Contract Name:
StrategySbtcConvex
Contract Source Code:
pragma solidity ^0.5.17;
// yarn add @openzeppelin/[email protected]
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import '@openzeppelin/contracts/math/SafeMath.sol';
import '@openzeppelin/contracts/utils/Address.sol';
import '@openzeppelin/contracts/token/ERC20/SafeERC20.sol';
interface IBooster {
function depositAll(uint256 _pid, bool _stake) external returns (bool);
}
interface IBaseRewardPool {
function withdrawAndUnwrap(uint256 amount, bool claim)
external
returns (bool);
function withdrawAllAndUnwrap(bool claim) external;
function getReward(address _account, bool _claimExtras)
external
returns (bool);
function balanceOf(address) external view returns (uint256);
}
interface IController {
function withdraw(address, uint256) external;
function balanceOf(address) external view returns (uint256);
function earn(address, uint256) external;
function want(address) external view returns (address);
function rewards() external view returns (address);
function vaults(address) external view returns (address);
function strategies(address) external view returns (address);
}
interface IVoterProxy {
function withdraw(
address _gauge,
address _token,
uint256 _amount
) external returns (uint256);
function balanceOf(address _gauge) external view returns (uint256);
function withdrawAll(address _gauge, address _token)
external
returns (uint256);
function deposit(address _gauge, address _token) external;
function harvest(address _gauge, bool _snxRewards) external;
function lock() external;
}
interface Sushi {
function swapExactTokensForTokens(
uint256,
uint256,
address[] calldata,
address,
uint256
) external;
function getAmountsOut(uint256, address[] calldata)
external
returns (uint256[] memory);
}
interface ICurveFi {
function add_liquidity(uint256[3] calldata, uint256) external;
function calc_token_amount(uint256[3] calldata, bool)
external
returns (uint256);
}
contract StrategySbtcConvex {
using SafeERC20 for IERC20;
using Address for address;
using SafeMath for uint256;
// 3crv
address public constant want =
address(0x075b1bb99792c9E1041bA13afEf80C91a1e70fB3);
address public constant crv =
address(0xD533a949740bb3306d119CC777fa900bA034cd52);
address public constant cvx =
address(0x4e3FBD56CD56c3e72c1403e103b45Db9da5B9D2B);
address public constant usdc =
address(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48);
address public constant weth =
address(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2);
address public constant wbtc =
address(0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599);
address public constant voter =
address(0x52f541764E6e90eeBc5c21Ff570De0e2D63766B6);
address public constant sushiRouter =
address(0xd9e1cE17f2641f24aE83637ab66a2cca9C378B9F);
address public constant curve =
address(0x7fC77b5c7614E1533320Ea6DDc2Eb61fa00A9714);
uint256 public keepCRV = 0;
uint256 public performanceFee = 1500;
uint256 public withdrawalFee = 50;
uint256 public constant FEE_DENOMINATOR = 10000;
address public proxy;
address public governance;
address public controller;
address public strategist;
uint256 public earned; // lifetime strategy earnings denominated in `want` token
// convex booster
address public booster;
address public baseRewardPool;
event Harvested(uint256 wantEarned, uint256 lifetimeEarned);
modifier onlyGovernance() {
require(msg.sender == governance, '!governance');
_;
}
modifier onlyController() {
require(msg.sender == controller, '!controller');
_;
}
constructor(address _controller, address _proxy) public {
governance = msg.sender;
strategist = msg.sender;
controller = _controller;
proxy = _proxy;
booster = address(0xF403C135812408BFbE8713b5A23a04b3D48AAE31);
baseRewardPool = address(0xd727A5A6D1C7b31Ff9Db4Db4d24045B7dF0CFF93);
}
function getName() external pure returns (string memory) {
return 'StrategyBtcConvex';
}
function setStrategist(address _strategist) external {
require(
msg.sender == governance || msg.sender == strategist,
'!authorized'
);
strategist = _strategist;
}
function setKeepCRV(uint256 _keepCRV) external onlyGovernance {
keepCRV = _keepCRV;
}
function setWithdrawalFee(uint256 _withdrawalFee) external onlyGovernance {
withdrawalFee = _withdrawalFee;
}
function setPerformanceFee(uint256 _performanceFee) external onlyGovernance {
performanceFee = _performanceFee;
}
function setProxy(address _proxy) external onlyGovernance {
proxy = _proxy;
}
function deposit() public {
uint256 _want = IERC20(want).balanceOf(address(this));
IERC20(want).safeApprove(booster, 0);
IERC20(want).safeApprove(booster, _want);
IBooster(booster).depositAll(7, true);
}
// Controller only function for creating additional rewards from dust
function withdraw(IERC20 _asset)
external
onlyController
returns (uint256 balance)
{
require(want != address(_asset), 'want');
require(cvx != address(_asset), 'cvx');
require(crv != address(_asset), 'crv');
balance = _asset.balanceOf(address(this));
_asset.safeTransfer(controller, balance);
}
// Withdraw partial funds, normally used with a vault withdrawal
function withdraw(uint256 _amount) external onlyController {
uint256 _balance = IERC20(want).balanceOf(address(this));
if (_balance < _amount) {
_amount = _withdrawSome(_amount.sub(_balance));
_amount = _amount.add(_balance);
}
uint256 _fee = _amount.mul(withdrawalFee).div(FEE_DENOMINATOR);
IERC20(want).safeTransfer(IController(controller).rewards(), _fee);
address _vault = IController(controller).vaults(address(want));
require(_vault != address(0), '!vault'); // additional protection so we don't burn the funds
IERC20(want).safeTransfer(_vault, _amount.sub(_fee));
}
function _withdrawSome(uint256 _amount) internal returns (uint256) {
uint256 wantBefore = IERC20(want).balanceOf(address(this));
IBaseRewardPool(baseRewardPool).withdrawAndUnwrap(_amount, false);
uint256 wantAfter = IERC20(want).balanceOf(address(this));
return wantAfter.sub(wantBefore);
}
// Withdraw all funds, normally used when migrating strategies
function withdrawAll() external onlyController returns (uint256 balance) {
_withdrawAll();
balance = IERC20(want).balanceOf(address(this));
address _vault = IController(controller).vaults(address(want));
require(_vault != address(0), '!vault'); // additional protection so we don't burn the funds
IERC20(want).safeTransfer(_vault, balance);
}
function _withdrawAll() internal {
IBaseRewardPool(baseRewardPool).withdrawAllAndUnwrap(false);
}
// slippageCRV = 100 for 1% max slippage
function harvest(
uint256 maxSlippageCRV,
uint256 maxSlippageCVX,
uint256 maxSlippageCRVAddLiquidity
) public {
require(
msg.sender == strategist || msg.sender == governance,
'!authorized'
);
IBaseRewardPool(baseRewardPool).getReward(address(this), true);
uint256 _crv = IERC20(crv).balanceOf(address(this));
uint256 _cvx = IERC20(cvx).balanceOf(address(this));
if (_crv > 0) {
uint256 _keepCRV = _crv.mul(keepCRV).div(FEE_DENOMINATOR);
IERC20(crv).safeTransfer(voter, _keepCRV);
_crv = _crv.sub(_keepCRV);
IERC20(crv).safeApprove(sushiRouter, 0);
IERC20(crv).safeApprove(sushiRouter, _crv);
address[] memory path = new address[](3);
path[0] = crv;
path[1] = weth;
path[2] = wbtc;
uint256[] memory _amounts = Sushi(sushiRouter).getAmountsOut(_crv, path);
uint256 _minimalAmount =
_amounts[2].mul(10000 - maxSlippageCRV).div(10000);
Sushi(sushiRouter).swapExactTokensForTokens(
_crv,
_minimalAmount,
path,
address(this),
now.add(1800)
);
}
if (_cvx > 0) {
IERC20(cvx).safeApprove(sushiRouter, 0);
IERC20(cvx).safeApprove(sushiRouter, _cvx);
address[] memory path = new address[](3);
path[0] = cvx;
path[1] = weth;
path[2] = wbtc;
uint256[] memory _amounts = Sushi(sushiRouter).getAmountsOut(_cvx, path);
uint256 _minimalAmount =
_amounts[2].mul(10000 - maxSlippageCVX).div(10000);
Sushi(sushiRouter).swapExactTokensForTokens(
_cvx,
_minimalAmount,
path,
address(this),
now.add(1800)
);
}
uint256 _wbtc = IERC20(wbtc).balanceOf(address(this));
if (_wbtc > 0) {
IERC20(wbtc).safeApprove(curve, 0);
IERC20(wbtc).safeApprove(curve, _wbtc);
uint256 _tokenAmount =
ICurveFi(curve).calc_token_amount([0, _wbtc, 0], true);
uint256 _minimalAmount =
_tokenAmount.mul(10000 - maxSlippageCRVAddLiquidity).div(10000);
ICurveFi(curve).add_liquidity([0, _wbtc, 0], _minimalAmount);
}
uint256 _want = IERC20(want).balanceOf(address(this));
if (_want > 0) {
uint256 _fee = _want.mul(performanceFee).div(FEE_DENOMINATOR);
IERC20(want).safeTransfer(IController(controller).rewards(), _fee);
deposit();
}
IVoterProxy(proxy).lock();
earned = earned.add(_want);
emit Harvested(_want, earned);
}
function balanceOfWant() public view returns (uint256) {
return IERC20(want).balanceOf(address(this));
}
function balanceOfPool() public view returns (uint256) {
return IBaseRewardPool(baseRewardPool).balanceOf(address(this));
}
function balanceOf() public view returns (uint256) {
return balanceOfWant().add(balanceOfPool());
}
function setGovernance(address _governance) external onlyGovernance {
governance = _governance;
}
function setController(address _controller) external onlyGovernance {
controller = _controller;
}
}
pragma solidity ^0.5.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see {ERC20Detailed}.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
pragma solidity ^0.5.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*
* _Available since v2.4.0._
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
pragma solidity ^0.5.5;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Converts an `address` into `address payable`. Note that this is
* simply a type cast: the actual underlying value is not changed.
*
* _Available since v2.4.0._
*/
function toPayable(address account) internal pure returns (address payable) {
return address(uint160(account));
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*
* _Available since v2.4.0._
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-call-value
(bool success, ) = recipient.call.value(amount)("");
require(success, "Address: unable to send value, recipient may have reverted");
}
}
pragma solidity ^0.5.0;
import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves.
// A Solidity high level call has three parts:
// 1. The target address is checked to verify it contains contract code
// 2. The call itself is made, and success asserted
// 3. The return value is decoded, which in turn checks the size of the returned data.
// solhint-disable-next-line max-line-length
require(address(token).isContract(), "SafeERC20: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}