Contract Source Code:
//SPDX-License-Identifier: MIT
/**
DaVinci is a revolutionary web3 collaborative generative AI art experiment comprised of
8,888 liquidity-backed NFT artworks, created by the community of holders in collaboration with AI.
https://davinci.wtf
https://t.me/DaVinci404
https://x.com/DaVinci_WTF
████████▄ ▄████████ ▄█ █▄ ▄█ ███▄▄▄▄ ▄████████ ▄█
███ ▀███ ███ ███ ███ ███ ███ ███▀▀▀██▄ ███ ███ ███
███ ███ ███ ███ ███ ███ ███▌ ███ ███ ███ █▀ ███▌
███ ███ ███ ███ ███ ███ ███▌ ███ ███ ███ ███▌
███ ███ ▀███████████ ███ ███ ███▌ ███ ███ ███ ███▌
███ ███ ███ ███ ███ ███ ███ ███ ███ ███ █▄ ███
███ ▄███ ███ ███ ███ ███ ███ ███ ███ ███ ███ ███
████████▀ ███ █▀ ▀██████▀ █▀ ▀█ █▀ ████████▀ █▀
*/
pragma solidity 0.8.24;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import {ERC404} from "./ERC404.sol";
import {ERC404UniswapV3Exempt} from "./ERC404UniswapV3Exempt.sol";
import {LibDaVinci} from "./LibDaVinci.sol";
import {SafeTransferLib} from "https://github.com/Vectorized/solady/blob/main/src/utils/SafeTransferLib.sol";
/**
* @title DaVinci
* @notice An ERC404 token
* @author
*/
contract DaVinci is Ownable, ERC404, ERC404UniswapV3Exempt {
// @dev The maximum total of ERC20 tokens that can exist.
// @dev Each ERC721 is an underlying definition of 10 ** 18 ERC20 tokens.
uint256 public constant MAX_TOTAL_SUPPLY = 8888 * 10 ** 18;
// @dev Once trading begins, trading cannot be stopped.
bool public tradingStarted;
address public constant MARKETING_ADDRESS = 0x7f6F2a5DDa81783b936dE8c33498c44d160b3503;
string public baseTokenURI;
address public constant uniswapSwapRouter_ = 0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45;
address public constant uniswapV3NonfungiblePositionManager_ = 0xC36442b4a4522E871399CD717aBDD847Ab11FE88;
// CONSTRUCTOR
constructor()
ERC404("DaVinci", "WTF", 18)
Ownable(msg.sender)
ERC404UniswapV3Exempt(
uniswapSwapRouter_,
uniswapV3NonfungiblePositionManager_
)
{
_setERC721TransferExempt(address(this), true);
_setERC721TransferExempt(msg.sender, true);
_setERC721TransferExempt(MARKETING_ADDRESS, true);
_mintERC20(msg.sender, MAX_TOTAL_SUPPLY);
}
/**
* @dev Modifier to check if trading is ready.
* @param _from The address to transfer from.
*/
modifier onlyTrading(address _from) {
// @dev Check if trading has been enabled yet.
if (tradingStarted == false) {
// @dev Exempt mints as well as transfers from the owner.
if (_from != address(0) && _from != owner()) {
revert LibDaVinci.TokenLoading();
}
}
_;
}
function setTokenURI(string memory _tokenURI) external onlyOwner {
baseTokenURI = _tokenURI;
}
/**
* @notice Allow the owner to set the trading status
*/
function setTradingStarted() external onlyOwner {
tradingStarted = true;
}
/**
* @notice Allow the owner to withdraw the contract balance.
*/
function withdraw() external onlyOwner {
SafeTransferLib.safeTransferETH(owner(), address(this).balance);
}
/**
* @dev Recovers a `tokenAmount` of the ERC20 `tokenAddress` locked into this contract
* and sends them to the `tokenReceiver` address.
*
* @param tokenAddress The contract address of the token to recover.
* @param tokenReceiver The address that will receive the recovered tokens.
* @param tokenAmount Number of tokens to be recovered.
*/
function recoverERC20(
address tokenAddress,
address tokenReceiver,
uint256 tokenAmount
) external onlyOwner {
IERC20(tokenAddress).transfer(tokenReceiver, tokenAmount);
}
/**
* @dev Recovers the `tokenId` of the ERC721 `tokenAddress` locked into this contract
* and sends it to the `tokenReceiver` address.
*
* @param tokenAddress The contract address of the token to recover.
* @param tokenReceiver The address that will receive the recovered token.
* @param tokenId The identifier for the NFT to be recovered.
* @param data Additional data with no specified format.
*/
function recoverERC721(
address tokenAddress,
address tokenReceiver,
uint256 tokenId,
bytes memory data
) external onlyOwner {
IERC721(tokenAddress).safeTransferFrom(
address(this),
tokenReceiver,
tokenId,
data
);
}
function tokenURI(uint256 _tokenId)
public
view
override
returns (string memory)
{
if (_getOwnerOf(_tokenId) == address(0)) {
revert LibDaVinci.TokenInvalid();
}
if (_tokenId > ID_ENCODING_PREFIX) {
// if greater than the ID, get the unencoded ID
_tokenId -= ID_ENCODING_PREFIX;
}
string memory currentId = Strings.toString(_tokenId);
if (bytes(baseTokenURI).length > 0) {
return string.concat(baseTokenURI, currentId);
}
return string.concat(
"data:application/json;utf8,",
'{"name": "DaVinci #',
currentId,
'",',
'"description": "A collection of 8,888 enabled by ERC404, an experimental token standard.",',
'"image": "https://davinci.wtf/nft/unrevealed.webp"}'
);
}
/**
* @notice ERC20 trading prevention until the time is ready.
* @param _from The address to transfer from.
* @param _to The address to transfer to.
* @param _value The amount to transfer.
*/
function _transferERC20(
address _from,
address _to,
uint256 _value
) internal override onlyTrading(_from) {
super._transferERC20(_from, _to, _value);
}
/**
* @notice ERC721 trading prevention until the time is ready.
* @dev Realistically this should never be hit, but it is here just
* to handle edge-cases where the ERC721 is being transferred
* before the ERC20 is ready to be traded.
* @param _from The address to transfer from.
* @param _to The address to transfer to.
* @param _id The id to transfer.
*/
function _transferERC721(
address _from,
address _to,
uint256 _id
) internal override onlyTrading(_from) {
super._transferERC721(_from, _to, _id);
}
function setERC721TransferExempt(address account_, bool value_)
external
onlyOwner
{
_setERC721TransferExempt(account_, value_);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
///
/// @dev Note:
/// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection.
/// - For ERC20s, this implementation won't check that a token has code,
/// responsibility is delegated to the caller.
library SafeTransferLib {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The ETH transfer has failed.
error ETHTransferFailed();
/// @dev The ERC20 `transferFrom` has failed.
error TransferFromFailed();
/// @dev The ERC20 `transfer` has failed.
error TransferFailed();
/// @dev The ERC20 `approve` has failed.
error ApproveFailed();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes.
uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300;
/// @dev Suggested gas stipend for contract receiving ETH to perform a few
/// storage reads and writes, but low enough to prevent griefing.
uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ETH OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants.
//
// The regular variants:
// - Forwards all remaining gas to the target.
// - Reverts if the target reverts.
// - Reverts if the current contract has insufficient balance.
//
// The force variants:
// - Forwards with an optional gas stipend
// (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases).
// - If the target reverts, or if the gas stipend is exhausted,
// creates a temporary contract to force send the ETH via `SELFDESTRUCT`.
// Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758.
// - Reverts if the current contract has insufficient balance.
//
// The try variants:
// - Forwards with a mandatory gas stipend.
// - Instead of reverting, returns whether the transfer succeeded.
/// @dev Sends `amount` (in wei) ETH to `to`.
function safeTransferETH(address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Sends all the ETH in the current contract to `to`.
function safeTransferAllETH(address to) internal {
/// @solidity memory-safe-assembly
assembly {
// Transfer all the ETH and check if it succeeded or not.
if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
/// @solidity memory-safe-assembly
assembly {
if lt(selfbalance(), amount) {
mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
revert(0x1c, 0x04)
}
if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
}
}
}
/// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`.
function forceSafeTransferAllETH(address to, uint256 gasStipend) internal {
/// @solidity memory-safe-assembly
assembly {
if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
}
}
}
/// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`.
function forceSafeTransferETH(address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
if lt(selfbalance(), amount) {
mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
revert(0x1c, 0x04)
}
if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
}
}
}
/// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`.
function forceSafeTransferAllETH(address to) internal {
/// @solidity memory-safe-assembly
assembly {
// forgefmt: disable-next-item
if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
}
}
}
/// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
internal
returns (bool success)
{
/// @solidity memory-safe-assembly
assembly {
success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)
}
}
/// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`.
function trySafeTransferAllETH(address to, uint256 gasStipend)
internal
returns (bool success)
{
/// @solidity memory-safe-assembly
assembly {
success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC20 OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
/// Reverts upon failure.
///
/// The `from` account must have at least `amount` approved for
/// the current contract to manage.
function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x60, amount) // Store the `amount` argument.
mstore(0x40, to) // Store the `to` argument.
mstore(0x2c, shl(96, from)) // Store the `from` argument.
mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
// Perform the transfer, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
)
) {
mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot to zero.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Sends all of ERC20 `token` from `from` to `to`.
/// Reverts upon failure.
///
/// The `from` account must have their entire balance approved for
/// the current contract to manage.
function safeTransferAllFrom(address token, address from, address to)
internal
returns (uint256 amount)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x40, to) // Store the `to` argument.
mstore(0x2c, shl(96, from)) // Store the `from` argument.
mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
// Read the balance, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
gt(returndatasize(), 0x1f), // At least 32 bytes returned.
staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
)
) {
mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
revert(0x1c, 0x04)
}
mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`.
amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it.
// Perform the transfer, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
)
) {
mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot to zero.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
/// Reverts upon failure.
function safeTransfer(address token, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, to) // Store the `to` argument.
mstore(0x34, amount) // Store the `amount` argument.
mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
// Perform the transfer, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
revert(0x1c, 0x04)
}
mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
}
}
/// @dev Sends all of ERC20 `token` from the current contract to `to`.
/// Reverts upon failure.
function safeTransferAll(address token, address to) internal returns (uint256 amount) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
mstore(0x20, address()) // Store the address of the current contract.
// Read the balance, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
gt(returndatasize(), 0x1f), // At least 32 bytes returned.
staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
)
) {
mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
revert(0x1c, 0x04)
}
mstore(0x14, to) // Store the `to` argument.
amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it.
mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
// Perform the transfer, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
revert(0x1c, 0x04)
}
mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
}
}
/// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
/// Reverts upon failure.
function safeApprove(address token, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, to) // Store the `to` argument.
mstore(0x34, amount) // Store the `amount` argument.
mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
// Perform the approval, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
revert(0x1c, 0x04)
}
mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
}
}
/// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
/// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
/// then retries the approval again (some tokens, e.g. USDT, requires this).
/// Reverts upon failure.
function safeApproveWithRetry(address token, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, to) // Store the `to` argument.
mstore(0x34, amount) // Store the `amount` argument.
mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
// Perform the approval, retrying upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x34, 0) // Store 0 for the `amount`.
mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval.
mstore(0x34, amount) // Store back the original `amount`.
// Retry the approval, reverting upon failure.
if iszero(
and(
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
revert(0x1c, 0x04)
}
}
mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
}
}
/// @dev Returns the amount of ERC20 `token` owned by `account`.
/// Returns zero if the `token` does not exist.
function balanceOf(address token, address account) internal view returns (uint256 amount) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, account) // Store the `account` argument.
mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
amount :=
mul(
mload(0x20),
and( // The arguments of `and` are evaluated from right to left.
gt(returndatasize(), 0x1f), // At least 32 bytes returned.
staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
)
)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
library LibDaVinci {
// @dev The token does not exist.
error TokenInvalid();
// @dev The token is not ready to be traded.
error TokenLoading();
}
//SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
import {ERC404} from "./ERC404.sol";
import {IPeripheryImmutableState} from "@uniswap/v3-periphery/contracts/interfaces/IPeripheryImmutableState.sol";
abstract contract ERC404UniswapV3Exempt is ERC404 {
error ERC404UniswapV3ExemptFactoryMismatch();
error ERC404UniswapV3ExemptWETH9Mismatch();
constructor(
address uniswapV3Router_,
address uniswapV3NonfungiblePositionManager_
) {
IPeripheryImmutableState uniswapV3Router = IPeripheryImmutableState(
uniswapV3Router_
);
// Set the Uniswap v3 swap router as exempt.
_setERC721TransferExempt(uniswapV3Router_, true);
IPeripheryImmutableState uniswapV3NonfungiblePositionManager = IPeripheryImmutableState(
uniswapV3NonfungiblePositionManager_
);
// Set the Uniswap v3 nonfungible position manager as exempt.
_setERC721TransferExempt(uniswapV3NonfungiblePositionManager_, true);
// Require the Uniswap v3 factory from the position manager and the swap router to be the same.
if (uniswapV3Router.factory() != uniswapV3NonfungiblePositionManager.factory()) {
revert ERC404UniswapV3ExemptFactoryMismatch();
}
// Require the Uniswap v3 WETH9 from the position manager and the swap router to be the same.
if (uniswapV3Router.WETH9() != uniswapV3NonfungiblePositionManager.WETH9()) {
revert ERC404UniswapV3ExemptWETH9Mismatch();
}
uint24[4] memory feeTiers = [
uint24(100),
uint24(500),
uint24(3_000),
uint24(10_000)
];
// Determine the Uniswap v3 pair address for this token.
for (uint256 i = 0; i < feeTiers.length; ) {
address uniswapV3Pair = _getUniswapV3Pair(
uniswapV3Router.factory(),
uniswapV3Router.WETH9(),
feeTiers[i]
);
// Set the Uniswap v3 pair as exempt.
_setERC721TransferExempt(uniswapV3Pair, true);
unchecked {
++i;
}
}
}
function _getUniswapV3Pair(
address uniswapV3Factory_,
address weth_,
uint24 fee_
) private view returns (address) {
address thisAddress = address(this);
(address token0, address token1) = thisAddress < weth_
? (thisAddress, weth_)
: (weth_, thisAddress);
return
address(
uint160(
uint256(
keccak256(
abi.encodePacked(
hex"ff",
uniswapV3Factory_,
keccak256(abi.encode(token0, token1, fee_)),
hex"e34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54"
)
)
)
)
);
}
}
//SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
import {IERC721Receiver} from "@openzeppelin/contracts/interfaces/IERC721Receiver.sol";
import {IERC721} from "@openzeppelin/contracts/interfaces/IERC721.sol";
import {IERC721Metadata} from "@openzeppelin/contracts/interfaces/IERC721Metadata.sol";
import {IERC165} from "@openzeppelin/contracts/interfaces/IERC165.sol";
import {IERC404} from "./interfaces/IERC404.sol";
import {PackedDoubleEndedQueue} from "./PackedDoubleEndedQueue.sol";
import {ERC721Events} from "./lib/ERC721Events.sol";
import {ERC20Events} from "./lib/ERC20Events.sol";
abstract contract ERC404 is IERC404 {
event ERC721Exempt(address indexed exemptedAddress);
event ERC721Unexempt(address indexed unexemptedAddress);
using PackedDoubleEndedQueue for PackedDoubleEndedQueue.Uint16Deque;
/// @dev The queue of ERC-721 tokens stored in the contract.
PackedDoubleEndedQueue.Uint16Deque private _storedERC721Ids;
/// @dev Token name
string public name;
/// @dev Token symbol
string public symbol;
/// @dev Decimals for ERC-20 representation
uint8 public immutable decimals;
/// @dev Units for ERC-20 representation
uint256 public immutable units;
/// @dev Total supply in ERC-20 representation
uint256 public totalSupply;
/// @dev Current mint counter which also represents the highest
/// minted id, monotonically increasing to ensure accurate ownership
uint256 public minted;
/// @dev Initial chain id for EIP-2612 support
uint256 internal immutable _INITIAL_CHAIN_ID;
/// @dev Initial domain separator for EIP-2612 support
bytes32 internal immutable _INITIAL_DOMAIN_SEPARATOR;
/// @dev Balance of user in ERC-20 representation
mapping(address => uint256) public balanceOf;
/// @dev Allowance of user in ERC-20 representation
mapping(address => mapping(address => uint256)) public allowance;
/// @dev Approval in ERC-721 representaion
mapping(uint256 => address) public getApproved;
/// @dev Approval for all in ERC-721 representation
mapping(address => mapping(address => bool)) public isApprovedForAll;
/// @dev Packed representation of ownerOf and owned indices
mapping(uint256 => uint256) internal _ownedData;
/// @dev Array of owned ids in ERC-721 representation
mapping(address => uint16[]) internal _owned;
/// @dev Addresses that are exempt from ERC-721 transfer, typically for gas savings (pairs, routers, etc)
mapping(address => bool) internal _erc721TransferExempt;
/// @dev EIP-2612 nonces
mapping(address => uint256) public nonces;
/// @dev Address bitmask for packed ownership data
uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
/// @dev Owned index bitmask for packed ownership data
uint256 private constant _BITMASK_OWNED_INDEX = ((1 << 96) - 1) << 160;
/// @dev Constant for token id encoding
uint256 public constant ID_ENCODING_PREFIX = 1 << 255;
constructor(string memory name_, string memory symbol_, uint8 decimals_) {
name = name_;
symbol = symbol_;
if (decimals_ < 18) {
revert DecimalsTooLow();
}
decimals = decimals_;
units = 10 ** decimals;
// EIP-2612 initialization
_INITIAL_CHAIN_ID = block.chainid;
_INITIAL_DOMAIN_SEPARATOR = _computeDomainSeparator();
}
/// @notice Function to find owner of a given ERC-721 token
function ownerOf(
uint256 id_
) public view virtual returns (address erc721Owner) {
erc721Owner = _getOwnerOf(id_);
if (!_isValidTokenId(id_)) {
revert InvalidTokenId();
}
if (erc721Owner == address(0)) {
revert NotFound();
}
}
function owned(
address owner_
) public view virtual returns (uint256[] memory) {
uint256[] memory ownedAsU256 = new uint256[](_owned[owner_].length);
for (uint256 i = 0; i < _owned[owner_].length; ) {
ownedAsU256[i] = ID_ENCODING_PREFIX + _owned[owner_][i];
unchecked {
++i;
}
}
return ownedAsU256;
}
function erc721BalanceOf(
address owner_
) public view virtual returns (uint256) {
return _owned[owner_].length;
}
function erc20BalanceOf(
address owner_
) public view virtual returns (uint256) {
return balanceOf[owner_];
}
function erc20TotalSupply() public view virtual returns (uint256) {
return totalSupply;
}
function erc721TotalSupply() public view virtual returns (uint256) {
return minted;
}
function getERC721QueueLength() public view virtual returns (uint256) {
return _storedERC721Ids.length();
}
function getERC721TokensInQueue(
uint256 start_,
uint256 count_
) public view virtual returns (uint256[] memory) {
uint256[] memory tokensInQueue = new uint256[](count_);
for (uint256 i = start_; i < start_ + count_; ) {
tokensInQueue[i - start_] =
ID_ENCODING_PREFIX +
_storedERC721Ids.at(i);
unchecked {
++i;
}
}
return tokensInQueue;
}
/// @notice tokenURI must be implemented by child contract
function tokenURI(uint256 id_) public view virtual returns (string memory);
/// @dev This function assumes the operator is attempting to approve
/// an ERC-721 if valueOrId_ is a possibly valid ERC-721 token id.
/// Unlike setApprovalForAll, spender_ must be allowed to be 0x0 so
/// that approval can be revoked.
function approve(
address spender_,
uint256 valueOrId_
) public virtual returns (bool) {
if (_isValidTokenId(valueOrId_)) {
erc721Approve(spender_, valueOrId_);
} else {
return erc20Approve(spender_, valueOrId_);
}
return true;
}
function erc721Approve(address spender_, uint256 id_) public virtual {
// Intention is to approve as ERC-721 token (id).
address erc721Owner = _getOwnerOf(id_);
if (
msg.sender != erc721Owner &&
!isApprovedForAll[erc721Owner][msg.sender]
) {
revert Unauthorized();
}
getApproved[id_] = spender_;
emit ERC721Approval(erc721Owner, spender_, id_);
emit ERC721Events.Approval(erc721Owner, spender_, id_);
}
/// @dev Providing type(uint256).max for approval value results in an
/// unlimited approval that is not deducted from on transfers.
function erc20Approve(
address spender_,
uint256 value_
) public virtual returns (bool) {
// Prevent granting 0x0 an ERC-20 allowance.
if (spender_ == address(0)) {
revert InvalidSpender();
}
// Intention is to approve as ERC-20 token (value).
allowance[msg.sender][spender_] = value_;
emit ERC20Approval(msg.sender, spender_, value_);
emit ERC20Events.Approval(msg.sender, spender_, value_);
return true;
}
/// @notice Function for ERC-721 approvals
function setApprovalForAll(
address operator_,
bool approved_
) public virtual {
// Prevent approvals to 0x0.
if (operator_ == address(0)) {
revert InvalidOperator();
}
isApprovedForAll[msg.sender][operator_] = approved_;
emit ERC721Events.ApprovalForAll(msg.sender, operator_, approved_);
}
/// @notice Function for mixed transfers from an operator that may be different than 'from'.
/// @dev This function assumes the operator is attempting to transfer an ERC-721
/// if valueOrId is a possible valid token id.
function transferFrom(
address from_,
address to_,
uint256 valueOrId_
) public virtual returns (bool) {
if (_isValidTokenId(valueOrId_)) {
erc721TransferFrom(from_, to_, valueOrId_);
} else {
// Intention is to transfer as ERC-20 token (value).
return erc20TransferFrom(from_, to_, valueOrId_);
}
return true;
}
/// @notice Function for ERC-721 transfers from.
/// @dev This function is recommended for ERC721 transfers.
function erc721TransferFrom(
address from_,
address to_,
uint256 id_
) public virtual {
// Prevent minting tokens from 0x0.
if (from_ == address(0)) {
revert InvalidSender();
}
// Prevent burning tokens to 0x0.
if (to_ == address(0)) {
revert InvalidRecipient();
}
if (from_ != _getOwnerOf(id_)) {
revert Unauthorized();
}
// Check that the operator is either the sender or approved for the transfer.
if (
msg.sender != from_ &&
!isApprovedForAll[from_][msg.sender] &&
msg.sender != getApproved[id_]
) {
revert Unauthorized();
}
// We only need to check ERC-721 transfer exempt status for the recipient
// since the sender being ERC-721 transfer exempt means they have already
// had their ERC-721s stripped away during the rebalancing process.
if (erc721TransferExempt(to_)) {
revert RecipientIsERC721TransferExempt();
}
// Transfer 1 * units ERC-20 and 1 ERC-721 token.
// ERC-721 transfer exemptions handled above. Can't make it to this point if either is transfer exempt.
_transferERC20(from_, to_, units);
_transferERC721(from_, to_, id_);
}
/// @notice Function for ERC-20 transfers from.
/// @dev This function is recommended for ERC20 transfers
function erc20TransferFrom(
address from_,
address to_,
uint256 value_
) public virtual returns (bool) {
// Prevent minting tokens from 0x0.
if (from_ == address(0)) {
revert InvalidSender();
}
// Prevent burning tokens to 0x0.
if (to_ == address(0)) {
revert InvalidRecipient();
}
// Intention is to transfer as ERC-20 token (value).
uint256 allowed = allowance[from_][msg.sender];
// Check that the operator has sufficient allowance.
if (allowed != type(uint256).max) {
allowance[from_][msg.sender] = allowed - value_;
}
// Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
// Handles ERC-721 exemptions internally.
return _transferERC20WithERC721(from_, to_, value_);
}
/// @notice Function for ERC-20 transfers.
/// @dev This function assumes the operator is attempting to transfer as ERC-20
/// given this function is only supported on the ERC-20 interface.
/// Treats even small amounts that are valid ERC-721 ids as ERC-20s.
function transfer(
address to_,
uint256 value_
) public virtual returns (bool) {
// Prevent burning tokens to 0x0.
if (to_ == address(0)) {
revert InvalidRecipient();
}
// Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
// Handles ERC-721 exemptions internally.
return _transferERC20WithERC721(msg.sender, to_, value_);
}
/// @notice Function for ERC-721 transfers with contract support.
/// This function only supports moving valid ERC-721 ids, as it does not exist on the ERC-20
/// spec and will revert otherwise.
function safeTransferFrom(
address from_,
address to_,
uint256 id_
) public virtual {
safeTransferFrom(from_, to_, id_, "");
}
/// @notice Function for ERC-721 transfers with contract support and callback data.
/// This function only supports moving valid ERC-721 ids, as it does not exist on the
/// ERC-20 spec and will revert otherwise.
function safeTransferFrom(
address from_,
address to_,
uint256 id_,
bytes memory data_
) public virtual {
if (!_isValidTokenId(id_)) {
revert InvalidTokenId();
}
transferFrom(from_, to_, id_);
if (
to_.code.length != 0 &&
IERC721Receiver(to_).onERC721Received(
msg.sender,
from_,
id_,
data_
) !=
IERC721Receiver.onERC721Received.selector
) {
revert UnsafeRecipient();
}
}
/// @notice Function for EIP-2612 permits (ERC-20 only)
/// @dev Providing type(uint256).max for permit value results in an
/// unlimited approval that is not deducted from on transfers.
function permit(
address owner_,
address spender_,
uint256 value_,
uint256 deadline_,
uint8 v_,
bytes32 r_,
bytes32 s_
) public virtual {
if (deadline_ < block.timestamp) {
revert PermitDeadlineExpired();
}
// permit cannot be used for ERC-721 token approvals, so ensure
// the value does not fall within the valid range of ERC-721 token ids.
if (_isValidTokenId(value_)) {
revert InvalidApproval();
}
if (spender_ == address(0)) {
revert InvalidSpender();
}
unchecked {
address recoveredAddress = ecrecover(
keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR(),
keccak256(
abi.encode(
keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
),
owner_,
spender_,
value_,
nonces[owner_]++,
deadline_
)
)
)
),
v_,
r_,
s_
);
if (recoveredAddress == address(0) || recoveredAddress != owner_) {
revert InvalidSigner();
}
allowance[recoveredAddress][spender_] = value_;
}
emit ERC20Approval(owner_, spender_, value_);
emit ERC20Events.Approval(owner_, spender_, value_);
}
/// @notice Returns domain initial domain separator, or recomputes if chain id is not equal to initial chain id
function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
return
block.chainid == _INITIAL_CHAIN_ID
? _INITIAL_DOMAIN_SEPARATOR
: _computeDomainSeparator();
}
function supportsInterface(
bytes4 interfaceId
) public view virtual returns (bool) {
return
interfaceId == type(IERC404).interfaceId ||
interfaceId == type(IERC165).interfaceId;
}
/// @notice Function for self-exemption
function setSelfERC721TransferExempt(bool state_) public virtual {
_setERC721TransferExempt(msg.sender, state_);
}
/// @notice Function to check if address is transfer exempt
function erc721TransferExempt(
address target_
) public view virtual returns (bool) {
return target_ == address(0) || _erc721TransferExempt[target_];
}
/// @notice For a token token id to be considered valid, it just needs
/// to fall within the range of possible token ids, it does not
/// necessarily have to be minted yet.
function _isValidTokenId(uint256 id_) internal pure returns (bool) {
return id_ > ID_ENCODING_PREFIX && id_ != type(uint256).max;
}
/// @notice Internal function to compute domain separator for EIP-2612 permits
function _computeDomainSeparator() internal view virtual returns (bytes32) {
return
keccak256(
abi.encode(
keccak256(
"EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
),
keccak256(bytes(name)),
keccak256("1"),
block.chainid,
address(this)
)
);
}
/// @notice This is the lowest level ERC-20 transfer function, which
/// should be used for both normal ERC-20 transfers as well as minting.
/// Note that this function allows transfers to and from 0x0.
function _transferERC20(
address from_,
address to_,
uint256 value_
) internal virtual {
// Minting is a special case for which we should not check the balance of
// the sender, and we should increase the total supply.
if (from_ == address(0)) {
totalSupply += value_;
} else {
// Deduct value from sender's balance.
balanceOf[from_] -= value_;
}
// Update the recipient's balance.
// Can be unchecked because on mint, adding to totalSupply is checked, and on transfer balance deduction is checked.
unchecked {
balanceOf[to_] += value_;
}
emit ERC20Transfer(from_, to_, value_);
emit ERC20Events.Transfer(from_, to_, value_);
}
/// @notice Consolidated record keeping function for transferring ERC-721s.
/// @dev Assign the token to the new owner, and remove from the old owner.
/// Note that this function allows transfers to and from 0x0.
/// Does not handle ERC-721 exemptions.
function _transferERC721(
address from_,
address to_,
uint256 id_
) internal virtual {
// If this is not a mint, handle record keeping for transfer from previous owner.
if (from_ != address(0)) {
// On transfer of an NFT, any previous approval is reset.
delete getApproved[id_];
uint256 updatedId = ID_ENCODING_PREFIX +
_owned[from_][_owned[from_].length - 1];
if (updatedId != id_) {
uint256 updatedIndex = _getOwnedIndex(id_);
// update _owned for sender
_owned[from_][updatedIndex] = uint16(updatedId);
// update index for the moved id
_setOwnedIndex(updatedId, updatedIndex);
}
// pop
_owned[from_].pop();
}
// Check if this is a burn.
if (to_ != address(0)) {
// If not a burn, update the owner of the token to the new owner.
// Update owner of the token to the new owner.
_setOwnerOf(id_, to_);
// Push token onto the new owner's stack.
_owned[to_].push(uint16(id_));
// Update index for new owner's stack.
_setOwnedIndex(id_, _owned[to_].length - 1);
} else {
// If this is a burn, reset the owner of the token to 0x0 by deleting the token from _ownedData.
delete _ownedData[id_];
}
emit ERC721Transfer(from_, to_, id_);
emit ERC721Events.Transfer(from_, to_, id_);
}
/// @notice Internal function for ERC-20 transfers. Also handles any ERC-721 transfers that may be required.
// Handles ERC-721 exemptions.
function _transferERC20WithERC721(
address from_,
address to_,
uint256 value_
) internal virtual returns (bool) {
uint256 erc20BalanceOfSenderBefore = erc20BalanceOf(from_);
uint256 erc20BalanceOfReceiverBefore = erc20BalanceOf(to_);
_transferERC20(from_, to_, value_);
// Preload for gas savings on branches
bool isFromERC721TransferExempt = erc721TransferExempt(from_);
bool isToERC721TransferExempt = erc721TransferExempt(to_);
// Skip _withdrawAndStoreERC721 and/or _retrieveOrMintERC721 for ERC-721 transfer exempt addresses
// 1) to save gas
// 2) because ERC-721 transfer exempt addresses won't always have/need ERC-721s corresponding to their ERC20s.
if (isFromERC721TransferExempt && isToERC721TransferExempt) {
// Case 1) Both sender and recipient are ERC-721 transfer exempt. No ERC-721s need to be transferred.
// NOOP.
} else if (isFromERC721TransferExempt) {
// Case 2) The sender is ERC-721 transfer exempt, but the recipient is not. Contract should not attempt
// to transfer ERC-721s from the sender, but the recipient should receive ERC-721s
// from the bank/minted for any whole number increase in their balance.
// Only cares about whole number increments.
uint256 tokensToRetrieveOrMint = (balanceOf[to_] / units) -
(erc20BalanceOfReceiverBefore / units);
for (uint256 i = 0; i < tokensToRetrieveOrMint; ) {
_retrieveOrMintERC721(to_);
unchecked {
++i;
}
}
} else if (isToERC721TransferExempt) {
// Case 3) The sender is not ERC-721 transfer exempt, but the recipient is. Contract should attempt
// to withdraw and store ERC-721s from the sender, but the recipient should not
// receive ERC-721s from the bank/minted.
// Only cares about whole number increments.
uint256 tokensToWithdrawAndStore = (erc20BalanceOfSenderBefore /
units) - (balanceOf[from_] / units);
for (uint256 i = 0; i < tokensToWithdrawAndStore; ) {
_withdrawAndStoreERC721(from_);
unchecked {
++i;
}
}
} else {
// Case 4) Neither the sender nor the recipient are ERC-721 transfer exempt.
// Strategy:
// 1. First deal with the whole tokens. These are easy and will just be transferred.
// 2. Look at the fractional part of the value:
// a) If it causes the sender to lose a whole token that was represented by an NFT due to a
// fractional part being transferred, withdraw and store an additional NFT from the sender.
// b) If it causes the receiver to gain a whole new token that should be represented by an NFT
// due to receiving a fractional part that completes a whole token, retrieve or mint an NFT to the recevier.
// Whole tokens worth of ERC-20s get transferred as ERC-721s without any burning/minting.
uint256 nftsToTransfer = value_ / units;
for (uint256 i = 0; i < nftsToTransfer; ) {
// Pop from sender's ERC-721 stack and transfer them (LIFO)
uint256 indexOfLastToken = _owned[from_].length - 1;
uint256 tokenId = ID_ENCODING_PREFIX +
_owned[from_][indexOfLastToken];
_transferERC721(from_, to_, tokenId);
unchecked {
++i;
}
}
// If the transfer changes either the sender or the recipient's holdings from a fractional to a non-fractional
// amount (or vice versa), adjust ERC-721s.
// First check if the send causes the sender to lose a whole token that was represented by an ERC-721
// due to a fractional part being transferred.
//
// Process:
// Take the difference between the whole number of tokens before and after the transfer for the sender.
// If that difference is greater than the number of ERC-721s transferred (whole units), then there was
// an additional ERC-721 lost due to the fractional portion of the transfer.
// If this is a self-send and the before and after balances are equal (not always the case but often),
// then no ERC-721s will be lost here.
if (
erc20BalanceOfSenderBefore /
units -
erc20BalanceOf(from_) /
units >
nftsToTransfer
) {
_withdrawAndStoreERC721(from_);
}
// Then, check if the transfer causes the receiver to gain a whole new token which requires gaining
// an additional ERC-721.
//
// Process:
// Take the difference between the whole number of tokens before and after the transfer for the recipient.
// If that difference is greater than the number of ERC-721s transferred (whole units), then there was
// an additional ERC-721 gained due to the fractional portion of the transfer.
// Again, for self-sends where the before and after balances are equal, no ERC-721s will be gained here.
if (
erc20BalanceOf(to_) /
units -
erc20BalanceOfReceiverBefore /
units >
nftsToTransfer
) {
_retrieveOrMintERC721(to_);
}
}
return true;
}
/// @notice Internal function for ERC20 minting
/// @dev This function will allow minting of new ERC20s.
/// If mintCorrespondingERC721s_ is true, and the recipient is not ERC-721 exempt, it will
/// also mint the corresponding ERC721s.
/// Handles ERC-721 exemptions.
function _mintERC20(address to_, uint256 value_) internal virtual {
/// You cannot mint to the zero address (you can't mint and immediately burn in the same transfer).
if (to_ == address(0)) {
revert InvalidRecipient();
}
if (totalSupply + value_ > ID_ENCODING_PREFIX) {
revert MintLimitReached();
}
_transferERC20WithERC721(address(0), to_, value_);
}
/// @notice Internal function for ERC-721 minting and retrieval from the bank.
/// @dev This function will allow minting of new ERC-721s up to the total fractional supply. It will
/// first try to pull from the bank, and if the bank is empty, it will mint a new token.
/// Does not handle ERC-721 exemptions.
function _retrieveOrMintERC721(address to_) internal virtual {
if (to_ == address(0)) {
revert InvalidRecipient();
}
uint256 id;
if (!_storedERC721Ids.empty()) {
// If there are any tokens in the bank, use those first.
// Pop off the end of the queue (FIFO).
id = ID_ENCODING_PREFIX + _storedERC721Ids.popBack();
} else {
// Otherwise, mint a new token, should not be able to go over the total fractional supply.
++minted;
// Reserve max uint256 for approvals
if (minted == type(uint256).max) {
revert MintLimitReached();
}
id = ID_ENCODING_PREFIX + minted;
}
address erc721Owner = _getOwnerOf(id);
// The token should not already belong to anyone besides 0x0 or this contract.
// If it does, something is wrong, as this should never happen.
if (erc721Owner != address(0)) {
revert AlreadyExists();
}
// Transfer the token to the recipient, either transferring from the contract's bank or minting.
// Does not handle ERC-721 exemptions.
_transferERC721(erc721Owner, to_, id);
}
/// @notice Internal function for ERC-721 deposits to bank (this contract).
/// @dev This function will allow depositing of ERC-721s to the bank, which can be retrieved by future minters.
// Does not handle ERC-721 exemptions.
function _withdrawAndStoreERC721(address from_) internal virtual {
if (from_ == address(0)) {
revert InvalidSender();
}
// Retrieve the latest token added to the owner's stack (LIFO).
uint256 id = ID_ENCODING_PREFIX +
_owned[from_][_owned[from_].length - 1];
// Transfer to 0x0.
// Does not handle ERC-721 exemptions.
_transferERC721(from_, address(0), id);
// Record the token in the contract's bank queue.
_storedERC721Ids.pushFront(uint16(id));
}
/// @notice Initialization function to set pairs / etc, saving gas by avoiding mint / burn on unnecessary targets
function _setERC721TransferExempt(
address target_,
bool state_
) internal virtual {
if (target_ == address(0)) {
revert InvalidExemption();
}
// Adjust the ERC721 balances of the target to respect exemption rules.
// Despite this logic, it is still recommended practice to exempt prior to the target
// having an active balance.
if (state_) {
_clearERC721Balance(target_);
} else {
_reinstateERC721Balance(target_);
}
_erc721TransferExempt[target_] = state_;
}
/// @notice Function to reinstate balance on exemption removal
function _reinstateERC721Balance(address target_) private {
uint256 expectedERC721Balance = erc20BalanceOf(target_) / units;
uint256 actualERC721Balance = erc721BalanceOf(target_);
for (uint256 i = 0; i < expectedERC721Balance - actualERC721Balance; ) {
// Transfer ERC721 balance in from pool
_retrieveOrMintERC721(target_);
unchecked {
++i;
}
}
emit ERC721Unexempt(target_);
}
/// @notice Function to clear balance on exemption inclusion
function _clearERC721Balance(address target_) private {
uint256 erc721Balance = erc721BalanceOf(target_);
for (uint256 i = 0; i < erc721Balance; ) {
// Transfer out ERC721 balance
_withdrawAndStoreERC721(target_);
unchecked {
++i;
}
}
emit ERC721Exempt(target_);
}
function _getOwnerOf(
uint256 id_
) internal view virtual returns (address ownerOf_) {
uint256 data = _ownedData[id_];
assembly {
ownerOf_ := and(data, _BITMASK_ADDRESS)
}
}
function _setOwnerOf(uint256 id_, address owner_) internal virtual {
uint256 data = _ownedData[id_];
assembly {
data := add(
and(data, _BITMASK_OWNED_INDEX),
and(owner_, _BITMASK_ADDRESS)
)
}
_ownedData[id_] = data;
}
function _getOwnedIndex(
uint256 id_
) internal view virtual returns (uint256 ownedIndex_) {
uint256 data = _ownedData[id_];
assembly {
ownedIndex_ := shr(160, data)
}
}
function _setOwnedIndex(uint256 id_, uint256 index_) internal virtual {
uint256 data = _ownedData[id_];
if (index_ > _BITMASK_OWNED_INDEX >> 160) {
revert OwnedIndexOverflow();
}
assembly {
data := add(
and(data, _BITMASK_ADDRESS),
and(shl(160, index_), _BITMASK_OWNED_INDEX)
)
}
_ownedData[id_] = data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Immutable state
/// @notice Functions that return immutable state of the router
interface IPeripheryImmutableState {
/// @return Returns the address of the Uniswap V3 factory
function factory() external view returns (address);
/// @return Returns the address of WETH9
function WETH9() external view returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
library ERC20Events {
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
event Transfer(
address indexed from,
address indexed to,
uint256 indexed amount
);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
library ERC721Events {
event ApprovalForAll(
address indexed owner,
address indexed operator,
bool approved
);
event Approval(
address indexed owner,
address indexed spender,
uint256 indexed tokenId
);
event Transfer(
address indexed from,
address indexed to,
uint256 indexed tokenId
);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/DoubleEndedQueue.sol)
// Modified by Pandora Labs to support native packed operations
pragma solidity 0.8.24;
/**
* @dev A sequence of items with the ability to efficiently push and pop items (i.e. insert and remove) on both ends of
* the sequence (called front and back). Among other access patterns, it can be used to implement efficient LIFO and
* FIFO queues. Storage use is optimized, and all operations are O(1) constant time. This includes {clear}, given that
* the existing queue contents are left in storage.
*
* The struct is called `Uint16Deque`. And is designed for packed uint16 values, though this approach can be
* extrapolated to different implementations. This data structure can only be used in storage, and not in memory.
*
* ```solidity
* PackedDoubleEndedQueue.Uint16Deque queue;
* ```
*/
library PackedDoubleEndedQueue {
uint128 constant SLOT_MASK = (1 << 64) - 1;
uint128 constant INDEX_MASK = SLOT_MASK << 64;
uint256 constant SLOT_DATA_MASK = (1 << 16) - 1;
/**
* @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty.
*/
error QueueEmpty();
/**
* @dev A push operation couldn't be completed due to the queue being full.
*/
error QueueFull();
/**
* @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds.
*/
error QueueOutOfBounds();
/**
* @dev Invalid slot.
*/
error InvalidSlot();
/**
* @dev Indices and slots are 64 bits to fit within a single storage slot.
*
* Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
* directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
* lead to unexpected behavior.
*
* The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
*/
struct Uint16Deque {
uint64 _beginIndex;
uint64 _beginSlot;
uint64 _endIndex;
uint64 _endSlot;
mapping(uint64 index => uint256) _data;
}
/**
* @dev Removes the item at the end of the queue and returns it.
*
* Reverts with {QueueEmpty} if the queue is empty.
*/
function popBack(
Uint16Deque storage deque
) internal returns (uint16 value) {
unchecked {
uint64 backIndex = deque._endIndex;
uint64 backSlot = deque._endSlot;
if (backIndex == deque._beginIndex && backSlot == deque._beginSlot)
revert QueueEmpty();
if (backSlot == 0) {
--backIndex;
backSlot = 15;
} else {
--backSlot;
}
uint256 data = deque._data[backIndex];
value = _getEntry(data, backSlot);
deque._data[backIndex] = _setData(data, backSlot, 0);
deque._endIndex = backIndex;
deque._endSlot = backSlot;
}
}
/**
* @dev Inserts an item at the beginning of the queue.
*
* Reverts with {QueueFull} if the queue is full.
*/
function pushFront(Uint16Deque storage deque, uint16 value_) internal {
unchecked {
uint64 frontIndex = deque._beginIndex;
uint64 frontSlot = deque._beginSlot;
if (frontSlot == 0) {
--frontIndex;
frontSlot = 15;
} else {
--frontSlot;
}
if (frontIndex == deque._endIndex && frontSlot == deque._endSlot)
revert QueueFull();
deque._data[frontIndex] = _setData(
deque._data[frontIndex],
frontSlot,
value_
);
deque._beginIndex = frontIndex;
deque._beginSlot = frontSlot;
}
}
/**
* @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
* `length(deque) - 1`.
*
* Reverts with `QueueOutOfBounds` if the index is out of bounds.
*/
function at(
Uint16Deque storage deque,
uint256 index_
) internal view returns (uint16 value) {
if (index_ >= length(deque) * 16) revert QueueOutOfBounds();
unchecked {
return
_getEntry(
deque._data[
deque._beginIndex +
uint64(deque._beginSlot + (index_ % 16)) /
16 +
uint64(index_ / 16)
],
uint64(((deque._beginSlot + index_) % 16))
);
}
}
/**
* @dev Returns the number of items in the queue.
*/
function length(Uint16Deque storage deque) internal view returns (uint256) {
unchecked {
return
(16 - deque._beginSlot) +
deque._endSlot +
deque._endIndex *
16 -
deque._beginIndex *
16 -
16;
}
}
/**
* @dev Returns true if the queue is empty.
*/
function empty(Uint16Deque storage deque) internal view returns (bool) {
return
deque._endSlot == deque._beginSlot &&
deque._endIndex == deque._beginIndex;
}
function _setData(
uint256 data_,
uint64 slot_,
uint16 value
) private pure returns (uint256) {
return
(data_ & (~_getSlotMask(slot_))) + (uint256(value) << (16 * slot_));
}
function _getEntry(
uint256 data,
uint64 slot_
) private pure returns (uint16) {
return uint16((data & _getSlotMask(slot_)) >> (16 * slot_));
}
function _getSlotMask(uint64 slot_) private pure returns (uint256) {
return SLOT_DATA_MASK << (slot_ * 16);
}
}
//SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
import {IERC165} from "@openzeppelin/contracts/interfaces/IERC165.sol";
import {IERC721} from "@openzeppelin/contracts/interfaces/IERC721.sol";
interface IERC404 is IERC165 {
event ERC20Approval(
address indexed owner,
address indexed spender,
uint256 value
);
event ERC721Approval(
address indexed owner,
address indexed spender,
uint256 indexed tokenId
);
event ERC20Transfer(
address indexed from,
address indexed to,
uint256 indexed amount
);
event ERC721Transfer(
address indexed from,
address indexed to,
uint256 indexed tokenId
);
error NotFound();
error InvalidTokenId();
error AlreadyExists();
error InvalidRecipient();
error InvalidSender();
error InvalidSpender();
error InvalidOperator();
error UnsafeRecipient();
error RecipientIsERC721TransferExempt();
error Unauthorized();
error InsufficientAllowance();
error DecimalsTooLow();
error PermitDeadlineExpired();
error InvalidSigner();
error InvalidApproval();
error OwnedIndexOverflow();
error MintLimitReached();
error InvalidExemption();
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
function totalSupply() external view returns (uint256);
function erc20TotalSupply() external view returns (uint256);
function erc721TotalSupply() external view returns (uint256);
function balanceOf(address owner_) external view returns (uint256);
function erc721BalanceOf(address owner_) external view returns (uint256);
function erc20BalanceOf(address owner_) external view returns (uint256);
function erc721TransferExempt(address account_)
external
view
returns (bool);
function isApprovedForAll(address owner_, address operator_)
external
view
returns (bool);
function allowance(address owner_, address spender_)
external
view
returns (uint256);
function owned(address owner_) external view returns (uint256[] memory);
function ownerOf(uint256 id_) external view returns (address erc721Owner);
function tokenURI(uint256 id_) external view returns (string memory);
function approve(address spender_, uint256 valueOrId_)
external
returns (bool);
function erc20Approve(address spender_, uint256 value_)
external
returns (bool);
function erc721Approve(address spender_, uint256 id_) external;
function setApprovalForAll(address operator_, bool approved_) external;
function transferFrom(
address from_,
address to_,
uint256 valueOrId_
) external returns (bool);
function erc20TransferFrom(
address from_,
address to_,
uint256 value_
) external returns (bool);
function erc721TransferFrom(
address from_,
address to_,
uint256 id_
) external;
function transfer(address to_, uint256 amount_) external returns (bool);
function getERC721QueueLength() external view returns (uint256);
function getERC721TokensInQueue(uint256 start_, uint256 count_)
external
view
returns (uint256[] memory);
function setSelfERC721TransferExempt(bool state_) external;
function safeTransferFrom(
address from_,
address to_,
uint256 id_
) external;
function safeTransferFrom(
address from_,
address to_,
uint256 id_,
bytes calldata data_
) external;
function DOMAIN_SEPARATOR() external view returns (bytes32);
function permit(
address owner_,
address spender_,
uint256 value_,
uint256 deadline_,
uint8 v_,
bytes32 r_,
bytes32 s_
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721Metadata.sol)
pragma solidity ^0.8.20;
import {IERC721Metadata} from "../token/ERC721/extensions/IERC721Metadata.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../token/ERC721/IERC721.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721Receiver.sol)
pragma solidity ^0.8.20;
import {IERC721Receiver} from "../token/ERC721/IERC721Receiver.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.20;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be
* reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}