emit PayeeAdded(account, shares_);
}
/**
* @dev Allows owner to transfer their shares to somebody else; it can only be called by of a share.
* @notice Owner: Release funds to a specific address.
*
* @param newOwner Payable address which has no shares and will receive the shares of the current owner.
*/
function transferPayee(address payable newOwner) public {
require(newOwner != address(0), "PaymentSplitter: New payee is the zero address.");
require(_shares[msg.sender] > 0, "PaymentSplitter: You have no shares.");
require(
_shares[newOwner] == 0, // why not _shares[newOwner] ??
"PaymentSplitter: New payee already has shares."
);
_transferPayee(newOwner);
emit PayeeTransferred(msg.sender, newOwner);
}
function _transferPayee(address newOwner) private {
if (_payees.length == 0) return;
for (uint i = 0; i < _payees.length - 1; i++) {
if (_payees[i] == msg.sender) {
_payees[i] = newOwner;
_shares[newOwner] = _shares[msg.sender];
_shares[msg.sender] = 0;
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;
/**
* @title AuxHelper32
* @author @NiftyMike | NFT Culture
* @dev Helper class for ERC721a Aux storage, using 32 bit ints.
*/
abstract contract AuxHelper32 {
function _pack32(uint32 left32, uint32 right32) internal pure returns (uint64) {
return (uint64(left32) << 32) | uint32(right32);
}
function _unpack32(uint64 aux) internal pure returns (uint32 left32, uint32 right32) {
return (uint32(aux >> 32), uint32(aux));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;
/**
* @title BooleanPacking
* @author @NiftyMike, NFT Culture
* @dev Credit to Zimri Leijen
* See https://ethereum.stackexchange.com/a/92235
*/
library BooleanPacking {
function getBoolean(uint256 _packedBools, uint256 _columnNumber)
internal
pure
returns (bool)
{
uint256 flag = (_packedBools >> _columnNumber) & uint256(1);
return (flag == 1 ? true : false);
}
function setBoolean(
uint256 _packedBools,
uint256 _columnNumber,
bool _value
) internal pure returns (uint256) {
if (_value) {
_packedBools = _packedBools | (uint256(1) << _columnNumber);
return _packedBools;
} else {
_packedBools = _packedBools & ~(uint256(1) << _columnNumber);
return _packedBools;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol)
pragma solidity ^0.8.0;
import "../utils/introspection/IERC165.sol";
/**
* @dev Interface for the NFT Royalty Standard.
*
* A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
* support for royalty payments across all NFT marketplaces and ecosystem participants.
*
* _Available since v4.5._
*/
interface IERC2981 is IERC165 {
/**
* @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
* exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
*/
function royaltyInfo(uint256 tokenId, uint256 salePrice)
external
view
returns (address receiver, uint256 royaltyAmount);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/common/ERC2981.sol)
pragma solidity ^0.8.0;
import "../../interfaces/IERC2981.sol";
import "../../utils/introspection/ERC165.sol";
/**
* @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information.
*
* Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for
* specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first.
*
* Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the
* fee is specified in basis points by default.
*
* IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See
* https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the EIP. Marketplaces are expected to
* voluntarily pay royalties together with sales, but note that this standard is not yet widely supported.
*
* _Available since v4.5._
*/
abstract contract ERC2981 is IERC2981, ERC165 {
struct RoyaltyInfo {
address receiver;
uint96 royaltyFraction;
}
RoyaltyInfo private _defaultRoyaltyInfo;
mapping(uint256 => RoyaltyInfo) private _tokenRoyaltyInfo;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @inheritdoc IERC2981
*/
function royaltyInfo(uint256 _tokenId, uint256 _salePrice) public view virtual override returns (address, uint256) {
RoyaltyInfo memory royalty = _tokenRoyaltyInfo[_tokenId];
if (royalty.receiver == address(0)) {
royalty = _defaultRoyaltyInfo;
}
uint256 royaltyAmount = (_salePrice * royalty.royaltyFraction) / _feeDenominator();
return (royalty.receiver, royaltyAmount);
}
/**
* @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a
* fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an
* override.
*/
function _feeDenominator() internal pure virtual returns (uint96) {
return 10000;
}
/**
* @dev Sets the royalty information that all ids in this contract will default to.
*
* Requirements:
*
* - `receiver` cannot be the zero address.
* - `feeNumerator` cannot be greater than the fee denominator.
*/
function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual {
require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
require(receiver != address(0), "ERC2981: invalid receiver");
_defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator);
}
/**
* @dev Removes default royalty information.
*/
function _deleteDefaultRoyalty() internal virtual {
delete _defaultRoyaltyInfo;
}
/**
* @dev Sets the royalty information for a specific token id, overriding the global default.
*
* Requirements:
*
* - `receiver` cannot be the zero address.
* - `feeNumerator` cannot be greater than the fee denominator.
*/
function _setTokenRoyalty(
uint256 tokenId,
address receiver,
uint96 feeNumerator
) internal virtual {
require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
require(receiver != address(0), "ERC2981: Invalid parameters");
_tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator);
}
/**
* @dev Resets royalty information for the token id back to the global default.
*/
function _resetTokenRoyalty(uint256 tokenId) internal virtual {
delete _tokenRoyaltyInfo[tokenId];
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Optimized and flexible operator filterer to abide to OpenSea's
/// mandatory on-chain royalty enforcement in order for new collections to
/// receive royalties.
/// For more information, see:
/// See: https://github.com/ProjectOpenSea/operator-filter-registry
abstract contract OperatorFilterer {
/// @dev The default OpenSea operator blocklist subscription.
address internal constant _DEFAULT_SUBSCRIPTION = 0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6;
/// @dev The OpenSea operator filter registry.
address internal constant _OPERATOR_FILTER_REGISTRY = 0x000000000000AAeB6D7670E522A718067333cd4E;
/// @dev Registers the current contract to OpenSea's operator filter,
/// and subscribe to the default OpenSea operator blocklist.
/// Note: Will not revert nor update existing settings for repeated registration.
function _registerForOperatorFiltering() internal virtual {
_registerForOperatorFiltering(_DEFAULT_SUBSCRIPTION, true);
}
/// @dev Registers the current contract to OpenSea's operator filter.
/// Note: Will not revert nor update existing settings for repeated registration.
function _registerForOperatorFiltering(address subscriptionOrRegistrantToCopy, bool subscribe)
internal
virtual
{
/// @solidity memory-safe-assembly
assembly {
let functionSelector := 0x7d3e3dbe // `registerAndSubscribe(address,address)`.
// Clean the upper 96 bits of `subscriptionOrRegistrantToCopy` in case they are dirty.
subscriptionOrRegistrantToCopy := shr(96, shl(96, subscriptionOrRegistrantToCopy))
// prettier-ignore
for {} iszero(subscribe) {} {
if iszero(subscriptionOrRegistrantToCopy) {
functionSelector := 0x4420e486 // `register(address)`.
break
}
functionSelector := 0xa0af2903 // `registerAndCopyEntries(address,address)`.
break
}
// Store the function selector.
mstore(0x00, shl(224, functionSelector))
// Store the `address(this)`.
mstore(0x04, address())
// Store the `subscriptionOrRegistrantToCopy`.
mstore(0x24, subscriptionOrRegistrantToCopy)
// Register into the registry.
pop(call(gas(), _OPERATOR_FILTER_REGISTRY, 0, 0x00, 0x44, 0x00, 0x00))
// Restore the part of the free memory pointer that was overwritten,
// which is guaranteed to be zero, because of Solidity's memory size limits.
mstore(0x24, 0)
}
}
/// @dev Modifier to guard a function and revert if the caller is a blocked operator.
modifier onlyAllowedOperator(address from) virtual {
if (from != msg.sender) {
if (!_isPriorityOperator(msg.sender)) {
if (_operatorFilteringEnabled()) _revertIfBlocked(msg.sender);
}
}
_;
}
/// @dev Modifier to guard a function from approving a blocked operator..
modifier onlyAllowedOperatorApproval(address operator) virtual {
if (!_isPriorityOperator(operator)) {
if (_operatorFilteringEnabled()) _revertIfBlocked(operator);
}
_;
}
/// @dev Helper function that reverts if the `operator` is blocked by the registry.
function _revertIfBlocked(address operator) private view {
/// @solidity memory-safe-assembly
assembly {
// Store the function selector of `isOperatorAllowed(address,address)`,
// shifted left by 6 bytes, which is enough for 8tb of memory.
// We waste 6-3 = 3 bytes to save on 6 runtime gas (PUSH1 0x224 SHL).
mstore(0x00, 0xc6171134001122334455)
// Store the `address(this)`.
mstore(0x1a, address())
// Store the `operator`.
mstore(0x3a, operator)
// `isOperatorAllowed` always returns true if it does not revert.
if iszero(staticcall(gas(), _OPERATOR_FILTER_REGISTRY, 0x16, 0x44, 0x00, 0x00)) {
// Bubble up the revert if the staticcall reverts.
returndatacopy(0x00, 0x00, returndatasize())
revert(0x00, returndatasize())
}
// We'll skip checking if `from` is inside the blacklist.
// Even though that can block transferring out of wrapper contracts,
// we don't want tokens to be stuck.
// Restore the part of the free memory pointer that was overwritten,
// which is guaranteed to be zero, if less than 8tb of memory is used.
mstore(0x3a, 0)
}
}
/// @dev For deriving contracts to override, so that operator filtering
/// can be turned on / off.
/// Returns true by default.
function _operatorFilteringEnabled() internal view virtual returns (bool) {
return true;
}
/// @dev For deriving contracts to override, so that preferred marketplaces can
/// skip operator filtering, helping users save gas.
/// Returns false for all inputs by default.
function _isPriorityOperator(address) internal view virtual returns (bool) {
return false;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;
import './CosmicBloomBase.sol';
import './CosmicBloomSplitsAndRoyalties.sol';
/**
* @title CosmicBloom
* _______ ,-----. .-'''-. ,---. ,---..-./`) _______
* / __ \ .' .-, '. / _ \| \ / |\ .-.') / __ \
* | ,_/ \__) / ,-.| \ _ \ (`' )/`--'| , \/ , |/ `-' \ | ,_/ \__)
* ,-./ ) ; \ '_ / | :(_ o _). | |\_ /| | `-'`"`,-./ )
* \ '_ '`) | _`,/ \ _/ | (_,_). '. | _( )_/ | | .---. \ '_ '`)
* > (_) ) __: ( '\_/ \ ;.---. \ :| (_ o _) | | | | > (_) ) __
* ( . .-'_/ )\ `"/ \ ) / \ `-' || (_,_) | | | | ( . .-'_/ )
* `-'`-' / '. \_/``".' \ / | | | | | | `-'`-' /
* `._____.' '-----' `-...-' '--' '--' '---' `._____.'
* _______ .---. ,-----. ,-----. ,---. ,---.
* \ ____ \ | ,_| .' .-, '. .' .-, '. | \ / |
* | | \ | ,-./ ) / ,-.| \ _ \ / ,-.| \ _ \ | , \/ , |
* | |____/ / \ '_ '`) ; \ '_ / | :; \ '_ / | :| |\_ /| |
* | _ _ '. > (_) ) | _`,/ \ _/ || _`,/ \ _/ || _( )_/ | |
* | ( ' ) \( . .-' : ( '\_/ \ ;: ( '\_/ \ ;| (_ o _) | |
* | (_{;}_) | `-'`-'|___\ `"/ \ ) / \ `"/ \ ) / | (_,_) | |
* | (_,_) / | \'. \_/``".' '. \_/``".' | | | |
* /_______.' `--------` '-----' '-----' '--' '--'
*/
contract CosmicBloom is CosmicBloomSplitsAndRoyalties, CosmicBloomBase {
constructor()
CosmicBloomBase(
'CosmicBloom',
'CSBL',
'https://api.dr3amlabs.xyz/api/v1/cosmic-bloom/metadata/', // Instant Reveal Service
addresses,
splits,
0.8 ether,
0.8 ether,
0.8 ether
)
{
// Implementation version: v1.0.0
}
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721A, ERC2981) returns (bool) {
return ERC721A.supportsInterface(interfaceId) || ERC2981.supportsInterface(interfaceId);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.11;
// NFTC Open Source Contracts See: https://github.com/NFTCulture/nftc-open-contracts
import '@nftculture/nftc-open-contracts/contracts/financial/LockedPaymentSplitter.sol';
// NFTC Prerelease Contracts
import '@nftculture/nftc-contract-library/contracts/token/PrivilegedMinter.sol';
import '@nftculture/nftc-contract-library/contracts/token/ERC721A_NFTCExtended.sol';
import '@nftculture/nftc-contract-library/contracts/token/phased/PhasedMintThree.sol';
import '@nftculture/nftc-contract-library/contracts/token/phased/PhaseOneIsIndexed.sol';
import '@nftculture/nftc-contract-library/contracts/token/phased/PhaseTwoIsIndexed.sol';
// OZ Libraries
import '@openzeppelin/contracts/security/ReentrancyGuard.sol';
import '@openzeppelin/contracts/utils/Strings.sol';
import './CosmicBloomDelegateEnforcer.sol';
// Error Codes
error ExceedsBatchSize();
error ExceedsPurchaseLimit();
error ExceedsSupplyCap();
error InvalidPayment();
/**
* @title CosmicBloomBase
* @author @NiftyMike | @NFTCulture
* @dev ERC721a Implementation with @NFTCulture standardized components.
*
* OperatorFilterer support via ClosedSea (by Vectorized).
*
* "MintTokensFor" methods are compatible with Delegate.cash (use at your own risk).
*/
abstract contract CosmicBloomBase is
ERC721A_NFTCExtended,
ReentrancyGuard,
LockedPaymentSplitter,
PhasedMintThree,
PhaseOneIsIndexed,
PhaseTwoIsIndexed,
PrivilegedMinter,
CosmicBloomDelegateEnforcer
{
using Strings for uint256;
uint256 private constant MAX_RESERVE_BATCH_SIZE = 100;
uint256 private constant PHASE_ONE_BATCH_SIZE = 25;
uint256 private constant PHASE_ONE_PURCHASE_LIMIT = 1300;
uint256 private constant PHASE_ONE_SUPPLY_CAP = 1300; // Unrestricted, since controlled by Merkletree
uint256 private constant PHASE_TWO_BATCH_SIZE = 25;
uint256 private constant PHASE_TWO_PURCHASE_LIMIT = 1132;
uint256 private constant PHASE_TWO_SUPPLY_CAP = 1132; // Lower cap to allow space for studio/team/Leo mints
uint256 private constant PUBLIC_MINT_BATCH_SIZE = 25;
uint256 private constant PUBLIC_MINT_PURCHASE_LIMIT = 1300;
uint256 private constant PUBLIC_MINT_SUPPLY_CAP = 1300;
string public baseURI;
constructor(
string memory __name,
string memory __symbol,
string memory __baseURI,
address[] memory __addresses,
uint256[] memory __splits,
uint256 __phaseOnePricePerNft,
uint256 __phaseTwoPricePerNft,
uint256 __phaseThreePricePerNft
)
ERC721A(__name, __symbol)
SlimPaymentSplitter(__addresses, __splits)
PhasedMintThree(__phaseOnePricePerNft, __phaseTwoPricePerNft, __phaseThreePricePerNft)
PrivilegedMinter(msg.sender)
{
baseURI = __baseURI;
_registerForOperatorFiltering();
operatorFilteringEnabled = true;
}
function nftcContractDefinition() external pure returns (string memory) {
// NFTC Contract Definition for front-end websites.
return
string(
abi.encodePacked('{', '"ncdVersion":1,', '"phases":3,', '"type":"Static",', '"openEdition":false', '}')
);
}
function maxSupply() external pure returns (uint256) {
return PUBLIC_MINT_SUPPLY_CAP;
}
function exists(uint256 tokenId) external view returns (bool) {
return _exists(tokenId);
}
function phaseOneBatchSize() external pure returns (uint256) {
return PHASE_ONE_BATCH_SIZE;
}
function phaseTwoBatchSize() external pure returns (uint256) {
return PHASE_TWO_BATCH_SIZE;
}
function publicMintBatchSize() external pure returns (uint256) {
return PUBLIC_MINT_BATCH_SIZE;
}
function setBaseURI(string memory __baseUri) external onlyOwner {
baseURI = __baseUri;
}
function _baseURI() internal view virtual override returns (string memory) {
return baseURI;
}
function _tokenFilename(uint256 tokenId) internal pure virtual returns (string memory) {
return tokenId.toString();
}
function setPrivilegedMinter(address __newPrivilegedMinter) external onlyOwner {
_setPrivilegedMinter(__newPrivilegedMinter);
}
function setMerkleRoots(bytes32 __indexedRootPhaseOne, bytes32 __indexedRootPhaseTwo) external onlyOwner {
_setMerkleRoots(__indexedRootPhaseOne, __indexedRootPhaseTwo);
}
function _setMerkleRoots(bytes32 __phaseOneRoot, bytes32 __phaseTwoRoot) internal {
if (__phaseOneRoot != 0) {
_setPhaseOneRoot(__phaseOneRoot);
}
if (__phaseTwoRoot != 0) {
_setPhaseTwoRoot(__phaseTwoRoot);
}
}
function _getPackedPurchasesAs64(
address wallet
) internal view virtual override(PhaseOneIsIndexed, PhaseTwoIsIndexed) returns (uint64) {
return _getAux(wallet);
}
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
require(_exists(tokenId), 'No token');
string memory base = _baseURI();
require(bytes(base).length > 0, 'Base unset');
return string(abi.encodePacked(base, _tokenFilename(tokenId)));
}
/**
* @notice Owner: reserve tokens for team.
*
* @param friends addresses to send tokens to.
* @param count the number of tokens to mint.
*/
function reserveTokens(address[] memory friends, uint256 count) external payable onlyOwner {
if (0 >= count || count > MAX_RESERVE_BATCH_SIZE) revert ExceedsBatchSize();
if (_totalMinted() + (friends.length * count) > PUBLIC_MINT_SUPPLY_CAP) revert ExceedsSupplyCap();
uint256 idx;
for (idx = 0; idx < friends.length; idx++) {
_internalMintTokens(friends[idx], count);
}
}
/**
* @notice Mint tokens - purchase bound by terms & conditions of project.
*
* @param count the number of tokens to mint.
*/
function publicMintTokens(uint256 count) external payable nonReentrant isPublicMinting {
if (0 >= count || count > PUBLIC_MINT_BATCH_SIZE) revert ExceedsBatchSize();
if (msg.value != publicMintPricePerNft * count) revert InvalidPayment();
if (_totalMinted() + count > PUBLIC_MINT_SUPPLY_CAP) revert ExceedsSupplyCap();
_internalMintTokens(msg.sender, count);
}
/**
* @notice Same as publicMintTokens(), but with a "to" for purchasing / custodial wallet platforms.
*
* @param count the number of tokens to mint.
* @param to address where the new token should be sent.
*/
function publicMintTokensTo(
uint256 count,
address to
) external payable nonReentrant isPublicMinting onlyPrivilegedMinter {
if (0 >= count || count > PUBLIC_MINT_BATCH_SIZE) revert ExceedsBatchSize();
if (msg.value != publicMintPricePerNft * count) revert InvalidPayment();
if (_totalMinted() + count > PUBLIC_MINT_SUPPLY_CAP) revert ExceedsSupplyCap();
_internalMintTokens(to, count);
}
/**
* @notice Mint tokens (Phase One) - purchase bound by terms & conditions of project.
*
* @param proof the merkle proof for this purchase.
* @param count the number of tokens to mint.
*/
function phaseOneMintTokens(bytes32[] calldata proof, uint256 count) external payable nonReentrant isPhaseOne {
if (0 >= count || count > PHASE_ONE_BATCH_SIZE) revert ExceedsBatchSize();
if (msg.value != phaseOnePricePerNft * count) revert InvalidPayment();
if (_totalMinted() + count > PHASE_ONE_SUPPLY_CAP) revert ExceedsSupplyCap();
(uint32 phaseOnePurchases, uint32 otherPhase) = _unpack32(_getAux(msg.sender));
uint256 newBalance = phaseOnePurchases + count;
if (newBalance > PHASE_ONE_PURCHASE_LIMIT) revert ExceedsPurchaseLimit();
_setAux(msg.sender, _pack32(uint16(newBalance), otherPhase));
_proofMintTokens_PhaseOne(msg.sender, proof, newBalance, count, msg.sender);
}
/**
* @notice Mint tokens (Phase One) - purchase bound by terms & conditions of project.
*
* @param proof the merkle proof for this purchase.
* @param count the number of tokens to mint.
* @param coldWallet The cold wallet, if caller is a delegated hot wallet.
*/
function phaseOneMintTokensFor(
bytes32[] calldata proof,
uint256 count,
address coldWallet
) external payable nonReentrant isPhaseOne {
if (0 >= count || count > PHASE_ONE_BATCH_SIZE) revert ExceedsBatchSize();
if (msg.value != phaseOnePricePerNft * count) revert InvalidPayment();
if (_totalMinted() + count > PHASE_ONE_SUPPLY_CAP) revert ExceedsSupplyCap();
address operator = _TryDelegate(msg.sender, coldWallet);
(uint32 phaseOnePurchases, uint32 otherPhase) = _unpack32(_getAux(operator));
uint256 newBalance = phaseOnePurchases + count;
if (newBalance > PHASE_ONE_PURCHASE_LIMIT) revert ExceedsPurchaseLimit();
_setAux(operator, _pack32(uint16(newBalance), otherPhase));
_proofMintTokens_PhaseOne(operator, proof, newBalance, count, msg.sender);
}
/**
* @notice Mint tokens (Phase Two) - purchase bound by terms & conditions of project.
*
* @param proof the merkle proof for this purchase.
* @param count the number of tokens to mint.
*/
function phaseTwoMintTokens(bytes32[] calldata proof, uint256 count) external payable nonReentrant isPhaseTwo {
if (0 >= count || count > PHASE_TWO_BATCH_SIZE) revert ExceedsBatchSize();
if (msg.value != phaseTwoPricePerNft * count) revert InvalidPayment();
if (_totalMinted() + count > PHASE_TWO_SUPPLY_CAP) revert ExceedsSupplyCap();
(uint32 otherPhase, uint32 phaseTwoPurchases) = _unpack32(_getAux(msg.sender));
uint256 newBalance = phaseTwoPurchases + count;
if (newBalance > PHASE_TWO_PURCHASE_LIMIT) revert ExceedsPurchaseLimit();
_setAux(msg.sender, _pack32(otherPhase, uint16(newBalance)));
_proofMintTokens_PhaseTwo(msg.sender, proof, newBalance, count, msg.sender);
}
/**
* @notice Mint tokens (Phase Two) - purchase bound by terms & conditions of project.
*
* @param proof the merkle proof for this purchase.
* @param count the number of tokens to mint.
* @param coldWallet The cold wallet, if caller is a delegated hot wallet.
*/
function phaseTwoMintTokensFor(
bytes32[] calldata proof,
uint256 count,
address coldWallet
) external payable nonReentrant isPhaseTwo {
if (0 >= count || count > PHASE_TWO_BATCH_SIZE) revert ExceedsBatchSize();
if (msg.value != phaseTwoPricePerNft * count) revert InvalidPayment();
if (_totalMinted() + count > PHASE_TWO_SUPPLY_CAP) revert ExceedsSupplyCap();
address operator = _TryDelegate(msg.sender, coldWallet);
(uint32 otherPhase, uint32 phaseTwoPurchases) = _unpack32(_getAux(operator));
uint256 newBalance = phaseTwoPurchases + count;
if (newBalance > PHASE_TWO_PURCHASE_LIMIT) revert ExceedsPurchaseLimit();
_setAux(operator, _pack32(otherPhase, uint16(newBalance)));
_proofMintTokens_PhaseTwo(operator, proof, newBalance, count, msg.sender);
}
function _internalMintTokens(
address minter,
uint256 count
) internal override(PhaseOneIsIndexed, PhaseTwoIsIndexed) {
_safeMint(minter, count);
}
function _internalMintTokens(
address minter,
uint256 count,
uint256 flavorId
) internal override(PhaseOneIsIndexed, PhaseTwoIsIndexed) {
// Do nothing
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;
import './IDelegationRegistry.sol';
error InvalidColdWallet();
/**
* @title CosmicBloomDelegateEnforcer
* @author @NFTCulture
* @dev Enforce requirements for Delegate wallets.
*
* This contract is hardcoded specifically for the Cosmic Bloom project.
*
* @notice Delegate.cash has some quirks, execute transactions using this
* service at your own risk.
*/
abstract contract CosmicBloomDelegateEnforcer {
address internal cosmicReef = 0xa7d8d9ef8D8Ce8992Df33D8b8CF4Aebabd5bD270;
address internal elemental = 0xC9677Cd8e9652F1b1aaDd3429769b0Ef8D7A0425;
// See: https://github.com/delegatecash/delegation-registry
IDelegationRegistry public constant DELEGATION_REGISTRY =
IDelegationRegistry(0x00000000000076A84feF008CDAbe6409d2FE638B);
function _TryDelegate(address self, address coldWallet) internal view returns (address) {
if (coldWallet == address(0)) {
return self;
}
// We only require that you've delegated either of the following projects in order for hotwallet to use the claims.
bool isArtBlocksDelegate = _isDelegateForArtBlocksCosmicReef(coldWallet, 0);
bool isElementalDelegate = _isDelegateForElemental(coldWallet, 0);
if (!isArtBlocksDelegate && !isElementalDelegate) revert InvalidColdWallet();
return coldWallet;
}
function _isDelegateForArtBlocksCosmicReef(address coldWallet, uint256 tokenId) internal view returns (bool) {
return DELEGATION_REGISTRY.checkDelegateForToken(msg.sender, coldWallet, cosmicReef, tokenId);
}
function _isDelegateForElemental(address coldWallet, uint256 tokenId) internal view returns (bool) {
return DELEGATION_REGISTRY.checkDelegateForToken(msg.sender, coldWallet, elemental, tokenId);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;
import '@openzeppelin/contracts/token/common/ERC2981.sol';
contract CosmicBloomSplitsAndRoyalties is ERC2981 {
address[] internal addresses = [
0x19A9215201C647d3E7c52661b06C010972e73E9c,
0x41Fb9227c703086B2d908E177A692EdCD3d7DE2C,
0xb67dEB598736CE3C2B7b709c9Bf7bc911b31a0aF
];
uint256[] internal splits = [750, 125, 125];
uint96 private constant DEFAULT_ROYALTY_BASIS_POINTS = 1000; // 10%
constructor() {
// Default royalty information to be this contract, so that no potential
// royalty payments are missed by marketplaces that support ERC2981.
_setDefaultRoyalty(address(this), DEFAULT_ROYALTY_BASIS_POINTS);
}
}
// SPDX-License-Identifier: MIT
// IDelegationRegistry.sol: https://github.com/delegatecash/delegation-registry/blob/main/src/IDelegationRegistry.sol
pragma solidity 0.8.11;
/**
* @title An immutable registry contract to be deployed as a standalone primitive
* @dev See EIP-5639, new project launches can read previous cold wallet -> hot wallet delegations
* from here and integrate those permissions into their flow
*/
interface IDelegationRegistry {
/// @notice Delegation type
enum DelegationType {
NONE,
ALL,
CONTRACT,
TOKEN
}
/// @notice Info about a single delegation, used for onchain enumeration
struct DelegationInfo {
DelegationType type_;
address vault;
address delegate;
address contract_;
uint256 tokenId;
}
/// @notice Info about a single contract-level delegation
struct ContractDelegation {
address contract_;
address delegate;
}
/// @notice Info about a single token-level delegation
struct TokenDelegation {
address contract_;
uint256 tokenId;
address delegate;
}
/// @notice Emitted when a user delegates their entire wallet
event DelegateForAll(address vault, address delegate, bool value);
/// @notice Emitted when a user delegates a specific contract
event DelegateForContract(address vault, address delegate, address contract_, bool value);
/// @notice Emitted when a user delegates a specific token
event DelegateForToken(address vault, address delegate, address contract_, uint256 tokenId, bool value);
/// @notice Emitted when a user revokes all delegations
event RevokeAllDelegates(address vault);
/// @notice Emitted when a user revoes all delegations for a given delegate
event RevokeDelegate(address vault, address delegate);
/**
* ----------- WRITE -----------
*/
/**
* @notice Allow the delegate to act on your behalf for all contracts
* @param delegate The hotwallet to act on your behalf
* @param value Whether to enable or disable delegation for this address, true for setting and false for revoking
*/
function delegateForAll(address delegate, bool value) external;
/**
* @notice Allow the delegate to act on your behalf for a specific contract
* @param delegate The hotwallet to act on your behalf
* @param contract_ The address for the contract you're delegating
* @param value Whether to enable or disable delegation for this address, true for setting and false for revoking
*/
function delegateForContract(address delegate, address contract_, bool value) external;
/**
* @notice Allow the delegate to act on your behalf for a specific token
* @param delegate The hotwallet to act on your behalf
* @param contract_ The address for the contract you're delegating
* @param tokenId The token id for the token you're delegating
* @param value Whether to enable or disable delegation for this address, true for setting and false for revoking
*/
function delegateForToken(address delegate, address contract_, uint256 tokenId, bool value) external;
/**
* @notice Revoke all delegates
*/
function revokeAllDelegates() external;
/**
* @notice Revoke a specific delegate for all their permissions
* @param delegate The hotwallet to revoke
*/
function revokeDelegate(address delegate) external;
/**
* @notice Remove yourself as a delegate for a specific vault
* @param vault The vault which delegated to the msg.sender, and should be removed
*/
function revokeSelf(address vault) external;
/**
* ----------- READ -----------
*/
/**
* @notice Returns all active delegations a given delegate is able to claim on behalf of
* @param delegate The delegate that you would like to retrieve delegations for
* @return info Array of DelegationInfo structs
*/
function getDelegationsByDelegate(address delegate) external view returns (DelegationInfo[] memory);
/**
* @notice Returns an array of wallet-level delegates for a given vault
* @param vault The cold wallet who issued the delegation
* @return addresses Array of wallet-level delegates for a given vault
*/
function getDelegatesForAll(address vault) external view returns (address[] memory);
/**
* @notice Returns an array of contract-level delegates for a given vault and contract
* @param vault The cold wallet who issued the delegation
* @param contract_ The address for the contract you're delegating
* @return addresses Array of contract-level delegates for a given vault and contract
*/
function getDelegatesForContract(address vault, address contract_) external view returns (address[] memory);
/**
* @notice Returns an array of contract-level delegates for a given vault's token
* @param vault The cold wallet who issued the delegation
* @param contract_ The address for the contract holding the token
* @param tokenId The token id for the token you're delegating
* @return addresses Array of contract-level delegates for a given vault's token
*/
function getDelegatesForToken(address vault, address contract_, uint256 tokenId)
external
view
returns (address[] memory);
/**
* @notice Returns all contract-level delegations for a given vault
* @param vault The cold wallet who issued the delegations
* @return delegations Array of ContractDelegation structs
*/
function getContractLevelDelegations(address vault)
external
view
returns (ContractDelegation[] memory delegations);
/**
* @notice Returns all token-level delegations for a given vault
* @param vault The cold wallet who issued the delegations
* @return delegations Array of TokenDelegation structs
*/
function getTokenLevelDelegations(address vault) external view returns (TokenDelegation[] memory delegations);
/**
* @notice Returns true if the address is delegated to act on the entire vault
* @param delegate The hotwallet to act on your behalf
* @param vault The cold wallet who issued the delegation
*/
function checkDelegateForAll(address delegate, address vault) external view returns (bool);
/**
* @notice Returns true if the address is delegated to act on your behalf for a token contract or an entire vault
* @param delegate The hotwallet to act on your behalf
* @param contract_ The address for the contract you're delegating
* @param vault The cold wallet who issued the delegation
*/
function checkDelegateForContract(address delegate, address vault, address contract_)
external
view
returns (bool);
/**
* @notice Returns true if the address is delegated to act on your behalf for a specific token, the token's contract or an entire vault
* @param delegate The hotwallet to act on your behalf
* @param contract_ The address for the contract you're delegating
* @param tokenId The token id for the token you're delegating
* @param vault The cold wallet who issued the delegation
*/
function checkDelegateForToken(address delegate, address vault, address contract_, uint256 tokenId)
external
view
returns (bool);
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721A.sol';
/**
* @dev Interface of ERC721 token receiver.
*/
interface ERC721A__IERC721Receiver {
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
/**
* @title ERC721A
*
* @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
* Non-Fungible Token Standard, including the Metadata extension.
* Optimized for lower gas during batch mints.
*
* Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
* starting from `_startTokenId()`.
*
* Assumptions:
*
* - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
* - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
*/
contract ERC721A is IERC721A {
// Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
struct TokenApprovalRef {
address value;
}
// =============================================================
// CONSTANTS
// =============================================================
// Mask of an entry in packed address data.
uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
// The bit position of `numberMinted` in packed address data.
uint256 private constant _BITPOS_NUMBER_MINTED = 64;
// The bit position of `numberBurned` in packed address data.
uint256 private constant _BITPOS_NUMBER_BURNED = 128;
// The bit position of `aux` in packed address data.
uint256 private constant _BITPOS_AUX = 192;
// Mask of all 256 bits in packed address data except the 64 bits for `aux`.
uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
// The bit position of `startTimestamp` in packed ownership.
uint256 private constant _BITPOS_START_TIMESTAMP = 160;
// The bit mask of the `burned` bit in packed ownership.
uint256 private constant _BITMASK_BURNED = 1 << 224;
// The bit position of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
// The bit mask of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
// The bit position of `extraData` in packed ownership.
uint256 private constant _BITPOS_EXTRA_DATA = 232;
// Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
// The mask of the lower 160 bits for addresses.
uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
// The maximum `quantity` that can be minted with {_mintERC2309}.
// This limit is to prevent overflows on the address data entries.
// For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
// is required to cause an overflow, which is unrealistic.
uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
// The `Transfer` event signature is given by:
// `keccak256(bytes("Transfer(address,address,uint256)"))`.
bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
// =============================================================
// STORAGE
// =============================================================
// The next token ID to be minted.
uint256 private _currentIndex;
// The number of tokens burned.
uint256 private _burnCounter;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to ownership details
// An empty struct value does not necessarily mean the token is unowned.
// See {_packedOwnershipOf} implementation for details.
//
// Bits Layout:
// - [0..159] `addr`
// - [160..223] `startTimestamp`
// - [224] `burned`
// - [225] `nextInitialized`
// - [232..255] `extraData`
mapping(uint256 => uint256) private _packedOwnerships;
// Mapping owner address to address data.
//
// Bits Layout:
// - [0..63] `balance`
// - [64..127] `numberMinted`
// - [128..191] `numberBurned`
// - [192..255] `aux`
mapping(address => uint256) private _packedAddressData;
// Mapping from token ID to approved address.
mapping(uint256 => TokenApprovalRef) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
// =============================================================
// CONSTRUCTOR
// =============================================================
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_currentIndex = _startTokenId();
}
// =============================================================
// TOKEN COUNTING OPERATIONS
// =============================================================
/**
* @dev Returns the starting token ID.
* To change the starting token ID, please override this function.
*/
function _startTokenId() internal view virtual returns (uint256) {
return 0;
}
/**
* @dev Returns the next token ID to be minted.
*/
function _nextTokenId() internal view virtual returns (uint256) {
return _currentIndex;
}
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() public view virtual override returns (uint256) {
// Counter underflow is impossible as _burnCounter cannot be incremented
// more than `_currentIndex - _startTokenId()` times.
unchecked {
return _currentIndex - _burnCounter - _startTokenId();
}
}
/**
* @dev Returns the total amount of tokens minted in the contract.
*/
function _totalMinted() internal view virtual returns (uint256) {
// Counter underflow is impossible as `_currentIndex` does not decrement,
// and it is initialized to `_startTokenId()`.
unchecked {
return _currentIndex - _startTokenId();
}
}
/**
* @dev Returns the total number of tokens burned.
*/
function _totalBurned() internal view virtual returns (uint256) {
return _burnCounter;
}
// =============================================================
// ADDRESS DATA OPERATIONS
// =============================================================
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
if (owner == address(0)) revert BalanceQueryForZeroAddress();
return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens minted by `owner`.
*/
function _numberMinted(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens burned by or on behalf of `owner`.
*/
function _numberBurned(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
*/
function _getAux(address owner) internal view returns (uint64) {
return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
}
/**
* Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
* If there are multiple variables, please pack them into a uint64.
*/
function _setAux(address owner, uint64 aux) internal virtual {
uint256 packed = _packedAddressData[owner];
uint256 auxCasted;
// Cast `aux` with assembly to avoid redundant masking.
assembly {
auxCasted := aux
}
packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
_packedAddressData[owner] = packed;
}
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
// The interface IDs are constants representing the first 4 bytes
// of the XOR of all function selectors in the interface.
// See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
// (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
return
interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
}
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the token collection symbol.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
string memory baseURI = _baseURI();
return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, it can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return '';
}
// =============================================================
// OWNERSHIPS OPERATIONS
// =============================================================
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
return address(uint160(_packedOwnershipOf(tokenId)));
}
/**
* @dev Gas spent here starts off proportional to the maximum mint batch size.
* It gradually moves to O(1) as tokens get transferred around over time.
*/
function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnershipOf(tokenId));
}
/**
* @dev Returns the unpacked `TokenOwnership` struct at `index`.
*/
function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnerships[index]);
}
/**
* @dev Initializes the ownership slot minted at `index` for efficiency purposes.
*/
function _initializeOwnershipAt(uint256 index) internal virtual {
if (_packedOwnerships[index] == 0) {
_packedOwnerships[index] = _packedOwnershipOf(index);
}
}
/**
* Returns the packed ownership data of `tokenId`.
*/
function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) {
uint256 curr = tokenId;
unchecked {
if (_startTokenId() <= curr)
if (curr < _currentIndex) {
uint256 packed = _packedOwnerships[curr];
// If not burned.
if (packed & _BITMASK_BURNED == 0) {
// Invariant:
// There will always be an initialized ownership slot
// (i.e. `ownership.addr != address(0) && ownership.burned == false`)
// before an unintialized ownership slot
// (i.e. `ownership.addr == address(0) && ownership.burned == false`)
// Hence, `curr` will not underflow.
//
// We can directly compare the packed value.
// If the address is zero, packed will be zero.
while (packed == 0) {
packed = _packedOwnerships[--curr];
}
return packed;
}
}
}
revert OwnerQueryForNonexistentToken();
}
/**
* @dev Returns the unpacked `TokenOwnership` struct from `packed`.
*/
function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
ownership.addr = address(uint160(packed));
ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
ownership.burned = packed & _BITMASK_BURNED != 0;
ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
}
/**
* @dev Packs ownership data into a single uint256.
*/
function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
}
}
/**
* @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
*/
function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
// For branchless setting of the `nextInitialized` flag.
assembly {
// `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
}
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) public payable virtual override {
address owner = ownerOf(tokenId);
if (_msgSenderERC721A() != owner)
if (!isApprovedForAll(owner, _msgSenderERC721A())) {
revert ApprovalCallerNotOwnerNorApproved();
}
_tokenApprovals[tokenId].value = to;
emit Approval(owner, to, tokenId);
}
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();
return _tokenApprovals[tokenId].value;
}
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_operatorApprovals[_msgSenderERC721A()][operator] = approved;
emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
}
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted. See {_mint}.
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return
_startTokenId() <= tokenId &&
tokenId < _currentIndex && // If within bounds,
_packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
}
/**
* @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
*/
function _isSenderApprovedOrOwner(
address approvedAddress,
address owner,
address msgSender
) private pure returns (bool result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
msgSender := and(msgSender, _BITMASK_ADDRESS)
// `msgSender == owner || msgSender == approvedAddress`.
result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
}
}
/**
* @dev Returns the storage slot and value for the approved address of `tokenId`.
*/
function _getApprovedSlotAndAddress(uint256 tokenId)
private
view
returns (uint256 approvedAddressSlot, address approvedAddress)
{
TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
// The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
assembly {
approvedAddressSlot := tokenApproval.slot
approvedAddress := sload(approvedAddressSlot)
}
}
// =============================================================
// TRANSFER OPERATIONS
// =============================================================
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
if (to == address(0)) revert TransferToZeroAddress();
_beforeTokenTransfers(from, to, tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// We can directly increment and decrement the balances.
--_packedAddressData[from]; // Updates: `balance -= 1`.
++_packedAddressData[to]; // Updates: `balance += 1`.
// Updates:
// - `address` to the next owner.
// - `startTimestamp` to the timestamp of transfering.
// - `burned` to `false`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
to,
_BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, to, tokenId);
_afterTokenTransfers(from, to, tokenId, 1);
}
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
safeTransferFrom(from, to, tokenId, '');
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory _data
) public payable virtual override {
transferFrom(from, to, tokenId);
if (to.code.length != 0)
if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
revert TransferToNonERC721ReceiverImplementer();
}
}
/**
* @dev Hook that is called before a set of serially-ordered token IDs
* are about to be transferred. This includes minting.
* And also called before burning one token.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _beforeTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Hook that is called after a set of serially-ordered token IDs
* have been transferred. This includes minting.
* And also called after one token has been burned.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
* transferred to `to`.
* - When `from` is zero, `tokenId` has been minted for `to`.
* - When `to` is zero, `tokenId` has been burned by `from`.
* - `from` and `to` are never both zero.
*/
function _afterTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
*
* `from` - Previous owner of the given token ID.
* `to` - Target address that will receive the token.
* `tokenId` - Token ID to be transferred.
* `_data` - Optional data to send along with the call.
*
* Returns whether the call correctly returned the expected magic value.
*/
function _checkContractOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory _data
) private returns (bool) {
try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
bytes4 retval
) {
return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert TransferToNonERC721ReceiverImplementer();
} else {
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
// =============================================================
// MINT OPERATIONS
// =============================================================
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {Transfer} event for each mint.
*/
function _mint(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (quantity == 0) revert MintZeroQuantity();
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are incredibly unrealistic.
// `balance` and `numberMinted` have a maximum limit of 2**64.
// `tokenId` has a maximum limit of 2**256.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
uint256 toMasked;
uint256 end = startTokenId + quantity;
// Use assembly to loop and emit the `Transfer` event for gas savings.
// The duplicated `log4` removes an extra check and reduces stack juggling.
// The assembly, together with the surrounding Solidity code, have been
// delicately arranged to nudge the compiler into producing optimized opcodes.
assembly {
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
toMasked := and(to, _BITMASK_ADDRESS)
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
0, // `address(0)`.
toMasked, // `to`.
startTokenId // `tokenId`.
)
// The `iszero(eq(,))` check ensures that large values of `quantity`
// that overflows uint256 will make the loop run out of gas.
// The compiler will optimize the `iszero` away for performance.
for {
let tokenId := add(startTokenId, 1)
} iszero(eq(tokenId, end)) {
tokenId := add(tokenId, 1)
} {
// Emit the `Transfer` event. Similar to above.
log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
}
}
if (toMasked == 0) revert MintToZeroAddress();
_currentIndex = end;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* This function is intended for efficient minting only during contract creation.
*
* It emits only one {ConsecutiveTransfer} as defined in
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
* instead of a sequence of {Transfer} event(s).
*
* Calling this function outside of contract creation WILL make your contract
* non-compliant with the ERC721 standard.
* For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
* {ConsecutiveTransfer} event is only permissible during contract creation.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {ConsecutiveTransfer} event.
*/
function _mintERC2309(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (to == address(0)) revert MintToZeroAddress();
if (quantity == 0) revert MintZeroQuantity();
if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are unrealistic due to the above check for `quantity` to be below the limit.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
_currentIndex = startTokenId + quantity;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Safely mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
* - `quantity` must be greater than 0.
*
* See {_mint}.
*
* Emits a {Transfer} event for each mint.
*/
function _safeMint(
address to,
uint256 quantity,
bytes memory _data
) internal virtual {
_mint(to, quantity);
unchecked {
if (to.code.length != 0) {
uint256 end = _currentIndex;
uint256 index = end - quantity;
do {
if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
revert TransferToNonERC721ReceiverImplementer();
}
} while (index < end);
// Reentrancy protection.
if (_currentIndex != end) revert();
}
}
}
/**
* @dev Equivalent to `_safeMint(to, quantity, '')`.
*/
function _safeMint(address to, uint256 quantity) internal virtual {
_safeMint(to, quantity, '');
}
// =============================================================
// BURN OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_burn(tokenId, false)`.
*/
function _burn(uint256 tokenId) internal virtual {
_burn(tokenId, false);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
address from = address(uint160(prevOwnershipPacked));
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
if (approvalCheck) {
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
}
_beforeTokenTransfers(from, address(0), tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// Updates:
// - `balance -= 1`.
// - `numberBurned += 1`.
//
// We can directly decrement the balance, and increment the number burned.
// This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
_packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
// Updates:
// - `address` to the last owner.
// - `startTimestamp` to the timestamp of burning.
// - `burned` to `true`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
from,
(_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, address(0), tokenId);
_afterTokenTransfers(from, address(0), tokenId, 1);
// Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
unchecked {
_burnCounter++;
}
}
// =============================================================
// EXTRA DATA OPERATIONS
// =============================================================
/**
* @dev Directly sets the extra data for the ownership data `index`.
*/
function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
uint256 packed = _packedOwnerships[index];
if (packed == 0) revert OwnershipNotInitializedForExtraData();
uint256 extraDataCasted;
// Cast `extraData` with assembly to avoid redundant masking.
assembly {
extraDataCasted := extraData
}
packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
_packedOwnerships[index] = packed;
}
/**
* @dev Called during each token transfer to set the 24bit `extraData` field.
* Intended to be overridden by the cosumer contract.
*
* `previousExtraData` - the value of `extraData` before transfer.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _extraData(
address from,
address to,
uint24 previousExtraData
) internal view virtual returns (uint24) {}
/**
* @dev Returns the next extra data for the packed ownership data.
* The returned result is shifted into position.
*/
function _nextExtraData(
address from,
address to,
uint256 prevOwnershipPacked
) private view returns (uint256) {
uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
}
// =============================================================
// OTHER OPERATIONS
// =============================================================
/**
* @dev Returns the message sender (defaults to `msg.sender`).
*
* If you are writing GSN compatible contracts, you need to override this function.
*/
function _msgSenderERC721A() internal view virtual returns (address) {
return msg.sender;
}
/**
* @dev Converts a uint256 to its ASCII string decimal representation.
*/
function _toString(uint256 value) internal pure virtual returns (string memory str) {
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
let m := add(mload(0x40), 0xa0)
// Update the free memory pointer to allocate.
mstore(0x40, m)
// Assign the `str` to the end.
str := sub(m, 0x20)
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end of the memory to calculate the length later.
let end := str
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
// prettier-ignore
for { let temp := value } 1 {} {
str := sub(str, 1)
// Write the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
// Keep dividing `temp` until zero.
temp := div(temp, 10)
// prettier-ignore
if iszero(temp) { break }
}
let length := sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str := sub(str, 0x20)
// Store the length.
mstore(str, length)
}
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721ABurnable.sol';
import '../ERC721A.sol';
/**
* @title ERC721ABurnable.
*
* @dev ERC721A token that can be irreversibly burned (destroyed).
*/
abstract contract ERC721ABurnable is ERC721A, IERC721ABurnable {
/**
* @dev Burns `tokenId`. See {ERC721A-_burn}.
*
* Requirements:
*
* - The caller must own `tokenId` or be an approved operator.
*/
function burn(uint256 tokenId) public virtual override {
_burn(tokenId, true);
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721AQueryable.sol';
import '../ERC721A.sol';
/**
* @title ERC721AQueryable.
*
* @dev ERC721A subclass with convenience query functions.
*/
abstract contract ERC721AQueryable is ERC721A, IERC721AQueryable {
/**
* @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
*
* If the `tokenId` is out of bounds:
*
* - `addr = address(0)`
* - `startTimestamp = 0`
* - `burned = false`
* - `extraData = 0`
*
* If the `tokenId` is burned:
*
* - `addr = <Address of owner before token was burned>`
* - `startTimestamp = <Timestamp when token was burned>`
* - `burned = true`
* - `extraData = <Extra data when token was burned>`
*
* Otherwise:
*
* - `addr = <Address of owner>`
* - `startTimestamp = <Timestamp of start of ownership>`
* - `burned = false`
* - `extraData = <Extra data at start of ownership>`
*/
function explicitOwnershipOf(uint256 tokenId) public view virtual override returns (TokenOwnership memory) {
TokenOwnership memory ownership;
if (tokenId < _startTokenId() || tokenId >= _nextTokenId()) {
return ownership;
}
ownership = _ownershipAt(tokenId);
if (ownership.burned) {
return ownership;
}
return _ownershipOf(tokenId);
}
/**
* @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
* See {ERC721AQueryable-explicitOwnershipOf}
*/
function explicitOwnershipsOf(uint256[] calldata tokenIds)
external
view
virtual
override
returns (TokenOwnership[] memory)
{
unchecked {
uint256 tokenIdsLength = tokenIds.length;
TokenOwnership[] memory ownerships = new TokenOwnership[](tokenIdsLength);
for (uint256 i; i != tokenIdsLength; ++i) {
ownerships[i] = explicitOwnershipOf(tokenIds[i]);
}
return ownerships;
}
}
/**
* @dev Returns an array of token IDs owned by `owner`,
* in the range [`start`, `stop`)
* (i.e. `start <= tokenId < stop`).
*
* This function allows for tokens to be queried if the collection
* grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
*
* Requirements:
*
* - `start < stop`
*/
function tokensOfOwnerIn(
address owner,
uint256 start,
uint256 stop
) external view virtual override returns (uint256[] memory) {
unchecked {
if (start >= stop) revert InvalidQueryRange();
uint256 tokenIdsIdx;
uint256 stopLimit = _nextTokenId();
// Set `start = max(start, _startTokenId())`.
if (start < _startTokenId()) {
start = _startTokenId();
}
// Set `stop = min(stop, stopLimit)`.
if (stop > stopLimit) {
stop = stopLimit;
}
uint256 tokenIdsMaxLength = balanceOf(owner);
// Set `tokenIdsMaxLength = min(balanceOf(owner), stop - start)`,
// to cater for cases where `balanceOf(owner)` is too big.
if (start < stop) {
uint256 rangeLength = stop - start;
if (rangeLength < tokenIdsMaxLength) {
tokenIdsMaxLength = rangeLength;
}
} else {
tokenIdsMaxLength = 0;
}
uint256[] memory tokenIds = new uint256[](tokenIdsMaxLength);
if (tokenIdsMaxLength == 0) {
return tokenIds;
}
// We need to call `explicitOwnershipOf(start)`,
// because the slot at `start` may not be initialized.
TokenOwnership memory ownership = explicitOwnershipOf(start);
address currOwnershipAddr;
// If the starting slot exists (i.e. not burned), initialize `currOwnershipAddr`.
// `ownership.address` will not be zero, as `start` is clamped to the valid token ID range.
if (!ownership.burned) {
currOwnershipAddr = ownership.addr;
}
for (uint256 i = start; i != stop && tokenIdsIdx != tokenIdsMaxLength; ++i) {
ownership = _ownershipAt(i);
if (ownership.burned) {
continue;
}
if (ownership.addr != address(0)) {
currOwnershipAddr = ownership.addr;
}
if (currOwnershipAddr == owner) {
tokenIds[tokenIdsIdx++] = i;
}
}
// Downsize the array to fit.
assembly {
mstore(tokenIds, tokenIdsIdx)
}
return tokenIds;
}
}
/**
* @dev Returns an array of token IDs owned by `owner`.
*
* This function scans the ownership mapping and is O(`totalSupply`) in complexity.
* It is meant to be called off-chain.
*
* See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
* multiple smaller scans if the collection is large enough to cause
* an out-of-gas error (10K collections should be fine).
*/
function tokensOfOwner(address owner) external view virtual override returns (uint256[] memory) {
unchecked {
uint256 tokenIdsIdx;
address currOwnershipAddr;
uint256 tokenIdsLength = balanceOf(owner);
uint256[] memory tokenIds = new uint256[](tokenIdsLength);
TokenOwnership memory ownership;
for (uint256 i = _startTokenId(); tokenIdsIdx != tokenIdsLength; ++i) {
ownership = _ownershipAt(i);
if (ownership.burned) {
continue;
}
if (ownership.addr != address(0)) {
currOwnershipAddr = ownership.addr;
}
if (currOwnershipAddr == owner) {
tokenIds[tokenIdsIdx++] = i;
}
}
return tokenIds;
}
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import '../IERC721A.sol';
/**
* @dev Interface of ERC721ABurnable.
*/
interface IERC721ABurnable is IERC721A {
/**
* @dev Burns `tokenId`. See {ERC721A-_burn}.
*
* Requirements:
*
* - The caller must own `tokenId` or be an approved operator.
*/
function burn(uint256 tokenId) external;
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import '../IERC721A.sol';
/**
* @dev Interface of ERC721AQueryable.
*/
interface IERC721AQueryable is IERC721A {
/**
* Invalid query range (`start` >= `stop`).
*/
error InvalidQueryRange();
/**
* @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
*
* If the `tokenId` is out of bounds:
*
* - `addr = address(0)`
* - `startTimestamp = 0`
* - `burned = false`
* - `extraData = 0`
*
* If the `tokenId` is burned:
*
* - `addr = <Address of owner before token was burned>`
* - `startTimestamp = <Timestamp when token was burned>`
* - `burned = true`
* - `extraData = <Extra data when token was burned>`
*
* Otherwise:
*
* - `addr = <Address of owner>`
* - `startTimestamp = <Timestamp of start of ownership>`
* - `burned = false`
* - `extraData = <Extra data at start of ownership>`
*/
function explicitOwnershipOf(uint256 tokenId) external view returns (TokenOwnership memory);
/**
* @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
* See {ERC721AQueryable-explicitOwnershipOf}
*/
function explicitOwnershipsOf(uint256[] memory tokenIds) external view returns (TokenOwnership[] memory);
/**
* @dev Returns an array of token IDs owned by `owner`,
* in the range [`start`, `stop`)
* (i.e. `start <= tokenId < stop`).
*
* This function allows for tokens to be queried if the collection
* grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
*
* Requirements:
*
* - `start < stop`
*/
function tokensOfOwnerIn(
address owner,
uint256 start,
uint256 stop
) external view returns (uint256[] memory);
/**
* @dev Returns an array of token IDs owned by `owner`.
*
* This function scans the ownership mapping and is O(`totalSupply`) in complexity.
* It is meant to be called off-chain.
*
* See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
* multiple smaller scans if the collection is large enough to cause
* an out-of-gas error (10K collections should be fine).
*/
function tokensOfOwner(address owner) external view returns (uint256[] memory);
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs
pragma solidity ^0.8.4;
/**
* @dev Interface of ERC721A.
*/
interface IERC721A {
/**
* The caller must own the token or be an approved operator.
*/
error ApprovalCallerNotOwnerNorApproved();
/**
* The token does not exist.
*/
error ApprovalQueryForNonexistentToken();
/**
* Cannot query the balance for the zero address.
*/
error BalanceQueryForZeroAddress();
/**
* Cannot mint to the zero address.
*/
error MintToZeroAddress();
/**
* The quantity of tokens minted must be more than zero.
*/
error MintZeroQuantity();
/**
* The token does not exist.
*/
error OwnerQueryForNonexistentToken();
/**
* The caller must own the token or be an approved operator.
*/
error TransferCallerNotOwnerNorApproved();
/**
* The token must be owned by `from`.
*/
error TransferFromIncorrectOwner();
/**
* Cannot safely transfer to a contract that does not implement the
* ERC721Receiver interface.
*/
error TransferToNonERC721ReceiverImplementer();
/**
* Cannot transfer to the zero address.
*/
error TransferToZeroAddress();
/**
* The token does not exist.
*/
error URIQueryForNonexistentToken();
/**
* The `quantity` minted with ERC2309 exceeds the safety limit.
*/
error MintERC2309QuantityExceedsLimit();
/**
* The `extraData` cannot be set on an unintialized ownership slot.
*/
error OwnershipNotInitializedForExtraData();
// =============================================================
// STRUCTS
// =============================================================
struct TokenOwnership {
// The address of the owner.
address addr;
// Stores the start time of ownership with minimal overhead for tokenomics.
uint64 startTimestamp;
// Whether the token has been burned.
bool burned;
// Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
uint24 extraData;
}
// =============================================================
// TOKEN COUNTERS
// =============================================================
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() external view returns (uint256);
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
// =============================================================
// IERC721
// =============================================================
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables
* (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`,
* checking first that contract recipients are aware of the ERC721 protocol
* to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move
* this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external payable;
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom}
* whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external payable;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
// =============================================================
// IERC2309
// =============================================================
/**
* @dev Emitted when tokens in `fromTokenId` to `toTokenId`
* (inclusive) is transferred from `from` to `to`, as defined in the
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
*
* See {_mintERC2309} for more details.
*/
event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
}