ETH Price: $3,269.29 (+0.25%)
Gas: 2 Gwei

Contract Diff Checker

Contract Name:
MOOX

Contract Source Code:

File 1 of 1 : MOOX

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }
}

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        require(!paused(), "Pausable: paused");
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        require(paused(), "Pausable: not paused");
        _;
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `sender` to `recipient`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
        }
        _balances[to] += amount;

        emit Transfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _totalSupply += amount;
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= amount;

        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (a supervisor) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the supervisor account will be the one that deploys the contract. This
 * can later be changed with {transferSupervisorOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlySupervisor`, which can be applied to your functions to restrict their use to
 * the supervisor.
 */
abstract contract Supervisable is Context {
    address private _supervisor;

    event SupervisorOwnershipTransferred(address indexed previouSupervisor, address indexed newSupervisor);

    /**
     * @dev Initializes the contract setting the deployer as the initial supervisor.
     */
    constructor() {
        _transferSupervisorOwnership(_msgSender());
    }

    /**
     * @dev Returns the address of the current supervisor.
     */
    function supervisor() public view virtual returns (address) {
        return _supervisor;
    }

    /**
     * @dev Throws if called by any account other than the supervisor.
     */
    modifier onlySupervisor() {
        require(supervisor() == _msgSender(), "Supervisable: caller is not the supervisor");
        _;
    }

    /**
     * @dev Transfers supervisor ownership of the contract to a new account (`newSupervisor`).
     * Internal function without access restriction.
     */
    function _transferSupervisorOwnership(address newSupervisor) internal virtual {
        address oldSupervisor = _supervisor;
        _supervisor = newSupervisor;
        emit SupervisorOwnershipTransferred(oldSupervisor, newSupervisor);
    }
}

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract Burnable is Context {
    mapping(address => bool) private _burners;

    event BurnerAdded(address indexed account);
    event BurnerRemoved(address indexed account);

    /**
     * @dev Returns whether the address is burner.
     */
    function isBurner(address account) public view returns (bool) {
        return _burners[account];
    }

    /**
     * @dev Throws if called by any account other than the burner.
     */
    modifier onlyBurner() {
        require(_burners[_msgSender()], "Burnable: caller is not the burner");
        _;
    }

    /**
     * @dev Add burner, only owner can add burner.
     */
    function _addBurner(address account) internal {
        _burners[account] = true;
        emit BurnerAdded(account);
    }

    /**
     * @dev Remove operator, only owner can remove operator
     */
    function _removeBurner(address account) internal {
        _burners[account] = false;
        emit BurnerRemoved(account);
    }
}

/**
 * @dev Contract for freezing mechanism.
 * Owner can add freezed account.
 * Supervisor can remove freezed account.
 */
contract Freezable is Context {
    mapping(address => bool) private _freezes;

    event Freezed(address indexed account);
    event Unfreezed(address indexed account);

    /**
     * @dev Freeze account, only owner can freeze
     */
    function _freeze(address account) internal {
        _freezes[account] = true;
        emit Freezed(account);
    }

    /**
     * @dev Unfreeze account, only supervisor can unfreeze
     */
    function _unfreeze(address account) internal {
        _freezes[account] = false;
        emit Unfreezed(account);
    }

    /**
     * @dev Returns whether the address is freezed.
     */
    function isFreezed(address account) public view returns (bool) {
        return _freezes[account];
    }
}

/**
 * @dev Contract for locking mechanism.
 * Locker can add locked account.
 * Supervisor can remove locked account.
 */
contract Lockable is Context {
    struct TimeLock {
        uint256 amount;
        uint256 expiresAt;
    }

    struct VestingLock {
        uint256 amount;
        uint256 startsAt;
        uint256 period;
        uint256 count;
    }

    mapping(address => bool) private _lockers;
    mapping(address => TimeLock[]) private _timeLocks;
    mapping(address => VestingLock) private _vestingLocks;

    event LockerAdded(address indexed account);
    event LockerRemoved(address indexed account);
    event TimeLocked(address indexed account);
    event TimeUnlocked(address indexed account);
    event VestingLocked(address indexed account);
    event VestingUnlocked(address indexed account);

    /**
     * @dev Throws if called by any account other than the locker.
     */
    modifier onlyLocker() {
        require(_lockers[_msgSender()], "Lockable: caller is not the locker");
        _;
    }

    /**
     * @dev Returns whether the address is locker.
     */
    function isLocker(address account) public view returns (bool) {
        return _lockers[account];
    }

    /**
     * @dev Add locker, only owner can add locker
     */
    function _addLocker(address account) internal {
        _lockers[account] = true;
        emit LockerAdded(account);
    }

    /**
     * @dev Remove locker, only owner can remove locker
     */
    function _removeLocker(address account) internal {
        _lockers[account] = false;
        emit LockerRemoved(account);
    }

    /**
     * @dev Add time lock, only locker can add
     */
    function _addTimeLock(
        address account,
        uint256 amount,
        uint256 expiresAt
    ) internal {
        require(amount > 0, "Time Lock: lock amount is 0");
        require(expiresAt > block.timestamp, "Time Lock: invalid expire date");
        _timeLocks[account].push(TimeLock(amount, expiresAt));
        emit TimeLocked(account);
    }

    /**
     * @dev Remove time lock, only supervisor can remove
     * @param account The address want to remove time lock
     * @param index Time lock index
     */
    function _removeTimeLock(address account, uint8 index) internal {
        require(_timeLocks[account].length > index && index >= 0, "Time Lock: invalid index");

        uint256 len = _timeLocks[account].length;
        if (len - 1 != index) {
            // if it is not last item, swap it
            _timeLocks[account][index] = _timeLocks[account][len - 1];
        }
        _timeLocks[account].pop();
        emit TimeUnlocked(account);
    }

    /**
     * @dev Get time lock array length
     * @param account The address want to know the time lock length.
     * @return time lock length
     */
    function getTimeLockLength(address account) public view returns (uint256) {
        return _timeLocks[account].length;
    }

    /**
     * @dev Get time lock info
     * @param account The address want to know the time lock state.
     * @param index Time lock index
     * @return time lock info
     */
    function getTimeLock(address account, uint8 index) public view returns (uint256, uint256) {
        require(_timeLocks[account].length > index && index >= 0, "Time Lock: invalid index");
        return (_timeLocks[account][index].amount, _timeLocks[account][index].expiresAt);
    }

    /**
     * @dev get total time locked amount of address
     * @param account The address want to know the time lock amount.
     * @return time locked amount
     */
    function getTimeLockedAmount(address account) public view returns (uint256) {
        uint256 timeLockedAmount = 0;

        uint256 len = _timeLocks[account].length;
        for (uint256 i = 0; i < len; i++) {
            if (block.timestamp < _timeLocks[account][i].expiresAt) {
                timeLockedAmount = timeLockedAmount + _timeLocks[account][i].amount;
            }
        }
        return timeLockedAmount;
    }

    /**
     * @dev Add vesting lock, only locker can add
     * @param account vesting lock account.
     * @param amount vesting lock amount.
     * @param startsAt vesting lock release start date.
     * @param period vesting lock period. End date is startsAt + (period - 1) * count
     * @param count vesting lock count. If count is 1, it works like a time lock
     */
    function _addVestingLock(
        address account,
        uint256 amount,
        uint256 startsAt,
        uint256 period,
        uint256 count
    ) internal {
        require(account != address(0), "Vesting Lock: lock from the zero address");
        require(startsAt > block.timestamp, "Vesting Lock: must set after now");
        require(amount > 0, "Vesting Lock: amount is 0");
        require(period > 0, "Vesting Lock: period is 0");
        require(count > 0, "Vesting Lock: count is 0");
        _vestingLocks[account] = VestingLock(amount, startsAt, period, count);
        emit VestingLocked(account);
    }

    /**
     * @dev Remove vesting lock, only supervisor can remove
     * @param account The address want to remove the vesting lock
     */
    function _removeVestingLock(address account) internal {
        _vestingLocks[account] = VestingLock(0, 0, 0, 0);
        emit VestingUnlocked(account);
    }

    /**
     * @dev Get vesting lock info
     * @param account The address want to know the vesting lock state.
     * @return vesting lock info
     */
    function getVestingLock(address account)
        public
        view
        returns (
            uint256,
            uint256,
            uint256,
            uint256
        )
    {
        return (_vestingLocks[account].amount, _vestingLocks[account].startsAt, _vestingLocks[account].period, _vestingLocks[account].count);
    }

    /**
     * @dev Get total vesting locked amount of address, locked amount will be released by 100%/months
     * If months is 5, locked amount released 20% per 1 month.
     * @param account The address want to know the vesting lock amount.
     * @return vesting locked amount
     */
    function getVestingLockedAmount(address account) public view returns (uint256) {
        uint256 vestingLockedAmount = 0;
        uint256 amount = _vestingLocks[account].amount;
        if (amount > 0) {
            uint256 startsAt = _vestingLocks[account].startsAt;
            uint256 period = _vestingLocks[account].period;
            uint256 count = _vestingLocks[account].count;
            uint256 expiresAt = startsAt + period * (count - 1);
            uint256 timestamp = block.timestamp;
            if (timestamp < startsAt) {
                vestingLockedAmount = amount;
            } else if (timestamp < expiresAt) {
                vestingLockedAmount = (amount * ((expiresAt - timestamp) / period + 1)) / count;
            }
        }
        return vestingLockedAmount;
    }

    /**
     * @dev Get all locked amount
     * @param account The address want to know the all locked amount
     * @return all locked amount
     */
    function getAllLockedAmount(address account) public view returns (uint256) {
        return getTimeLockedAmount(account) + getVestingLockedAmount(account);
    }
}

/**
 * @dev Contract for MOOXMOO Token
 */
contract MOOX is Pausable, Ownable, Supervisable, Burnable, Freezable, Lockable, ERC20 {
    uint256 private constant _initialSupply = 1_000_000_000e18;

    constructor() ERC20("MOOXMOO", "MOOX") {
        _mint(_msgSender(), _initialSupply);
    }

    /**
     * @dev Recover ERC20 coin in contract address.
     * @param tokenAddress The token contract address
     * @param tokenAmount Number of tokens to be sent
     */
    function recoverERC20(address tokenAddress, uint256 tokenAmount) public onlyOwner {
        IERC20(tokenAddress).transfer(owner(), tokenAmount);
    }

    /**
     * @dev lock and pause before transfer token
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal override(ERC20) {
        super._beforeTokenTransfer(from, to, amount);

        require(!isFreezed(from), "Freezable: token transfer from freezed account");
        require(!isFreezed(to), "Freezable: token transfer to freezed account");
        require(!isFreezed(_msgSender()), "Freezable: token transfer called from freezed account");
        require(!paused(), "Pausable: token transfer while paused");
        require(balanceOf(from) - getAllLockedAmount(from) >= amount, "Lockable: insufficient transfer amount");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public onlyOwner whenNotPaused {
        _transferOwnership(address(0));
    }

    /**
     * @dev only supervisor can renounce supervisor ownership
     */
    function renounceSupervisorOwnership() public onlySupervisor whenNotPaused {
        _transferSupervisorOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public onlyOwner whenNotPaused {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev only supervisor can transfer supervisor ownership
     */
    function transferSupervisorOwnership(address newSupervisor) public onlySupervisor whenNotPaused {
        require(newSupervisor != address(0), "Supervisable: new supervisor is the zero address");
        _transferSupervisorOwnership(newSupervisor);
    }

    /**
     * @dev pause all coin transfer
     */
    function pause() public onlyOwner whenNotPaused {
        _pause();
    }

    /**
     * @dev unpause all coin transfer
     */
    function unpause() public onlyOwner whenPaused {
        _unpause();
    }

    /**
     * @dev only owner can lock account
     */
    function freeze(address account) public onlyOwner whenNotPaused {
        _freeze(account);
    }

    /**
     * @dev only supervisor can unfreeze account
     */
    function unfreeze(address account) public onlySupervisor whenNotPaused {
        _unfreeze(account);
    }

    /**
     * @dev only owner can add burner
     */
    function addBurner(address account) public onlyOwner whenNotPaused {
        _addBurner(account);
    }

    /**
     * @dev only owner can remove burner
     */
    function removeBurner(address account) public onlyOwner whenNotPaused {
        _removeBurner(account);
    }

    /**
     * @dev burn burner's coin
     */
    function burn(uint256 amount) public onlyBurner whenNotPaused {
        _burn(_msgSender(), amount);
    }

    /**
     * @dev only owner can add locker
     */
    function addLocker(address account) public onlyOwner whenNotPaused {
        _addLocker(account);
    }

    /**
     * @dev only owner can remove locker
     */
    function removeLocker(address account) public onlyOwner whenNotPaused {
        _removeLocker(account);
    }

    /**
     * @dev only locker can add time lock
     */
    function addTimeLock(
        address account,
        uint256 amount,
        uint256 expiresAt
    ) public onlyLocker whenNotPaused {
        _addTimeLock(account, amount, expiresAt);
    }

    /**
     * @dev only supervisor can remove time lock
     */
    function removeTimeLock(address account, uint8 index) public onlySupervisor whenNotPaused {
        _removeTimeLock(account, index);
    }

    /**
     * @dev only locker can add vesting lock
     */
    function addVestingLock(
        address account,
        uint256 startsAt,
        uint256 period,
        uint256 count
    ) public onlyLocker whenNotPaused {
        _addVestingLock(account, balanceOf(account), startsAt, period, count);
    }

    /**
     * @dev only supervisor can remove vesting lock
     */
    function removeVestingLock(address account) public onlySupervisor whenNotPaused {
        _removeVestingLock(account);
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):