Contract Name:
ERC721StorageLayer
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: Unlicense
// Creator: 0xYeety/YEETY.eth - CTO, Virtue Labs
pragma solidity ^0.8.17;
import "lib/openzeppelin-contracts/contracts/access/Ownable.sol";
import "lib/openzeppelin-contracts/contracts/utils/Address.sol";
import "lib/openzeppelin-contracts/contracts/utils/Strings.sol";
import "lib/openzeppelin-contracts/contracts/token/ERC721/IERC721Receiver.sol";
import "lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
/*********************************************************************************************************************/
/* ___ ___ ___ ___ ___ ___ ___ */
/* /\ \ /\__\ ___ /\__\ /\ \ /\ \ /\__\ /\ \ */
/* /::\ \ /:/ / /\ \ /:/ / /::\ \ \:\ \ /:/ / /::\ \ */
/* /:/\:\ \ /:/ / \:\ \ /:/ / /:/\:\ \ \:\ \ /:/__/ /:/\:\ \ */
/* /::\~\:\__\ /:/ / ___ /::\__\ /:/ / /:/ \:\__\ /::\ \ /::\ \ ___ /::\~\:\ \ */
/* /:/\:\ \:|__| /:/__/ /\__\ __/:/\/__/ /:/__/ /:/__/ \:|__| /:/\:\__\ /:/\:\ /\__\ /:/\:\ \:\__\ */
/* \:\~\:\/:/ / \:\ \ /:/ / /\/:/ / \:\ \ \:\ \ /:/ / /:/ \/__/ \/__\:\/:/ / \:\~\:\ \/__/ */
/* \:\ \::/ / \:\ /:/ / \::/__/ \:\ \ \:\ /:/ / /:/ / \::/ / \:\ \:\__\ */
/* \:\/:/ / \:\/:/ / \:\__\ \:\ \ \:\/:/ / \/__/ /:/ / \:\ \/__/ */
/* \::/__/ \::/ / \/__/ \:\__\ \::/__/ /:/ / \:\__\ */
/* ~~ \/__/ \/__/ ~~ \/__/ \/__/ */
/* */
/* ___ ___ ___ ___ ___ ___ ___ ___ */
/* /\ \ /\__\ /\ \ /\ \ /\ \ /\ \ /\ \ /\__\ */
/* /::\ \ /:/ / /::\ \ \:\ \ /::\ \ /::\ \ /::\ \ /::| | */
/* /:/\:\ \ /:/ / /:/\:\ \ \:\ \ /:/\:\ \ /:/\:\ \ /:/\:\ \ /:|:| | */
/* /::\~\:\ \ /:/ / /::\~\:\ \ /::\ \ /::\~\:\ \ /:/ \:\ \ /::\~\:\ \ /:/|:|__|__ */
/* /:/\:\ \:\__\ /:/__/ /:/\:\ \:\__\ /:/\:\__\ /:/\:\ \:\__\ /:/__/ \:\__\ /:/\:\ \:\__\ /:/ |::::\__\ */
/* \/__\:\/:/ / \:\ \ \/__\:\/:/ / /:/ \/__/ \/__\:\ \/__/ \:\ \ /:/ / \/_|::\/:/ / \/__/~~/:/ / */
/* \::/ / \:\ \ \::/ / /:/ / \:\__\ \:\ /:/ / |:|::/ / /:/ / */
/* \/__/ \:\ \ /:/ / \/__/ \/__/ \:\/:/ / |:|\/__/ /:/ / */
/* \:\__\ /:/ / \::/ / |:| | /:/ / */
/* \/__/ \/__/ \/__/ \|__| \/__/ */
/*********************************************************************************************************************/
contract ERC721StorageLayer is Ownable {
using Address for address;
using Strings for uint256;
//////////
mapping(uint256 => address) private registeredContracts;
mapping(address => uint256) private contractNumberings;
mapping(address => bool) private isRegistered;
uint256 numRegistered;
modifier onlyRegistered() {
_isRegistered();
_;
}
function _isRegistered() internal view virtual {
require(isRegistered[msg.sender], "r");
}
mapping(address => string) private _contractNames;
mapping(address => string) private _contractSymbols;
bool public canSetNameAndSymbol = true;
mapping(address => string) private _contractDescriptions;
mapping(address => string) private _contractImages;
//////////
address public mintingContract;
modifier onlyMintingContract() {
_isMintingContract();
_;
}
function _isMintingContract() internal view virtual {
require(msg.sender == mintingContract, "m");
}
//////////
uint256 currentIndex;
mapping(uint256 => address) _ownerships;
mapping(address => uint256) _balances;
address public immutable burnAddress = 0x000000000000000000000000000000000000dEaD;
mapping(address => uint256) private _burnCounts;
//////////
mapping(uint256 => address) private _tokenApprovals;
mapping(address => mapping(address => mapping(address => bool))) private _operatorApprovals;
////////////////////
function registerTopLevel(
string memory name_,
string memory symbol_,
string memory description_,
string memory image_
) public {
require(numRegistered < 5, "mr");
require(tx.origin == owner(), "a");
registeredContracts[numRegistered] = msg.sender;
contractNumberings[msg.sender] = numRegistered;
_contractNames[msg.sender] = name_;
_contractSymbols[msg.sender] = symbol_;
_contractDescriptions[msg.sender] = description_;
_contractImages[msg.sender] = image_;
isRegistered[msg.sender] = true;
numRegistered++;
}
function registerMintingContract() public {
require(tx.origin == owner(), "a");
mintingContract = msg.sender;
}
//////////
function storage_totalSupply(address collection) public view returns (uint256) {
require(isRegistered[collection], "r");
return (currentIndex/5) - _burnCounts[collection];
}
function storage_tokenByIndex(
address collection,
uint256 index
) public view returns (uint256) {
require(isRegistered[collection], "r");
require(index < (currentIndex/5), "g");
require(storage_ownerOf(collection, index) != burnAddress, "b");
return index;
}
function storage_tokenOfOwnerByIndex(
address collection,
address owner,
uint256 index
) public view returns (uint256) {
require(isRegistered[collection], "r");
require(index < storage_balanceOf(collection, owner), "b");
uint256 numTokenIds = currentIndex;
uint256 tokenIdsIdx = 0;
address currOwnershipAddr = address(0);
uint256 j;
uint256 offset = contractNumberings[collection];
for (uint256 i = 0; i < numTokenIds/5; i++) {
j = i*5 + offset;
address ownership = _ownerships[j];
if (ownership != address(0)) {
currOwnershipAddr = ownership;
}
if (currOwnershipAddr == owner) {
if (tokenIdsIdx == index) {
return i;
}
tokenIdsIdx++;
}
}
revert("u");
}
function storage_tokenOfOwnerByIndexStepped(
address collection,
address owner,
uint256 index,
uint256 lastToken,
uint256 lastIndex
) public view returns (uint256) {
require(isRegistered[collection], "r");
require(index < storage_balanceOf(collection, owner), "b");
uint256 numTokenIds = currentIndex;
uint256 tokenIdsIdx = ((lastIndex == 0) ? 0 : (lastIndex + 1));
address currOwnershipAddr = address(0);
uint256 j;
uint256 offset = contractNumberings[collection];
for (uint256 i = ((lastToken == 0) ? 0 : (lastToken + 1)); i < numTokenIds/5; i++) {
j = i*5 + offset;
address ownership = _ownerships[j];
if (ownership != address(0)) {
currOwnershipAddr = ownership;
}
if (currOwnershipAddr == owner) {
if (tokenIdsIdx == index) {
return i;
}
tokenIdsIdx++;
}
}
revert("u");
}
function storage_balanceOf(
address collection,
address owner
) public view returns (uint256) {
require(isRegistered[collection], "r");
require(owner != address(0) || owner != burnAddress, "0/burn");
return (_balances[owner] >> (14*contractNumberings[collection]))%(1<<14);
}
function storage_ownerOf(
address collection,
uint256 tokenId
) public view returns (address) {
require(isRegistered[collection], "r");
require(tokenId < currentIndex/5, "t");
uint256 offset = contractNumberings[collection];
for (uint256 i = tokenId*5 + offset; i >= 0; i--) {
address ownership = _ownerships[i];
if (ownership != address(0)) {
return ownership;
}
}
revert("o");
}
function storage_name(address collection) public view returns (string memory) {
require(isRegistered[collection], "r");
return _contractNames[collection];
}
function storage_setName(address collection, string memory newName) public onlyOwner {
require(isRegistered[collection] && canSetNameAndSymbol, "r/cs");
_contractNames[collection] = newName;
}
function storage_symbol(address collection) public view returns (string memory) {
require(isRegistered[collection] && canSetNameAndSymbol, "r/cs");
return _contractSymbols[collection];
}
function storage_setSymbol(address collection, string memory newSymbol) public onlyOwner {
require(isRegistered[collection], "r");
_contractSymbols[collection] = newSymbol;
}
function flipCanSetNameAndSymbol() public onlyOwner {
require(canSetNameAndSymbol, "cs");
canSetNameAndSymbol = false;
}
function storage_setDescription(
address collection,
string memory newDescription
) public onlyOwner {
require(isRegistered[collection], "r");
_contractDescriptions[collection] = newDescription;
}
function storage_setImage(
address collection,
string memory newImage
) public onlyOwner {
require(isRegistered[collection], "r");
_contractImages[collection] = newImage;
}
function storage_approve(address msgSender, address to, uint256 tokenId) public onlyRegistered {
address owner = ERC721StorageLayer.storage_ownerOf(msg.sender, tokenId);
require(to != owner, "o");
require(
msgSender == owner || storage_isApprovedForAll(msg.sender, owner, msgSender),
"a"
);
_approve(to, tokenId*5 + contractNumberings[msg.sender], owner);
}
function storage_getApproved(
address collection,
uint256 tokenId
) public view returns (address) {
require(isRegistered[collection], "r");
uint256 mappedTokenId = tokenId*5 + contractNumberings[collection];
require(_exists(mappedTokenId, tokenId), "a");
return _tokenApprovals[mappedTokenId];
}
function storage_setApprovalForAll(
address msgSender,
address operator,
bool approved
) public onlyRegistered {
require(operator != msgSender, "a");
_operatorApprovals[msg.sender][msgSender][operator] = approved;
ERC721TopLevelProto(msg.sender).emitApprovalForAll(msgSender, operator, approved);
}
function storage_globalSetApprovalForAll(
address operator,
bool approved
) public {
require(operator != msg.sender, "a");
for (uint256 i = 0; i < 5; i++) {
address topLevelContract = registeredContracts[i];
require(!(ERC721TopLevelProto(topLevelContract).operatorRestrictions(operator)), "r");
_operatorApprovals[topLevelContract][msg.sender][operator] = approved;
ERC721TopLevelProto(topLevelContract).emitApprovalForAll(msg.sender, operator, approved);
}
}
function storage_isApprovedForAll(
address collection,
address owner,
address operator
) public view returns (bool) {
require(isRegistered[collection], "r");
return _operatorApprovals[collection][owner][operator];
}
function storage_transferFrom(
address msgSender,
address from,
address to,
uint256 tokenId
) public onlyRegistered {
_transfer(msgSender, from, to, tokenId*5 + contractNumberings[msg.sender]);
ERC721TopLevelProto(msg.sender).emitTransfer(from, to, tokenId);
}
function storage_safeTransferFrom(
address msgSender,
address from,
address to,
uint256 tokenId
) public onlyRegistered {
storage_safeTransferFrom(msgSender, from, to, tokenId, "");
}
function storage_safeTransferFrom(
address msgSender,
address from,
address to,
uint256 tokenId,
bytes memory _data
) public onlyRegistered {
_transfer(msgSender, from, to, tokenId*5 + contractNumberings[msg.sender]);
ERC721TopLevelProto(msg.sender).emitTransfer(from, to, tokenId);
require(
_checkOnERC721Received(msgSender, from, to, tokenId, _data),
"z"
);
}
function storage_burnToken(address msgSender, uint256 tokenId) public onlyRegistered {
_transfer(
msgSender,
storage_ownerOf(msg.sender, tokenId),
burnAddress,
tokenId*5 + contractNumberings[msg.sender]
);
_burnCounts[msg.sender] += 1;
ERC721TopLevelProto(msg.sender).emitTransfer(msgSender, burnAddress, tokenId);
}
function storage_exists(
address collection,
uint256 tokenId
) public view returns (bool) {
require(isRegistered[collection], "r");
return _exists(tokenId*5 + contractNumberings[collection], tokenId);
}
function _exists(uint256 mappedTokenId, uint256 tokenId) private view returns (bool) {
return (mappedTokenId < currentIndex && _ownerships[tokenId] != burnAddress);
}
function storage_safeMint(
address msgSender,
address to,
uint256 quantity
) public onlyMintingContract {
storage_safeMint(msgSender, to, quantity, "");
}
function storage_safeMint(
address msgSender,
address to,
uint256 quantity,
bytes memory _data
) public onlyMintingContract {
storage_mint(to, quantity);
require(_checkOnERC721Received(msgSender, address(0), to, (currentIndex/5) - 1, _data), "z");
}
function storage_mint(address to, uint256 quantity) private {
uint256 startTokenId = currentIndex/5;
require(to != address(0), "0");
// We know if the first token in the batch doesn't exist, the other ones don't as well, because of serial ordering.
require(!_exists(currentIndex, startTokenId), "a");
uint256 balanceQtyAdd = 0;
for (uint256 i = 0; i < 5; i++) {
balanceQtyAdd += (quantity << (i*14));
}
_balances[to] = _balances[to] + balanceQtyAdd;
_ownerships[currentIndex] = to;
uint256 updatedIndex = startTokenId;
for (uint256 i = 0; i < quantity; i++) {
for (uint256 j = 0; j < 5; j++) {
ERC721TopLevelProto(registeredContracts[j]).emitTransfer(address(0), to, updatedIndex);
}
updatedIndex++;
}
currentIndex = updatedIndex*5;
}
function storage_contractURI(address collection) public view virtual returns (string memory) {
require(isRegistered[collection], "r");
return string(
abi.encodePacked(
"data:application/json;utf8,{\"name\":\"", storage_name(collection), "\",",
"\"description\":\"", _contractDescriptions[collection], "\",",
"\"image\":\"", _contractImages[collection], "\",",
"\"external_link\":\"https://crudeborne.wtf\",",
"\"seller_fee_basis_points\":500,\"fee_recipient\":\"",
uint256(uint160(mintingContract)).toHexString(), "\"}"
)
);
}
//////////
function _transfer(
address msgSender,
address from,
address to,
uint256 tokenId
) private {
uint256 collectionTokenId = tokenId/5;
address prevOwnership = storage_ownerOf(msg.sender, collectionTokenId);
bool isApprovedOrOwner = (msgSender == prevOwnership ||
storage_getApproved(msg.sender, collectionTokenId) == msgSender ||
storage_isApprovedForAll(msg.sender, prevOwnership, msgSender));
require(isApprovedOrOwner && prevOwnership == from, "a");
require(prevOwnership == from, "o");
require(to != address(0), "0");
// Clear approvals from the previous owner
_approve(address(0), tokenId, prevOwnership);
_balances[from] -= (1 << (contractNumberings[msg.sender]*14));
_balances[to] += (1 << (contractNumberings[msg.sender]*14));
_ownerships[tokenId] = to;
// If the ownership slot of tokenId+1 is not explicitly set, that means the transfer initiator owns it.
// Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls.
uint256 nextTokenId = tokenId + 1;
if (_ownerships[nextTokenId] == address(0)) {
if (_exists(nextTokenId, nextTokenId/5)) {
_ownerships[nextTokenId] = prevOwnership;
}
}
}
function _approve(
address to,
uint256 tokenId,
address owner
) private {
_tokenApprovals[tokenId] = to;
ERC721TopLevelProto(msg.sender).emitApproval(owner, to, tokenId/5);
}
function _checkOnERC721Received(
address msgSender,
address from,
address to,
uint256 tokenId,
bytes memory _data
) private returns (bool) {
if (to.isContract()) {
try IERC721Receiver(to).onERC721Received(msgSender, from, tokenId, _data) returns (bytes4 retVal) {
return retVal == IERC721Receiver(to).onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert("z");
} else {
assembly {
revert(add(32, reason), mload(reason))
}
}
}
} else {
return true;
}
}
//////////
receive() external payable {
(bool success, ) = payable(mintingContract).call{value: msg.value}("");
require(success, "F");
}
function withdrawTokens(address tokenAddress) external onlyOwner {
IERC20(tokenAddress).transfer(msg.sender, IERC20(tokenAddress).balanceOf(address(this)));
}
}
////////////////////
abstract contract ERC721TopLevelProto {
mapping(address => bool) public operatorRestrictions;
function emitTransfer(address from, address to, uint256 tokenId) public virtual;
function emitApproval(address owner, address approved, uint256 tokenId) public virtual;
function emitApprovalForAll(address owner, address operator, bool approved) public virtual;
}
////////////////////////////////////////